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Preliminaries

Important

This script is in development and continously updated. To download the latest version:

© itp3.info/rt
If you spot mistakes or have suggestions, send me an email:

© nicolai.lang@itp3.uni-stuttgart.de

Requirements for this course

We assume that students are familiar with the following concepts:
« Classical mechanics (Lagrangian and Hamiltonian formalism ...)

« Non-relativistic quantum mechanics (Schrédinger equation ...)

Classical electrodynamics (Maxwell equations ...)

Basics of algebra & linear algebra (groups, linear maps, ...)

« Second quantization and path integrals x

This is only required for the excursions on quantum gravity!

Literature recommendations

Special relativity

 Schroder: Spezielle Relativitdtstheorie [1]
ISBN 978-3-808-55653-5
Compact, pedagogic, mathematically precise introduction (in German).

o Misner, Thorne, and Wheeler: Gravitation [2]
ISBN 978-0-691-17779-3
Extensive standard textbook on special and general relativity (in English).

General relativity

o Schroder: Gravitation: Einfiihrung in die Allgemeine Relativitatstheorie [3]
ISBN 978-3-817-11874-8
Compact, pedagogic, mathematically precise introduction (in German).

« Misner, Thorne, and Wheeler: Gravitation [2]
ISBN 978-0-691-17779-3
Extensive standard textbook on special and general relativity (in English).
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o Schutz: A First Course in General Relativity [4]
ISBN 978-1-108-49267-6
Extensive, pedagogic, mathematically precise introduction.

» Rovelli: General Relativity: The Essentials [5]
ISBN 978-1-009-01369-7
Very high level and compact overview with links to quantum gravity.

Quantum gravity

o Zwiebach: A First Course in String Theory [6]
ISBN 978-0-521-88032-9
Extensive, pedagogic introduction with many detailed calculations.

« Rovelli: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity
and Spinfoam Theory [7]
ISBN 978-1-108-81025-8
Compact, pedagogic introduction, omitting some technical details.

This course follows roughly the textbook Spezielle Relativititstheorie by Ulrich Schroder [1] in
the first part on special relativity (with admixtures from Schutz [4] and Straumann [8]). The
second part on general relativity follows roughly the textbook Gravitation by Ulrich Schroder [3]
(with admixtures from Schutz [4] and Rovelli [5]). The excursions on quantum gravity at the
end draw from Barton Zwiebach’s A First Course in Sring Theory [6] for the primer on bosonic
string theory, and Carlo Rovelli’s Covariant Loop Quantum Gravity [7] for the sneak peek at
loop quantum gravity.

Original literature

 A. Einstein: Zur Elektrodynamik bewegter Korper [9]
Annalen der Physik, 17, p. 891-921, (1905)
Einstein bootstraps SPECIAL RELATIVITY (in German).

o A. Einstein: Ist die Trdgheit eines Korpers von seinem Energieinhalt abhdngig? [10]
Annalen der Physik, 18, p. 639-641, (1905)
Einstein derives the famous mass-energy equivalence (in German).

« A. Einstein: Zur allgemeinen Relativitdtstheorie [11]
Sitzungsberichte der PreuBischen Akademie der Wissenschaften, p. 778-786, 799-801, (1915)
A. Einstein: Dre Feldgleichungen der Gravitation [12]
Sitzungsberichte der PreuBischen Akademie der Wissenschaften, p. 844-847, (1915)
Einstein bootstraps the field equations of general relativity (in German).

« A. Einstein:
Erklirung der Perihelbewegung des Merkur aus der allgemeinen Relativitdtstheorie [13]
Sitzungsberichte der PreuBischen Akademie der Wissenschaften, p. 831-839, (1915)
Einstein explains Mercury’s apsidal precession (in German).

 A. Einstein: Kosmologische Betrachtungen zur allgemeinen Relativititstheorie [14]
Sitzungsberichte der PreuBischen Akademie der Wissenschaften, p. 142-152, (1917)
Einstein kickstarts relativistic cosmology and introduces the cosmological constant (in German).
o A. Einstein: Uber Gravitationswellen [15]
Sitzungsberichte der PreuBischen Akademie der Wissenschaften, p. 154-167, (1918)
Einstein predicts and studies gravitational waves (in German).
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Goals of this course

The goal of this course is to gain a thorough understanding of relativity, our modern theory
of space and time (“spacetime”). This includes both the symmetries and the dynamics of
spacetime; the former being described by special relativity, the latter by general relativity. We
close with an (optional) excursion into the quantization of gravity, and briefly discuss the two
most prominent contenders: string theory and loop quantum gravity.

In particular (» optional):

Special relativity
« Conceptual foundations special relativity
« Galileian and Einsteinian relativity principles
« Lorentz transformations and the principle of invariance
« Kinematical consequences of Lorentz transformations
« Tensor calculus and the metric tensor
« Special relativity in Minkowski space
» Lorentz- and Poincaré group
« Relativistic mechanics
« Lagrange function and principle of least action
« Electrodynamics as a relativistic field theory
» Noether theorem and the energy momentum tensor
« Relativistic quantum mechanics (Klein-Gordon- and Dirac equation)

« Limitations of special relativity

General relativity
« Incompatibility of gravitation and special relativity

o Mathematical toolbox:
Riemannian manifolds, metric tensor, Levi-Civita connection, curvature, ...

 Conceptual framework of general relativity:
Metric field, general covariance vs. background independence, ...

« Classical mechanics in curved spacetime
« Electrodynamics in curved spacetime
« Dynamics of general relativity (Einstein field equations)

« Implications of the Einstein field equations:
Newtonian limit, Gravitational time dilation, Apsidal precession, Light deflection ...

 Application: Gravitational waves (linearized Einstein equations)
« Application: Black holes (Schwarzschild solution)
 Application: The standard model of cosmology (FLRW metric, ACDM, ...)

« Limitations of general relativity:
Einstein-Hilbert action, quantum field theory, (non-)renormalizability, ...
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Quantum gravity (excursion)

 The bosonic string « :
Quantization, Virasoro algebra, anomalies, Hilbert space, gravitons, tachyons, ...

« Concepts of quantum loop gravity x :
Discretized gravity, spin networks, vertex amplitude, transition amplitudes, ...

Notes on this document

« This document is not an extension of the material covered in the lectures but the script
that I use to prepare them.

« Please have a look at the given literature for more comprehensive coverage. References
to primary and secondary resources are also given in the text.

« The content of this script is color-coded as follows:

Text in black is written to the blackboard.

Notes in red should be mentioned in the lecture to prevent misconceptions.

Notes in blue can be mentioned/noted in the lecture if there is enough time.
- Notes in green are hints for the lecturer.
 One page of the script corresponds roughly to one covered panel of the blackboard.
« Enumerated lists are used for more or less rigorous chains of thought:
1| This leads to ...
2 | this. By the way:
i = This leads to ...
i | thisleadsto...
iii | this.
3 Let’s proceed ...

« In the bibliography (p. 244 ff.) you can find links to download most papers referenced in
this script (they look like this: ). Because most of these papers are not freely
available, you need a username & password to access them. These credentials are made
available to students of my classes.

 This document has been composed in Vim on Arch Linux and is typeset by Lual&TEX
and BIBTEX. Thanks to all contributors to free software!

 This document is typeset in Equity, Concourse and MtathTimeProfessional.

Acknowledgements

« Several students and colleagues spotted typos in the script. Thanks!
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Symbols & Scientific Abbreviations

The following abbreviations and glyphs are used in this document:

of
dof
74
etc
etal
ie
Vig
s
wlog

wrt

A

\

mO< > 4 I=doyxe

g
=~
o

« @ ¢ > 1+ 4 &

*.
X%

+

confer (“compare”)

degree(s) of freedom

exempli gratia (“for example”)

et cetera (“and so forth”)

et alii (“and others”)

id est (“thatis”)

videlicet (“namely”)

versus (“against”)

without loss of generality

with respect to

“consider”

“therefore”

“Beware!”

non-obvious equality that may require lengthy, but straightforward calculations
non-trivial equality that cannot be derived without additional input
“it is easy to show”

“it is not easy to show”

logical implication

logical conjunction

logical disjunction

repeated expression

anonymous reference

“without”

“with”

internal forward reference (“see below/later”)

internal backward reference (“see above/before”)

external reference to advanced concepts (“have a look at an advanced textbook on...”)

external reference to basic concepts (“remember your basic course on...”)
reference to previous or upcoming exercises

optional choice/item

implicit or explicit definition of a new technical term (“so called ...”)
Aside

Synonymous terms

Definition
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The following scientific abbreviations are used in this document:

BRT
CERN
COE
COM
co
DFST
EM
EMT
EOM
ES
FLRW
FST
GR
HME
HO
IC
IME
IN
IRF
IRS
IS

ISS
IT
KG
KGE
LT
ME
oC
PDE
QED
QFT
RI

SE

SI

SL

SR
uv

Belinfante-Rosenfeld tensor
European Organization for Nuclear Research
Center of energy

Center of mass | Center of momentum
Continuity

Dual field-strength tensor
Electromagnetic

Energy momentum tensor

Equation of motion

Einstein synchronization
Friedmann-Lemaitre-Robertson-Walker (metric)
Field-strength tensor

GENERAL RELATIVITY
Homogeneous Maxwell equations
Homogeneity

Invariance of coincidence
Inhomogeneous Maxwell equations
Inertial (test)

Instantaneous rest frame
Instantaneous rest system

Inertial system | Isotropy
International space station
Infinitesimal transformation
Klein-Gordon

Klein-Gordon equation

Lorentz transformation

Maxwell equation(s)

Orthonormal Cartesian (coordinates)
Partial differential equation
Quantum electrodynamics

Quantum field theory
Reparametrization invariance
Schrodinger equation

Systéme international d’unités
Speed of light

SPECIAL RELATIVITY

Ultraviolett
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4 Lecture 1 [17.10.23]

Setting the Stage

Terminology

The most important terms in this course and their German correspondence:

RELATIVITY = Relativititstheorie
SPECIAL RELATIVITY = Spezielle Relativitdtstheorie (SRT)
GENERAL RELATIVITY = Allgemeine Relativititstheorie (ART)

Relation of the theories:

SPECIAL RELATIVITY
RELATIVITY

GENERAL RELATIVITY

Motivation

RELATIVITY is arguably the most popular of scientific theories, for it speaks about an entity of every day

experience: space and time. This popularity comes with a caveat:
Yy

el

ol
R

The “Mona Lisa perspective” The “Puzzle Perspective”

The popular status of RELATIVITY in physics parallels RELATIVITY is interesting because it describes some, but
that of the Mona Lisa in arts: Einstein’s magnum opus ot all facets of reality. Its incompatibility with quantum

inherits an aura of perfection and finality. mechanics hints at a reality even stranger than its pieces.

i! You should 7oz view RELATIVITY as the “Mona Lisa of physics” but as the harbinger of quantum
gravity! that, most likely, will come with a reformulation of reality so profound that the “strangeness” of
quantum mechanics and RELATIVITY alike will pale in comparison (> Excursions).

1T use the term “quantum gravity” here very loosely and essentially synonymous with “theory of everything”.

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART PAGE
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Ontology

1| The # ontology of physics is the collection of “things that exist” (s entities):

Ontology = { Leptons, Hadrons, Higgs, Gauge bosons }

Matter: Atoms ... Interactions: Photons ...

Standard Model of Particle Physics

2 | Physical theories are models that describe how these entities behave.

Examples:

Classical mechanics describes the dynamics of matter on macroscopic scales.
Quantum mechanics describes the dynamics of matter on microscopic scales.
Electrodynamics describes the dynamics of electromagnetic fields on macroscopic scales.

Note that these can be effective (approximate) descriptions that are restricted to finite scales of
validity (length, energy, time).

3 What is RELATIVITY a theory of ?

i | <t'Two notions of space and time:

é —_— AN ‘M‘ﬁ"“‘ uen
Leppevt < O
g l afler
oL~ v O«
/‘/ % s Buenit
Buenlt UH\"(’(“‘ N
O“"" wext to (N u
bapposs esC
) { >
O—~0—0—~0 0 0 0 0O
é 5 % { Cpeuce >
& Relational space & time &% Newtonian space & time
i | <t Delete all entities from the world:
A\
& e
v
3
K
hfﬁ(
J
Spuce >
Nothing! Newtonian space & time left!
Question: Which notion describes reality?
NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART PAGE
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ii | <t Newton’s bucket:

Coucave

_/7

wo vrelubive wekiou velubive webion wo velubive wetion

Question: Rotation with respect to wkat determines the shape of the water surface?

Tentative answer: Rotation with respect to Newtonian space!

i! Today, Newtonian space & time (sometimes called neo-Newtonian or Galilean spacetime)
is not seen as a preferred (‘““absolute”) coordinate system, with respect to which absolute
positions, times and velocities can be measured; it is the entity that is responsible for the
absolute notion of acceleration in Newtonian physics (which is also present in RELATIVITY).
It is “the thing” that determines the reference frames that are inertial [5].

— Space & time (Spacetime) is an independent “thing that exists.”

The correct answer to the bucket experiment in RELATIVITY will be: The rotation with
respect to the local inertial frame—which is determined by the local gravitational field—
determines the shape of the water surface. This field is determined by the large-scale dis-
tribution of mass and energy in the universe, i.e., the fixed stars; the (rotating) mass of the
earth has a non-zero but tiny effect as well (> Frame dragging).

4 | Thus we should extend our ontology:

Extended Ontology = { Leptons, Hadrons, Gauge bosons, Higgs, Spacetime }

Standard Model of Particle Physics RELATIVITY

IR Energyscale UV
Core Theory Theory of Everything (?)

The & Core Theory [16] (> below) is an effective (quantum) field theory that encompasses the
standard model and RELATIVITY. It describes all entities know to us on our scales—but is expected
to fail on the Planck scale (in the “UV limit”). The theory that the Core Theory renormalized to
in this UV limit is the famous “Theory of Everything”. This is uncharted territory and we do not
know what this theory looks like.

The extended ontology above is known as # substantivalism in the philosophy of science, see [17]
for a review and [18] for a supportive account of this ontology. Opposing substantivalism is
& relationalism, which defends the view that spacetime is not an independent entity but an emergent
description of relations between entitites (™ The Hole Argument). Relationalism is exemplified
by ™ Mach’s principle, which has been historically influential in the development of GENERAL
RELATIVITY (though Einstein later changed his views). In the light of non-trivial solutions (of
the Einstein field equations) for “empty” universes in GENERAL RELATIVITY, and the (now
experimentally confirmed) existence of gravitational waves, I take a substantivalist stance in this
course.

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART PAGE
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5 | This extended ontology allows us to answers the question:

RELATIVITY is the theory of spacetime (on macroscopic scales),

just as electrodynamics is the theory of the electromagnetic field.

i! Despite these conceptual similarities, there is a fundamental difference between RELATIVITY
and electrodynamics (- below): Whereas electrodynamics describes the dynamics of the electro-
magnetic field on spacetime, the gravitational field of RELATIVITY does ot evolve on spacetime;
it 7s spacetime!

+ The Core Theory

The & Core Theory S is the # effective field theory that describes all entities on the energy scales relevant
for our everyday life [16]. As typical for a field theory, it is best expressed as a ™ path integral:

A, = / Dg DG DY D¢ exp(%s*[g,c,w,qs]).

Momentum  Gravitational field ~ Gauge fields ~ Fermion fields Higgs field

cutoff (Metric) (Photons...)  (Electrons...)  (Higgs boson) Action

What makes this an effective theory is the momentum cutoff A: The theory describes the dynamics of
the fields only up to some finite momentum/energy cutoff A. In [16] it is argued that A ~ 101 eVisa
reasonable cutoff; since this is well below the Planck scale of 1028 €V, A, does not describe the physics
on these energy scales (e.g., what happens in black holes or near the Big Bang is #or encoded in A.). This
reflects the lack of a consistent theory of quantum gravity.

The action S, splits into two parts (plus one additional, technical term that we can savely ignore here):
S«[8.G. V. ¢] = Senlg] + Ssmlg. G. . 4]

The first part is the famous & Einstein-Hilbert action (G is the gravitational constant) and describes the
gravitational field g:

1
Senlg] = TenG d* /—gR(g).

We will encounter this action in the second part of this course as it encodes the (source-free) % Finstein
field equations; there you will learn what R(g) is.

The second part is the action of the # standard model of particle physics (coupled to gravity via g) and
describes all the stuff in our world (matter and interactions) except gravity:

Ssmlg. G. v, 4] = /d“x Ve [uzw — G+ DGR~ V() + (Vivyovi+ h-c-)} :

Dirac Yang-Mills Klein-Gordon Higgs potential Yukawa coupling

(Fermion ke&i)  (Gauge boson ke&i)  (Higgs boson ke&i)  (Symmetry breaking)  (Fermion masses)

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART PAGE
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Here “ke&i” stands for kinetic energy and interactions (with gauge bosons). The standard model action
Ssm|G, ¥, ¢] = Ssmln, G, ¥, ¢] on a static, flat spacetime g = 7 is typically discussed in a course on
quantum field theory with focus on high energy physics ( Section 10.2 of my script on QFT [19]). In this
course on RELATIVITY, the existence of Ssy will leave its (classical) mark on the Einstein field equations
in form of the # energy-momentum tensor.

Relation to other theories

2

RELATIVITY is similar to other theories in that it is a theory of an entity that makes up reality.
However, it is also different in that this very entity makes an appearance in most other theories:

Classical mechanics describes the macr. dynamics of matter oz spacetime: X ().
Quantum mechanics describes the micr. dynamics of matter on spacetime: W(X,t).
Electrodynamics describes the macr. dynamics of EM fields on spacetime: E (X,1), B(X,t).

In the light of the extended ontology (where spacetime is an idependent entity described by RELA-
TIVITY), it can be useful to reframe the objective of various theories as follows:

Classical mechanics describes the macr. dynamics of matter interacting with a (static) spacetime.
Quantum mechanics describes the micr. dynamics of matter interacting with a (static) spacetime.
Electrodynamics describes the macr. dynamics of EM fields interacting with a (static) spacetime.

Note that this reading is manifest in the background-independent formulation of the Core Theory
S.g. G, ¥, ¢] where the metric g and the other fields are treated on the same footing.

— The properties of spacetime (as posited by RELATIVITY) must be reflected by these
theories!

This means that we might have to modify known theories to be consistent with RELATIVITY.
These modifications must adhere to the # correspondence priciple: The “old” (non-relativistic)
versions of the theories must be included in the “new” (relativistic) versions as limiting cases.

Incorporating the tenets of SPECIAL RELATIVITY leads to ...
* Relativistic mechanics
e Relativistic quantum mechanics (Dirac equation, Klein-Gordon equation)

e Relativistic electrodynamics (= classical electrodynamics)

Cpecial ‘ Cpecial

Rdu * 'l\" Rdu‘\ w\‘/
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Luckily, classical electrodynamics is already consistent with SPECIAL RELATIVITY and needs no
modification. By constrast, both classical mechanics and the quantum mechanics you learned in
your previous courses must be modified to reflect the symmetries of spacetime posited by SPECIAL
RELATIVITY.

3 | Incorporating the tenets of GENERAL RELATIVITY leads to ...
« (Relativistic) Mechanics on curved spacetimes
« (Relativistic) Quantum mechanics oz curved spacetimes

+ (Relativistic) Electrodynamics on curved spacetimes

Gevera| Gevera|
Releckividy Relechividy

In this course, we will discuss the modifications needed for mechanics and electrodynamics to fit
the framework of GENERAL RELATIVITY. We won’t discuss quantum mechanics on curved
spacetimes.

i! Quantum mechanics (describing matter and gauge bosons) on a curved spacetime is #oz “‘quantum
gravity!” Quantum gravity is a theory where the metric field g stself is quantized (which we do not
know how to do).

Spoiler

The gist of RELATIVITY can be summarized as follows:

Spacetime <> Four dimensional Lorentzian manifold (M, g)

Gravitational field <> Metric tensor field g

This is what is meant by the popular statement that gravity “is not a force” but a geometrical deformation
(“curvature”) of spacetime.

and

SPECIAL RELATIVITY : g has signature (1, 3) (Lorentz symmetry)
GENERAL RELATIVITY : g is a dynamical field (Background independence)

You most likely do not understand these statements at this point. That’s fine! To provide you with the
background knowledge to do so is the purpose of this course.

So let’s start ...
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1. Conceptual Foundations

1.1.

¢ Concepts

Events, Observations, Coincidences, Observers, Reference frames, Einstein synchronization,
Cartesian coordinates, Inertial frames, Inertial coordinate systems, Coordinate transforma-
tions, Laws of nature, Physical models and theories

Newtonian mechanics, Form-invariance and covariance, Invariance group, Active and passive
transformations, Galilei transformations, Galilei group, Galilean principle of relativity

Maxwell equations, Aether, Michelson Morley experiment, Principle of Special Relativity
Isotropy, Homogeneity, Affine transformations

Special Lorentz transformations, Lorentz Boosts, Lorentz group, Lorentz factor, Limiting
velocity, Lorentz covariance, Addition of collinear velocities, Finite speed of causality

Spacetime interval, Invariant interval, Time-like, Space-like, Light-like, Light cone, Invariant
hyperbolae, Causality, Time-like trajectories, Partial order of events, Causal automorphism

Relativity principles, Symmetries of spacetime, Simplicity of nature, Compressibility, An-
thropic principle

Events, frames, laws, and models

Events:

i = A. Einstein writes in his 1905 paper “Zur Elektrodynamik bewegter Korper” [9]:

Wir haben zu beriicksichtigen, daf3 alle unserer Urteile, in welchen die Zeit eine Rolle
spielt, immer Urteile iiber gleichzeitige Ereignisse sind. Wenn ich 3. B. sage: “Jener Zug
kommt hier um 7 Uhr an,” so heifit dies etwa: “Das Zeigen des kleinen Zeigers meiner
Uhr auf 7 und das Ankommen des Zuges sind gleichzeitige Ereignisse.”

And in his 1916 review “Die Grundlage der allgemeinen Relativititstheorie” [20]:

Alle unsere zeitrdumlichen Konstatierungen laufen stets auf die Bestimmung zeitrdum-
licher Koinzidenzen hinaus. Bestinde beispielsweise das Geschehen nur in der Bewegung
materieller Punkte, so wére letzten Endes nichts beobachtbar als die Begegnungen zweiser
oder mebrerer dieser Punkte. Auch die Ergebnisse unserer Messungen sind nichts anderes
als die Konstatierung derartiger Begegnungen materieller Punkte unserer MafSstibe mit
anderen materiellen Punkten bzw. Koinzidenzen zwischen Uhrzeigern, Zifferblattpunik-
ten und ins Auge gefafSten, am gleichen Orte und zur gleichen Zeit stattfindenden
Punktereignissen.

We condense this into the following postulate:
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§ Postulate: Invariance of coincidence 1C

« Observations are cozncidences of events local in space and time.

« Coincidences of events are absolute and observer independent.

i Example:

Event e; = (Clock A shows time 11:30)
Event e, = (Detector B detects electron)
Event e3 = {Clock C shows time 9:45)

If detector B and clock A are at the same location (spatial coincidence), and clock A shows
11:30 when detector B detects and electron (temporal coincidence), we say that the events e;
and e, coincide: e; ~ e5.

— Collect all events e; that coincide into an equivalence class E:
ep~ey~ez3~... > E ={ey,ez,e3,...}

In a slight abuse of nomenclature we call the coincidence class E also event.

Note that this abuse of nomenclature is also used in everyday life: What makes up an “event”
(like a party) is the set of all “little events” (like you meeting your friend) that happen
(roughly) at the same location and the same time.

i | Assumption:

The set & = {E;, E»,...} of all coincidence classes is a complete, observer
independent record of reality.

We call the information stored in & absolute because all observers agree on it.

2 | & Observer O = # (Reference) Frame O:

Goal: Systematic description of physical phenomena in terms of models.

Question: How to systematically observe reality and encode these observations?

:= Experimental setup to collect data about events in space & time:
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4 Lecture 2 [24.10.23]

Assumptions:
 The rods and clocks are conceptual: they do not affect physical experiments.

« All rods and clocks are identical (when brought together, the rods have the same,
time-independent length and the clocks tick with the same rate).

o The lattice is “infinitely dense”: there is a clock at every point in space.
« Each clock is assigned a unique position label X and the reference frame label ©.

For example, a unique position label X for a clock can be obtained by counting the rods in x-,
y- and z-direction that one has to traverse to reach the clock from the origin. The origin O
is, by definition, a “special” clock that is assigned the position label Xp = 0.

i! Observers are ot sitting at the origin, looking at their wristwatch, and observing the events
with binoculars! They are simply collecting and processing the data that is accumulated by the
contraption we call a reference frame.

Since we assume that (ideally) there is one clock at every point in space:

— For every observer O and every coincidence class E there is a unique event eg

E 3 e@ = (Clock with frame label 0 and position label X shows time 7) (1.12)
=1 (t.XY)o & [Elo =(1.X) (1.1b)

for some position label X and clock reading 7.

We refer to the event (¢, X) @ as the spacetime coordinates of E with respect to frame ©. A different
observer @’ will use its own clocks and therefore other events (“coordinates”) (t', X")o- € E to
refer to E.

In the real world, the 1 tracking detectors of particle colliders are reminiscent of this ideal setup: They
are comprised of 3D arrangements of semiconductor-based particle detectors that all report to a
central computer that then reconstructs the trajectories of scattering products from the combination
of all detection events.

3 & Inertial (coordinate) systems:

The setup of a reference frame @ above is incomplete and actually very hard to work with: Without
additional constraints on the geometry of the lattice and the correlations of clocks (their “calibra-
tion”), the record of events is essentially arbitrary. Let us therefore impose some deterministic
“calibration procedure” (the same for all frames) that determines how to lay out the rod lattice
and how to synchronize the clocks. This procedure endows our reference frame with a specific
coordinate system, a labeling scheme to describe events.

i = Clock calibration: # (Poincaré-)Einstein synchronization [ES

The conventional synchronization procedure (which is actually in practical use) is
(Poincaré-)Einstein synchronization:

?

to =3 (ta +ia) 1.2)
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Cleck O

Cloek A

You will study this particular procedure and its properties in @ Problemset 1.

In brief, the procedure goes as follows: Consider a reference clock O and some other clock
A you wish to synchronize with O.

(1) To do so, you send a light signal from A to O and note the time #4 your clock A4 reads
when the signal is emitted.

(2) When the signal arrives at O, it is immediately reflected back to A4 together with the
reading 7o of clock O at this very moment.

(3) When the signal arrives back at your clock A4 (together with the timestamp 7¢), you
note again the reading of your clock as 74.

(4) You are now in the possession of three timestamps: (t4,70,74). The idea of Einstein
synchronization is to postulate the reciprocity of the speed of light: We declare that the
speed of the signal from A to O is the same as on its way back from O to 4 (note that
we cannot measure this reciprocity because we would need already synchronized clocks
to do so!). Under this assumption, the readings of synchronized clocks must satisfy [9]

o ! -
Atgso =to—ta =ig—1o0 = Aoa & to = 2(ta +14), (1.3)

which you can locally check with your data (¢4, 70, Z4). Note that you do not need to
know the distance from O to A, nor the numerical value of the speed of light ¢ for this
procedure to work!

(5) Now if you just powered on your shiny new clock A for the first time, it is very unlikely
that the condition Eq. (1.3) will be satisfied:

to = 3(ta + ia) + 8t = L[(ta + 8t) + (74 + 81)]. (1.4)

Here 61 is an offset that you might encounter. But then you can just recalibrate your
clock A by 8¢ such that the new readings are z4 + §t and 74 + §t.

Repeating this procedure for all clocks of the frame (@ allows you to establish a synchroniza-
tion relation between arbitrary pairs of clocks. The fact that (under some reasonable and
experimentally verified assumptions) the order in which you synchronize your clocks does
not matter (the established relation is an equivalence relation, © Problemset 1 and Ref. [21])
makes Einstein synchronization a very useful and peculiar convention [22-24]. However,
one can show that it is the only convention that yields a non-trivial equivalence relation of
simultaneity that is consistent with the causal structure on & (> lazer) [25].

Lattice calibration: & Orthonormal Cartesian coordinates 0C :

The layout of the lattice of rods assigns coordinates X = (x, y, z) to each clock. Depending
on the actual shape of the lattice, we will denote events by different position labels. (Note
that even with rigid rods connected in the topology of a cubic lattice the geometry is not fixed;
for example, you can shear the lattice.) If we assume that space (not spacetime!) is a flat
Euclidean space where all the facts of Euclidean geometry hold good (angles of triangles add
up 7, the Pythagorean theorem holds, the area of circles is 7772, etc.), we can parametrize it
without loss of generality by orthonormal Cartesian coordinates. In these coordinates, distances
can be calculated by the Pythagorean formula:

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART

Institute for
i:!oret'cal
] Physics

PAGE

21



SR » CONCEPTUAL FOUNDATIONS

NICOLAI LANG -

Spatial distance between clocks at X and y:

d(7.5) = /(1= y1)2 + (v = y2)? + (53 — y3)? 139
‘,.—/))
“Physics “Mathematics”

The fact that the coordinates of a point (x, y, z) are distances along paths parallel to the
coordinate axes makes the coordinates Cartesian. The fact that Eq. (1.5) holds makes them
orthonormal (i.e., the axes are orthogonal and have the same scale, as suggested by the sketch
above). Coordinates are an intrinsically mathematical concept, they are “labels” to identify
points on a manifold of physical points (or events, if you consider spacetime coordinates). By
contrast, distances carry physical significance: You can measure them with light signals or
rods. The prevalence of Cartesian coordinates makes it easy to conflate these two concepts
(this will become particularly important in GENERAL RELATIVITY).

Here is a way to check whether your lattice satisfies the [0C condition using the clocks of @
(and the assumption of the isotropy of the two-way speed of light):

ot @@

| 8. / f
N % e e e e [ 7 A

“Inertial Test” (s law of inertia):

Once you have arranged your rods and synchronized your clocks and thereby established a
Cartesian coordinate system and a (allegedly) well-defined notion of simultaneity, you can
perform the following test and check whether your particular reference frame @ passes it or
not:

IN Free particles move at constant velocity and in straight lines.
(5% Homogeneity of Inertia)

« Itisimplied that this statement is true everywhere, anytime, and in all directions.

« Velocities are computed as the time derivative of trajectories in the frame: dx(’).

 The property [IN| implies a certain form of komogeneity in space and time (since free
particles must move in straight lines anywhere and anytime) and isotropy in space (they
must move in straight lines in any direction). Without additional empirical input, this
does not automatically imply that every experiment yields the same result anywhere,
anytime and in any direction. This more general form of homogeneity and isotropy will
be introduced later as [HO and [IS|. Empirical evidence shows that spacetime indeed is
homogeneous HO and space isotropic [IS| (in the absence of gravity). With this additional
input, the “Inertial Test” to establish [IN can be simplified to only one particle moving in
a straight line at one place for some finite time (which is actually doable). If you presupose
homogeneity [HO' but 7oz isotropy [IS|, you could observe multiple free particles starting
at the same point but moving in different (linearly independent) directions.

Frames equipped with a coordinate system defined by [ES +/0C
which satisfy IN are called  inertial coordinate systems.
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To distinguish arbitrary frames @ (with arbitrary coordinates) from the special frames
(equipped with Cartesian coordinates and synchronized clocks) that passed the inertial
test, we label these coordinate systems by K, K’; K" etc. (if we refer to arbitrary inertial
systems) and by 4, B, C etc. (if we refer to specific inertial systems); the set of all inertial
systems is denoted J.

Alternative definitions:

There seem to be as many definitions of inertial systems as there are texts on SPECIAL
RELATIVITY. Some are equivalent, some are not. Some more useful, others less so (none
are “wrong”, though, because definitions cannot be wrong). Some are operational in nature
(like the one above), some purely mathematical. Here I only want to point out two ways one
can modify the above definition without changing the concept of an inertial system:

 The “inertial test” is crucial to the concept of an inertial frame. It rules out accelerated
frames (both linear or rotating). An alternative to throwing test masses in different
directions and recording their trajectories is to repeat the [ES procedure periodically
to zest whether the clocks stay in sync. That is, to setup the coordinate system one
synchronizes the clocks once (by recalibrating the clocks) and then repeats the procedure
periodically to check whether the Einstein-synchronization condition remains valid
(6 = 0 in our description above). As it will turn out in GENERAL RELATIVITY,
your clocks will not stay in sync in frames that do not pass [IN (and vice versa). This is
essentially the definition given by Schutz [4].

« Instead of “hiding” the law of inertia in the synchronization of clocks, one can do a
somewhat reverse modification and “hide” the synchronization of clocks in (an exten-
sion of ) the law of inertia. To this end one extends the “inertial test” by a second class
of tests/experiments, namely:

IN*| Two identical particles that are initially adjacent and at rest, and then interact to

repel each other, fly apart with the same velocity in opposite directions. (# Isotropy
of Inertia)

This statement about the isotropy of inertia implies an operational definition of simul-
taneity that is (empirically) equivalent to [ES: You synchronize your clocks such that [IN%

is satisfied, for example by performing the experiment described by [IN% equidistant
between two clocks. When the particles reach the clocks, you reset both to # = 0.
In this synchronization [INx is satisfied by construction; experiments show that clocks
synchronized in this way are also synchronized according to [ES' (and vice versa).

4 & Spacetime diagram

:= Data structure that encodes the collected data of an inertial coordinate system K:

luertial K MTet  wuccaleraked
Oloser ver wo Nou
v(c
v=_C
v>C
>
X
Evt-l\*
[ ]

 Often we draw only one dimension of space for the sake of simplicity.
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 Because it will prove useful later, we measure time in units of length by multiplying ¢ with

the speed of light ¢. The choice of ¢ is arbitrary at this point.

Notation: < Two inertial systems K and K':

We use the following shorthand notations to refer to the coordinates of events in the spacetime

diagrams of K and K’, respectively:

When it is clear to which inertial system the coordinates belong we drop the subscripts K and K'.

t.)k=@g=x= %) and (" X)p =), =x"=0C.X) @6

¥ Interlude: Reconstructing spacetime diagrams from &

If you are given the set & of events you can reconstruct the spacetime diagram of an inertial system
K by looking in each coincidence class £ € & for the clock event (7, X)x € E. You then place E
(or some sub-event you are interested in) graphically at the coordinate (z, X) on a sheet of paper. The
resulting picture is the spacetime diagram of K. In a another inertial system K’ the events are arranged
differently because different clock events (¢, X") g7 € E and hence coordinates (z’, X’) are used to draw
the spacetime diagram. How (¢, X) and (¢/, X’) are related is unclear at this point.

5 Empirical facts:

The following facts cannot be bootstrapped from logical thinking alone. They are facts about our

physical reality that we have strong experimental evidence for.

6 Re

« Inertial systems exist (at least in some approximation).

Examples would be an unaccelerated spaceship floating far away from the solar system or the
interior of the international space station (if you do not measure too precisely). In SPECIAL
RELATIVITY we assume that these systems can be extended to encompass all of spacetime.

« Constructing inertial systems (of arbitrary size) is not possible everywhere.

—> GENERAL RELATIVITY

We will find in our discussion of GENERAL RELATIVITY that in a gravitational field the
construction of inertial systems is only possible locally. For example: If you extend the ISS
inertial system rigidly beyond the ISS itself| at some point you will find the trajectories of
free particles to deviate from straight lines due to the inhomogeneity of the gravitational
field. We will also see that the synchronization procedure used to calibrate the clocks fails in
gravitational fields (you cannot keep your clocks in sync). For our discussion of SPECIAL

RELATIVITY we ignore this and assume that our inertial systems cover all of spacetime.

lations between inertial systems:

There are three straightforward ways to construct a new inertial system K’ from a given one
K. They have in common that the two observers do 7ot move with respect to one another so
that pairs of clocks from K and K’ spatially coincide for all times (this implies in particular

that you can check that these pairs of clock run at the same rate):
(1) Translation in time by s € R (— 1 parameter)

Procedure:

Duplicate all clocks & rods in place. Label the new clocks with K’ and the old position

labels. Shift the reading of all clocks by a constant value —s:

/

=/

(l/,f/)K/N(t,f)K with ¢
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It is easy to see that this modification does not invalidate [ES|, [0C or [IN|. In particular,
the Einstein synchronization condition Eq. (1.2) remains valid:

to=3(a+ia) & (to—s5)=3[ta—s5)+(@a—9)]. (1.8)
How to check from K :
At (t)g = 0 the reading of the origin clock of K is shifted by —s € R.
(2) Translation in space by b eR3 (— 3 parameters)
Procedure:
Duplicate all clocks & rods and translate the whole lattice by b (since all clocks are
type-identical, you can also simply modify the position labels without moving anything).
Label the new clocks with K’ and keep their synchronization:
(' g ~ (t, %)k with =t and ¥ =%—b. (1.9)
i! If you move the lattice K’ in direction l;, the origin clock of K with position label
X = 0 will spatially coincide with a clock of K’ with position label translated in the
opposite direction, namely —b. The same happens for rotations (= below) and translations
in time (¢ above).
It is easy to see that this modification does not invalidate [ES|, [0C or [IN.. In particular,
distances can still be computed with Eq. (1.5) since
d(%.5)=d(x—b.5—b) forbeR>. (1.10)
How to check from K :
At (t)g = 0 the origin of K’ is translated by » € R? wrt. the origin of K.
(3) Rotation in space by R € SO(3) (— 3 parameters)
Procedure:
Duplicate all clocks & rods and rotate the whole lattice by the axis and angle defined by
the rotation matrix R (since all clocks are type-identical, you can again simply modify
the position labels without moving anything). Label the new clocks with K’ and keep
their synchronization:
(. ¥ ~ (t,¥)x with ¢/=¢r and ¥ = R'X. (1.11)
It is easy to see that this modification does not invalidate [ES|, [0C or [IN.. In particular,
distances can still be computed with Eq. (1.5) since
d(¥,y) =d(R™'3¥,R7'y) for R~! € SO(3). (1.12)
How to check from K :
The spatial axes of K’ are rotated by R € SO(3) wrt. the spatial axes of K.
i! You can add spatial reflections to these transformations (¥ improper rotations), i.e.,
R € O(3) instead of R € SO(3). In our discussions we will omit these and only
comment on them where necessary.
The combination of spatial rotations (proper and improper, i.e., including reflections) and
spatial translations form the * Euclidean group E(3) = ISO(3).
However, experiments (and everyday experience) tell us that there is a fourth possibility how
two inertial systems can be related:
Empirical fact:
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(4) Uniform linear motion (% Boost) by ¥ € R3 (— 3 parameters)

You experience this fact whenever you have a very smooth flight: If you don’t look
out the window (and cover your ears) everything behaves just as if the airplane were
standing still on the ground; there is no evidence that you move with several hundred
kilometers per hour relative to the ground.

How to check from K :

The origin of K’ moves with constant velocity (7)), = (dﬁgt) )K e R3.

Note that just from this observation one cannot distinguish between a pure boost and
a boost combined with a spatial rotation of the axes (because one probes only for the
trajectory of a single point). We will - /ater be more precise about this distinction.

i! We cannot write down the coordinate transformations for this relation (yet). The
fundamental difference to (1)-(3) is that now the clocks of K’ move wrt. the clocks of
K. We cannot interpret this as a simple relabeling of fixed clocks. We cannot even be
sure that the K- and K'-clocks “run at the same rate” (even if they are type-identical)
because to check this we would have to compare the reading of a pair of clocks (one in
K and one in K’) at two consecutive points in time. To do this, however, the two clocks
must be at the same place (remember that we can only observe coincidences!). But this
is not possible: Since the two frames move uniformly, two clocks can never meet twice!
As it will turn out, it is this relation (4) [and its concatenations with (1)-(3)] that harbors
the essence of SPECIAL RELATIVITY.

Empirical fact: The relations (1)-(4) are exhaustive.

With this we mean that whenever you encounter two inertial systems K and K’ (i.e., both
observers certify that they satisfy our definition of an inertial system, in particular, the
“Inertial Test” [IN)), then you will find that the relation between the two is one of the four
relations (1)-(4) or a combination of them.

— The relation of two inertial systems K and K’ is given by 10 parameters:

Ayt
K K
A
-
Kl g x' K /l-'j K_, v x'
@—— 2

Note that all these relations can be operationally defined and measured within the frame K.

i! The first three sketches can be taken at face value: For example, a translation in time really
corresponds to the situation where all clocks are shifted by s an all spatial labels (in particular
the axes) remain unaffected. However, for the boost (the last sketch on the right) we do not
know (yet) how the coordinates transform (neither time nor space) except that the origin
clock of K’ follows a trajectory in K with uniform velocity v. This implies that you should
not take the sketch for a boost at face value: For example, we do not know whether the axes
remain parallel as suggested by the sketch (spoiler: in general they will not).

Since the transformations (1)-(3) do not change the state of motion of the observer (and
can therefore be interpreted as a simple relabeling of the position labels and clock readings),
it makes sense to collect all inertial frames K that can be connected in this way into an
equivalence class [ K] which we call ...
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& Inertial frame := Equivalence class [K] of all inertial coordinate systems K related
by spacetime translations and spatial rotations.

\.\M\“ﬂ\ _“_fr_t EK-] \wertia] Frawe D:(']
Inertial frames [ K| therefore correspond to the physical notion of a “state of motion.” Physi-
cally, an inertial frame corresponds to the class of all freely moving particles in the universe
that are mutually at rest. Given such a “state of motion” (e.g., by declaring one of the particles
as reference point), you can then construct various Cartesian coordinate systems (e.g., using
said reference particle as your origin) to describe events; these are the inertial systems that
make up the equivalence class [K].
iv | Notation:
We denote these relations between two inertial systems with the following shorthand nota-
tions:
R,T),s,_' , R, , v , Uy ,

K—> K, K—K', K-> K, K—K (1.13)

From left to right the relations become increasingly specialized.
. . . . v
i! These relations are zot symmetric (as indicated by the arrow). For example, K — K’
specifies the situation where the (origin of ) system K’ moves with velocity v, in x-direction
as measured in system K.
v | Coordinate transformations:
< Two descriptions of the same events:
=
o sb
“ R.7 > K
" <
A
Y= Fleist) & .
: _r\f‘/mA
nr\f“/\f Voo
——
[ ')-('1/
R Eveuts
Obsnivakou Observakou
— Transformation between these descriptions?
(K — K'): (t,X)g — (t'. X g # Coordinate transformation
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Finding the functional form of ¢ (for the non-trivial case v # 0) will be our main goal and
central result of this chapter. However, before we can tackle this problem, we first have to
introduce a few more concepts.

¥4 Interlude: Relative information

We called the datain & absolute because all observers agree on the coincidence of events. However,
this data cannot include arbitrary statements, e.g., the event “the particle has velocity ¥ cannot
be part of & because we know from experience that different observers in general do not agree on
the velocity of an object. However, following Einstein, we postulated that coincidences are all we
can ever observe; thus all there is to know must be encoded in &! How is this consistent with the
fact that velocities (for example) cannot show up in &?

To understand this, it is instructive to think about quantities that can be derived from the absolute
datain & by means of prescribed algorithms. An algorithm 4 is simply a program using data from
& to compute other data (it can use potentially multiple events E1, E», ..., Exy € & to do so).
Furthermore, we allow the algorithm to take the label of an inertial system K € J as input:

A 6N x4 > Output data (1.14)

As a constraint, we require that the algorithm must not use any (static) labels 4, B, ... € J of
inertial systems. The only reference to a frame it can use is the variable K. This somewhat
arbitrary sounding restriction formalizes the notion that there are no inertial systems that are
“special”. Since all inertial systems must be treated equal, the algorithm cannot refer to any
specific frame. (This - principle of relativity will take the center stage later and turns out to be
crucial for the derivation of the transformation ¢.)

Let us now contrive two algorithms to compute two quantities that are clearly physically relevant
but are #ot contained in &:

» Example 1: Velocity

First think about how you would measure the velocity of a particle in the lab: You would
detect the particle at two different (but nearby) locations, measure the time it requires to
get from one to the other, and then compute the difference quotient of distance traveled by
the time needed. Note that there is no way to measure the velocity at one point in space
and time; you always need two points!

To formalize this, consider two events £ and E» that both contain the sub-event “particle
detected”. The algorithm V(E1, E»; K) computes the (average) velocity between the two
events as follows:

1. Select the event (f1,X1)g € E1.

2. Select the event (t2,X2)g € E>.

Xo—X1
-t

3. Compute and return the value v =

It is important that this algorithm can be used without modifications by all observers K € d.
To do so, each observer K plugs into V the two events (which are objective) an its owr label
K (since this is the only non-random choice possible).

But then two different observers K and K’ will pick different coordinates (¢;, X;) (measured
by different clocks) to compute their value of ¥, which obviously can yield different outcomes
(as expected for velocities). Note that for the velocities to be really different it must be
[K'] # [K], i.e., the two inertial systems must belong to different frames.

» Example 2: Duration & Simultaneity

A very natural question is how much time passed between two events Ej and E;. The
formal prescription how to answer this question is given by the algorithm 7 (E1, E2; K):

1. Select the event (f1,X1)g € E1.

2. Select the event (t2,X2)g € E>.
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3. Compute and return the value At =1, — 1.

For the very same reason as for the velocity algorithm above, the return value of course
will depend on the chosen “clock events” (#;, X;). And so for the very same reason that
velocities can be observer-dependent, time intervals can be as well. Since we define “simul-
taneity” as the property Az = 0, this possibility for observer-dependent results directly
transfers to our notion of simultaneity!

Note that we did not make quantitative statements about the outcomes for different observers.
We neither showed /ow velocities depend on the frame nor whether simultaneity really /s relative.
(It could just be the case that in our world r, — 71 always equals 75, — #{ for a fixed event.) This
depends on the actual numbers of the coordinates. Such statements therefore require quantitative
statements about the relation of (z, X)x € E and (', X')gs € E, which we do not know at this
point (this is exactly the question for the functional form of the coordinate transformation ¢).

However, what we did show is the possibility that simultaneity is relative, just as we already expect
velocities to be! So when we later find the correct transformation ¢ and (surprise!) that indeed
simultaneity is not an observer independent fact, you should not be surprised.

Question: Can the values of the electric and magnetic fields E and B be included in &? If not,
can you think of an algorithm that determines the electric and magnetic fields E and B using
only coincidence data available in &? Do you expect the electromagnetic field to be observer-
dependent?

7 | Henceforth:

Unless noted otherwise, all frames will be snertial (with Cartesian coordinates).
— We will (almost exclusively) work with inertial coordinate systems.

We use the concept of inertial systems because to describe physics by equations, coordinates are a
useful tool. As it turns out, Cartesian coordinates allow for particularly simple equations (at least if
space is Euclidean). So our concept of inertial systems as defined above is the most useful one.

8 Physical Models:

Let us fix a bit of terminology:

o & (Physical) laws are ontic features of reality (1 scientific realism).
Physical laws can only be discovered; they can neither be invented nor modified.

o & (Physical) models are algorithms used to describe reality.
These algorithms are typically encoded in the language of mathematics.

Physical models are invented and can be modified; 1 will use the terms model and theory
interchangeably.

i! These definitions are by no means conventional and you will find many variations in the literature.
For the following discussion, it is only important that the terms we use have precise meaning.
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i! The validity of models cannot be proven; we can only gradually increase our trust in a model by
repeated observations (experiments) - or reject it as invalid by demonstrating that its predictions
contradict reality (* Karl Popper). Note that models might describe reality only approximately and
in specific parameter regimes and still be useful.

You may dismiss this focus on terminology as “philosophical banter.” Conceptual clarity, however,
is absolutely crucial for science - in particular for RELATIVITY. Whenever there is confusion in
physics, it is often rooted in the conceptual fuzziness of our thinking.

1.2. Galilei’s principle of relativity

9 | Example: Newtonian mechanics

i | Definition of the model:

+ < Closed system of N massive particles with masses m; and positions X;.

» < Force exerted by k on i:
Fie—i(Xg — Xi) = (Xg — %) froi (IXk — Xi]) (1.15)
Itis fxei = fiok and therefore Fi_; (Xx — Xi) = —Fix (Xi — Xg).

— Newtonian equations of motion (in some inertial system K):

d2X; . I,
mi——" =" Froi (X — Xi) (1.16)
dt /
k#i
We denote with X; = X; (¢) coordinate-valued functions; i.e., X; = X; (1) determines a

spatial point x; for given ¢.
Remember: This model fully implements “Newton’s laws of motion”:
1. Lex prima:

A body remains at rest, or in motion at a constant speed in a straight line, unless
acted upon by a force.

This is the ¥ principle of inertia. It is part of the definition of the concept of a Newtonian
force used in Eq. (1.16). Note that it is not a consequence of Eq. (1.16) for Fj_,; = 0. It
rather defines (together with the lex tertia below) the frames and coordinate systems
(€ tnertial systems) in which Eq. (1.16) is valid (recall [INJ).
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2. Lex secunda:

When a body is acted upon by a net force, the body’s acceleration multiplied by its
mass is equal to the net force.

This is just the functional form of Eq. (1.16) in words.
3. Lex tertia:

If two bodlies exert forces on each other, these forces have the same magnitude but
opposite directions.

This is guaranteed by the property Fj_,; = —F;_, of the forces. Together with the
lex secunda this is an expression of momentum conservation. For two particles:

dvl dU2 dp1 de
v 2 S 82 g L FL,=0 1.17
m— +my 4 R + 5 251+ Fioo (L.17)

This implies in particular that two identical particles (m; = m>) that are both at rest at
t = 0 must obey v (f) = —v, () for all times (recall [IN%]).

i | Application of the model:

K ct ct K
c-' . X (4) Didlerend
| : o Soludious
“ :. /\/—\J
S .
.|
TN 2| 2

D ',uq PR
wikal
coudibiout

As a working hypothesis, let us assume that the model Eq. (1.16) describes the dynamics of
massive particles perfectly (from experience we know that there are at least regimes where it
is good enough for all practical purposes).

i | Symmetries of Newtonian mechanics:

To understand the solution space of Eq. (1.16) better, it is instructive to study transformations
that map solutions to other solutions.

a | &% Galilei transformations:

We define the following coordinate transformation:

' =t+s
G :R*>R*: - (1.18)
X' =RX+7vt+b

A Galilei transformation G is characterized by 10 real parameters:
e s € R: Time translation (1 parameter)
. beR3: Space translation (3 parameters)
« ¥ € R3: Boost (3 parameters)

e R € SO(3): Spatial rotation (3 parameters; rotation axis: 2, rotation angle: 1)
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The set of all transformations forms (the matrix representation of ) a group:
ﬁi = {G(R,V,s, l;)} & Proper orthochronous Galilei group — (1.19)

with group multiplication

G3 = G1 -Gz = G(R1 Ry, RiVs + U1, 51 + 52, Riby + U185 + 51) (1.20)
—— ——— ——

-

R3 v3 53 b3

You derive this multiplication in © Problemset 1 and show that the group axioms are
indeed satisfied.

Asaspecial case, the multiplication yields the rule for addition of velocities in Newtonian
mechanics:

G(1,%1,0,0) - G(L, B,,0,0) = G(L, 31 + 5,0, 0) (1.21)
~———

v3

The full Galilei group is generated by the proper orthochronous transformations together
with space and time inversion:

g = (ﬁi U{P,T}) & Galilei group (1.222)
P : (¢,X)— (t,—X) Space inversion (parity) (1.22b)
T: (t,X)— (—t,X) Time inversion (1.22¢)

b Galilei covariance & Form-invariance:

Details: © Problemset 1
< Coordinate transformation Eq. (1.18)

We express the total differential and the trajectory in the new coordinates:

d d’d d

_— = = — 1.23
de  dedr dv (123)
and
X/(t) = RX;(t) + 6t + b = RX;(I' =) + 3’ —s) + b (1.240)
& Xi(t)=R! [)Z;(z/) (1 —s) — 15] (1.24b)
Thus the left-hand side of the Newtonian equation of motion Eq. (1.16) reads in new
coordinates:
d2X; (1) 2 iTan - L dX)
iTZmidtlzR [Xl(t)—v(t —S)—b]ZR midl‘T
(1.25)

. 2 2 . . . . .
Note that the quantity m; jt—z X; (¢) is not smvariant; it transforms with an R~! € SO(3).

And the right-hand side:
o v v _ p-—1 - ST T
D Fni(Xp () = Xi(0) = RV Foi (X)) = X)) 26w
k#i k#i
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Here we used the form of the force Eq. (1.15), that Xi (t) — X; (t) = R7! [)?]’C @) —
X[(t")] and | Xi (1) — X: (1) = |X}.(¢') — X/(t")| because of R € SO(3).

Note that the force on the right-hand side is not invariant either; luckily, it transforms
with the same R™! € SO(3); it “co-varies” with the left-hand side!

In conclusion, Newton’s equation of motion Eq. (1.16) reads in the new coordinates:

-1 dei/(t/) -1 I ST TN,
R mi— o = RV R (X1 — X[(1)) (1.272)
k#i
— Covariance
xR d2Xx/(t") - - R
S mi— 5= =) B =X

k#i

— Form-invariance

(You can easily check that this holds for P and T as well.)

—

Newton’s EOMs Eq. (1.16) are form-invariant under Galilei transformations.

Or: Newton’s EOMs Eq. (1.16) are Galilei-covariant.

¥ Interlude: Nomenclature

Let X be some group of coordinate transformations (here: X = ¢ the Galilei group).

o A guantity is called X -invariant if it does not change under the coordinate transfor-
mation. Such quantities are called X -scalars.

An example is the mass m in Eq. (1.16) (which is also constant).

o A quantity is called X -covariant if it transforms under some given representation of
the X -group. If this representation is the trivial one (i.e., the quantity does not change
at all) this particular X -covariant quantity is then also an X -scalar.

An example of a Galilei-covariant (but not invariant) quantity is the force Fy_,; which
transforms under a representation of §.

o An equation is called X -covariant if the quantity on the left-hand side and on the
right-hand side are X -covariant (under the same X -representation).

. 2 .
An example is Newton’s lex secunda Eq. (1.16) where m; 45 x; (1) transforms in the
- dr?
same (non-trivial) representation as Fj ;.

o X-covariant equations have the feature that a X -transformation leaves them form-
invariant, i.e., they “look the same” after X -transformations because their left- and
right-hand side vary in the same way (they “co-vary”). Note that the quantities in a
form-invariant equation do not have to be /#variant.

An example is again Eq. (1.16) as we just showed. Note that ¥/ () and X; () are
different vectors such that the two sides of the equation as not /zvariant (but covariant).
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dLecture3 [31.10.23]

¢ Active symmetries:

There is something additional and particularly useful to be learned from the coordinate
transformation above. We showed:

g . 42X, (1) . o R
If X;(r) satisfies mi— 5= = D Feni(X(0) = Xi(0) - (1289)
! ki
- dZX_'/ t/ - - —
then X/(t') satisfies mid—’lg) = ZFk_ﬁ(X,’C(t’) — X](t")) (1.28b)
t ket
But ¢’ in the lower statement is just a dummy variable that can be renamed to whatever
we want:
) , S o
If X;(t) satisfies m,—# = Z Fr_i (X () — Xi(2)) (1.293)
k#i
. d2X/(1 L B,
then X[(r) satisfies midt—’z() =Y Fpoi(Xp (1) — X[(1))  (1.29b)
k#i

Use colors to highlight the changes.
— )?i’(t) = R)?,- t—s)+v(@—s)+ b is a new solution of Eq. (1.16)!

Note that for s = 0 itis )2{(0) = R)Z,-(O) + band )2,-(0) = R)Z,-(O) + v, i.e., the
solution X/(¢) satisfies different initial conditions.

— We say:
The Galilei group § is an # imvariance group or an (active) symmetry of
Eq. (1.16).

¢ Interlude: Active and passive transformations

It is important to understand the conceptual difference between the two last points:

« In the previous step we took a specific trajectory (solution of Newton’s equation) and
expressed it in different coordinates. We then found that the differential equation
obeyed by the same physical trajectory in these new coordinates “looks the same” as
in the old coordinates. We called this peculiar feature of the differential equation
“Galilei-covariance” or “form-invariance”. This type of a transformation is called
passive because we keep the physics the same and only change our description of it.

 Inthelaststep, we have shown that there is a dual interpretation to this: If a differential
equation is form-invariant under a coordinate transformation, then we can exploit this
fact to construct new solutions from given solutions (in the same coordinate system!).
This type of transformation is called active because we keep the coordinate frame fixed
and actually change the physics. You can therefore think of active transformations/sym-
metries as “algorithms” to construct new solutions of a differential equation (a quite
useful feature since solving differential equations is often tedious).

10 | Galilean relativity:
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Remember:

The law of inertia holds (by definition) in all inertial systems.

— The “inertial test” [IN cannot be used to distinguish inertial systems.
This is a tautological statement because we define inertial systems in this way!
Empirical fact:

Every mechanical experiment (not just the “inertial test”) yields the same result in
all inertial systems.

This is not a tautology but an empirically tested feature of reality.

This motivates the following postulate (first given by Galileo Galilei):

§ Postulate: Galilei’s principle of Relativity [GR

No mechanical experiment can distinguish between inertial systems.

i! In this formulation, |6R encodes a (so far uncontested) empirical fact. In particular, it does
neither refer nor rely on (the validity of) any physical model, e.g., Newtonian mechanics. As
such we should expect that it survives our transition to SPECIAL RELATIVITY.

Here is a more operational formulation of [6R|: You describe a detailed experimental procedure
using equipment governed by mechanics (springs, pendula, masses, ...) that can be performed
in a closed (but otherwise perfectly equipped) laboratory. Then you copy these instructions
without modifications and hand them to scientists with labs in different inertial systems. They
all perform your instructions and get some results (e.g. the final velocities of a complicated
contraption of pendula). When they report back to you, their results will all be identical.
This is the essence of [GR!.

In the language of models that describe the mechanical laws faithfully, |6R can be reformu-
lated:

§ Postulate: Galilei’s principle of Relativity [GR'

The equations that describe mechanical phenomena fasthfully have the same
form in all inertial systems.

If this would not be the case you could distinguish between different inertial systems by
checking which formula you have to use to describe your observations. Imagine a rotating
(non-inertial) frame where you have to use a modified version of Newton’s EOMs (that
include additional terms for the Coriolis force) to describe your observations.

Note that “the same form” actually means that the models are functionally equivalent (have
the same solution space). Functional equivalence is equivalent to the possibility to formulate
the model (= equation of motion) in the same form.

Under the assumption (!) that Newtonian physics (in particular Eq. (1.16)) describes
mechanical phenomena fasthfully, this implies:

Newton’s equations of motion have the same form in all inertial systems.
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i! This statement is ot equivalent to |GR or |GR'| as it relies on an independent empirical
claim (namely the validity of Newton’s equation as a model of mechanical phenomena).

We can now combine this claim with our (purely mathematical!) finding concerning the
invariance group of Newton’s equations:

-
s
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*.l/\
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— Preliminary/Historical conclusion:

R’_" 5_> . j— - g
o(K =22 Ky L G(R™Y, 0, —s5,—b) € €

Recall that rotating the coordinate axes by R makes the coordinates of fixed events rotate in
the opposite direction R™!; the same is true for the other transformations.

Since this is a course on RELATIVITY, we should be skeptical (like Einstein) and ask:

Is this true?

1.3. Einstein’s principle of special relativity

11 . Mathematical fact:

The Maxwell equations of electrodynamics are ot Galilei-covariant.

Proof: © Problemset 1

Here for your (and my) convenience the Maxwell equations in vacuum (in cgs units):

Gauss’s law (electric): V-E =0 (1.30a)
Gauss’s law (magnetic): V-B =0 (1.30b)
1
Law of induction: Vx E =—-9,B (1.30c¢)
c
1
Ampere’s circuital law: Vx B = -0, E (1.30d)
c

“Handwavy explanation” for the absence of Galilei symmetry:

The Maxwell equations imply the wave equation for both fields:

1
(vz_czaf)xzo for X € {E.B}. (1.31)
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Here the speed of light ¢ plays the role of the phase and group velocity of the waves; i.e., all light
signals propagate with ¢. Form-invariance under some coordinate transformation ¢ implies that
the same light signal propagates with the same velocity c in all coordinate systems related by ¢. This
is clearly incompatible with the Galilean law for adding velocities (according to which a signal with

velocity v, in frame K’ propagates with velocity u, = u/, 4+ vy in frame K if K 2 K.
The simplest escape from our predicament:
Maybe there is no relativity principle for electrodynamics?

Reasoning: If we cling to the validity of Newtonian mechanics and Galilean relativity [GR, we are
forced to assume ¢ = G as the transformation between inertial systems. Since the Maxwell
equations are #or form-invariant under these transformations, they look differently in different
inertial systems. So there must be a (class of ) designated inertial coordinate systems [ K] in which
the Maxwell equations in the specific form Eq. (1.30) you’ve learned in your electrodynamics
course are valid.

— [Ko] = Frame in which the “luminiferous aether” is at rest (?)

Michelson Morley experiment (plots from [26,27]):

Michelson’s original setup (1881) Michelson & Morley’s improved setup (1887)
— The speed of light is the same in all directions.

— There is no “luminiferous aether” [Kp].
(Or it is pulled along by earth — which contradicts the observed 1 aberration of light.)

— The speed of light ¢ cannot be fixed wrt. some designated reference frame [Kj)].
— No experimental evidence that the Maxwell equations do not hold in all inertial systems.
— Relativity principle for electrodynamics?!

« Historical note:
A. Einstein writes in a letter to F. G. Davenport (see Ref. [28]):

[--.] In my own development Michelson’s result has not had a considerable influence. I
even do not remember if I knew of it at all when I wrote my first paper on the subject
(1905). The explanation is that I was, for general reasons, firmly convinced how this
could be reconciled with our knowledge of electro-dynamics. One can therefore understand
why in my personal struggle Michelson’s experiment played no role or at least no decisive
role.

— The Michelson Morley experiment did not kickstart SPECIAL RELATIVITY.

« Modern Michelson-Morley like tests of the isotropy of the speed of light achieve much higher
precision than the original experiment. The authors of Refs. [29,30], for example, report
an upper bound of Ac/c ~ 10717 on potential anisotropies of the speed of light by rotating
optical resonators.

Two observations:

(1) Mo evidence that there is #o relativity principle for electrodynamics.
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(2) Why does Galilean relativity R treat mechanics differently anyway?
Put differently: Why should mechanics, a branch of physics artificially created by human
society, be different from any other branch of physics? This is not impossible, of course, but
it certainly lacks simplicity! (To Galilei’s defence: At his time “mechanics” was more or
less identical to “physics”.)
— A. Einstein writes in §2 of Ref. [9] as his first postulate:

1. Die Gesetze, nach denen sich die Zustinde der physikalischen Systeme dndern, sind
unabhdngig davon, auf welches von zwei relativ zueinander in gleichformiger Translations-
bewegung befindlichen Koordinatensystemen diese Zustandsdinderungen bezogen werden.

We reformulate this into the following postulate:

§ Postulate: (Einstein’s principle of) Special Relativity SR

No mecharnical experiment can distinguish between inertial systems.

Note the difference to Galilean relativity [6R| according to which no experiment governed by classical

mechanics can distinguish between inertial systems. Einstein simply extended this idea to all of
physics - no special treatment for mechanics!

i! There are various names used in the literature to refer to [SR. Here we call it the principle of
special relativity, where the “special” refers to its restriction on snertial systems — as compared to

the principle of general relativity in GENERAL RELATIVITY that refers to a// frames (> later). To
emphasize its difference to Galilean relativity |GR|, some authors call [SR the universal principle of
relativity, where “universal” refers to its applicability on a// laws of nature (not just the realm of

classical mechanics).
But now that there are more contenders (mechanics, electrodynamics, quantum mechanics) all of

15
which must be invariant under the same transformation ¢, we have to open the quest for ¢ again:
What is ¢?
-
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The differently colored/shaped trajectories symbolize phenomena of mechanics (red), electro-
dynamics (blue), and quantum mechanics (green). According to [SR|, a// of them must be form-

invariant under a common coordinate transformation ¢.

i! To reiterate: This is noz a question about symmetry properties of equations or models! It is an
experimentally testable fact about reality. There is only one correct ¢ and it is just as real as the

three-dimensionality of space.
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1.4. Transformations consistent with the relativity principle

Since this is a theory lecture, so we cannot do experiments. Let us therefore weaken the question slightly:

What is most general form of ¢ consistent with reasonable assumptions about reality?

§ Assumptions

SR Special Relativity: There is no distinguished inertial system.
1S Isotropy: There is no distinguished direction in space.
Ho Homomgenesty: There is no distinguished place in space or point in time.

co Continusty: ¢ is a continuous function (in the origin).

Something is “distinguished” if there exists an experiment that can be used to identify it unambiguously.
This derivation follows Straumann [8] with input from Schréder [1] and Pal [31].

Detailed calculations: © Problemset 2

1| Setup:

-

. R,7,s, ,
< Two inertial systems K —— K.

< Event E € & with coordinates x = (t,X)x € E and x’ = (', X')g’ € E:

a2

We are interested in the transformation ¢ = ¢, . > with

x' = o(x). (1.32)

Note that [SR forbids us to use the inertial system labels K or K’ in the definition of ¢! We can
only use the relative parameters (R, ¥, s, b) measured in K wrt K'.

2 | Affine structure:

Our first goal is to show that ¢ must be an affine map.

i < Event E € & with coordinates ¥ = x + a in K for some shift a € R%.

i - Homogeneity H0O —

o(x +a) —p(x) = d'(¢,a) (133)
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a' (¢, a): Shift in K’ independent of x (this reflects homogeneity in space and time)

Imagine the right-hand side a’(¢, a) where not independent of x. Then there would be an
interval (say, a rod of spatial extend @) that has the same length @ in K no matter where it is
located, but variable length d (¢, a, X) in K’ as a function of X. The observer in K’ can then
use this “magic rod” to pinpoint absolute positions in space (the same argument works in
time, then with a clock instead of a rod).

i | For x = 0: a'(¢,a) = p(a) — ¢(0) >
p(x +a) = ¢(x) + ¢(a) — ¢(0). (1.34)

iv, Let U(x):= ¢(x) —¢(0) —
Y(x +a) =¥(x)+WP@) and ¥(0)=0. (1.35)

This would be satisfied if W were /inear! But we do not know this yet ...
v Claim: ¥(x) continuous at x = 0 (follows from [€0) = W is linear.
a' Eq.(1.35) > ¥(nx) = nW¥(x) for n € N (show by induction!)
b Eq.(1.35) > W(—x) = —W¥(x) (use ¥(0) = 0) »> W(nx) = n¥(x) forn € Z

¢ | <t Rational number r = 2, m,n € Z —
r¥(x) = 2W(x) = Lw(mx) = 2¥(nrx) = 2U(rx) = U(rx). (136)

. Eq. (1.35) .
d  W(x) continuous at x = 0 ——— W(x) continuous everywhere.

Show this using the definition of continuity, i.e., limy_,o W(x) = W(0)!

W continuous

e r¥(x)=VY(@rx)forr e Q —— r¥(x) = Y(rx)forr e R
Remember that real numbers are defined in terms of (equivalence classes of ) limits of
rational numbers, i.e., Q is dense in R.

f | In conclusion:
V(x +a)=VY(x)+Y(@) and ¥(rx)=r¥(x) (1.37)

— W is linear.

vi If Wislinear, p(x) = ¥(x) + ¢(0) is affine:

o(x)=Ax+a (1.38)

with A = A(R, 7, s, l;) a4 x 4matrixanda = a(R, v, s, l;) a 4-dimensional vector.

3 The spacetime translation « is simply a = (—s, —5) [recall Egs. (1.7) and (1.9)].

— <t Homogeneous transformations (¢ = 0) in the following:

x' = @(x) = Ax. (1.39)
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We already know from our discussion of inertial systems [recall Eq. (1.11)]:

Rotation group SO(3) must be part of the transformations ¢ with representation

110

x' = Ag-1x with AR:=(0 R

) where R € SO(3).

This is just a fancy way to rewrite Eq. (1.11).

1,3,0,0
&% Pure boost K ——— K':

i < (t)k =0 — X' = MX for an invertible matrix M € R3*3:

(1.40)

This is the most general transformation for the position labels of the K and K’-clocks at

t = 0. Note that we make no statements on the times ¢’ displayed by the K’-clocks at 1 = 0.

M= RyDRy = R{DRT R = MR

with R € O3) and MT = M.

(1.41)

This follows from the V singular value decomposition of real matrices with Ry, R, € O(3) and

D a diagonal matrix.

ii | With spatial rotations Eq. (1.40) we can always transform the K -coordinates by ¥ +— R™!¥

such that X' = MX = Mx att =0 —

1,3,0,0
&% Pure boost K ——— K':

' =a@)t +b@)- 3
¥ =M®@)F +e@)t

[ -
X = Agx

« a: v-dependent scalar
* b,ée: v-dependent vectors

e« MT = M: Y-dependent 3 x 3-matrix

(1.42)

Pure boosts are therefore characterized by a symmetric transformation of the spatial coor-
dinates at + = 0 in K. Geometrically, this implies that there are #4ree (orthogonal) lines
through the origin of K which are mapped onto themselves under the boost (spanned by
the eigenvectors of M(v)). The only other possibility is that there is a single invariant line,
which then coincides with the rotation axis of a spatial rotation mixed into the boost. The

pure boosts are therefore those boosts without any rotation mixed in.

— We focus on pure boosts in the remainder of this derivation:
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i! Our characterization of a pure boost does 7ot imply that at 7 = 0 the axes of the two
systems K and K’ align (as suggested by the sketch and naively expected). If this were the
case, the eigenbasis of M () would be given by the basis vectors ¢; in K. Since we do not
know the form of M (v) (yet), we cannot make this assumption! So do not take this sketch
literally, it only illustrates symbolically the situation of a pure boost in an arbitrary direction.

6 Isotropy:
Here are two lines of arguments that use isotropy [IS' to restrict the form of Eq. (1.42) further:
e Argument A:

i | We claim that isotropy IS requires the following multiplicative structure for pure boosts
and rotations:

ARA3A g1 = Ags & Yy ArAsx = Apx’ = AgsAgx.  (L433)
& Ve Agx = Ap1Agps(Agx). (1.43b)
The reasoning goes as follows:

1. < Left-hand side of Eq. (1.43b):

x = (¢, X) are the coordinates of some event in K and A ;x of the same event in
K’

e
)

K
iy
S e
O——
2. < Right-hand side of Eq. (1.43b):

We consider y = (¢, ¥) := Agrx = (f, RX) as an active transformation, i.e., y
denotes a different event that is spatially rotated from x by R. To state our isotropy
claim IS, we now rotate the coordinate system K’ in which we want to express
this event /n the same way. This implies a rotated boost A g; and a subsequent
rotation of the coordinate axes by R via A g—1. (Remember that when rotating the
coordinate axes by R, the coordinates of an event transform by A p—1.):

N
An -1

o " -
LRy & 7K RX =¥

([ ]
? | oA
B o = N J
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3. Spatial isotropy (IS is the property that the event x as seen from K’ cannot be
distinguished from the rotated event y as seen from the rotated system K"”; this is
Eq. (1.43b).

ii | Now we can use Eq. (1.42) to rewrite Eq. (1.43a) as

' £ a(RV)t + b(RY) - R¥ (1.44a)
R¥ = M(R?) R% + &(R?) t (1.44b)

ii | A comparison with Eq. (1.42) (for all 7 and X and arbitrary v and R) leads to constraints
on the unknown functions:

- a(v) . a(Rv) — a(V) = a, withv = |U]
Functions invariant under arbitrary rotations can only depend on the norm |].

- b(©) = RTh(R?) = b(¥) = byv
Note that b(R7)-RX = [RTI;(RT))] -X. Let R; be some rotation with axis 0 = v/v
such that Ry3 = o; then b(%) = Rgl;(f)) and therefore l;(ﬁ) o ¥ since rotation
matrices have only a single eigenvector.

- RM(%) = M(RO)R — M(@) = ¢y 1 + dy 067
First recall that M T (v) = M () such that M () can be written as sum of orthog-
onal projectors (projecting onto its eigenspaces). It is in particular Ry M (T))RﬁT <
M (V) such that one of the eigenvectors must be © o« v. The remaining two eigen-
vectors are orthogonal to ¥ and can therefore be mapped onto each other by Rj;.
Since R; commutes with M (9), their eigenvalues must be degenerate such that
the two-dimensional subspace orthogonal to 9 is a degenerate eigenspace. The
most general spectral decomposition of M (v) is then the one given above.

- RE(D) = &(RV) — é(D) = ey
This is the same argument as for b(®).

e Argument B:
A shorter (but less rigorous) line of arguments goes as follows:

i | To define the unknown functions algebraically, we are only allowed to use the vector v
and constant scalars. We cannot use X or t due to linearity, and any other constant vector
(like &, = (1,0,0)7) would pick out some direction and therefore violate isotropy [IS!.

i | Since the only scalar one can construct from a single vector is its norm, |9|?> = v - 9, it
must be a(V) = ay.

i | Similarly, since the only vector one can construct from a single vector is a scalar multi-
plied by the vector itself, it must be 5(v) = b, v and €(v) = e, V.

iv | Lastly,since M T (¥) = M (%), we can decompose the matrix into orthogonal projectors:
M(©) = Y_; A;(v) P; (V). The only projectors that can be defined by a single vector
are Pp = 007 and P; = 1 — Py = 1 — 957 which leads to the most general form
M®@) =cp 1 +d, 07

Both arguments lead to the same form for pure boosts A consistent with isotropy |IS:

t/ = dy t+ bv (6 . )_é) (1453)

=/

X =cv?c+i—§17(17-7c)+ev5t (1.45b)

with v = || = |R%| and (R? - R¥) = (3 - ¥).
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7 <t Trajectory of origin O’ of K':
« In K" )_C’/O, = 0 (This is the operational definition of the origin O'.)
o In K: Xp/ = vt (This is the operational definition of v in K 000 g )
In Eq. (1.45b):
0=cyit + L5 0) +eyit (1.46a)
TA0&Y: = 0=cy+dy+ey (1.46b)
8 Reciprocity:
) . , 1,5,0,0 ,
i | <t Inverse transformation K’ ——— K from K’ to K:
Aghz =1 & Ay =AZ". (1.47)
Note that ¥ is the velocity of the origin O of K as measured in K.
In general: ¥ = V (¥) with unknown function V.
We assume reciprocity: v/ = —v such that
-1
Ay =A_5. (1.48)
While this is clearly the most reasonable/intuitive assumption, it is not trivial! Recall that v
is the speed of the origin O’ of K’ measured with the clocks in K, whereas v’ is the speed of
the origin O of K measured with djfferent clocks in K’. So without additional assumptions
we cannot conclude that the results of these measurements yield reciprocal results.
However, the assumption of reciprocity can be rigorously derived from relativity [SR|, isotropy
IS and homogeneity [HO|, see Ref. [32]. Reciprocity is therefore not an independent assump-
tion.
i | <t Inverse transformation in Eq. (1.45):
t =ayt' —by (¥-X) (1.49a)
X=cp X + ‘j—g b(0-X")—epyvt’ (1.49b)
i | Eq. (1.49) in Eq. (1.45) & Eq. (1.46b) 5 (we suppress the v dependence)
c2=1, (1.50a)
a’—ebv? =1, (1.50b)
e2—ebv? =1, (1.50c)
e(la+e)=0, (1.50d)
ba+e)=0. (1.50¢)
To show this, use v = (vy,0,0)7 with v, # 0and remember that the equations you obtain
from plugging Eq. (1.49) into Eq. (1.45) must be valid for all " and X’. Use Eq. (1.46b) to
replace ¢, + d, by —ey.
We can conclude:
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Eq. (1.502) . . !
o ——— > ¢ =1 (c =—1contradicts lim,—o Az = 1)

Eq. (1.50¢) Eq. (1.50d)
o — S eF0——a+e=0

— Eq. (1.50b) = Eq. (1.50c) & Eq. (1.50¢) satisfied

9 | Collecting results from Eq. (1.50) & Eq. (1.46b):

2

c=1, e=—-a, d=a—-1, b=124

av?

d = a — 1 follows from Eq. (1.46b) and the first two equations.

Eq. (1.51
Eq. (1.45)—2 00,

1—-a2 ,~ >
vav” (0-X)

' =ayt +

-

X' =X+[ay—1]00-X) —vay, it

with 0 := v/|v].
10 <t Special boost v = (vy, 0, 0)T in x-direction:

A2

K&
o F
2y
> x!
1— 2
' =ayt+ ngsx
x/ av X - vxav t
/
y =Yy
7=z
Note that v = |vy| with v, € R.
Matrix form:
1—a?
t v t
, Ay Uydy
X/ — —Uxdy ay X
y 1 0 y
z/ 0 1 Z
=iAyy,

In the following, we refer to the upper 2 x 2-block as A (vy).

11 | Group structure:

i | Relativity principle 'SR —

R2,92,52,b> R1,91,51,b1
SinihteditalitinN

!
p(K' K")op(K ———— K') = (K
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for some parameters (R3, U3, 53, b3) that are a function of (R;, V;, s;, bi)i=1,2-
In words:
The concatenation of a coordinate transformations from K to K’ and from K’ to K” must be

another coordinate transformation that is parametrized by data that relates the reference systems
K with K" directly (without referring to K' in any way).

You may ask why Eq. (1.55) is a constraint on ¢ in the first place. After all, we could just
define that

o(k Kb oy o Ratasaba ey o RITib oy g
The problem is that the function defined such generically depends on 8 (!) parameters
Ry, vy, 581, 1;1, Ry, Vs, 55, l;z - it is a non-trivial functional constraint on ¢ that these can
be compressed to four parameters R3, U3, 53, bs. This “compression” is mandated by the
relativity principle [SR| according to which all inertial systems must be treated equally. In
particular, the transformation between two systems K and K" can only depend on parameters
that can be experimentally determined from within these two systems. (The existence of) a
third frame K’ cannot be of relevance for this transformation as this would make K’ special.

Combined with the existence of an inverse transformation (¢ above):
— The set of all transformations forms a ¥ (multiplicative) group.
Note that assoczativity is implicit since we talk about the concatenation of linear/affine maps.

In particular:

! !
Avaux = wa @ A(vx)A(ux) - A(w_x) (1.57)

where w,, = W(vy, uy) has to be determined.

* ;! Using the restricted form of the boost Eq. (1.54) that followed from previous argu-
ments, it follows indeed that the concatenation of two pure boosts i the same direction
has again the form of a pure boost (in the same direction). For the arguments that follow,
this is sufficient.

However, in general, the multiplicative group structure Eq. (1.55) allows for two boosts
to concatenate to a combination of boosts and rotations. As we will see > later, this is
indeed what happens: The concatenation of two pure boosts (in different directions)
produces a boost with a rotation mixed in (1 Thomas-Wigner rotation).

» Note that due to Eq. (1.43a) all that follows holds for any pair of collinear velocities v

and i (there is nothing special about the x-direction). Indeed, let R be a rotation that
maps ¥ and  to vectors on the x-axis, Uy := RvU and i, := Riu. Then

!
Ag[\g 143 AR—lAT)xAﬁXAR = AR_IALTJXAR 14 Ai) (1.58)
where W is again collinear with v and #.
o
—> (use that the diagonal elements of A(w, ) must be equal)
1— a% 11— a,%
va SUx : 2.2 = 2.2 (159)
vxav uxau
— Universal constant:
a2 —
K : 55 = const (1.60)
vxav
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Note: [k] = Velocity >

e d
. (1.61)
a, = . .
Y V1—kvZ
We use the positive solution for a,, since lim, o A(v) E 1,ie., limy,_q ay 1
iii .~ With this we check: A(vy)A(uyx) = A(wy) with
o Ux+u
Wy = W(vg, tly) = ——— . (1.62)
1 + uxvxk

Eq. (1.62) becomes important later: it tells us how to add velocities in SPECIAL RELATIV-
ITY.

12 Preliminary result:

Eq. (1.52) & Eq. (1.60) — Boost A ; in direction ¥ with velocity ¥ = v9:

' =ay [t —k (¥ -%)] (1.63a)
X =X+[ay—1]00-X)—a, vt (1.63b)
with
1
av - (1.64)

V1—kv?

This is the most general transformation between two inertial coordinate systems that move with
relative velocity v (with coinciding axes at 7 = 0) that is consistent with our basic assumptions
stated at the beginning of this section: [SR|, H0,, and |IS|.

The only undetermined parameter left is «.

1.5. The Lorentz transformation

The purpose of this section is to select the value for « that describes our reality.

2
max*

13 | Since [x] = Velocity_2 define formally: k = 1/v
Why we subscribe the velocity vmay with “max” will become clear below.
14 = Three cases:

e k =0 & vy = 00:

=l o~
Il

=y =
|

<l

~

Eq. (1.63) = & Galilei boost (1.652)

— Maxwell equations are #ot form-invariant under ¢.
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— Maxwell equations cannot be correct and must be modified.
— Experiment that shows the invalidity of Maxwell equations?

Note that we cannot conclude the validity of classical mechanics from this; Newton’s equa-
tions may still require modifications (without spoiling the Galilean symmetry, of course).

e k>0 & Upax < 00:

t = y (l — ﬁ)
Eq. (1.63) = Vitex &% Lorentz boost
Y=X+@F-Do@-X)—yuvt

(1.66a)

with the # Lorentz factor

1
yi=———— and B :=v/vmx. (1.67)

N

Yv

— Newton’s equations are 7ot form-invariant under ¢.
— Classical mechanics cannot be correct and must be modified.
— Experiment that shows the invalidity of Newton’s equations?

Similarly, we cannot conclude the validity of electrodynamics from this; Maxwell equations
may still require modifications (without spoiling the Lorentz symmetry).

 k < 0: Physically not relevant. (© Problemset 2; we ignore this solution in the following.)

This solution is not self-consistent (see e.g. Ref. [31]) and immediately leads to implications
that are not observed in nature.

For example, the rule Eq. (1.62) to compute the velocity w, between K /K" from the veloci-
ties vy and u,, between K/K’ and K’/ K" reads fork < 0

Ux + Uy

Wy = (1.68)

1 —uxvxlk]

Let uy, vy > 0 be positive, i.e., K’ moves in positive x-direction wrz K and K” moves also
in positive x-direction wrt K'. But for large enough velocities u vy > 1/|«| we find w, < 0
such that K" moves in negative x-direction wrt K.

No such effect has ever been observed; if you do, let us know!

Note that at no point we used or claimed that vy, is the speed of light!

Which transformation describes reality: v,y < 00 OF Upay = 00?2

15 | Evidence:

« Maximum velocity vmax & ¢ < oo for electrons (plot from Ref. [33]):
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e )" = 28 /m e

/("/cla= 1= [mc¥lm,cty Ek)]z

1.0+ o
(v T )
R *
4 |
/ Bl | Eme | o, | o,
0.5y 0.5 i 867 752
1.0 2 910 828
1.5 3 950 922
4.5 9 .987 .974
15 30 1.0 1.0
¥ L T H i T 1 T { { 1
8 1 2 3 4 5 5 7 8 9 10 1 12

E, fmyc?

— Newton’s equations are clearly invalid for high velocities!

See Refs. [33,34] for more technical details. Note that these results were obtained decades
after Einstein published his seminal paper in 1905.

» By contrast:
No evidence for the invalidity of Maxwell equations (on the macroscopic level).

Electrodynamics, as encoded by the Maxwell equations, is of course not a truly fundamental
theory as it is the classical limit of a quantum theory: Quantum electrodynamics (QED).
For example, the linearity of the Maxwell equations (= EM waves cannot scatter off each
other) is an approximation; in QED photons can (weakly) scatter off each other! This is why I
emphasize that Maxwell theory is experimentally valid only on the macroscopic level. Note,
however, that QED has the same spacetime symmetry group as electrodynamics, namely
Lorentz transformations.

16 Hence it is reasonable stipulate v,y < 0o and postulate:

The transformations ¢ between inertial systems are given by Lorentz transformations.

These transformations must be (part of ) the spacetime symmetries of a// physical theories.

The last statement is often rephrased as follows:

All (fundamental) theories must be form-invariant (covariant) under Lorentz transformations.

This is just [SR all over again: The equations of models that describe reality must “look the same”
(more precisely: be functionally equivalent) in all inertial systems. Since the transformations
between inertial systems are given by Lorentz transformations (and not Galilean transformations,
as historically anticipated), this requires their form-invariance under Lorentz transformations.

— SPECIAL RELATIVITY restricts the structure of all fundamental theories of physics!

This is what is meant by the statement that SPECIAL RELATIVITY is a theoretical framework
(German: Rahmentheorie) or “meta theory”: It provides a “recipe” (ordering principle) of how to
construct consistent theories of physics. The Standard Model of particle physics, for example,
is form-invariant under Lorentz transformations, and if you propose an extension thereof (for
example to give neutrinos a mass) you better make sure that the terms you write down are also
form-invariant under Lorentz transformations (otherwise you will not be taken seriously!). Note,
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however, that this perspective prevents an important insight: What we really study is an entity

called spacetime, and this entity has a property: Lorentz symmetry. Since all our (fundamental)

physical theories are formulated oz spacetime, it should not come as a surprise that the Lorentz

symmetry of spacetime shows up all over the place.

17 Interpreation of vpmay:

v . . .
i < Systems K —> K’ and signal with velocity ‘fi’t‘,, =ul:
A
L ARAN ' K|
K K"
“@ (
t=0 —* >
L/X 5 I’L)
E
2"
-
7 1
> %
x

Question: What is the velocity u, = ‘31—’; of this signal in K?

i =~ Remember (Group structure!):

O K)o p(K 2> Ky = p(K > K') with 03 = 7102
w2

max

(1.69)

Let vy = vy and v = /. so that v3 = uy (i.e., the signal is at rest in the origin of K”).

You can also derive this by computing the time derivative of the position of the signal in K

using a Lorentz transformation; you will do this properly when you derive a more general

addition of velocities (© Problemset 2).

i | Addition formula for collinear velocities:

1
Ux + Uy
ux = —vxu/
X

1+ =5

max

(1.70)

Because of isotropy [IS| this formula must be true in all directions (not just in x-direction) as
long as the two velocities to be added are parallel. We still keep the index x to signify that these

are not absolute values of velocities.

+ Note that for vy, — 00 we get back the “conventional” (= Galilean) additivity of

velocities:

Vmax—> 00

Uy = (vy +uly) [1 — ~|—] =7 vy +

(1.71)

From this expansion and the validity of classical mechanics for small velocities (in
particular its law for adding velocities), we can also conclude that vy, must be large

compared to everyday experience.

o A historically influential experiment that (in hindsight) can be explained by the relativis-
tic addition of velocities Eq. (1.70) is the ™ Fizeau experiment [35,36] (see also 1 Fresnel
drag coefficient). The Fizeau experiment was one of the crucial hints that led Einstein to

SPECIAL RELATIVITY.
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iv

<0 < vy, Uy < Umax: (Ux 1= Vx/Umax 50 that 0 < Uy, 21, < 1)
Uy + Uy
<

Ux =V —_— v 1.72
X maxl+ﬁxﬁ; = Umax (1.72)

Here we used thata + b < 1 + ab for numbers 0 < a,b < 1.
— “Addition” of velocities Eq. (1.70) never exceeds vmax.
— Umay plays the role of a maximum velocity.

< Signal with maximum velocity in K': v, = vmax:

Y. = Umax 1+ Ux - Umax 1 Ux - (1.73)
X = T o—ws — Vmax—— = Umax .
1+ —‘33" = Umax 1+ Ux
max

Note that the result is completely independent of the velocity v, of K'!
— Whatever moves with the maximum velocity v,y does so i all inertial systems!

Please appreciate how counterintuitive this effect is from the perspective of everyday experience!
But also notice that we didn’t have to postulate it: The relativity principle |SR together with
the existence of a (finite) maximum velocity is sufficient.

If you think about it: Assuming a maximum velocity (in the absence of a preferred reference
frame) automatically invalidates the simple Galilean law of additive velocities. So it is actually

not surprising at all that the maximum velocity must be independent of the reference system.
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dLecture4 [07.11.23]

Experiments (in particular: the validity of Maxwell equations) show:

Umax = ¢ = 299792458 ms ™! (1.74)

Note that since 1983 the value of ¢ in the international system of units (SI) is exact by definition.

A. Einstein incorporated this insight in §2 of Ref. [9] as his second postulate:

2. Jeder Lichtstrahl bewegt sich im “ruhenden” Koordinatensystem mit der bestimmten
Geschwindigkeit V , unabhdngig davon, ob dieser Lichstrahl von einem ruhenden oder be-
wegten Korper emittiert ist.

Note that at the time it was conventional to denote the speed of light with a capital V. The
convention switched to our now standard lower-case c just a few years later. For more historical
background:

© https://math.ucr.edu/home/baez/physics/Relativity/ SpeedOfLight/c.html
We can condense this into:
§ Postulate: Constancy of the speed of light |SL

The speed of light is independent of the inertial system in which it is measured.

Comments:

o [f you take the validity of the Maxwell equations for granted, then v,y = ¢ < oo (and

thereby [SL) follows immediately from the relativity principle [SR because then the Maxwell
equations must be valid in all inertial systems. But you’ve learned in your course on electro-
dynamics that the wavelike solutions of these equations always propagate with group velocity
¢ in vacuum. This is only possible if the speed of light plays the role of the limiting velocity:

Umax = C.

Einstein acknowledges as much at the beginning of Ref. [10]. However, [SL| is empirically
weaker than claiming the validity of Maxwell’s equations (after all, there could be alternative
equations that also predict the velocity ¢ of wavelike solutions). At the time when Einstein
formulated [SL in [9], he also worked on the photoelectric effect (another of his annus mirabilis
papers [37]). The postulation of “quanta of light” is the foundation of quantum mechanics,
but cannot be explained by Maxwell’s equations. It is therefore reasonable to assume that
Einstein didn’t want to rely on the validity of this specific theory when formulating his
SPECIAL RELATIVITY. He therefore opted for the empirically weaker (but still sufficient)
assumption |SL.

If you derive the transformation ¢ using both postulates [SR and [SL the derivation is shorter
(see e.g. [1] or [4]); one then of course doesn’t find the Galilei transformations as an option.
Note, however, that the relativity principle [SR] is a reasonable and intuitive starting point that
doesn’t need much convincing (after all, we witness the relativity of Newtonian mechanics
in our everyday life). By contrast, the speed of light postulate [SL clashes directly with our
everyday experience (how velocities add up, that is). Through our elaborate derivation we
learned how much is already implied by the simple, reasonable assumption of relativity. We
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only had to check whether there is any evidence of a finite maximum velocity vy,,. The
counterintuitive feature that this velocity is the same viewed from all inertial systems was
then a necessary conclusion from our derivation.

1 Note: Finite speed of causality (Locality)

Another insight from our [SR-based derivation of the Lorentz transformation is that the
formulation of the speed-of-light postulate SL is conceptually misleading:

o The constant v,y and its role as a maximum velocity followed without referring to light
(or electrodynamics) in any way!

Put bluntly: SPECIAL RELATIVITY is zot about the “strange behavior” of light!

o The relevant speed for SPECIAL RELATIVITY is the speed of causality: How fast can
information travel, i.e., one event affect another. vp,y is the maximum speed of causal
interactions, irrespective of the mediator of these interactions.

In our world, the fastest and most salient information carrier just happens to be the
electromagnetic field (“light”). For example, to synchronize our clocks with light
signals, it wasn’t the light per se we were interested in; we just used it as carrier of
information to correlate the clocks.

« Given the relativity principle [SR| and our derivation in Section 1.4, we showed that
there are only two possibilities: (1) There is 7o upper bound on velocities (Galilean
symmetry) or (2) there 75 such an upper bound v,y (Lorentz symmetry). In the latter
case, every signal that propagates with v,y in some frame automatically does so in all
inertial systems. (Which immediately leads to the counterintuitive conclusion, akin to
SL, that there are signals the velocity of which does not depend on the velocity of the
observer.)

» We could replace |SL therefore by the (empirically weaker) postulate that there are 7o
instantaneous actions at a distance (this is essentially a statement about Jocalsty). This
modified postulate implies the existence of a maximal velocity v,y < oo which, in
turn, selects the Lorentz transformation as the correct symmetry. That vy, = ¢ is
then a fact to be discovered by experiments.

o It turns out that everything with vanishing rest mass travels at this maximum speed
Umax = ¢. Since photons are the only elementary particles that are massless and can be
easily detected, we just happen to refer to this maximum velocity as “speed of light.”

For example: Without Higgs symmetry breaking, the W and Z bosons of the weak
interaction are massless and would propagated with light velocity, just as the photon
(the weak interactions would then be no longer “weak”). For a long time it was believed
that neutrinos are massless as well, and therefore would also propagate with the speed
of light (today we know that they have a very tiny mass).

19 Special Lorentz transformations = Lorentz boosts:

Now that everything is settled, let us write down our final result in their conventional form.

i! These are not the most general (homogeneous) Lorentz transformations since we omit rotations,
parity and time inversion. We will discuss the structure of the full homogeneous Lorentz group
and its inhomogeneous generalization (- Poincaré group) later. To discuss the “fancy” phenomena
of SPECIAL RELATIVITY, the transformations below are sufficient.
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i | Boost in arbitrary directions (v = v0 with o = ¥/|9]):

o ct' =y (ct —Bx-0
AK S K'Y iy )_/,( P q) L (1.75)
X=x4+{-—-Dx-0)-0—yvt
(Since we now settled on Lorentz transformation for ¢, we write ¢ = A henceforth.)
with 8 = v/c and the Lorentz factor
! ! (1.76)
Yo =y = = : :
Ve i
i Special case: Boost in x-direction (v = vy X):
et =y (et — 2x)
Ve o X' = y(x —vxt)
AK — K'): , 1.77)
y =7y
7=z

20 State of affairs:
Now that we know the spacetime symmetry ¢ of reality, we have quite a to-do list:

« We will have to modify Newton’s equations to replace their Galilean by a Lorentz
symmetry, without changing their predictions for small velocities v < ¢ (¥ correspondence

principle).
— Relativistic mechanics
» We can keep the Maxwell equations in their current form ©.
Note that we still have to check that they are really Lorentz covariant (@ Problemset ?)!

In the end we will come up with a neat notation that allows us to rewrite (not modify!) the
Maxwell equations in a compact form to make their Lorentz symmetry apparent.

« Similar to classical mechanics, we will have to replace the Schridinger equation in
quantum mechanics by a modified version with Lorentz symmetry.

— Relativistic quantum mechanics (Klein-Gordon and Dirac equation)
But before we do all the heavy work:
Simple implications of this transformation? (- below and next lectures)

With “simple” we refer to implications that follow without imposing a model-specific dynamics
(= equation of motion). We will refer to these implications as kinematic because they follow from
fundamental constraints on the degrees of freedom of all relativistic theories.
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1.6. Invariant intervals and the causal partial order of events

1 < Trajectory of a light signal in x-direction in K:

x(t)=ct,y=0,2=0 (1.78)

Trajectory of the same signal in K’ with K 2 K

Xt)y=ct',y =07 =0 (1.79)
~ct N C't'
L (KV’§ K') ]
K X= C"' _ S K X'= C+‘
> >,
X X

This follows from our previous discussion: signals propagating with ¢ = vy, do so in all inertial
systems!

You can also simply calculate this using the Lorentz boost Eq. (1.77):

ct' =y (ct — %ct) (1.80a)
and x’ = y(ct —vyt) =ct’. (1.80b)

—
(ct)? —x2 =0 = (ct")?> = (x)? is a frame-independent quantity. (1.81)

Note that the separate summands [(ct)? etc.] are not frame-independent!
This finding motivates the definition of the ...

2 & Spacetime interval:

Details: © Problemset 2

< Two events E1 3 (t1,x1)k and E5 > (f2, X2) g with temporal and spatial separation
(At)g ==t —tp and (AX)g :=X; —X>. (1.82)

Then the spacetime interval between Eq and E; is denoted (As)? = As? and defined as

(As)? := (A% — (AX)% . (1.83)

We omit the subscript K from As because it is frame-independent (> next).

In our example above it was Ar = ¢t —0and AX = (x — 0,0 — 0,0 — 0), i.e., we considered
the interval between the event in the origin xpo = (0,0) and the events along the trajectory
(ct, x(t),0,0) of the light signal.
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3 | The importance of As? stems from the following fact:

The spacetime interval As? is independent of the frame in which it is calculated.

This means that given two events, all observers agree on the numerical value of the interval As?
between these two events.

Proof: Use Eq. (1.75) to calculate (Details: © Problemset 2)

(ct')? = [y (ct — BX - f))]z (1.84a)

@2 =[F+ @y -DE-)-6—yve] (1.84b)

= (=GN =(C)?-F*+ ... (1.840)
=0

Note that we do not have to do the computation for two events and an interval Ar and AX since
the special Lorentz transformations are /inear.

This proves the invariance under special Lorentz transformations (= Lorentz boosts). It is easy to
see that the invariance is also valid for inhomogneous shifts in time and space (these drop out in the
intervals At etc.) and spatial rotations A g [since (AX)? is clearly invariant under rotations]. We
will come back to this when we discuss the structure of the Lorentz group in more detail (- /ater).

4 | Two events £ and E are in one of three possible (frame-independent) relations:

>0 E; and E are & time-like separated
As? { =0 E;and E, are & light-like separated (1.85)
<0 Ejand E; are s space-like separated

Note that As? can be negative so that As? should be read as a symbol rather than defining an
imaginary number As. For the special case of time-like intervals, however, As? indeed defines a
real number As = +/As2 which we will later relate to the time measured by moving clocks (the so
called proper time).

All events that are light-like separated from an event E (wlog in the origin) satisfy
As’=0 & ()?=E)? < |et| =[5 (1.86)

which determines the  /ight cone of E:
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Here we show the light cone of an event E in a space time with #wo spatial dimensions x and y.
The light cone in our 3 + 1 dimensional space time is a higher-dimensional generalization which
obeys the same equations.

o Time-like events satisfy As? > 0 < |ct| > |X| which characterizes the (disconnected)
interior of the light cone. The manifold with ¢z > |X| > 0 is called # future light cone (of E)
whereas the events with —cs > |X| > 0 make up the & past light cone (of E).

o Space-like events satisfy As?> < 0 < |cf| < |X| which characterizes the (connected)
spacetime volume outside the light cone.

Causality:

The importance of the threefold classification of spacetime intervals stems from the following
observations.

i = <C Actions of (homogeneous) Lorentz transformations:

Since As? is invariant under Lorentz transformations, the manifold of events characterized
by a specific value As? = +£C (C > 0) must be mapped onto itself under these transfor-
mations: Events on these hyperbolic manifolds cannot leave their manifolds under Lorentz

transformations.

Invariant hyperbolae:
time-like: As’= C>0 = ct=%,/C+]|X? (1.872)
lightlike: As’= C=0 = ct==%|X| (1.87b)

space-like: As? =—-C <0 = ct==+,/|x]>?-C (1.87¢)
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(A{)z: coust > O

(Agf: cous? > O (Ag)2= cous? > O

@g)i: coutt £ O (M)L: coutt 2 O
This picture leads immediately to two conclusions:
i <t Two distinct events E1 > (f1,X1)k and E» > (f2, X2) g with coordinates in K:
o If As? > 0 (= time-like or light-like), then
either Vg : (t1)g > (2)k or Vg: (t1)k < ()k . (1.88)

This means that for time-like or light-like separated events all observers agree on their
temporal ordering! Note that they do not necessarily agree on the time (¢1)x — (2)x
elapsed between the two events.

Proof: Assume (t1)4 < (t2)4 and (t1)p > (f2)p for two inertial systems A and B.

Because of the continuity of Lorentz transformations there must exist a frame C with

(f1)c = (12)c. Butin this frame (As)Z = —(AX)Z > 0 such that (X;)c = (¥2)c
and therefore £1 = E, (which contradicts our assumption that the two events are
distinct).

Proof by picture!

o If As? < 0 (= space-like), then

34,8 (t1)a > (12)4 and (t1) < (2)B . (1.89)

This means that for space-like separated events there are always observers who see E
happening before £, while other observers see £; happening after £,. The temporal
order of space-like separated events is therefore observer-dependent!

Proof: © Problemset ?
Proof by picture!

ii | Conventional relation of time order and causality:
E1 can causally affect E, = E; happens before E» (1.90)

Since causality should be an objective, observer-independent fact, and we just showed that
only time- and light-like separated events have an observer-independent temporal order, it is
reasonable to define the following ...

...V (strict) partial order < on the set & of events:

Ei<E, & As?2>0 and 1 <ty : ‘“Ep canaffect E»” (1.91)
Ei1>=E, & As?2>0 and t1>1, : “E, canaffect E;” (1.92)
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7

This is a partial order because for As? < 0 there is no relation between E; and E, (we
denote thisby E; § E»).

To be a partial order, one has to show zrreflexivity (which is trivial since ¢ < ¢ is not true) and
transitivity. To show transitivity, show that Asf , >0and As% 5 > 0 together with 7, > 1,
and 73 > 1, implies As? ; > 0and 73 > #; (use the triangle inequality).

iv | This definition of causality is consistent with our previous findings that no signal can travel
faster than the speed of light c:

act

o E < Ejp: There exists a signal trajectory X(¢) with d)é# < ¢ connecting the two

events (blue in the sketch).

o E [ E3: Any trajectory X(7) connecting the two events (red in the sketch) has some
dx (1)
dr

there is no signal of any kind that can mediate causal influence from E to E3 (and vice
versa).

segment with

’ > ¢ (yellow in the sketch). Since this is physically impossible,

This follows from an application of (a generalization of ) the ¥ mean value theorem.

Since the causal structure (&, <) is observer independent:

There is 7o relativity of causality in SPECIAL RELATIVITY!

If one observer states that £ can causally affect E», then all observers will agree on this statement.

Fun fact:

If one starts from the causal structure (&, <) and derives the group of * causality-preserving
automorphisms P,

Ei<Ey, & O(E)) < D(E,), (1.93)

one again finds the homogeneous Lorentz transformations (boosts & rotations) that we constructed

above (plus space-inversion, spacetime dilations and translations), see Ref. [38] for more details.

Most interestingly, for the proof neither a continuity assumption on ® nor a topology on & is

required; all this follows (at least in 2 + 1 spacetime dimensions and more) from the partial order <.
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1.7. I Relativity, compressibility, and the anthropic principle

The statements in this section are not specific to Einstein’s relativity principle [SR!.
1| Relativity principles ...

e ...are statements about (the existence of) symmetries of spacetime.
« ...imply the versatility of models to predict events from many viewpoints.

« ... are statements about an a priori unnecessary simplicity of nature.

2 | Imagine a world wethout any relativity principle:
The equations (models) that capture physical laws faithfully are different from frame to frame.

— Your brain must learn arbitrary many different models adapted to all possible reference
frames to anticipate the future in all situations.

— Biologically impossible (your brain capacity is finite, building models is expensive)

3 Example: Catching balls:

-
AN
=

% -
RTINS RV RSP GRS N B RONATr

PR ERL N S [

Notice that most reference frames that we naturally encounter are (approximately) inertial only in
x and y direction (the axes that are locally parallel to earth’s surface) and constantly accelerated in
z direction (the axis perpendicular to earth’s surface; the acceleration is g ~ 9.81 m/s?). The non-
relativistic symmetries that relate these frames are a subgroup of the full Gallilei group (excluding
rotations around the x and y axes as well as “large” translations). Our brain contains only models
for these frames (equipped with Cartesian coordinates). Have you ever tried throwing or catching a
ball in frames with acceleration in x or y directions (like a centrifuge)?

© YouTube Video: The artificial gravity lab (Tom Scott)

Note that it is not smpossible to train specific models for other frames to which the relativity principle
of our everyday experience does not apply (after some practice you can throw and catch ballsin a
centrifuge of constant angular velocity). But this is just one additional model and even this is not
implemented in our brains by default!

4 | Relativity principle
— Descriptions of natural phenomena are highly compressible.
— Only few models (equations) are necessary to anticipate the future.

5 Anthropic principle:

Question: Why are there spacetime symmetries / relativity principles in the first place?

Answer: Because if there were none, evolution would most likely be impossible, hence we
would be unable to ask the question.
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Note that evolution relies on the somewhat reliable proliferation of information over time. This
seems only possible if the individuals carrying this information survive. Surviving in environ-
ments with life-threatening phenomena (thunderstorms, predators, ...) relies on its (approximate)
predictability by (approximate) models that are learned evolutionary and/or by experience.

For this argument to work some form of “ensemble interpretation” of reality is required (e.g.
™ multiverses) [39].
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2. Kinematic Consequences
In this chapter we study implications of the special Lorentz transformations Eq. (1.75) and Eq. (1.77) that
follow without imposing a model-specific dynamics (= equations of motion). We refer to these implications
as kinematic because they follow from fundamental constraints on the degrees of freedom of all relativistic
theories. The phenomena we will encounter are therefore features of spacetime itself - and not of some
entities that live on/in (or couple to) spacetime.
i! The phenomena we will encounter are 7oz “illusions” (in the sense that we “see” things differently than
they “really are”). Remember that we precisely defined what we mean by observers/reference frames;
in particular, we emphasized that we do not “look” at anything, we measure events in a systematic way,
using a well-defined structure called « snertial system. All phenomena we will encounter are derived from
and to be understood in this operational, physically meaningful context.
2.1. Length contraction and the Relativity of Simultaneity
1 < Inertial systems A 2%, A’ with rod on x’-axis and at rest in A’:
Remember that A —> A’ denotes a boost in x-direction with v (as measured in A) where the
spatial axes of both A and A’ coincide at t = 0:
-~ y Y‘
A
Vx S Al
Z ro
P O O
777777777777 72> %
14 r
In such situations, we refer to A’ as the s& rest frame of the rod and A as the # lab frame (some
call A the # stationary frame). In the following, coordinates of events in the inertial system A’ are
marked by primes.
2 | First, we have to define what we mean by the “lenght” of an object:
“Length” is an intrinsically non-local concept. It is not something you can measure or define at a
single point in space. Consequently, there are no “length-events” in &. Thus we need an algorithm
(= operational definition) of what we mean by “length”.
< 'Two event types:
{er} = {(Left end of rod detected)} (2.13)
{er} = {(Right end of rod detected)} (2.1b)
Think of an event #ype as a set (equivalence class) of all elementary events that you deem * zype-
identical (but not ™ token-identical). In the example given here, there will be many events ey, in
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spacetime that signify “Left end of rod detected” (if there is one rod, there will be one such event
for each time 7); these are different events of the same type {er }.

One could even declare that the event zype {ey,} is what we refer to as “the left end of the rod.”
— Algorithm LENGTH to compute “Length of Rod” in system K at time ¢:
LENGTH:

2 Input: Coincidences &, Inertial system label K, Time ¢
« Output: Length /g of rod at time ¢ as measured in K

1. Find (unique) event L € & with {er} € L and (t,i)K eL.

2. Find (unique) event R € & with {eg} € R and (¢,7)x € R.

3. Return g := |i—?|.
Here, {e;} € L is shorthand for {e; } N L # @. In words: the coincidence class L contains an
event of the zype “Left end of rod detected”.

Note that we define “length” as the spatial distance between the two ends of the rod at the same
timet (as measured by the clocks in K). I hope you agree that this is what one typically means by
“length.”
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dLecture5 [14.11.23]

3| We now apply this algorithm twice, in the lab frame A and the rest frame A":

i| Rest frame A’

& Proper length = # Rest length := Length of rod in A’:
lo 1= LENGTH(E, 1{; A') = |I} — Fj| = |1} — r}) (22)

with simultaneous clock events (¢, /)4’ € Lo and (t5,73)a’ € Ro.

The time #; that we choose is irrelevant since the rod is (by definition) at rest in A’. Since
the rod lies on the x’-axis, itis /; = ([, 0, 0) and 7, = (r{. 0. 0).

The subscript “0” in L, indicates that this is a specific event (coincidence class) we selected
in A’ to compute the length of the rod. It does 7ot mean “as seen from the rest frame A"” or
anything like that. Remember that coincidence classes in & are objective information!

i | Lab frame A:

Length of moving rod in A:
| := LENGTH(E,1; A) = |I — 7| (2.3)

with simultaneous clock events (¢;,1)4 € L and (¢,,7)4 € R with; =1, = 1.
The time # that we choose might be irrelevant as well, but we do not know this yet.

i! There is no reason to assume that the events Lo/ Ry chosen in A’ to measure the length of
the rod are identical to the events L/R usedin A: Ly # L and Ry # R in general.

4 | How does [y relate to [?

i| In Section 1.5 we did a lot of hard work to compute the transformation ¢ which transforms
the coordinates of an event in one inertial system into the coordinates of the same event in
another inertial system. We identified the transformation as the Lorentz transformation:

AAS A [Ela=t.%)=x> Apx =x' = (%)= [Elsr  (24)

i | So let us use this tool [namely Eq. (1.77)] to obtain the coordinates of the events L and R
(used for the length measurement in A) in the rest frame A’ of the rod:

cty =y (cty — 2x1y) ct) =y (ctr — %5ry)
I = y(ly — vyt ry = y(rx — vxt

[L]A/ — ),c V( X X l) and [R]A/ — ),c V( X X r) (2‘5)
lé = lz ré = rz

Here we use [ = (Ix,ly,lz)and 7 = (rx, ry, 7). Since we declared that the rod is fixed on
the x'-axis of A’, and {e..} € L and {er} € R,itmustbe/, = I, =r, = r; = 0,and
therefore | = (Ix,0,0) and 7 = (ry,0,0). That is, the rod is not rotated by the boost and
always lies on the x-axis of A as well. In particular: / = |f— Fl = |lx — ryl.

— Two immediate conclusions:
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a| In A’ the two events L and R are no longer simultaneous:

np=t-inA but t #1 in A’ (sincel, # ry). (2.6)

— The simultaneity of events is observer-dependent.

This ambiguity of simultaneity can be graphically illustrated in a spacetime diagram (for
details on how to draw the (z/, x’)-axes in A: © Problemset 2):

A ct ce'n fe {ent

» As aside note, this calculation implies that not only is it generally zot true that
Lo = Land Ry = R, it is actually smpossible (at least for both pairs).

« In the sketch above, the “interior of rod”-events are painted gray. One is tempted
to ask: Which “line” of these events s the rod? The counterintuitive answer is
that this depends on the observer: For A-observers, horizontal lines of gray events
make up “the rod”, whereas for the A’-observer #/ted lines are “the rod”. It is
actually more reasonable to think of the complete area of gray events as “the rod”,
just as the event type {ez } is “the left edge” of the rod. This suggests that our
intuitive concept of the instantaneous existence of extended objects — which feels so
natural to us - is, to some extend, misleading.

b In A’ the coordinate distance is different:

’ 1 U=ty vx#0
e —rxl = vllx—rx| # |lx—rx|=1 (2.7)

i! The time-dependence cancels so that the expressions are time-independent.

At this point, it is a bit premature to identify the left-hand side as the rest length Iy
of the rod because these are spatial coordinates of events that are not simultaneous!
(Remember that the length of any object in any frame is defined as the coordinate
distance of simultaneous events.)

However, since A’ is (by definition) the rest frame of the rod, the position labels of the
A’-clocks adjacent to the ends of the rod are the same for all events:

; teL}eL
lx - ZO
; {erR}ER
I’x == 7'0

= |l —rl=lg—rol=1o (2.8)
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— &% Length contraction = # Lorentz contraction:

A rod of rest length /g is shorter if measured from an inertial system in relative motion:

L=lo1-2 "2 29)

;! Due to isotropy, this result is true for any length of extended objects i the

direction of the boost. A rod along the y’-axis, for example, is contracted according
to Eq. (2.9) for a boost in y-direction, but not for a boost in x-direction.

e The rod is just a proxy for any physical object; the Lorentz contraction therefore

affects all physical objects in the same way. The contraction is not a dynamical
feature of the object itself (like a force that compresses the atomic lattice) but an
intrinsic property of space(time).

» Note that we say above “if measured from ...” and not “as viewed from ....” This

distinction is important: If you ask how you would visually perceive extended objects
flying by (or how they look on a picture taken by a camera) you have to factor in
that the photons bouncing of the object at different points take different times to
reach your eye (our the camera sensor). If you do the math (@ Problemset 3), this
additional optical effect leads to the surprising result that 3D objects actually do
not look “squeezed” but rotated. This implies in particular that a moving sphere
still Jooks like a sphere and not like an ellipse (1 Penrose-Terrell effect [40,41], see
also Ref. [42]).

You can experience this effect (among others) in the educational game “A Slower
Speed of Light,” which has been developed by the MIT Game Lab for educa-
tional purposes, and can be downloaded here for Windows, Mac, and Linux (©
Problemset 3):

© Download “A Slower Speed of Light”
You should always keep in mind, however, that this “looking” is #ot what we refer

to as observing in RELATIVITY; the latter has been defined operationally as a
measurement procedure at the beginning of this course.

2.2. Time dilation

. v - .
1 < Inertial systems 4 —> A’ and a clock ¥’ at rest in A:

T e AT e A
(2. %) (z.%)
A & , A o
&

o

(0, %) T @.%)

2 | <t Two events:

A’-Clock X’ meets A-clock Xo: (¢4, X")ar ~ (t0,%0)4 € Eo (2.10a)
A'-Clock X’ meets A-clock X1:  (t1,X")ar ~ (t1,X1)4 € E1 (2.10b)
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i! The two events E¢ and E| relate ##ree different clocks: The single A’-clock X" and two different
A-clocks X¢ and X;.

3 | Asforlength, the concept of “duration” cannot be defined locally in spacetime. We therefore need
an operational definition (algorithm) of “duration”:

DURATION:
» Input: Two events Eg and E;, Inertial system label K
€« OQutput: Time interval Atg between events as measured in K

1. Find (unique) clock event (¢, Xo)x € Eo.
2. Find (unique) clock event (f1,%1)x € E1.
3. Return Atg :=t; —tp.
Hopefully you agree that this is a reasonable definition of the duration (or time interval) between
two events.
4 | We can now apply this algorithm to determine the time elapsed between E¢ and Ey:
In A": At¢' =DURATION(Ey, E1; A") = t{ — 1y Measured by a single clock! ~ (2.11a)
InA: At =DURATION(Ey, E1; A) =1t; —to Measured by two clocks! (2.11b)

5  How does At relate to At’?

i | Since (7}, X")ar ~ (to,Xo)4 and (], X")4» ~ (t1.X1)4, we can use the Lorentz transformation
to translate between the coordinates:
Inverse of Eq. (1.77)
_— 5

Remember that Agl = A_; because of reciprocity; the inverse Lorentz transformation can
then be obtained by substituting vy > —vy:

cto =y (ctg + 2x')
X0 = V(x/ + Uxt(,))

cty =y (1] + 2=x')

Eola =
[Eo] x1 = y(x" + vxty)

and [Eq]q = (212)

We omit the other two coordinates since they are invariant anyway; the transformation of
the spatial coordinate is also not necessary for the following derivation.

ii | Subtracting the equations for the time coordinate of both events yields:

c(t1 —to) = ye(ty — 1) (2.13)

Note that in the inverse Lorentz transformation Eq. (2.12) the position coordinate in A’ is x’
for both events because the same A’-clock takes part in both coincidences.

ii | % Time dilation:

— The moving clocks in A" run slower than the stationary clocks in A4:

At 0
Ar= 20 V2 At (2.14)

We renamed Ar’ = At to emphasize the analogy to the proper length ly:

Ato: & Proper time elapsed in A’ between FE and E
At: Time elapsed in A between Eg and E;
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o The characteristic feature of the proper time Aty between two (time-like separated)
events Eo and E is that it can be measured by a single inertial clock that takes part in
both events. All other time intervals must be measured by subtracting the reading of
two different clocks. Eq. (2.14) tells you that these time intervals are always longer than
the proper time Afy.

e ;! Due to isotropy, our result above is true for boosts in any direction.

Note that in the derivation above, we did #or impose any special constraints on the
positions of the clocks (except that they coincide pairwise at E¢ and E;). In particular,
we did not assume (despite the sketch suggesting this) that the clocks are located on
the x/x’-axis. All clocks in A’ are slowed down in the same way, irrespective of their
location!

e This result does ot contradict our assumption that all clocks are type-identical (= run
with the same rate if put next to each other at rest) because the two events needed
to compare the tick rate of moving clocks necessarily describe coincidences between
different pairs of clocks.

6 | Relativity principle:

Because of the relativity principle [SR! time dilation must be completely symmetrical: The A’-clocks
run slower compared to the A-clocks, and the A-clocks run slower compared to the A’ clocks.
That this is indeed that case (without being a clock “paradox”) is best illustrated in a symmetric
spacetime diagram:

A ct PR L

Siwldaueovt < Siwvldauesut

A3 AT X

The existence of the “median frame” A” between A —> A’ can be easily shown with the addition
for collinear velocities Eq. (1.70). This symmetric form of a spacetime diagram is sometimes called
1 Loedel diagram [43] and makes the symmetry between inertial frames manifest; in particular,
the units on the axes of A and A’ are identical (they are not identical to the units of A”, tough). In
this symmetric form, the ¢'-axis is orthogonal to the x-axis and the 7-axis to the x’-axis. Note that

. .. .. - 0} —0 L~
because of the relativistic addition of velocities, it is A” — A’ and A” —> A with 7, = vy ﬁ

and tan(¢) = ’77* (© Problemset 3). Only in the non-relativistic limit v, /c — 0 one finds v, = %°

as naively expected.

Note that due to the relativity of simultaneity, the two observers use different pairs of clock-events
to decide which of the two origin clocks runs slower:

« For A the two clock events D and C are simultaneous such that one has to conclude that the
(blue) A’-clock runs slower than the (red) A-clock.
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« By contrast, for the observer A’ the two events D and C are simultaneous such that one has
to conclude that the (red) A-clock runs slower than the (blue) A’-clock.

It is evident from the diagram that there is no disagreement about coincidences of events (or
readings of clocks). It is just the observer-dependent concept of simultaneity that leads to the
seemingly “paradoxical” reciprocity of time dilation.

Experiments:

o Muon decay [44]:

Muons quickly decay into electrons (and neutrinos):
no—e 4, + . (2.15)

This decay can be readily observed in storage rings of particle colliders like CERN. The
lifetime of muons az rest (measured by clocks in an inertial laboratory frame) is 7 ~
2.1948(10) ps. However, the lifetime of muons in flight (close to the speed of light) is
measured to be 7, ~ 64.368(29) ps, i.e., much longer! If one carefully takes into account
the speed of the muons and additional experimental imperfections, this result fits Eq. (2.14)

with deviations of only ~ 0.1 % [44].
Notes:

- In the rest frame of the flying muons one would measure the usual lifetime 7)) ~
2.1948(10) ps. However, in this frame, the laboratory is Lorentz contracted such that the

muon reaches exactly the same point in space where it decays in this “shorter” lifetime.

Note how time-dilation and Lorentz contraction provide different explanations for the
same experimental obervation.

- One can also use different particle species to study time dilation, for example pions (a
sort of meson, i.e., a hadron with one quark and one antiquark) [45].

o Hafele-Keating experiment [46, 47]:

In 1971, J.C. Hafele and R. E. Keating took four Cesium atomic clocks along commerical jet
flights around the globe twice: once eastward and once westward. Compared to a reference
clock on the ground, the clocks on the eastward flight lost on average ~ 59ns (= they
ran slower) and the clocks on the westward flight gained ~ 273 ns (= they ran faster). To
understand this qualitatively, note that the reference clock on the ground is rotating (together
with earth) and therefore is #oz an inertial clock. Therefore imagine an (approximately)
inertial reference system flying along earth around the sun, and from this system look down
on the north pole; earth is now slowly rotating beneath you. From this inertial system,
the eastward flight has higher velocity than the reference clock, which, in turn, has higher
velocity than the westward flight. Thus you find that the eastward clock runs slower than the
reference clock which runs slower than the westward clock (this is also true if the clocks are
accelerated,> below). These theoretical considerations are explained in [46].

2.3. Addition of velocities

Details: © Problemset 2

1

_ dx’

. . s o . . . v
< Particle moving with ' = 7 in system K’ and inertial system K with K — K':
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AT
z N
K .
“@ @
t=0 B
<4 ul-]
v
7 D
E
2y
~
4 5
4
x
2 Velocity 4 in K:
=& veu 2 ! [* v — (' )] (2.16)
Uu=—=v0u — |V -V)V .
d 1+ o cz(1+y)

Proof: Use Eq. (1.75) (© Problemset 2).

i! The relativistic addition of velocities & is in general not commutative (v @ 4 # 4 & U) nor
associative [V @ (U @ W) # (U ® 1) ® w]. As you can easily see from Eq. (2.16), it is also not linear:
(AV) @ (M) # A(V & u). Be careful: There are different notations (in particular: orderings) used
in the literature.

3 | < Non-relativistic limit (¢ — co = y, — 1):

lim v@u = lim W’ ®v =0+ u (2.17)
CcC—>00 cC—>00
— Galilean addition of velocities
4 Special case: U = (vy,0,0):
vy + Ul u',/ Vv u
ux é : vyul uy é > vyul uz é Z/Uyl:l ’ (2‘18)
14+ =5 1+ == 1+ 2

i! Note that also the transverse components of u’ are modified, but in a different way than the
collinear component u’,. For u#’ = (u/;,0,0) we get our previous result for collinear velocities
Eq. (1.70) back.

5 | Thomas-Wigner rotation [48,49]:

Remember that for collinear addition of velocities the concatenation of two boosts yields another
boost: Ay, Ay, = Ay, [recall Eq. (1.57)].

As a straightforward (but tedious) calculation using two general boosts Eq. (1.75) shows, this is not
true in general: AzA; # Ay with w = u @ v. Rather one finds

A;)A,; = AﬁGBTJAR(ﬁ,T)) (2.19)

with the & Thomas-Wigner rotation R(ui, v) € SO(3) (we omit the expliclit form of R(, v) here).

This is not in contradiction with our general addition for velocities above because there we were
only interested in the velocity of a moving particle (which you can identify with the origin of its
rest frame K”’); we completely ignored the axes of K”. The Thomas-Wigner rotation tells you that
the concatenation of two pure boosts is #ot a pure boost in general.
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2.4. Proper time and the twin “paradox”

1

< Time-like trajectory /> C & of a spaceship with departure D € J and arrival 4 € P.

< Coordinate parametrization X(7) of & in system K with
departure [D]g = (tp,Xp) and arrival [A]g = (t4,X4) : (2.20)
Formally,  is a set of coincidence classes parametrized in K by the clock events (z, X (¢))k:
P ={E. X)k]|t €[tp.ta]} CE. (2.21)

This suggests the formal notation [P]x = (¢, X(¢)).

Ao K
0 I
D
Ly |
: >
x

2 | Thought experiment:

The spaceship takes a clock along and resets it to tp = t(¢p) at departure D.

What is the reading 74 = t(z4) of the clock at arrival A4?

We assume that the clock in the spaceship is type-identical to the clocks used for inertial observers.
Idea:

Approximate the trajectory by a polygon of N segmentsi = 1,..., N separated by time steps #;
(with 7o :=tp and 1y := t4):

i Let At; :=1t;—1 —t; and A)_fi = )_f(ti_l) — )_é(ti)
For each segment, there is an inertial frame K’ with a ¢’-axis that follows the spacetime
segment (because all segments are time-like!). This is the instantaneous rest frame of the
spaceship where the clock in the spaceship and the origin clock of K’ are at the same place and
at rest relative to each other. Since the clocks are type-identical, the time At; accumulated
by the spaceship clock on this segment is identical to the time At/ elapsed for the origin
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clock of K’ on this segment: Ar; = At/. This time is equal to the spacetime interval

-

(As))* = (cAt})* — 0 because the origin clock is at rest in K’ (so that AX! = 0). But
remember that the spacetime interval (As/)? is Lorentz invariant so that we can calculate
the same number in any inertial system: (As/)? = (As;)? = (cAf;)? — (AX;)2.

In summary, on the i th interval, the spaceship clock accumulates the time

2
As: v/ AS; A2 — (A )2 -
At = il : L \/(C ) - (Ax) = Al RV, 1-— —(Ax,c/zAt,)2 (2.22)

c c

The above chain of arguments provided us with a physical interpretation for the Lorentz
invariant spacetime interval (As)? > 0 of time-like separated events: It measures (up to a
factor of ¢) the time accumulated by an inertial (= unaccelerated) clock that takes part in
both events.

Continuum limit N — oo (v(¢) = [3(1)| = |3(1)]):

2042 dt
dr = — =dry1- ) s 5 =10 (2.23)

Note that this is just an infinitesimal version of the time-dilation formula Eq. (2.14) with
At — drf and Aty — dr.

Since (As)? = (As")? is Lorentz invariant:

A 3 d ds’ o
K —K': dt\/l—xg;z)z:?sz%:dt’ 1—"2# (2.24)

You can check this also explicitly using the Lorentz transformation Eq. (1.75).
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dLecture6 [21.11.23]

— #& Proper time accumulated by the spaceship clock along the trajectory J:

N ds ts *(z)2
D : e — — X
At[P] = th E At = L)df = /:P = /tD dry/1 2 (2.25)

Segment
i=1

As constructed, the proper time Az [] of a time-like trajectory &, parametrized by X (¢)
fort € [to, 1], is the time elapsed by a clock that follows this trajectory in spacetime.

i! This result is valid for accelerated clocks.

In general, SPECIAL RELATIVITY can described the physics of accelerated objects as
long as the descpription of the process is given in an inertial coordinate system (as is
the case here).

i! The right-most expression in Eq. (2.25) yields the same result iz all inertial systems
K [recall Eq. (2.24)]. This is why t[/] is a function of the event trajectory P and
not its coordinate parametrization X (7). This is important: It tells us that all inertial
observers will agree on the reading of the spaceship clock 74 at arrival A (although their
parametrization X (t) may look different).

Note that since X(¢) is assumed to be time-like, it is V; : |X(f)| < ¢ such that the
radicand is always non-negative.

(o] is a functional of the trajectory #; this is why we use square-brackets.

4 | Which trajectory #* between the two events D and A maximizes the proper time At?

.
1

At K act K

A et

(Irog

D and A are time-like separated — 3 Inertial system K’ = K(D, A) with

[Dlg = (tp = 0,%5 =0) and [Alg = (1.5, = 0) (2.26)

That is, without loss of generality, we can Lorentz transform into an inertial system where the

two events happen at the same location (and by translations we can assume that this location

is the origin 0 and that the coordinate time is t;, = 0at D). We label the time and space

coordinate in K’ by ¢’ and X’. Because of the relativity principle [SR, K’ is as good as any
system to describe events.

Time of an arbitrary path » > D, A with [P]g = (¢/, X'(t')):

t;l Srlar _"(t’)E(_)) t;l
AT[P] = ft/ de’\/1— xﬁ# ¥ < dt' =1y —t, = AT[P*]  (227)
D

4
p
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Here #* is the trajectory between D and A that is parametrized by the constant function
X'(#") = 0in K’. In other inertial systems, this trajectory will not be constant; however, it is
inertial, i.e., * is described by a trajectory between D and A with uniform velocity.

Check this by applying a Lorentz transformation to the coordinates (¢, 0) !

— Clocks that travel along the inertial trajectory P* between D and A collect the
largest proper time t* = At[P*].

Collecting the “largest time” means that the these clocks run the fastest.

5| Itisimportant to let this result sink in:

Let K’ be the rest frame of earth (which is located in the origin 0) and consider two twins of age tp:

« Twin S departs with a Spaceship at D, flies away from earth, turns around and returns to
earth at A. Twin S therefore follows a trajectory similar to &, in the sketches above.

« Twin E stays on Earth. He follows the inertial trajectory * in the sketches above.

We just proved above:

(Age of Twin S at A) = At[P,] + tp < AT[P*] + ©p = (Age of Twin E at A)

This is the famous # Twin “paradox”: Twin S aged less than Twin E.

6 | Why there is 7o paradox:

« If you don’t see why the above result should be paradoxical:
Good! Move along. Nothing to see here! ©
o Why one could conclude that the above result is paradoxical (= logically inconsistent):

- From the view of Twin E, Twin S speeds around quickly, thus time-dilation tells him
that Twin S should age slower. And indeed, when Twin S returns, he actually didn’t
age as much.

- Now, you conclude, due to the relativity principle [SR|, we could also take the perspective
of Twin S (i.e., our system of reference is now attached to the spaceship). Then Twin S
would conclude that time-dilation makes Twin E (who now, together with earth, speeds
around quickly) age more slowly. But this does not match up with the above result that,
when both twins meet again at A, Twin S is the younger one! Paradox!

The resultion is quite straightforwad:

The invocation of the relativity principle SR in the last point is not admissible! Remember
that [SR only makes claims about the equivalence of inertial systems. Now have a look at the
trajectory &, of the spaceship again: it is clearly accelerated and cannot be inertial. And
that there 7s at least a period where the spaceship (and Twin S) is accelerating is a neccessity
for Twin S to return to Twin E (at least in flat spacetimes, but not so in curved ones [50])!
This implies that the reunion of both twins at A requires at least one of them to #ot stay in
an inertial system. This breaks the symmetry between the two twins and explains why the
result can be (and is) asymmetric.

e ;! For historical (and anthropocentric) reasons, the “twin paradox” is called a “paradox.”
We stick to this term because we have to - and not because it is appropriate name. The term
“paradox” suggests an intrinsic inconsistency of RELATIVITY. As we explained above: This
is not the case. All “paradoxes” in RELATIVITY are a consequence of unjustified, seemingly
“intuitive” reasoning. The root cause is almost always an inappropriate, vague notion of
“absolute simultaneity” that cannot be operationalized.
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» An overview on different geometric approaches to rationalize the phenomenon can be found
in Ref. [51].
Below are two widely used spacetime diagrams of an idealized version where Twin S changes
inertial systems only once from Sp to S4 halfway through the journey at R. You can think of
this as an instantenous acceleration at the kink. Note, however, that the acceleration itself
is dynamically irrelevant for the arguments; it is only important that the inertial frames in
which Twin S departs and returns are not the same:

! OL chV\‘u& L

E

v

(/)

D / ) 4

- In the left diagram the slices of simultaneity in the two systems Sp and Sy are drawn. As
predicted by time-dilation (and mandated by [SR'), Twin S observes the clocks of Twin E
to run slower during his “inertial periods”, i.e., while he stays in a single inertial system.
However, the moment Twin S “jumps” from Sp to S4 at R, his notion of simultaneity
changes instantaneously: In Sp, R and Rp are simultaneous; in S, however, R and
R4 are simultaneous. Due to this jump, the record of Twin S contains now a temporal
gap for events on earth (highlighted interval). It is this “missing” time interval that
overcompensates the slower running clocks on earth (as observed from Sp and S4) and
makes Twin S conclude that Twin E ages faster (in agreement with the actual outcome
of the experiment).

If you wonder what happened to the (missing) observations of events in the triangle
R4 RRp: there is a nice explanation in Schutz [4]. (The bottom line is that Twin S
constructs a bad coordinate system by stopping the recording of events in system Sp
when he reaches R.)

- In the right diagram, we draw /ight signals (“ pings”) of an earth-bound clock next to
Twin E sent to Twin S. Twin S receives these signals and measures their period. This
idealizes how Twin S sees (not observes!) the clocks ticking on earth (and, by proxy, how
fast Twin E ages). It is important to understand the difference between this “seeing”
and our operational definition of observing (using the contraption called an « znertial
system, as used in the left diagram). As demonstrated by the diagram, Twin S first sees
the clock on earth ticking slower; but when he turns around at R, the clocks on earth
(apparantly) speed up significantly. In the end, this speedup overcompensates for the
slowdown during the first part of the journey so that Twin S again arrives at the (correct)
conclusion that Twin E ages faster. Note that the speedup of the earth-bound clock
seen by Twin S during the second half of his journey does not contradict time-dilation
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because seerng is not observing. This is similar to the  Penrose-Terrell effect in that a
genuine relativistic effect (here: time-dilation) is distorted by an additional “imaging
effect” due to the finite speed of light.

o In our careful derivation above, we not only showed that Twin S ages less than Twin E; we

also showed that this conclusion is independent of the inertial observer! Thus we know that
there will be 7o dispute about the different ages between different inertial observers.

The Hafele-Keating experiment [46,47] and the muon decay experiments [44], mentioned
previously in the context of time-dilation, are experimental confirmations of the twin “para-
dox.” So our theoretical prediction above (that Twin S ages less than Twin E) is experimen-
tally confirmed. End of discussion.

Our derivation of the accumulated proper time along trajectories in spacetime is both mathe-
matically sound and experimentally confirmed. This qualifies SPECIAL RELATIVITY as a
successfull theory of physics. Operationally there is nothing to complain about: the theory
does its job to produce quantiative predictions of real phenomena. So why do so many people
(physicists included) - despite the various efforts to visualize the phenomenon - have this
nagging feeling of dissatisfaction that they cannot get rid of ? The reason, so I would argue, is
the human brain and its proclivity to inject concepts of absolute simulateneity into its model
building. This qualifies the historical overemphasis of the twin “paradox” as a meta problem:
The question to study is not how to “solve” the twin “paradox” (as we showed above, there
is nothing to solve); the question to study is why so many peoply thought (and still think)
that there is a problem in the first place. This meta problem is an actual problem to study; but
it falls into the domain of cognitive science, and not physics!

7 | Two lessons to be learned from this:

You can live longer than your inertial-system-dwelling peers
by changing inertial systems (= accelerating) at least once.

The mere fact that our universe really allows for this (at least in theory) makes it much more
interesting than its boring alternative: a Galilean universe.

and

Phenomena like length contraction and the twin “paradox” are physically real.

Their “paradoxical” flavor is a phenomenon of human cognition, not physics.

This is why we put “paradox” always in quotes in the context of RELATIVITY.
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3. Mathematical Tools I: Tensor Calculus

In this chapter we introduce tensor calculus (1 Ricci calculus) for general coordinate transformations ¢
(which will be useful both in SPECIAL RELATIVITY and GENERAL RELATIVITY). The coordinate
transformations ¢ relevant for SPECIAL RELATIVITY are Lorentz transformations (and therefore linear)
which simplifies expressions often significantly (- Chapter 4). However, this special feature of coordinate
transformations in SPECIAL RELATIVITY is not crucial for the discussions in this chapter.

Goal: Construct Lorentz covariant (form invariant) equations
(for mechanics, electrodynamics, quantum mechanics)

Question: How to do this systematically?

Note that (we suspect that) Maxwell equations are Lorentz covariant. Clearly this is not obvious and
requires some work to prove; we say that the Lorentz covariance is not manifest: it is there, but it is hard
to see. Conversely, without additional tools that make Lorentz covariance more obvious, it is borderline
impossible to construct Lorentz covariant equations from scratch (which we must do for mechanics and
quantum mechanics!).

We are therefore looking for a “toolkit” that provides us with elementary “building blocks” and a set of
rules that can be used to construct Lorentz covariant equations. This toolbox is known as tensor calculus
or ™ Ricci calculus; the “building blocks” are tensor fields and the rules for their combination are given by
index contractions, covariant derivatives, etc. The rules are such that the expressions (equations) you can
build with tensor fields are guaranteed to be Lorentz covariant. This implies in particular that if you can
rewrite any given set of equations (like the Maxwell equations) in terms of these rules, you automatically
show that the equations were Lorentz covariant all along. We then say that the Lorentz covariance is
manifest: one glance at the equation is enough to check it.

Later, in GENERAL RELATIVITY, our goal will be to construct equations that are invariant under
arbitrary (differentiable) coordinate transformations (not just global Lorentz transformations). Luckily, the
formalism we introduce in this chapter is powerful enough to allow for the construction of such -» general
covariant equations as well. This is why we keep the formalism in this chapter as general as possible, and
specialize it to SPECIAL RELATIVITY in the next Chapter 4. The discussion below is therefore already a
preparation for GENERAL RELATIVITY; it is based on Schroder [1] and complemented by Carroll [52].

3.1. Manifolds, charts and coordinate transformations

1 D-dimensional Manifold

= Topological space that locally “looks like” D-dimensional Euclidean space R2:

MA=S? > >
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e ;! In RELATIVITY, the manifold of interest is the set of coincidence classes & it makes up

the D = 4-dimensional manifold we call spacetime.

o A space that “locally looks like R?” is formalized as a 1 topological space that is locally
1 homeomorphic to Euclidean space R?. The structure defined in this way is then called a

1 topological manifold.

2 | Differentiable Manifolds:

We want to formalize this idea and introduce additional structure to the manifold so that we can

differentiate functions on it:

D-divseutiouat siffaeadodle Measilotd M

va«ku?b\ﬂw\ ey

Coonfivale A v — uuwwwal'()h?&w

T raus for ko
q oo iunle
Capir e
(Uew) (Viv)
W\D di ffeo worplisin TKD ’
% Coordinate system / Chart (U, u):
u: UCM —uU)cRP (3.12)
uuU)cRP > UcMm (3.1b)

U C M: open subset of M; u and u~! are continuous and u ou™! = 1.

U = M is allowed. This is the situation we assumed so far in SPECIAL RELATIVITY:
Our inertial coordinate systems cover all of spacetime M = &.

< Two charts (U, v) and (V,v) andlet U NV # 0:

p=vou l:u(UNV) - vUNYV) (3.22)
e Vi=uovlivUNV) > uUnNV) (3.2b)

@: % Coordinate transformation / Transition map

U=M=VandUNV = M isallowed. Thisis the situation we assume so far in SPECIAL
RELATIVITY where (U = &,u) and (VV = &, v) correspond to the coordinate systems of
two different inertial systems. The coordinate transformation ¢ would then be a Lorentz
transformation (definedon U NV = §).

# Atlas := Family of charts (U;, u;)ier such that M = | J;; Us

This definition of an atlas formalizes the notion of an atlas in real life (of the book variety):
It contains many charts that, taken together, cover the complete manifold (typically earth).
The different charts (on different pages of the book) all overlap on their edges such that you
can draw any route on earth without gaps.

All ¢, ¢! differentiable — M: & Differentiable Manifold
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o ¢and ¢~ ! are maps from R? toitself. It is therefore clear what “differentiable” means.

 In mathematics one is of course more precise about the degree of differentiability of
the transition functions, and subsequently assigns this degree to the manifold. For
example, if all coordinate transformations are infinitely often differentiable (= smooth),
the manifold is called a  smooth manifold. We are sloppy in this regard: For us all
functions are differentiable as often as we need them to be.

In RELATIVITY we will only be concerned with differentiable manifolds.

3 Example:

C&Z/ 2

5
Cliad 1

> Al &

— In general, a manifold cannot be covered by a single chart (Earth, mathematically S2, needs at
least two charts). In SPECIAL RELATIVITY this is not a problem: There we assume that spacetime
is a flat (pseudo-)Euclidean space & ~ R* and the coordinates given by our inertial systems cover
all of spacetime. Later, in GENERAL RELATIVITY, this will not necessarily be the case.

3.2. Scalars

4 | & Scalar (field) := Function ¢ : M — R/C

o If ¢ maps to R (C), we call ¢ a real (complex) scalar field.

o il ¢ is a geometric object because it only depends on the manifold itself. It does not rely on
charts/coordinates and does not depend on a particular set of charts you might choose to
parametrize the manifold. The notion of a mathematical object to be “geometric in nature”
or “independent of the choice of coordinates” is absolutely crucial for the understanding of
GENERAL RELATIVITY. The reason why these “geometric objects” are so important for
physics is the following insight that took physicists (including Einstein) a long time to fully
comprehend and implement mathematically:

Coordinates (charts) do 7ot represent physical entities.

They are (useful) “mathematical auxiliary structures.”

¢ One reason why it is so hard for us to grasp and implement the “physical irrelevance” of
coordinates is, so I believe, that the first (and often only) coordinates we encounter in school
are Cartesian coordinates. They are particularly intuitive because they are simply the distances
of a point to some coordinate axes. Distances are a geometric property and physically relevant
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(you can measure them with rods); they are not the invention of mathematicians. This makes
students draw the (wrong) conclusion that coordinates in general have intrinsic physical
meaning. The problem is that coordinates are inventions of mathematicians; they do not
share the ontological status of physical quantities like lengths etc. To undo this misconception
is key to understand GENERAL RELATIVITY (- much later).

 Since both M and R/C are * fopological spaces, it makes sense to ask whether (or require
that) ¢ is continuous. It does not make sense to ask whether ¢ is differentiable (and what is
derivative is) because, in general, M does neither come with a notion of “distance” between
two points in M nor can you add or subtract points (M does not have to be a ¥ metric space
and/or a ¥ linear space). So an expression like d,¢ (p) does not make sense (- below)!

5| Wejust declared that coordinates are “not physical.” The problem is that without coordinates it
is really hard (at least for physicists) to do actual calculations with the geometric objects we are
interested in (for example: compute derivatives). In addition, comparing theoretical predictions
with experimental observations typically requires some sort of coordinate representation. Our
« inertial systems, for example, are elaborate measurement devices that produce a specific coordinate
representation of the observed events.

This is why we always assume in the following that we have one (or more) charts that allow us to
parametrize a (part of the) manifold, and then express the geometric quantities as functions of
these coordinates. This means for the scalar field:

< Two overlapping charts u and v:

O(x) = (x)) xeuUnNV) (3.3)
O(F) = (X)) FevUNV) (3.3b)

® and ® are functions on (subsets of ) R?; in contrast to ¢ which is a function on the manifold M.
In an abuse of notation, some authors do not make this distinction and write ¢ and ¢ instead.

(o)
—

O(x) = d(x) for ¥ =¢(x) with ¢ =vou™!. (3.4)

©o(p) L o(x) withu1(x) = p = v (%).

e In RELATIVITY we typically work in a particular chart (coordinate system). Thus we write
our fields as functions of coordinates (and not points on the manifold); e.g., when working
with scalars, we typically work with ® (and not ¢).

Note that ®(¥)

o ;! The special transformation of a field Eq. (3.4) (given as function of coordinates) tells us
that it actually encodes a geometric, chart-independent function ¢ (given as function of
points on the manifold). This idea will be prevalent throughout this chapter and is the basis
of our modern formulation of RELATIVITY: We work with functions that depend on specific
coordinates (and therefore change when we transition to another chart); however, these
functions satisfy certain transformation laws [like Eq. (3.4)] that guarantee that they actually
encode geometric, chart-independent objects (which is what physics is about).

* Asa function of coordinates, scalar fields are those fields the values of which do not change
under coordinate transformations. A typical example would be the temperature as a function
of position: When you move your coordinate system, the temperature of a particular point in
space still is the same (only your coordinates of this particular point have changed!). This is
exactly what Eq. (3.4) demands.
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Note that being a scalar (field) does not simply mean “being a number.” The z-component of
the electric field strength E, (x), for example, assigns a number to every point x; however, it
does not transform like Eq. (3.4) under coordinate transformations. (Do you see why? What
happens to E if you rotate your coordinate system?)

o Inthe literature, you will find the notation ® = & to characterize scalars. This does 7ot mean
®(x) = ®(x) forall x € RP (which characterizes form-invariance or functional equivalence),
but rather ®(¥) = ®(x) (which characterizes scalar fields). Note that with x = ¢! (¥) it
follows ® (%) = ®(p~! (X)) such that the function ® is typically not functionally equivalent
to ®. This ambiguity is the price we have to pay if we want to express geometric objects in
terms of coordinates.

o Since ® : RP — R, it is well-defined what “differentiability” of ® means. So expressions
like a;I;(,f) make sense now (if @ is differentiable). One then defines that ¢ is differentiable
on M iff ® is differentiable for all charts of an atlas of M.

3.3. Covariant and contravariant vector fields

Are scalar fields the only geometric objects that can be defined on a manifold? The answer is o, there
are many more! And these objects are not just toys for mathematicians: they are necessary to represent
physical quantities like the electromagnetic field. Unfortunately, the definition of these quantities is not
so straightforward as for scalars. We will not be mathematically precise in our discussion; however, it is
important to understand the conceptual ideas:

6 &% Tangent space TyM atp € M

= Vector space of directional derivative operators with evaluation at p € M (=derivations)

These operators can be applied to differentiable functions on the manifold (i.e., scalar fields).

)(2

/22

» The tangent space 7, M is the mathematical formalization of the intuitive concept of the
plane R? that you can attach tangentially at any point p of a two-dimensional manifold. The
problem with this picture is that it only works if you embed the manifold M into a higher-
dimensional Euclidean space. Mathematically, such an approach is not satisfying because it
presupposes additional structure to characterize the manifold (which, as it turns out, is not
needed). Physically, the approach is also problematic: The manifold we are interested in is
all of spacetime &. But & is all there is, it is (to the best of our knowledge) not embedded
into anything. It is therefore crucial that we can work with manifolds “stand alone”, without
assuming any embedding into a higher-dimensional space. The price we have to pay is that
tangent vectors must be defined, rather abstractly, as directional derivative operators.
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o Thereis a different tangent space 7, M at every point p € M ; these vector spaces all have the
same dimension D (like the manifold) and are therefore all isomorphic. However, without
additional structure, there is no natural connection (isomorphism) between these different
vector spaces at different points. The disjoint union of all tangent spaces is called 1 tangent
bundle TM .

o Mathematically, the vectors in the tangent space can be defined as equivalence classes of
smooth curves through p with the same derivative (with respect to their parametrization)
at p. This equivalence class corresponds to a particular directional derivative that one can
apply to smooth functions on the manifold at p. We do not need this abstract “bootstrapping
procedure” for 7, M in the following.

<t Chart (U, u) with coordinates x = (x°, x!,...,xP)
— &% Coordinate basis {0; = %} for T,M

Recall that partial derivatives are special kinds of directional derivatives (namely in the direction
where you keep all but one coordinate fixed). You can therefore think of 9; as the tangent vector at
p € M that points into the x*-direction mapped by u~! onto the manifold.
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dLecture7 [28.11.23]

7 | Since T, M is a vector space for each point p of the manifold M, we can define fields on M that
assign to each point p a tangent vector:

& Vector field: A(p) = Y2, A (x)d; with x = u(p)
At every point p € M the vector field yields a tangent vector A(p) = >_; A*(u(p))d; € T, M.
8 | < Coordinate transformation ¥ = ¢(x) < x = ¢~ (X)

— Chain rule:

&k

=255 aE &
~——

0k

— Forx = u(p) and X = v(p) thisis a basis change on the tangent space T, M from one coordinate
. . N . . . oxk
basis {9, } to another coordinate basis {0, } via the (invertible) matrix %"7

/21

]

L
2 M

9 | < Vector field A and expand it in different coordinate bases:
D A9 = A(p) = Y A'(%)0; (3.6)
i i

with x = u(p) and x = v(p).

;! The vector field A is a geometric object, just as the scalar field ¢ was. That it does ot
depend on the chosen chart is the statement of this equation.

 You learned this (with different notation and without the x/p-dependency) in your first
course on linear algebra: Given a vector space V, a vector ¥ € V, and a basis {¢; } with
V = span{e; }, you can encode the vector in a basis-dependent set of numbers v; called
components via linear combination: ¥ = Y, v;€;. The same vector can be encoded by different
components v} in a different basis {€}}: v = ), v}¢.. In our terminology, the vector v is a
“geometric object” that does not depend on your choice of basis; only its components do. In
this context, the gist of the story is that v represents something physical (like the velocity of
a particle). The components v; do so only indirectly because they depend on your choice of
the basis {¢; } - and this choice does not bear any physical meaning.

Eq. 3.6) —
. | _. - (3. axk _
A= lZA’(x)ai - ZA ()3 LY ; [ ,~ oA (x)} 0 (37)

LAk (x)
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This motivates the following definition (we replace x <> X and the indices i <> k):

10 < D-tuple {A?(x)} of fields (in some chart with coordinates x):

D s
. . ox*
& Contravariant vector field {A' (x)} & A'(X) = Z ik Ak(x) (3.8)
et 0x

Contravariant vector (field) — Superscript indices!

This is a convention which relates syntax and semantics and is at the heart of tensor calculus. The
idea is that whenever you are given a collection of fields A’(x), you immediately know that they
transform like Eq. (3.8) under coordinate transformations. (Unfortunately, there are exceptions to
this rule, e.g., the » Christoffel symbols.)

e ;I Notevery D-tuple of fields transforms as Eq. (3.8). To deserve the name “contraviarant
vector (field),” (and superscript indices) one has to check this transformation law explicitly!

o The rationale of Eq. (3.8) is the same as that of Eq. (3.4): Whenever we find a family of fields
that transform under coordinate transformations as Eq. (3.8), we immediately know that
together they encode a geometric, chart-independent object on the manifold that can be used
to describe a physical quantity.

11 (Counter)Examples:

<t Only /inear coordinate transformations: X = @(x) = Ax

< Coordinate functions X (x) := x as fields:

. = D 95
Xi@) =Y A x ) => — x¥) (3.9)
N—— N— 8xk
_)Z'i k=1 xk k=1 \»—"
Ak

— Coordinate functions are contravariant vectors for linear transition maps.

This is useful in SPECIAL RELATIVITY because there we only consider global Lorentz
transformations (which are linear).

o < D scalar fields ® (x) (i = 1.....D):

D .

_. . o

For general ¥ = ¢(x): @' (X) = ®'(x) # Z 3xk
k=1 \‘x,-/

L

Ok (x) (3.10)

— {®’(x)} are not components of a contravariant vector field.
- You see: not every collection of D fields is a vector!

- ! 8% is the Kronecker symbol: §; = 1fori = k and §; = 0fori # k. The notation
8k 1s mot used in tensor calculus (- later).

12 Reminder: ¥ Dual spaces
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Remember: Linear algebra

Consider the vector space I = RP and a column vector v = (vq,...,vp)T € V (al x D-
matrix). Let w? = (wy, ..., wp) be arow vector (a D x 1-matrix). We can then perform a
matrix multiplication between the vectors and interpret it as a linear map w7 acting on the
vector v and producing a number:

U1
:176Vl—>1IJT-T)=(w1 wD)- :ZwivieR. (3.11)
i

UD

L—[)T

In mathematical parlance w7 is a linear functional on the vector space V. Alllinear functionals
of this form make up another vector space V* called the ¥ dual space of V. You can think
of V'* as the vector space of all D-dimensional row vectors and V' as the vector space of all
D-dimensional column vectors. The elements of the dual space are referred to as a ¥ covectors.

Remember: Quantum mechanics

In quantum mechanics, the state of a physical system is described by ¥ state vectors in some
Hilbert space ¢ (which is a special kind of vector space). Vectors in this space are written as
V kets: |¥) € J#. You can produce a ¥ bra (¥| = |¥)T by applying the complex transpose
operator. As in the example above, the bra (¥| is a covector from the dual space J*; indeed,
it acts as a linear functional on state vectors via the inner product of the Hilbert space:

(W]|®@) := (¥|®) € C. (3.12)

This is the gist of the famous ¥ Drrac bra-ket notation.

Hopefully these examples convinced you that the dual space is just as important and useful
as the vector space itself.

— Dual space of the tangent space T, M ?

Given a coordinate basis {d;} € T, M of a vector space, there is a standard way to define a
basis of of the dual space 7,7 M:

4 Dual basis {dx"} with

. . axi
dx’(aj) = 511 = ﬁ (3.13)
— {dx} is a basis of the % Cotangent space M

Ty M is the dual space of 7;, M ; it is common to write 7, M and not (7, M)*.

13 | Since 7,y M is just another vector space for each point p of the manifold M, we can again define

14

fields on M that map into this space:
& Covector field: B(p) = ZiD=1 B; (x) dx* with x = u(p)

Just like the coordinate basis, the dual coordinate basis depends on the chart and changes under
coordinate transformations:

< Coordinate transformation X = ¢(x):

. =i
dx' = Z X dx* (3.14)
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e Check that this is the correct transformation for the dual coordinate basis:

_iE 95t ax!
dx'(9;) = [Xk: ST dxkj| (Z Wa,)

l

ox ax! |, ax axk
:;ﬁ@g@zzﬁﬁ:% ©) (3.15)

* You might recognize Eq. (3.14): This is simply the rule to compute the V total differential
of the function ¥ = ¢(x). This is no coincidence and explains why we use the differential
notation dx’ for the dual vectors: The objects dx’ that we physicists like to illustrate as
“infinitesimal shifts” in x' are actually linear functionals (* 1-forms).

15 | Now we can play the same game on 7, M as before on 7, M :

< Covector field B and expand it in different dual coordinate bases:

Y Bi(x)dx' = B(p) = Y _ Bi(¥)dx’ (3.16)

with x = u(p) and x = v(p).

i! The covector field B is another geometric object, just as the vector field A was. That it does not
depend on the chosen chart is the statement of this equation.

Eq. (3.16) —
i ! = . _;Eq(314) oxt - k
B = Xi:Bi(x) dx' = Xi:Bi(x) dx’ = Xk: |:Xl: akaz(X)j| dx (3.17)
=By (x)

This motivates the following definition (we replace x <> ¥ and the indices i <> k):

16 <t D-tuple {B;(x)} of fields (in some chart with coordinates x):

axk
o Bi(x) (3.18)

D
& Covariant vector field {B; (x)} &  Bi(¥) = Z
k=1

Covariant vector (field) — Subscript indices!

The rationale of Eq. (3.18) is the same as that of Eq. (3.8): Whenever we find a family of fields

that transform under coordinate transformations as Eq. (3.18), we immediately know that together

they encode a geometric, chart-independent object on the manifold that can be used to describe a

physical quantity. To indicate that this object is a covariant vector field, we use subscript indices.
17 Example:

First, let us introduce an even shorter notation for partial derivatives: ® ; = 9;

Following our index convention, the lower index in these expressions is only warranted if the field
transforms as a covariant vector field according to Eq. (3.18). Let us check this:

= = = __Eq(35) ax"* 9d(x) ox
Q;(X) =0;0(x) = o — @ (x) (3.19)
axt  ox 0x
= k=1
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— The gradient of a scalar is a covariant vector field.
18 | What happens if we apply a covector field on a vector field at each point p € M?

¢(p) 1= B(p)A(p) = Y Bi(x)A’ (x) dx' (9;) = lZA’(x)B,- (x) = B(x) (3.20)

i’j i
8;

— ®(x) must be a scalar!
This is a good point to introduce a new (and very convenient) notation:

& Einstein sum convention:

D

D A@Bix) = A()Bi(x) =A4'x)B(x) (.21)
— N—

=1 & Einstein summation

& Contraction

The Einstein sum convention or Einstein summation is a syntactic convention according to which a
sum is automatically implied (but not written) whenever two indices show up twice in an expression
and one is up (contravariant) and one down (covariant). Note that such indices are “dummy
indices” in the sense that you can rename them to whatever you want (as long as you do not use
the same letter for other indices already!). The sum over one co- and one contravariant index is

called a contraction.

With this new notation it is straightforward to check that ® transforms according to Eq. (3.4) by
using the transformations Eq. (3.8) and Eq. (3.18):

=i 1
B(E) = A OB = | k) || 2 By (3.220)
dx dx?
axt 9x! k !
= o AT()B (x) = A" (x)B;(x) = O(x) (3.22b)
dxk 0x!

Chain rule - § ]{

The intermediate expression contains #ree sums over the colored indices (which we don’t write)!

— The contraction of a contra- and a covariant vector field yields a scalar field.

19 | Note on nomenclature:

o If you compare Eq. (3.18) with Eq. (3.5) you find that the components B; of a covector field
transform like the basis vectors 9; of the tangent space. We say the components covary (“vary
together”) with the basis. This is why they are called covariant.

« A comparison of Eq. (3.8) and Eq. (3.14) shows that the components A’ of a vector field
transform like the basis dx’ of the cotangent space - which is the inverse (“opposite”)
transformation as for the basis of the tangent space d;. Thus we say the components A’
contravary (“vary opposite to”) the basis d;. This is why they are called contravariant.

3.4. Higher-rank tensors

You learned in your linear algebra course that two vector spaces  and W can be used to construct a new
vector space V' ® W called the ¥ tensor product. This allows us to generalize the notion of contra- and
covariant vector fields to tensor fields, all of which are geometric, chart-independent objects defined on the
manifold that are needed to describe physical quantities:
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20 An s (absolute) (p, q)-tensor (field) T of rank r = p + ¢

i1ig...dp

i1in...0
T z = o
J1J2---Jq

ireia = (x) or TI ETIJ (x), (3.23)

with ¥ multi-indices I = (i1 ...ip) and J = (j1 ... jq),
transforms like the tensor product of p contravariant and ¢ covariant vector fields:

=T!,
e e =i =i
i ox' ox'r ox"1 ox"a
11...lp =\ __ . . mj..mp
T J1edg (X) - |:8x’"l 8xm1’:| |:85cfl 8)_Cj‘1 :| T ni..ng (X) (3~24)
_.ax! _.axN =Ty ()
TraxM “oxd/

There are r = p + ¢ sums in this transformation rule (Einstein summation!).

o i!Itisimportant that we do not write contra- and covariant indices above each other like so:
Tji (at least not with additional knowledge about the tensor). This will become important
below.

» Henceforth we always encode tensor fields by their chart-dependent components. The actual
tensor field is of course chart-independent and maps each point p € M to an element of the

tensor product
M - @T,MRT/M® QT M . (3.25)
p factors g factors
like so
T(p)=Y T"", . ()3® ®d,ed/l® - &d. (3.26)
1,J

» Note that while tensors (more precisely: tensor components) are indicated by upper and
lower indices (corresponding to their rank), not every object that is conventionally written
with upper and lower indices does encode a tensor. For example, the transformation matrices

83%,,, which describe a basis change on 7,y M, do not encode a tensor field.
21 Examples:
Scalar ®(x) — (0, 0)-tensor
Contravariant vector A*(x) — (1, 0)-tensor
Covariant vector B;(x) — (0, 1)-tensor
Tensor product T j(x) = Al (x)Bj(x) —  (1,1)-tensor (Check this!)
22 | Properties:
o Equality:
i1 i1
A=B & Vi, V., A" ”jlu_jq = B! ”jl___jq (3.27)
o Symmetry:
T (anti-)symmetricink and [ & Tkl = (o) prdeke (3.28)
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Every contra- or covariant rank-2 tensor can be decomposed into a sum of symmetric and
antisymmetric tensors:

1 1
Tij = 5(Tij + Tji) + 5 (Tij = T;i) = Tajp + Tiijy - (3.29)

=:T(ij) =:Tiij1

23 Constructing tensors:

New tensors can be constructed from known tensors as follows (Proofs: © Problemset 4):

o Sum of (p, q)-tensors A and B yields (p, q)-tensor C :

i1.ip L iledp i1.ip
C ey T A ieda + B 1eeda (3.302)

o Product of (p, q)-tensor A and scalar ® yields (p, q)-tensor C:

cl, =04, (3.31)

o Tensor product of (p, q)-tensor A and (r, s)-tensor B yields (p + r,q + s)-tensor C:

o Contractions:

Summing over a pair of contra- and covariant indices yields a tensor of rank (p — 1,4 — 1):

"i]...'...ip R i
A Ji..ejg © A ik jg

(3.33)
The e indicates that the index summed over on the right side is missing in the list.

Proof: © Problemset 4

A special case of a contraction (in combination with a tensor product) is the scalar obtained
from a contra- and a covariant vector field above:

®=C. =A"B;. (3.34)

 Quotient theorem:

1
AB = C tensor for all tensors B = A s tensor (3.35)
[

Here, AB denotes (potentially multiple) contractions between indices of A and B (but not
within 4 and B).

- As an example, rewrite an arbitrary contravariant vector A’ as A’ = §} A/ with Kro-
necker symbol §;. The above theorem then implies that § transforms as a (1, 1)-tensor
(verify this using the definition!). Hence we actually should write 8" instead of 47.
However, because the Kronecker symbol is symmetric in its indices, this simplified
notation is allowed (> later).
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- Special case:
Aik B¥ = C; covector for all vectors B¥ = A 1s (0, 2)-tensor (3.36)

Proof: © Problemset 4

24 Relative tensors:

i | Relative tensor are a generalization of the (absolute) tensors defined above. This generaliza-
tion is useful because most of the rules for computing with tensors discussed so far carry
over to relative tensors.

A & relative tensor of weight w € Z picks up an additional power w of the ¥ Jacobian
determinant under coordinate transformations:

_ ax\¥ 9x! axV
R! (%) = det (%) MLM%RM y(x) withweightw e Z | (337)
and Jacobian determinant
D .
ax\ - ax!
det (a) = Y e Ty (5.38)
og€Sp i=1

Here Sp is the group of permutations o on D elements.

} ~1 _
Since ¥ = ¢(x) is invertible, x = ¢~1(X), it is g—’; = (%) and therefore det (g%) =

det <g—§)_1.
i | Examples:

o (Absolute) tensors = Relative tensors of weight w = 0

o Volume form: Relative tensor of weight w = —1:
0% ox\ 7!
dPx = dPx det = ) = dPx det ( = (3.39)
ox 0x

Remember the rule for integration by substitution with multiple variables!

o & Tensor density £(x) := Relative tensor of weight w = +1 —

S = / dPxE(x) = / dPr (%) (3.40)
———
Absolute tensor

In this example, we assume that &£(x) is a scalar tensor density such that its integral is a
(absolute) scalar quantity.

In 1 relativistic field theories (like electrodynamics), the Lagrangian density £(x) is a
scalar tensor density such that the ¥ action S becomes a scalar.

o Letiy,ip,...,ip € {1,2,..., D} and define the & Levi-Civita symbol as

+1 I even permutation of 1,2,..., D
el =ghi2io .= 1 | [odd permutation of 1,2,..., D (3.41)

0 (at least) two indices equal
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An even (odd) permutation of 1,2, ..., D is constructed by an even (odd) number of
transpositions (= exchanges of only two indices).

o
—

+1
gl = ¢! = det 0x a1’ e/ (3.42)
x ax’

— gl = ghi24ip i5 3 (D, 0)-tensor density

- {1&! = &l is true by definition: ¢ is a symbol defined by Eq. (3.41); this definition
is independent of the coordinate system. In Eq. (3.42) we compare this trivial
transformation with that of a (relative) tensor and conclude that it is equivalent to
the statement that & transforms as a (D, 0)-tensor density with weight w = +1.
This knowledge is helpful in tensor calculus to construct covariant expressions that
contain Levi-Civita symbols (= below).

- To show this, note that the Levi-Civita symbol can be used to compute determi-
nants:

95 1 =D
det( ) = 1)" O s (3.43)

Bxc’f T 9xn dxJD
ogeSp

Details: © Problemset 4
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dLecture8 [05.12.23]

3.5. The metric tensor

A differentiable manifold M does not automatically allow us to measure the length of curves, the angles
of intersecting lines, or the area/volume of subsets of the manifold; to do so, we need a metric on M
(which is an additional piece of information). While the continuity structure (an atlas) that comes with
M determines its fopology, the metric determines its geometry (= shape). The same manifold M can be
equipped with djfferent metrics; this corresponds to different geometries of the same topology (a potato
and an egg both have the topology of a sphere, nonetheless they are geometrically distinct).

A differentiable manifold together with a (pseudo-)metric is called * (pseudo-)Riemannian manifold. In SPE-
CIAL RELATIVITY and GENERAL RELATIVITY, spacetime is modeled by such (pseudo-)Riemannian
manifolds where the metric is used to represent spatial and temporal distances between events.

25 | Motivation:

On linear spaces V/, it is convenient to define an ¥ inner product (like in quantum mechanics where
you consider Hilbert spaces and use their inner product to compute probabilities and transition
amplitudes).

Recall the definition of a (real) inner product:

(e]@) : VXV — R with... (3.442)
Symmetry: (x|y) = (y|x) (3.44b)
(Bi)linearity: (ax + by|z) = a(x|z) + b(y|z) (3.44¢)
Positive-definiteness: x # 0 = (x|x) >0 (3.44d)

Once you have an inner product, you get a norm, and subsequently a metric for free:

ly) = Ixll=Vixlx) = dx,y)=llx—yl (3.45)
—— —
Inner product Norm Metric

Thus an inner product is a rather versatile structure and nice to have!
Problem: We cannot define a inner product on the manifold directly because M is not a linear space.
However: We can introduce an inner product on each of its tangent spaces 7, M ! —

26 &% Riemannian (Pseudo-)Metric ds? := Symmetric, non-degenerate (0, 2)-tensor field:

ds>: M5 p v (ds): Ty,M xT,M — R) (3.462)

Bilinear & symmetric & non-degenerate

2 1012 2 * *
dsp bilinear = dsp eT,MQT, M

D
= dsp = ) gij(x)dx' @ dx/ = g;j(x)dx’dx’ (3.46b)
i,j=1
with g;; = g;; (symmetry) and g = det(g;;) # 0 (non-degeneracy).
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o The tensor product is non-commutative: dx* ® dx’ # dx’/ ® dx’. However, you can always
decompose a tensor product as

i L ' j iy, Lo j j i
dx' @ dx’ = E(dx ® dx’ +dx’ ® dx') + E(dx ® dx’/ —dx’ ® dx') (3.47)
=:dx’vdx/ =:dx! Adx/
with the symmetrized tensor product dx’ v dx/ and the anti-symmetrized tensor product
dx? A dx/ (1 wedge product).
Since g;; is assumed to be symmetric, only the symmetric component survives:
8ij (x)dx’ ® dx/ = 8ij (x)dx’ v dx’/ = gij (x)dx’dx’ (3.48)
This means that when writing dx’dx/ in the above formula, you can be sloppy and either
mean dx’ ® dx/ or, equivalently, dx’ v dx/. You will find both conventions in the literature.
Iwill use dx’dx/ = dx’ v dx/ so that dx'dx/ = dx/dx".

o It would be more appropriate to write g = g;;dx'dx’/ for the metric (0, 2)-tensor; it is
conventional, however, to reserve g for the determinant det(g;;) so that we are stuck with
ds? for the metric. Note that the d in ds? does ot refer to an 1 exterior derivative, it is purely
symbolical.

o To define a proper ¥ snner product on T, M , we should demand  positive-definiteness instead
of non-degeneracy. This, however, is often (for example in RELATIVITY) too restrictive; as
it turns out, non-degeneracy is all we need for an isomorphism between 7, M and 7,7 M
(“pulling indices up and down”, - below). This is why negative eigenvalues of g;; are fine for
many purposes, and motivates the concept of a > signature:

27 Signature:
Since g;;(x) = gji(x) and det(gi; (x)) # 0
— g;j(x) has r positive and s negative real eigenvalues for all p € M
Since det(g;; (x)) # 0, these numbers must be the same forall p € M.
— (r,s): % Signature of the metric ds?
This classification does not depend on the coordinate basis (* Sylvester’s law of inertia).
e (r>0,5s=0)
— ds?: Riemannian metric — (M, ds?): & Riemannian manifold
Le., g;; has only positive eigenvalues for all p € M and is therefore ¥ positive-definite. This
produces a true, positive-definite inner product on 7, M .
e (r>0,5s>0)
— ds?: pseudo-Riemannian metric — (M, ds?): & pseudo-Riemannian manifold
Le., g;j has both positive and negative eigenvalues and is therefore V indefinite.
-(r>0,s=1or(r=1,5s>0):
— ds?: Lorentzian metric — (M, ds?): # Lorentzian manifold
In RELATIVITY we are only interested in metric tensors with one positive and three
negative eigenvalues (equivalently: three positive and one negative eigenvalue). Math-
ematically speaking, spacetime is then a four-dimensional Lorentzian manifold and a
special case of a pseudo-Riemannian manifold.
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28 = Example: (Details: © Problemset 4)

i < D = 2 Euclidean space E, = (R?,ds%.)

The Euclidean metric in Cartesian coordinates x! = x and x? = y reads:

01

——
Signature
(2,0

ds% =dx?+dy? = gij (x) dx'dx’/ with (gij) = (1 0) . (3.49)

This is consistent with the notion of dx and dy as infinitesimal shifts in coordinates and ds?
as the infinitesimal distance (squared) that corresponds to this shift:

A =R*%
ds Jy*
dx*
= Y 4
x‘;x

ii | We can now transition to a new chart, namely polar coordinates X! = r and x> = 6. The
induced basis change on the cotangent space is given by the total differential of the coordinate
functions Eq. (3.14):

1 yx=rcos(f) Eq@14) dx =cos()dr—rsin(f)do

y = rsin(6) = dy = sin(8) dr + r cos(9) d6 (3.50)

%

iii | We find the components of the metric tensor field in the new basis {dx! = dr, dx? = d@}:

ds? = dr? 4 r2dh? = g;; () dx'dx/  with (i) = ((1) roz) . (35))
N’
Signature
(270)

This expression is again compatible with infinitesimal shifts in the (new) coordinates r and 6:

o The Euclidean plane E; is therefore an example for a Riemannian manifold with metric
signature (2, 0); its distinctive feature is that it is flaz.
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29

30

 Note that here we compute t/e same infinitesimal length in different coordinates (with
the same result)! We did not change the metric, only the coordinates and thereby the
coordinate basis in which we express the metric tensor. This is flaz Euclidean space in
1 curvilinear coordinates. By contrast, later in GENERAL RELATIVITY we will study
curved (non-flat, non-Euclidean) metric tensors, i.e., we will modify the geometry of
space(time) itself.

Since the metric ds? is a (0, 2)-tensor field:

gij (F)dx'dx/ = ds? = gij (x)dx'dx’ (3.52)
Eq. (3.14) >
ax! 9x™m
gij(x) = 9% 95T =7 &im(X) (3.53)

The metric (components) transforms as any other (0, 2) tensor. Nothing special!

Side note:

Eq. (3.53)
Let g := det(g;;) and g := det(g;;) ——

V)g| = |det (g—;)’ Vgl (3.54)

|g| is a pseudo scalar tensor density of weight w = +1. The “pseudo” indicates that the
absolute value of the Jacobian determinant shows up, cf. Eq. (3.37).

Eq. (3:39) .
< g <0 —"= dPx /—gisascalar (> later)!

Length of curves on M:

One immediate benefit of having a Riemannian manifold is that we can now compute the length of
curves y(t) on M (parametrized by ¢ € [a, b] and given in some chart):

d d
Lyl = / ds = / \/g,,< i (’) V’“) di 659

_ [ 17Ol o dr (3.56)

i! If ds? is a true pseudo metric (i.e., g;; has at least one negative eigenvalue), one must make sure
that the chosen curve y does not produce negative values under the square root. In RELATIVITY
these will be 1 time-like curves.

Example:

Let y be the circle with radius R in the Euclidean plane E5. A possible parametrization in Cartesian
coordinates (with origin in the center of the circle) is yx, (r) = (x;, y;) = (Rcos(t), Rsin(z))
with 0 < ¢ < 27 so that one finds for the circumference:

2w
L=/y /dx2 + dy =/0 VX2 4 y2dt = 27R (3.57)
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31

The same length can of course be calculated with the parametrization y,4(¢) = (r4,6;) = (R, 1)
and 0 <t < 27 in polar coordinates:

2w
L= / Vdr? +r2do? = / P2 +r202dt = 2nR (3.58)
Y 0

Details: © Problemset 4

Besides computing lengths of curves (and other geometric quantities, - /ater), there is another
benefit of having a metric tensor:

Pulling indices down:

(3.59)

— T is atensor of type (p — 1,q + 1)

e In Eq. (3.59) we indicate “empty” slots for indices by O to emphasize that in each index
“column” an index can either be #p (contravariant) or down (covariant). It is conventional to
omit the [J-markers. Note that this explains why you never should write two indices directly
above each other (except for special cases, > below).

Furthermore, since g is fixed, it makes sense to label 7" again by 7' (note that the difference
between the original tensor and the new one is manifest in the different index patterns!):

=iy ...O0...ip,0...0 i olip
To i 0, T i J1-Jq (3.60)
Example:
ALK = g AT (3.61)

» This convention matches perfectly with the computation of an inner product (which is
determined by the metric tensor g) of two contravariant vectors:

(A, B) def giinBj def Al B; (3.62)
——
Scalar

32 Pulling indices up:

We would like to have a (2, 0)-tensor g%/ with the property

ST/ =Tk = oM, S gigyT7 (3.63)
g" allows us to revert the pulling-down of indices defined by the metric g;;. Note that g%/ is a
different tensor than g;;, we could call it g/ ; however, it is conventional to denote it with the same
label due to the following close relationship with g:

;!
gklgij = 5]I-€ (3.64)

This is an implicit equation for g!
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— g' is the inverse matrix of g;;
(Which always exists because ds? is non-degenerate: det(g;;) # 0.)

— In general:

jO . jkmit...ipO...0...0
0. 0h...0...5, =8 T O k.. j (3:65)

— T is atensor of type (p + 1,¢ — 1)

o Again we relabel 7 to T and omit the [J-markers:

iy iy 0. j...O i j
Th- - ; ~ T L . 3.66
O...0/...0...jg Ji--o g (3.66)
« Example:
AVRL = glm gijk (3.67)

o With these new definitions, we can now raise and lower contractions:
A'B; = A8/ B; = Algyg" B; = A'gy B¥ = 4, B* = 4; B (3.68)
o What happens if you pull the indices of the Kronecker symbol up or down?
§7 = g/k§i, =g and §; = gikSkj = gij (3.69)
i! 8V = g/ and §;; = g;; denote the metric and its inverse!

— We never use the notation §*/ and §;; to prevent confusion!

 Note that in general
gkTi =TV £ 17 = gikT, 1 (3.70)

This means that the “column” in which the index is located is /mportant, and notations like
T} are ill defined (if you pull k up by g/¥, do you get 7% or T/1?). However, if the tensor is
symmetric, T" = T7', this does not matter and you can get away with the sloppy notation 77 .
This explains why writing 8} for the Kronecker symbol is fine: g/ = g/ k 8: is symmetric.

33 | Mathematical side note:

“Pulling indices up and down” is mathematically the application of an ¥ isomorphism between T, M
and T M:
P

g(e.0): TyM > A > g(A,0) e T M (3.71)

This has nothing to do with differential geometry or manifolds in particular; it is a general feature
of non-degenerate bilinear forms on vector spaces. In differential geometry, this canonical iso-
morphism between the tangent bundle 7M and the cotangent bundle 7* M is know as  musical
isomorphism.

For example, you are using the same kind of isomorphism all the time in quantum mechanics,
namely whenever you “dagger” a ket | V) to obtain a bra (\V|:

(O H 5 |W) s (U] = W) e H* with (W]|®) = (U|d)y forall |®) e K. (3.72)
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Note how the bra bra (V| associated to the ker | W) is defined via the inner product (e|e) 5 (and
therefore metric) of the Hilbert space (1 Riesz representation theorem))

This leads to a nice dictionary between concepts in tensor calculus (and therefore RELATIVITY)
and the bra-ket formalism of quantum mechanics:

Relativity (fixed p € M) | Quantum mechanics
Inner product space M H
Basis {0;} {i)}
Vector A= AY; |W) = W;li)
Dual space M H*
Dual basis {dx?} Wily
dx’(9;) = 8t (i1} = 8
Covector B = B;dx’ (W] = W (i
Inner product | g(A4;,A4z) = gijA"lAé (W|D)
Tensor A=A470; ® 0, V) ® |®) = |V)|D)
B = B;;dx! ® dx/ (V] ® (@] = (¥[(P]
Operator T=T0 ®dx/ |®) ® (V] = |P) (Y|
Trace T Tr[| @) (W]
Scalar | BA = B;A' = g;;B' A/ (V]|®) = (VD)
Pulling indices down A = gij A7 (W] =)t
Pulling indices up Al = gl A; (W) = (wf

3.6. Differentiation of tensor fields

34 | Remember: d; ® is covariant vector if ® is scalar. However:

< Contravariant vector A’:
- 9A! _ ax™ 9 87)?14, _ 92xt 9x™ Al
* 7 9xk T gxk axm | ox! axdx! dxk
# 0 (in general) ®

ax™ 9xt A’
axk 9x! axm

(1, 1)-tensor ©

(3.73)

Here we used the transformation of A’ [Eq. (3.8)] and 9 [Eq. (3.5)] and the product rule.
— In general: 34,1 is not a tensor!
X
35 | How to define a derivative of tensor fields that again transforms as a tensor?

To solve this problem, we first need a new field:

— & Christoffel symbols (of the second kind):

. 1.
T = 58™ (&mi,t + &mik — Skim) (3.74)

o The Christoffel symbols are symmetric in the lower two indices: Fik ;= ri Ik

* ;! Despite the index notation, the Christoffel symbols are #ot tensors:

Lo, 0% ax" oxP ax" 9x” 9%k

o OX OX OX pm 0¥ OXT 07X 75
KL= 5um oxk ozl "7 ok oxl ax"ox” (375)

No tensor!
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This is why they are called “symbols” and not “tensors”!
 There are also Christoffel symbols of the first kind:

1

Cigy = gijrjkz =3 (8iky + gilk — 8k1.i) (3.76)

o Mathematically, the Christoffel symbols are the coefficients (in some basis) of the ™ Lepi-
Civita connection which is determined by the metric tensor g/ (> later).

36 | < Contravariant vector A’ and contract it with T/, Iz

_. - dx! Ox™ aIx? ax™  92xt [ox? -
Al = ———— 17, | =4 |- — A 3.77)
ax™m gxk 7| ax! dxk dxnoxP | 9x!
——— S———
AP AP
(1, 1)-tensor © Problematic term in Eq. (3.73)
Idea: Add Eq. (3.73) and Eq. (3.77) to cancel the problematic term:
— - ax™ 9kt
i i D _ l l D
N R T [A R ] (3.78)
(1, 1)-tensor ©©®
37 | This motivates the definition of the £ Covariant derivative:
Scalar: D=, (3.79a)
Contravariant vector: A’; k= Al,k + T, Al (3.79b)
Covariant vector: B, =B — Fli « Bi (3.79¢)
o With this definition, Ai,k isa (1, 1)-tensor and B, isa (0, 2)-tensor!
» With this definition, the product rule is valid for the covariant derivative:
(A'Bi)g = (A'Bi)x = A", B, + A'B, , (3.80)

 The construction of higher-rank tensors by tensoring contra- and covariant vectors Eq. (3.32)
and the definitions of the covariant derivative above Eq. (3.79) can be used to construct
covariant derivatives of arbitrary tensor fields. For example:

i i i m m i
Thy =Ty, +1,, T —T7,T,, (3.81)
o With this generalization, we can apply the covariant derivative multiple times. For example:

Ay = (Ai;k)., (3:82)

 The covariant derivative is not commutative in general:
i i
A gy — Ay #0 (3.83)
— Riemann curvature tensor — GENERAL RELATIVITY (- later)

(This is not the case for the “normal” derivative: A*, , = A" ;)
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38 Conclusion:

If you can formulate an equation that describes a physical theory in terms of tensors, it can always
be brought into the form

!, (x) = 0. (3.84)

(This equation is meant to hold for all values of indices / and J and all coordinate values x.)
Here is an example:

The (inhomogeneous) Maxwell equations on an arbitrary (potentially curved) spacetime read:
4r
FE + TJM =0 (3.85)
=:TH(x)

with current density J# and field strength tensor F*¥ = gt g " (Ay., — Apx)-

How does Eq. (3.84) look like in any other coordinate system X = ¢(x)?

Easy:
. axl axN - -
TIJ ()C) = ax—MaxT TMN (X) = 0 = TIJ (X) = 0 (3.86)
=0
This means:

Tensor equations are automatically form-invariant under arbitrary coordinate

transformations; we say they exhibit % (manifest) general covariance.

The “manifest” means that checking general covariance is just a matter of checking whether the
equation “looks right” i.e., whether it is built from tensors following the rules discussed in this
chapter. If a property of an equation is manifest, you don’t have to do calculations to verify it!

In the next chapter, we take a step back and specialize the allowed coordinate transformations to
the Lorentz transformations of SPECIAL RELATIVITY. We can then use the form-invariance of
equations built from “Lorentz tensors” to construct Lorentz covariant equations from scratch -
which was our original goal!
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[ ] (] [ ]
4, Formulation on Minkowski Space
In this section we briefly reformulate what we already learned about SPECIAL RELATIVITY in terms of
tensor calculus. We use this notation in subsequent chapters to make classical and quantum mechanics
relativistic, and reformulate electrodynamics in a form where its Lorentz covariance is manifest. It also
allows a smooth transition into GENERAL RELATIVITY.
The formulation of SPECIAL RELATIVITY on a unified, four-dimensional spacetime manifold goes back
to Hermann Minkowski, Albert Einstein’s former professors of mathematics at ETH. Minkowski writes
in the notes of his lecture “Raum und Zeit” delivered 1908 in Cologne [53]:
Die Anschawungen tiber Raum und Zeit, die ich Ihnen entwickeln mochte, sind auf experimentell-
physikalischem Boden erwachsen. Darin liegt ihre Stdrke. Ihre Tendenz ist eine radikale. Von
Stund’ an sollen Raum fiir sich und Zeit fiir sich vollig zu Schatten herabsinken und nur noch eine
Art Union der beiden soll Selbstindigkeit bewahren.
Einstein, a physicist all through, didn’t appreciate this mathematical reformulation of his theory at first.
According to Sommerfeld, he (Einstein) commented:
Seit die Mathematiker iiber die Relativitdtstheorie hergefallen sind, verstehe ich sie selbst nicht
mehr.
Einstein later changed his views and acknowledged that without Minkowski’s introduction of spacetime as
a four-dimensional manifold, the development of GENERAL RELATIVITY would have been impossible.
For a historical account on the role of Minkowski, and his relationship (or absence thereof) to Einstein,
see Ref. [54].
4.1. Minkowski space
1 Manifold:
M = (Spacetime of events / coincidence classes &) ~ R* (4.1)
It is a well founded, but nonetheless empirical assumption that the spacetime manifold of events
has the zopology of R*. Note that at this point we do not impose restrictions on the geometry of
spacetime, e.g., whether it is flat or curved; this follows below when we settle on a metric.
2 | Charts:
In SPECIAL RELATIVITY, we restrict the coordinate systems to the ones that correspond to
inertial observers / inertial coordinate systems:
(6,K) <« Inertial (coordinate) systems K € J (4.2)
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The coordinates are the ones obtained by an 1 inertial observer:

K: §3E — K(E):=[Elg =x (4.3)

with x* = (x% x1,x2. x3)T = (et,x,y.2)T = (ct. 5T (4.4)

i! Henceforth, Greek indices p, v, ... run over 0, 1,2,3 where © = 0 denotes the time
component and 1 = 1,2, 3 denote the spatial components. Roman indices 7, j, ... run only

over the spatial components 1,2, 3.

i! We multiply the time 7 with the speed of light to measure times and distances in the same
units.

Since we assumed that our inertial systems cover all of spacetime, the domains on which the
coordinate functions are defined are the complete manifold.

The notation above is very suggestive: You can think of our inertial systems, namely the
calibrated latticework of clocks and rods, as physical manifestations of the coordinate map of
the corresponding chart. That is, an inertial system is a measurement device, or function,
which assigns to every event £ € & the coordinate tuple x = K(E) = (ct,X)g € E.

3 | Transition maps:

.
1

We worked hard in Section 1.4 to derive and select the correct coordinate transformations
between different inertial systems. The most general ones have the form of ...

Inhomogenous Lorentz transformations _
. ] ) X=¢(x)=Ax+a (4.5)
Poincaré transformations

with a € R* arbitrary and A € R*** a ™ Lorentz transformation.

For the special case ¢ = 0 € R* we found:

Homogeneous Lorentz transformations: x = ¢(x) = Ax (4.6)

Since these transformations are affine, we find immediately:

Sl w
dx AR and ox

dxv v axv = (A_I)Mv =AM 4.7)

Recall that the derivative of a linear (affine) map is simply the matrix which defines the map.

i! We use the tensor-inspired notation A", for the matrix elements of A to allow for well-
defined contractions with the metric (= later). In A", the upper index  denotes the rows,
the lower index v the columns of the matrix. The notation A, for the components of the
inverse transformation matrix A ! is purely conventional at this point; it will turn out to be
consistent with pulling indices up and down with the Minkowski metric (= below).

This allows us to rewrite the coordinate transformation Eq. (4.5) in tensor notation:

Xt = A" xV 4+ a* (4.8)
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i! The matrix-vector product Ax is now given by the Einstein summation (index contraction)
highlighted blue. We will stick to this notation whenever possible. Since we are now in the
world of tensor calculus, it is strongly discouraged to think of and write rank-2 tensors as
“matrices” and contractions as matrix-vector products Ax (even though A does not represent
the components of a tensor). It is less error-prone (and simpler) to perform computations
using the index notation introduced in Chapter 3.

ii | Writing down the most general homogeneous Lorentz transformation is very complicated
(and unnecessary). Here we provide the two special Lorentz transformations (boosts) dis-
cussed earlier in the new matrix notation, and an example for a spatial rotation about the
Z-axis:

. L vx
« Lorentz boost in x-direction K —> K (B, = v, /c):

y —Bxy 00
— 00
Eq.(177)— A%, =[AnJ, =R 1 00 49
0 0 0 1
nv
« Lorentz boost in d-direction K — K (v=|vland 7 :=y —1):
Eq. 1.75) = A¥, = [Az]*, =
y —Bxy —Byy —B=y
—Bxy 1+ )71)x2/v2 )7l)xvy/v2 ?vaz/vz (4.10)
—Byy J7vxvy/v2 1+ )7”y2/v2 )7”yvz/v2 .
—By  Puxv /v ?vaz/vz 1+ jv.2/v? v
. . R-(6).0 - )
« Spatial rotation K ———— K by 6 in xy-plane:
1 0 0 0
0 cosf® —sinf O
- -
AT =R (O)], = 0 sinf cosf O (4.12)
0 0 0 1

4 | Metric tensor:

i | We elevate the spacetime manifold M to a pseudo-Riemannian (and Lorentzian) manifold by
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introducing the following pseudo-Riemannian metric tensor (given in inertial coordinates):

: = (cdr)? — (dx)?
% Minkowski metric ds* = (dx%)? — (dx")? — (dx?)? — (dx>)? (4.12a)
= 77!“’ dx“dxv
+1 0 0 O
. . 0o -1 0 O
— MV _

with metric components 7, = "’ = 0 0 -1 o0 (4.12b)

0O 0 o0 -1

jay
Signature (1,3) = (+,—,—,—)

e The components 7,,, of this metric tensor in Eq. (4.12b) are the same for all inertial
coordinate systems [ Eq. (4.21) below).

 Recall that n™*” is the matrix inverse of 7,,,.

— We call the spacetime manifold equipped with this metric ...

& Minkowski space: R'3 = (& ~ R* ds?) (4.13)

o We will always use 7,,, to denote the components of the Minkowski metric (in an inertial
coordinate chart) to distinguish it from a generic metric g;;.

« Note that, informally speaking, ds? this is the infinitesimal form of the « invariant
spacetime interval Eq. (1.83) we introduced earlier (= below).

o Minkowski space is therefore an example of a « Lorentzian manifold. By fixing a metric,
we fixed the geometry of spacetime. As we will see in our discussion of GENERAL
RELATIVITY, the distinctive feature of Minkowski space is that it is flaz (it has no
curvature). It will turn out that, in reality, this assumption is only valid to some degree:
The tenet of GENERAL RELATIVITY is that the deviations of spacetime from flat
Minkowski space are what we expercience as gravity!

With the metric we can measure “lengths” of trajectories on spacetime:

< Time-like trajectory y : s +> x*(s) for s € [s4, 5] in R13 —

3.55 sb\/ dx#(s) dxV(s)
Lly] = \/»;a nuvT ds ds (4.142)
a1 [ s V2 22 — (43 (]2
= [P ()] = [x1()]* — [¥2(5)]* — [x3(s)]* ds (4.14b)
Choose parametrization s := x°/c = ¢ (4.14¢)
Ip
:/ /627*2(” dr (4.14d)
la ~———
> 0 (time-like)
=3 cAt[y] (4.14¢)

Thus the “length” L[y] of time-like curves in R':3 is the « proper time At[y] along the curve
defined in Eq. (2.25) (multiplied by c); this explains why the Minkowski metric ds? is the
right choice for SPECIAL RELATIVITY.
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4.2. Four vectors and tensors

5| Tensors are defined as in Chapter 3, with the restriction to D = 4 and that only homogeneous
Lorentz transformations Eq. (4.7) are considered as transition maps. To emphasize this, we
introduce a new nomenclature:

Tensor calculus | SPECIAL RELATIVITY

Contravariant vector A’ | Contraviarant % Lorentz vector / 4-vector A"
Covariant vector B; | Covariant # Lorentz vector / 4-vector B,
(Mixed) tensor 7' | (Mixed) # Lorentz tensor / 4-tensor T,

Scalar ® | & Lorentz scalar ®

Then a generic (p, ¢) tensor transforms under the coordinate transformation Eq. (4.7) as:

T2, g (B = [AM A AT A Ty (X) (4.15)

6 | With the Minkowski metric, we can reformulate our classification for 4-vectors [recall Eq. (1.85)]:

X* time-like >0
X* light-like & X2=XMrX,=(X%?—(X)2] =0 (4.16)
X" space-like <0

A light-like 4-vector is also called s null.

i1 We use this classification scheme also for generic Lorentz vectors that are not coordinate differ-
ences between a pair of events (- below). Since the pseudo-norm X X,, = X? is a Lorentz scalar,
this classification is independent of the inertial system.

7 Coordinate functions:

It is a particular feature of /inear coordinate transformations (here: homogeneous Lorentz transfor-
mations) that the coordinate functions themselves transform as contravariant vector fields:

< Coordinate field X#(x) := x* —

_ Y M

XUE) = A, XV (x) = gx XY (x) (4.17)
xl)

V 7}_/ ~

We make the identification X#(x) = x* and don’t write X*(x) henceforth.

Consequently, we can construct £ covariant coordinates (a covariant vector field) via the metric by
pulling the index down:

.le = T]vav = (xO?_xla _xz’ _x3) = (Ct’_)_é) (418)

i! To pull the index of a contravariant vector down, you multiply the spatial components by —1.
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8 < Coordinates of two events x/, and x5 — Ax* := xp — x/, Lorentz vector

Ax? = AxFAxy, (4.192)
o w AXH Ax” (4.19b)
= (Ax?)? — (Ax1)? — (Ax?)? — (Ax?)? (4.190)
e A 52 (4.19d)

Remember [Eq. (1.84)]: As? = A§? for arbitrary Lorentz transformations
9
Nuw AXPAXY = npr AXPAXT = [nMApMA”v] Ax*AxY (4.20)

As? A52

o
Since this is true for all events Ax* —

ApMA”V Nor = Nuv (4.21)

Concluding Eq. (4.21) from Eq. (4.20) is non-trivial because we consider “norms” 7,,, Ax*Ax"”
and not “inner products” 7, Ax*Ay". However, for symmetric, real matrices A and B, it is
true that if X7 AX = X7 BX for all real vectors X, then A = B. This is so because A — B is a
symmetric matrix that can be diagonalized by an orthogonal matrix and X7 (4 — B)X = 0. The last
condition implies that all eigenvalues of A — B are zero and therefore A — B = 0. Alternatively
you can use the Vv polarization identity to show that the invariance of the Minkowski (pseudo) norm
implies the invariance of the Minkowski (pseudo) inner product.

We say:

Lorentz transformations are ¥ isometries of Minkowski space. (4.22)

With det(n,.,) # 0, a corollary of Eq. (4.21) is:

det (A*)) = £1 (4.23)

If you want to write Eq. (4.21) in the old matrix notation, make the identifcations A", = A, and
Nuv = N. Here, subscripts of bold symbols denote the entries of matrices as usual (first index:
row; second index: column). Equations that contain matrices (bold symbols) do 7ot comply with
the syntax of tensor calculus (which is why you should avoid them!).

Eq. (4.21) then reads in matrix notation:
AlppnAsy = & ATpA =7 (4.24)

Here we defined the transposed matrix as AT := A, i.e., the matrix where rows and columns
are swapped. Eq. (4.24) immediately implies det(A ) det(y) det(A) = det(y); using det(y) # 0O
and det(AT) = det(A), we find det(A) = +1.
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9 Eq. (4.21) —
A'OM [A”vr]pﬂnw] = 8:1 (4.25)

We can therefore conclude that:

A7 = npan’ AT, = (A7, (4.26)

Note that this is consistent with our definition in Eq. (4.7).

In the literature (e.g. Schrdder [1]) the concept of a “transposed” transformation is introduced.
We refer to it as “pseudo-adjoint” transformation instead and label it by *. It is defined analogous to
proper adjoints on proper inner product spaces:
v p . def ! * def 3 JL v.op
NuvAY, XPy* = (y, Ax) = (A"y, x) = nu(A™)", x"y°. (4.27)
N—— ———
=:Aup =:(A%)vp

This yields as reasonable definition for the pseudo-adjoint:

m Eq. (:4.26)

A = Aoy = (AH*, = A, (ATHH,. (4.28)

One can then define a corresponding matrix A * such that (A*)", = A* anduse (A™")", = A7}
to rewrite the above equation as

A*=A"1. (4.29)

Recall that the pseudo-adjoint is implicitly defined via the inner product. At no point did we claim
that the pseudo-adjoint matrix is given by the transposed matrix AT (which is defined by swapping
rows and columns)! To find a relation to the latter, we can rewrite Eq. (4.26) in matrix language:

A;;} = "pnAnv”;(} = (AN)pe = (TIATn)trp . (4.30)
Here we used that ! = # = 3 and that M [, := M, for any matrix M. So finally:
A*=A"1=9ATy. (4.31)

The take home message is that the zranspose of a Lorentz transformation (given by swapping columns
and rows) is not its inverse (there are additional minuses sprinkled in by the metric)! By contrast,
the pseudo-adjoint (defined via the pseudo-inner product) zs identical to the inverse.

Warning: In the literature you will find the notation 7 instead of * (e.g. Schroder [1]). Then one
finds the (correct) relation (A7), = A,* = (A=1)",. The problem is that this notation suggests
that (AT)*, = AT, and therefore A~ £ AT. As shown above, both equations are wrong!

10 | Covariant derivative:

i | Since in inertial coordinate systems the Minkowski metric is given by 7,,,, it follows immedi-
ately for the Christoffel symbols Eq. (3.74):

riy, = Lyim — =0 4.32
ki =51 (mkd + Nmik Nklm) = (4.32)
—— N N —
0 0 0

i! If you would transform into curvilinear (non-inertial) coordinates, the Christoffel symbols
would 7ot vanish - even on flat Minkowski space (© Problemset 5). That simple partial
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derivatives produce Lorentz tensors is therefore a special feature of Minkowski space in
inertial coordinates.

Eq. (3.79)
s
Lorentz Scalar: &, =&, =9, (4.332)
Contravariant Lorentz vector: A", := A¥ = 09,4 (4.33b)
Covariant Lorentz vector:  B,,., := B, , = 0, By, (4.33c)

i | % 4-Gradient:

This allows us to think of the differential operator d,, itself as a covariant Lorentz vector and
motivates the introduction of its contravariant components:

a -
I =g = (Lo, +W)T (4.342)
M =gV, = % = (%B,,—%) (4.34b)
W

Using Eq. (3.5), the transformation laws match that of co- and contravariant Lorentz vectors,

respectively:
= 0 0
811' == W - A/Lv axv - Auvav (4.353.)
= 0 d
Mt =—=AH = A*,9". .35b
T PR (433

i! The covariant 4-gradient (index down) is the partial derivative wrt. the contravariant coor-
dinates (index up) and vice versa.

ii | These transformation properties immediately suggest two Lorentz scalars that can be con-
structed from 4-gradients (4% = (A°, A)):

& 4-divergence:  9A 1= 0, A" = 9" A, = 19,4° + V-A (4.362)
# 4-Laplacian: 0 = 0% := 9,0" = (lat)2 2 (4.36b)

c

The 4-Laplacian O is also known as ¥ d’Alembert operator.
Examples:

o In electrodynamics (- /ater) the gauge potential transforms as a contravariant Lorentz
w—_(l, 1
vector A = (Z¢, A).
The v Lorenz gauge is defined as 9,,4"* = 0; it is Lorentz invariant since the 4-
divergence is a Lorentz scalar: d,, A" (X) = d,A"(x).

Note: The Lorenz gauge is named after © Ludvig Lorenz; by contrast, the Lorentz
transformation is named after ™ Hendrik Lorentz. Thus: The Lorenz gauge (no “t”) is
Lorentz invariant.

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART

Institute or
ii!oret'cal
] Physics

PAGE

108



SR » FORMULATION ON MINKOWSKI SPACE

n

« Invacuum (and in Lorenz gauge), the gauge field of electrodynamics satisfies the wave
equation

02an = [ (L0,)? = V2| 4" = 0. (4.37)

Since 32 is a Lorentz scalar and A* a Lorentz vector, 3 A* transforms as a contraviarant
Lorentz vector and the equation is manifestly Lorentz covariant:
PZAMx) =0 < 92A*4E)=0. (4.38)
o If we have a scalar field @, we can construct a manifestly Lorentz covariant wave
equation:
@ +mH)P(x)=0 < (> +m>)P([F)=0. (4.39)

The parameter m is arbitrary and plays the role of a mass (spectral gap) of the excitations.
This equation is known as ™ Klein-Gordon equation and describes, for example, the
classical equation of motion of the Higgs field (without interactions).

Relative tensors — # Lorentz pseudo tensor:

Since det(A) = %1, the classification of tensors simplifies:

Tensor: TM, (%) = AM AT TR, (x) (4.402)
Pseudo tensor: TM N (X) =det(A) AM rA NP TRP (x) (4.40b)
Here we use again a multi-index notation: M = ju1, ..., i, etc. Recall that det(A) = +£1; pseudo

tensors therefore pick up an additional minus sign under parity or time inversion (- later).

— Relative tensors of 0dd weight w are pseudo tensors under Lorentz transformations.
Example:

The Levi-Civita symbol is a Lorentz pseudo tensor [recall Eq. (3.42)]:

FIT = g = det(A) AP A AP AT et (4.41)

This means that if you contract a Levi-Civita symbol with an actual (0, 4) Lorentz tensor like
Fv Fpr (the tensor product of two electromagnetic field trength tensors), you obtain a pseudo
(Lorentz) scalar:

O(x) 1= "7 Fy Fpp = det(A) eMVP" Fyy Fpp = det(A) O(x) . (4.42)

Since this is a quadratic (pseudo) scalar quantity, you might try to add it to the Lagrangian of
Maxwell theory (6 € R):

£=—1F"Fu, + 0" Fy Fpp . (4.43)

(This Lagrangian is now only invariant under Lorentz transformations with det(A) = +1.)

The new term is called  6-term. One can show that it is a total derivative and therefore does
not affect the classical equations of motion (Maxwell’s equations). However, for non-abelian
generalizations of electrodynamics like ™ quantum chromodynamics (* Yang-Mills theories), it does
affect the theory (1 Strong CP-problem [55]).

Note that we did not use the metric tensor 7,,, to construct the term ¢*"** F,,,, F, (as compared
to F*V F,,, where we need it to pull two indices up); this makes the 6-term an example of a so called
1 topological term (1 topological field theory): the term doesn’t “see” the geometry of spacetime! In
condensed matter physics, the term plays a role in the description of  topological insulators [56].
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12 | In the next chapter we want to construct a relativistic version of classical mechanics (using the

framework of tensors calculus to make the equations Lorentz covariant). As a preparation, we can
already define two 4-vectors with physical interpreation:

4-velocity:
Question: What is a reasonable definition for a relativistic (= Lorentz covariant) velocity?

< Particle trajectory x*(A) parametrized by A:

det
weyy — (€t de? _ ['ax
xt(A) = ()?(A) = o= & (4.44)
dA
First try: A = ¢ (coordinate time) —
dx*  (c\ (¢
Fra (d) = (am) (449

with coordinate velocity ¥(¢).

Problem:
% is not a contravariant Lorentz vector because dr # df is not a Lorentz scalar. That is:
S S (4.46)
dr e )
— Eq. (4.45) is useless to construct Lorentz covariant equations!
Idea: The « Proper time T is a Lorentz scalar [Eq. (2.24)]: dr = d7
— SetA =1:
dx H C,Q C
& d-velocity: ut = ——=| | = - 4.4
& 4-velocity:  ut : i o Yol (4.47)
dt
Here we used 51% = Yu() [recall Eq. (2.23)].
By construction, the 4-velocity is a contravariant Lorentz vector: i = A", u".
< Pseudo-norm:
u? = nuoutu’ = W®?* — @)? = c?>0 (4.48)

— Time-like 4-vector
In Minkowski space, u* is the tangent at x* of the world line x* (7).
4-acceleration:

Following the same line of arguments above, the 4-acceleration is then defined as the deriva-
tive of the 4-velocity wrt. the proper time:

& 4-acceleration:
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Herea := % is the coordinate acceleration or 3-acceleration.
It is now easy to show that b> = b, b < 0 is a space-ltke Lorentz vector and that
d(whuy)  d(c?)
= =0 = utb,=0, 4.50
dr dr 'u (450)
i.e., the 4-acceleration is always “orthogonal” (in terms of the Minkowski metric) to the
4-velocity.
4.3. The complete Lorentz group
Details: © Problemset 5
1| The Lorentz group is a matrix group defined as the homogenous isometry group of the Minkowski
metric 7:
&% Lorentz group: O(1,3) := {A e R4 ATnA = 11} (4.51)
with identification A*, = A, and 7,0 = -
 Asshown previously [Eq. (4.21) and Eq. (4.24)], the matrix constraint in Eq. (4.51) is equiva-
lent to the property
w,v def R def P AT 7Y
N XYY = 1(x, y) = n(Ax, Ay) = [npn AP AT, ] XMy (4.52)
for all 4-vectors x, y. Namely, the transformations A do not change the inner product (and
thereby length) of arbitrary vectors; maps with this feature are called 1 isometries.
» If you replace the Minkowski metric n,,, = diag (41, —1, —1, —1) by the Euclidean metric
8, = diag (+1, 41, +1, +1), the homogeneous isometry constraint becomes A TA=1
since § = 1 is the identity matrix; this constraint characterizes orthogonal matrices. The
homogenous isometry group of a D = 4 Euclidean space is therefore O(4): the group of
four-dimensional rotations and reflections.
2 Continuous Lorentz transformations:
i | Mathematical fact: O(1, 3) is a ™ Lie group (= a group that is also a differentiable manifold)
To be precise: O(1, 3) is a 6-dimensional (- below) * non-compact ¥ non-abelian disconnected
(= below) real matrix Lie group with components that are not 1 simply connected.
— In a neighborhood of 1, elements of Lie groups can be written as exponentials:
A =exp(X) with X €0(1,3) (4.53)
where o(1, 3) denotes the ™ Lie algebra (= vector space with a Lie bracket):
o(1,3) = { X e R4 ‘ exp(1X) € O(1,3) forall 7 € R } L s
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ii | The isometry constraint on the group elements can be translated into the Lie algebra:
Eq. (4.53)
ATgA =9n ——= XT =Xy (4.55)
— Most general form of X:
0 a b c
a 0 —d e .
X = th ... eR 4.56
de—lea”f (4.56)
c e f 0
Proof: © Problemset 5
9
o dim(o(1,3)) =6
This is why O(1, 3) is a 6-dimensional Lie group.
e Tr[X] =0 = detA = det[exp(X)] = exp(Tr[X]) =1
— All Lorentz transformations connected to the identity have positive determinant.
Recall that we found previously det A = =1, so we should not expect to find a//
elements of O(1, 3) in this way.
i Generators = Basis of o(1, 3) [57]:
We use the shorthand + (=) for +1 (—1).
0000 0000 0000
(o000 _|ooo0+ o0 -0
Ly=looo0o | »=loooo| Lz=lo+oo0 (4.572)
00+ 0 0-00 0000
0+00 00+0 000 +
_[+000 0000 _[0000
Ex=1loooof[ B={+000] Xz=]0000 (4.570)
0000 0000 +000
Interpretation:
10 0 0
exp(pL,) = 010 0 =A — Rotation around x-axis  (4.58a)
XPWE) =100 cosp —sing | = HR@ und x-axis - (4.58a
00 sing cosg
coshf —sinh# 00
exp(—0K,) = | SI(I)th co;h@ (l) 8 = Ay, —> Boostin x-direction (4.58b)
0 0 01
with « rapidity tanh 6 = °* € (-1, 1) (© Problemset 3) and rotation angle ¢ € [0, 27).
—
Ly, Ly, L;: Generators of rotations (4.59a)
K.. Ky, K, : Generators of boosts (4.59b)
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An arbitrary element of O(1, 3) that is connected to the identity can then be written as

A=exp(X;oili—>;0;K;) with ie{x,yz}. (4.60)

In particular [57]:
Pure boost: A = Aé = exp (—5 . 12) (4.61a)
Pure rotation: AR, =exp (@ . Z) (4.61b)

6= 5(6) := dtanh™! (2) ) (4.62)

i! The rapidity vector g is not given by the rapidities tanh ™" % of the components v; of .
iv | Lie algebra:
The Lie bracket (= commutator) on the Lie a/gebra determines the multiplicative structure of
the Lie group via the ¥ Baker-Campbell-Hausdor{f formula:
1
exp(X) -exp(Y) = exp (X +Y + 3 [X,Y]+.. ) . (4.63)

— The Lie algebra o(1, 3) determines the (local) group structure of O(1, 3):

Eq. (4.57) 5
[Li , Lj] = 8ijkLk (4.64a)
[L,', Kj] = eiijk (4.64b)
[K,‘, Kj] = —SijkLk (4.64¢c)

Some comments and implications:

! Because of Eq. (4.64) [and Eq. (4.63)], you cannot simply combine exponentials:

exp(—é-f)-exp(@-i)#exp(gﬁ-i—é-f), (4.652)
exp (—é . IZ') - exp (—5’ . I?) # exp (—(é +6)- 12) , (4.65b)
exp (gB . i) - exp (gB’ . Z) # exp (((ﬁ +¢)- Z) ) (4.65¢)

This is why the concatenation of Lorentz transformations is quite complicated in general.

o Eq. (4.64a) is written in physics often as [L;, L;] = i he'/k L with angular momentum
operators L. In this notation, they generate rotations U = exp(%cf)lj). The additional
phase i in the commutation relation matches a corresponding factor in an alternative
definition of the generators L. (Recall that the L; in Eq. (4.57) are anti-Hermitian
whereas in physics we often prefer Hermitian operators.)

* Eq. (4.64a) shows that 0(3) := span{L,, Ly, L.} forms a subalgebra of o(1, 3). On
the group level, this means that the group of spatial rotations SO(3) is a subgroup of
the full Lorentz group O(1, 3).
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v

By contrast, Eq. (4.64c) shows that the boost generators {K, Ky, K} do not form a
subalgebra, but mix with rotations. This implies that there is no “subgroup of pure

boosts” in O(1, 3). In particular:
AsAi = Nigi ARai,b)

with the « Thomas-Wigner rotation R(u, v) € SO(3) [recall Section 2.3].

(4.66)

 There is a more compact, 4-vector-inspired notation for the 6 generators in Eq. (4.57),

namely [58]:
"
(J“B) = (J“B) = sk pPrse (4.67)
v v
Inspection shows that (@ Problemset 5)
L,=J"»=-J%2, K. =J%"=_J!°, (4.682)
Ly=J=-Jb, K, =J%=-J%, (4.68b)
L,=J%2=—-J*, K, =J%=-J%, (4.68¢)

The three equations of the Lie algebra Eq. (4.64) can then be condensed into a single

equation [58]:

[JHY, JPO] = nP JHO — phtP JVO _ VO JIP | pHO Jvo

(4.69)

This form is useful to construct other representations of the Lorentz group, especially

in relativistic quantum mechanics (= Dirac equation).

It is a useful mathematical fact that every continuous Lorentz transformation of the
Eq. (4.60) can be decomposed uniquely as follows:

with parameters:

. Ao wi Ao, AioAg)
V; _ Ao ’ & _ Ao and Rij :Aij_ i04A0j
C A()() c A()o 1+A00

A and A g are defined in Eq. (4.61a) [or Eq. (1.75)] and Eq. (4.61b) [or Eq. (1.40)].

form

A =A;AR =ARAy (4.702)

(4.70b)

The proof can be found in Ref. [59]. This decomposition, sometimes referred to as s rotation-
boost decomposition, relates to the mathematical concept of  Cartan decompositions [60].

If we use the multiplicative law A g A3 A g—1 = A g; [recall Eq. (1.43a)] and choose R
that R = (v, 0,0)7, we can also find a decomposition of the form

A =AR Ay Ag,

with appropriately chosen rotations Ry, R, € SO(3) and a boost in x-direction by vy.

such

@4.71)

3 Discrete generators:
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It is easy to verify that the following two matrices also belong to O(1, 3):

% Parity: 0O -1 0 0
. .. = Pt =P, =
P: (t,%)— (t,—X) v e 0 -1 0
o o -1/
-1 0 0 O \
& Time reversal:
£k ! 3 N T,u,v = T,uv _ 0O +1 0 0
T: (X)) (—t,X) 0 0 +1 O
0 0 o0 +1)
In contrast to the continuous group elements above: det(P) = det(T) = —1

— P and T are not generated by boosts or rotations!

4 | Structure of the Lorentz group:

4.72)

(4.73)

Combining the discrete transformation P and T with the continuous transformations A = exp(X)

yields the complete group O(1, 3). Let us study its structure:

i det(A) = %1 —
o(1,3)= Ly U L_
S—— S~——
det(A)=—+1 det(A)=—1

(4.74)

All Lorentz transformations that are continuously connected to 1 are in L. One can

transition between L and L_ by applying either 7" or P.

i | Inaddition, we find:

3
2
L=m00 2 (A%) = 3" (Ak) = (A%)?
k=1

(4.75)

Thus A°, # 0and sign(A°;) = =1 can be used to characterize Lorentz transformations.

Note that sign(P%) = +1 but sign(7% ) = —1 and sign((PT)°,) = —1.

iii | Neither det(A) = +1 nor sign(A°;) = +1 can be changed by continuously deforming a

Lorentz transformation.

— Four disconnected components of O(1, 3):

Ll : det(A) = +1 and sign(AOO) =41 (1€ Ll)
LT : det(A)=—1 and sign(A%)=+1 (PeLl)
LY : det(A)=+1 and sign(A%)=—1 (PTeL')
LY det(A) = —1 and sign(AOO) =—-1 (Telb)
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Graphically:

proper orthochronous
Lorentz Group orthochronous LG
(restricted LG) LT =0%(1,3)
Ll =s0%(1,3)
Ly

orthochorous LG

proper LG
L4+ =S0(1,3)

no time inversion (sign A% = +1)
L i time inversion (sign A%, = —1)
+ detA = +1 (proper)
— det A = —1 (improper)

iv Subgroups: We can define the following four subgroups of O(1, 3):

& Proper LG: SO(1,3) =Ly ==Ll ULt (4.77)

& Orthochronous LG: O (1,3) = Lt = Ll uLt (4.77b)

# Proper orthochronous LG:  SO™ (1, 3) = Ll (4.77¢)
% Orthchorous LG: Lo = LT,_ ULY (4.77d)

Note that subgroups must contain the identity 1!
In Greek, “chrénos” (ypovog) means “time” and “chéros” (yc)pog) means “space”.

According to modern physics, Einstein’s principle of relativity [SR| reads formally:

All fundamental theories of nature must be invariant

under the proper orthochronous Lorentz group SO™ (1, 3).

 This does not prevent specific theories to have additional symmetries. ™ Quantum
electrodynamics (QED), for example, is invariant under the fu// Lorentz group O(1, 3).
This means that phenomena of electromagnetism - and its interaction with charged
particles - are also symmetric under time inversion 7" and parity P.

So far, observations suggest that, besides the electromagnetic force, also gravity and
the strong force are symmetric under P and 7. (Interestingly, there is no formal reason
why the strong force should not break P and T; the fact that it does noz violate these
symmetries is called the 1 strong C P problem).

» However, today we know that there are terms in the standard model of particle physics
that violate both P and T'. For example, the weak interaction (responsible for radioactive
B-decay) violates parity P strongly (™ Wu experiment). This means that you can use
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experiments that depend on the weak interaction to tell the difference between our
world and its mirror image (or a right-handed and a left-handed coordinate system).
There are also weak terms (concerning quarks) that violate time reversal 7 (* CP
violation). As a consequence, the standard model as a whole is only invariant under the
proper orthochronous Lorentz group SO™ (1, 3).

This explains why we can only require symmetry under SO* (1, 3), and not the full
Lorentz group O(1, 3): We already know by experiments that the latter is not a funda-
mental symmetry of nature!

o The fact that there are processes that violate parity symmetry P contradicts our everyday
experience: If you run an experiment using equipment found in a school physics lab
and put a mirror next to it, there is no way to decide whether you are watching the
experiment directly or via the mirror (i.e., parity inverted). The reason is that the
physics we experience in everyday life is goverened by electrodynamics and gravity,
both of which are invariant under P. To unveil that nature secretly violates P, you
must perform an experiment that involves the weak interaction (that is: a particle
physics experiment). This is what Chien-Shiung Wu did in her now famous ™ W
experiment. At the time, the result (that P is not a symmetry of nature) was unexpected
and groundbreaking.

So if you are surprised that P is not a symmetry of nature, you are not alone. Here is
how Wolfang Pauli reacted to the result of the Wu experiment [61]:

At one point, Temmer found himself in the presence of eminence grise Wolfgang
Pauli, who asked for the latest news from the United States. Temmer told him that
parity was no longer to be assumed conserved. “That’s total nonsense” averred the
great man. Temmer: “I assure you the experiment says it is not.” Pauli (curtly):
“Then it must be repeated!”

4.4.  Why is spacetime 3+1 dimensional?

Given the discussions in Chapter 3 and Chapter 4 it is clear that the mathematical formalism allows for
straightforward generalizations to higher- (or lower-) dimensional spacetime manifolds with arbitrary
signatures; these suggest spacetimes with various numbers of spatial and temporal dimensions.

It is therefore natural to ask:
Is there anything special about our 3 + 1-dimensional world?

What follows is not a proof that spacetime must be 3 + 1 dimensional. Our goal is to argue that all
spacetimes, except ours with #Aree space and one time dimension, face severe problems that, most likely,
would not allow for complex life.

The following discussion is based on Tegmark [39, 62].

1 < Pseudo-Riemannian manifold of signature (¢, s) with metric

gij = diag(+1,....+1,—1,....—1) (4.78)

t s

« This is the generalization of Minkowski space to a (flat) spacetime manifold with, naively,
time and s space-dimensions.

» Most of our discussions in this chapter can be transferred to this more general setting.
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< 1 Klein-Gordon equation for signature (7, 5):

t 82(13 s+t 82(13

(32+m2)q>22_~_ Z 2

5 +m?® =0 (4.79)
imp ox! i=rt1 0X'

t x Time (?) s x Space (?)

o Recall that 0% = g/ 9;0; where g"/ is given by (the inverse of) Eq. (4.78).
 The Klein-Gordon equation (KGE) is the simplest covariant field equation. It describes the

time evolution of a scalar field of mass m. It is ubiquitous in relativistic physics (especially in
™ quantum field theory).

For example, the components of the electromagnetic field in vacuum are described by the
KGE form = 0and (¢, s) = (1, 3) (which is then referred to as ¥ wave equation):

PE; = 507E; —V?E; =0, (4.802)
9B; = 50;B; —V*>B; =0. (4.80D)

This motivates in Eq. (4.79) the (tentative) identification of the coordinates with positive
sign as “time coordinates”, and the ones with a negative sign as “space coordinates”:

The difference between time and space is just a sign!

In the following, we use the KGE as a proxy for more general relativistic field equations.

— Possible combinations of # time and s space dimensions:

v ||
'-34'-& ||
§
K
N ‘Z 1
vy 2
é
v g
4]

0 A 2 3 4 LY
# Crafml Diweucroul

3 Partial differential equations (PDE):

The general KGE in Eq. (4.79) is an example of a partial differential equation (PDE). The theory of
PDEs has been thoroughly developed by mathematicians and a lot is known about their solvability.
The problem of solving a PDE, given some boundary/initial conditions, is known as * Cauchy
problem:

o & Well-posed (Cauchy) problem: Given some boundary/initial data, there exists a unigue

solution to the PDE that satisfies these conditions, and this solution is robust. Here “robust”

means that if you slightly modify the boundary/initial conditions, the solution also changes
only slightly. Put differently: The solutions are not ckaotic and you can use them to extrapolate
reliably from boundary/initial states with finite errorbars. This is a crucial feature to use
PDE:s for predictions in the real world.

& Ill-posed (Cauchy) problem: Given some boundary/initial data, there either exist multiple

solutions to the PDE that satisfy these conditions, or the unique solution is not robust. In
both cases, the PDE cannot be used for predictions in the real world.
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i <(t=0,s)or(t,s =0) — Eq. (4.79) = » Elliptic PDE
This corresponds to spacetimes that are « Riemannian manifolds.

Elliptic PDEs have well-posed boundary problems:

Bovudery deda

VE

N

XZ

2
X4

— One cannot use Eq. (4.79) to make predictions ®
”»

— No coordinate in Eq. (4.79) qualifies as a “time coordinate”.

—

uu P‘rdir_hdle

# Tiwme Diweeresiores

0 Uw prediclalle

0 1 2 3 4 1y
# gr-{"“{ Dn‘wtu(‘:‘ou(‘

i <<(t>=2,s>=2)or(t>2,s5>2)— Eq. (4.79) = * Ultrahyperbolic PDE
This corresponds to spacetimes that are generic « pseudo-Riemannian manifolds.
A similar but more involved chain of arguments holds also for ultrahyperbolic PDEs [39, 62].

— One cannot use Eq. (4.79) to make predictions ®

9
13
(s
§ =
5
2 | =
¥
IN
N ||
0 uuF\eJidallt

o 4 2 3 4 ¥
# gran‘t’u/ 'D.‘wtucfour

i (t=1,s>1or(t>1,5s =1)— Eq. (4.79) = * Hyperbolic PDE
This corresponds to spacetimes that are « Lorentzian manifolds.

Hyperbolic PDEs have well-posed zn:tial value problems:
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o
— We can use Eq. (4.79) to make predictions ©
4 | Stability:
» < Newtonian Gravity in s > 4 spatial dimensions:
— ¥ Two-body problem has no stable orbits (only scattering and attraction solutions).
— No stable planetary systems possible @
e < Hydrogen atom in s > 4 spatial dimensions:
— Schrodinger equation has no bound states.
— No stable atoms possible ®

The opposite cases with # > 4 and s = 1 are equivalent if one interprets space as time and vice
versa (which is necessary to use hyperbolic PDEs to predict “the future”, > below).

—

Uusiusle

U‘A 'Fwelidnl le

# Tiwme Dimersions

1 Uusd ceble

0 Uw le(dasle

0o 4 2 3 4 ¥
4 Spatial Dineucious
5 Simplicity:
GENERAL RELATIVITY in s < 2 spatial dimensions — No gravity (= later)!
— No stars, no planets, no orbits ®

The opposite cases with 7 < 2 and s = 1 are equivalent if one interprets space as time and vice
versa (which is necessary to use hyperbolic PDEs to predict “the future”, - below).

—
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6 | Tachyon world:

i! In the literature both Lorentzian signatures (1, 3) and (3, 1) are used to formulate SPECIAL REL-
ATIVITY. Formulations in signature (3, 1) have nothing to do with the Tachyon sector discussed
here since they compensate for the global minus in their equations. For example, the KGE in
signature (—, +, +, +, ) reads (—9% +m?)® = 0 which is equivalent to the KGE (3> + m?)® = 0
in signature (4, —, —, —). The point here is that we do #or add this additional minus:
(1,3) > (3,1) ) ) s
Eq. (479) ———— (0" +m )® =0 & (0°—m )P =0 (4.81)
Time <> Space
In more detail:
Fort = 3and s = 1 the KGE reads
BRE BREO 92 GRS
1\2 + 212 + 332 - 4\2
IxH”  a(x?)”  I(x)T  I(x?)
——

3 x Time (?) 1 x Space (?)

+m?® =0. (4.82)

But because this an hyperbolic PDE, the Cauchy problem is only well-posed with initial conditions
on a hypersurface spanned by {x!, x2, x3}. Put differently: The PDE allows predictions only in
x*-direction! Thus we should interpret x* as time and {x!, x2, x3} as space:

9?® GRLO) RE 1 09?0

* i %5 3 tme=0 (4.83)
1)2 212 342 2 >
IxH?  a(x2)?r ax3)F 2 ot
3 x Space (!) 1 x Time (!)
with ¢t = x*. But this KGE is equivalent to

1

(—23? N VeI mz) ®=(P-—m>)d=0. (484)
c

Thus the “transposed” situation (t > 1,s = 1) is equivalent to the situation (r = 1,5 > 1) with
negative square-masses in the equations. Fields with negative square-mass (equivalently: imaginary
mass) are called  tachyonic fields or * tachyons for short.

— All massive particles are 1 tachyons [63]

i! Tachyonic fields are not science fiction; they do exist (= below) but, contrary to the features
assigned to them in science fiction, do #oz allow for faster-than-light propagation of information.

— Tachyon fields herald vacuum instabilities [64] ®

The spontaneous symmetry breaking of the * Higgs mechanism is an example of this phenomenon:
The Higgs field has a negative square-mass which is responsible for the “Mexican hat potential.”
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The consequence is spontaneous symmetry breaking, which, in this context, can be reframed as
“tachyon condensation.” On the new, symmetry broken vacuum, excitations are no# tachyons with
negative square-mass but Higgs bosons with positive square-mass.

—
1Y &
3
NEE
3 3 = v 4
3 <5 Fe, Uupredicable
TR R
o
2 |3 |
E N )
2 e
§ 1 Q’A{Q e Uusd ceble
0 uupvedidque

0 A 2 3 4 1y
# C?mf-ul Diwmeuccoul

7 | These arguments support the following Aypothesis:

Only a spacetime with 1 time and 3 space dimensions supports observers like us.

What does this line of arguments explain? Well, if you would randomly construct universes by dicing
the number of space and time dimensions, only the ones with one time and three space dimensions
have the chance to develop complex observers like us (who then wonder why their universe is
3 4 1-dimensional). Thus the arguments above are important for “ensemble interpretations” of
reality, like certain ™ multiverse hypotheses or superstring theories (which can predict a plethora of
different spacetime dimensions) [39, 65].
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dLecture10 [19.12.23]

5. Relativistic Mechanics

Equipped with the machinery of Chapter 4, we can finally construct a relativistic (Lorentz covariant)
version of classical mechanics.

5.1. The relativistic point particle

1| < Point particle in R!:3 with trajectory x*(7):

N 0 Xﬂ(?’)

L uMe)

X

2 | Itisreasonable to define the relativistic momentum of a massive particle as follows:

dxk 0

& 4-momentum :  p"* (= mut =m—— = (m)/v(;‘) = (pﬁ) (5.1)
dz myyv V4

with (rest) mass m and & 3-momentum p. (5.2)

e ! The mass m is the good old (inertial) mass we would assign to the particle in classical
mechanics; it is a measure of the particles resistance to changes in its state of motion. You
can determine it by applying a (weak) force to the particle az rest and observing its initial
acceleration: m = F/a. This mass is an intrinsic property of the particle and does not
depend on velocity. It is sometimes called resz mass, but we will simply call it ass.

« Since the 4-velocity u* is a Lorentz vector, the 4-momentum is also a Lorentz vector; i.e.,
under a Lorentz transformation A the 4-momentum transforms as p* = A", p".

o We will later rederive the expression for the 4-momentum as the conserved ¥ Noether charge
for translations in spacetime.

3 | The spatial part of the momentum (the 3-momentum p) is related to the velocity as follows:

-
- . mv k1 N
P = myyv = mv (5.3)
v2 ——
1— 2 Newtonian
mechanics
RELATIVITY
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e ;!In SPECIAL RELATIVITY the kinetic momentum is no longer proportional to the velocity.
In particular for v — ¢ the momentum of a massive particle diverges.

e The non-relativistic limit (v K ¢ = B K 1 = y, & 1) is consistent with the Newtonian
(non-relativistic!) relation p = m?u for the kinetic momentum; the 3-momentum p is
therefore the proper relativistic version of the momentum in Newtonian mechanics.

 This explains why the above definition for the 4-momentum is reasonable - and why the
mass /1 must be identified with the mass used in Newtonian mechanics.

o At this point it is unclear how to interpret the time-component p® = my;c of p* (> below).

Eq. (4.
4 Eq (5.1)

y def 4.48
p? = pPlpu = (p°? - p? = m2u? "= m2c? >0 (5.4)

— The mass m is a Lorentz scalar: m?* = p?/c?

¢ The 4-momentum is a time-like 4-vector for massive particles.

 This means that the mass m can be measured/computed in every inertial system by mea-
suring/computing the 4-momentum p* and its pseudo-norm p2. The numerical result will
always be the same, namely m?c2.

5 Equation of motion (EOM):

i We want an EOM that ...
e ...is manifestly Lorentz covariant — Lorentz tensor equation

« ...reduces to Newton’s equation of motion

. dp - -
ma = &P _ F with p=mv (5.5)
dr
in the non-relativistic limit (correspondence principle).
ii | Suggestion:
dp* K° )
mb* = — =Kt = - with & 4-force KM . (5.6)
dr K

Because this is a equation built from Lorentz vectors, it is form-invariant (Lorentz covariant)
by construction:

mb* = K" & mA” b = A" K"* & mb’ =K' (5.7)
This is of course only so if the 4-force transforms like a Lorentz vector.
iii | <t Instantaneous rest frame (IRF) Kj:

a | Atany time there is an inertial coordinate system Ky in which the (potentially accel-
erated) particle is at rest at this very moment (if the particle is accelerating, it is also
accelerating in this frame).

pato (0N (0N
i 2 ()2 (0) =k -
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This follows from the correspondence principle: In the IRF the particle is in the non-
relativistic, Newtonian limit. Thus its coordiante acceleration @y must be given by
Newton’s equation of motion: mdy = Fp.

with

o & Proper acceleration dg

The proper acceleration is the coordinate accelaration (3-acceleration) that you can
measure (e.g., with an accelerometer) in the IRF K of the particle.

It follows immediately that the norm of the proper acceleration is a Lorentz scalar:

b* = bHb,, = —|ao|* <0 (5.9)

o & Proper force F
The proper force is the Newtonian force (3-force) you can measure (e.g., with a

spring balance) in the IRF K|, of the particle.

b | We demand that this equation is Lorentz covariant, i.e., that by and Kj' transform as
contravariant Lorentz 4-vectors. We can then use a Lorentz boost to transform back
into the lab frame in which the particle has coordinate velocity v:

Eq. (1.75)
_
1.75 V fob
. 7 v
4-acceleration: b = (A_p)", by = ¢ (5.10a)
aop + y’l’)z (ap - v)v
5 V o
17 v
4-force: K" = (A_p", Ky = | . ¢ (5.10b)

We will use these expressions later!
iv | On the other hand, we can return to Eq. (5.6) and study the 4-force K** in more detail:
a | <t Spatial components of Eq. (5.6):
. dp K - R .
= —=K & —=—=F & K=pF 5.11
yv(t) dt dt yv Vv ( )
with & 3-force F.

Here i—f denotes the change in momentum measured in coordinate time; it makes sense
identify this quantity with the relativistic analog of the Newtonian force.

b | What is the time component K° of the 4-force? <t

02 mbku, 2 Kruy = KOu® — K i Y (K% —K-3)  (12)

K- _—
KO =20 gy (5.13)
C C
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c

In summary, the 4-force in terms of the 3-force and the 3-velocity reads

4-force: KM = (5.14)

Example:

In our discussion of electrodynamics (- Chapter 6) we will find the following expression
for the 3-force acting on a charged particle in an electromagnetic field:

ﬁ:qﬁ—}-gﬁxé (5.15)
c

This is the conventional ¥ Lorentz force.

This example demonstrates that the 3-force F is indeed the proper relativistic analog of
Newtonian forces. Note, however, that it is only the component of the 4-force and thus
does not transform nicely under Lorentz transformations.

. Eq. (5.14)
Spatial part of Eq. (5.6) ————
- dp d R )
F = d_lt) =3 (myy¥) = (Change in 3-momentum) (5.16)

The Newtonian equation F = ‘é—f therefore remains valid in SPECIAL RELATIVITY
for the 3-force F and the 3-momentum p. By contrast, j = my, v is different from the
Newtonian relation p = mv between momentum and velocity.

Eq. (5.14
Temporal part of Eq. (5.6) 3G9

dp®  dp® F.% N d(cp®)
&~ ar T dr

=F.% (5.17)

— F - 5: Work performed by F on particle
— E = ¢p?: Total energy of particle

Note that we can actually only conclude E = ¢p® + const from the differential equation
above. We will later see that the constant must be set to zero because p? is the conserved
Noether charge that derives from time translations.

The time component of the EOM Eg. (5.6) can therefore be written as:

s _dE_d

) = — = — 2 = 1
= =3 (myyc?) = (Change in energy) (5.18)

We will discuss the expression for the energy in Section 5.2 below.

6 | Above we expressed the 4-force in terms of the proper force Fo and in terms of the 3-force F.
Equating the two expressions yields a relation between the 3-force Fp measured in the IRF and the

3-force F measured in the lab frame:
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Eq. (5.10b) & Eq. (5.14) —

3-force F as function of proper force Foand velocity v:

-

. F, 1\ Fo-v.
F=—+4+1|1—— 5V (5.19)
Yv Yv v

Recall that the proper force is the Newtonian force you would measure with a spring scale in the
IRS of the particle. In contrast to Newtonian mechanics, the force F measured from a frame in
relative motion is different from Fo. In the non-relativistic limit y, ~ 1 we find F ~ F, and this
distinction becomes irrelevant (as assumed by Newtonian mechanics).

A similar comparison yields a relation between the 3-acceleration in the IRF (the proper acceleration)
and the 3-acceleration in the rest frame:

Eq. (5.102) & Eq. (4.49) —

3-acceleration d as function of proper acceleration do and velocity v:

Ge [* (1 1)17-&()#] (5.20)
a=—|agp—|1—— v )
yZ Yo/ v?

This is again in sharp contrast to Newtonian mechanics where, as a consequence of absolute time,
acceleration does not depend on the velocity of the reference frame. In the non-relativistic limit for

Yo ~ 1 wefind @ ~ dy, consistent with Newtonian mechanics.

Sanity check:
If we integrate the equation of motion Eq. (5.16), we find:
T -
/ Fdr = 22T const. (5.21)
2
0 1=
c2

For a finite 3-force |1*: | < oo and finite time 7' < 00, and non-zero mass m % 0, it follows for the
final velocity vr:

m|vr| -

——<00 = |ur|<c. (5.22)

1- %

c2

Thus the dynamics does not allow massive particles to reach the speed of light, no matter how strong
the force or how long the acceleration! This is in direct contradiction to Newtonian mechanics and
by now experimentally well-confirmed (> below).

5.2. Momentum, Energy, and Mass

9 | To summarize, the 4-momentum of a massive particle can be written as:
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10 | The relativistic energy of a massive particle is then (as a function of 3-velocity):

2
L mc
& Relativisticenergy :  E = cp® = yyme? = —— (5.24)
-
With
5.4 - -
m*c? = p? = (p°)? = (p)? = E?/c* - p? (5.25)

we find the alternative expression as a function of 3-momentum:

& Energy-momentum relation: E = \/ p?>c? + m?c* (5.26)

 This expression is also valid in the massless case m = 0 (> below).

» Eg. (5.25) has actually two solutions: E = ++/p2c? 4+ m?c*. In relativistic mechanics (and
relativistic single-particle quantum mechanics), we can ignore the negative energy solution
and consider only time-like 4-momenta p* that point into the future light-cone. In quantum
field theory, where interacting particles can be destroyed and produced, these negative energy
solutions necessitate the introduction of 1 antiparticles (like the positron).

 For fixed mass m, Eq. (5.25) determines a 3-dimensional hypersurface in the 4-dimensional
“energy-momentum space” spanned by 4-momenta p* = (p°, p) € R*. Form # 0
this hypersurface is a hyperboloid of two sheets E = 4/ p2c2 + m2¢* (form = Oitisa
cone: £ = =c|p|). This hypersurface is called s mass shell. If a 4-momentum satisfies
the energy-momentum relation (with either sign) we say that it is “on-shell”; if not, it is
“off-shell”. In quantum field theory, real particles that can be measured are always on-shell;
intermediate “virtual particles” in scattering processes can be off-shell.

11| Rest energy:

i <t Rest frame K of the particle where p = 0:

0 E
Py = (%0) = ( %/c) (5.27)

For these considerations, it does not matter whether the particle is accelerating and this is
an IRF, or whether the particle is in inertial motion and has a fixed rest frame. Formally,
since p? = m?c? > 0is a time-like Lorentz vector, there is always an inertial frame in which
p® #0and p = 0.

—

2

% Restenergy :  Eo = mc (5.28)

This is Einstein’s famous principle of equivalence of (inertial) mass and (rest) energy.

o ;! The total energy E is the time-component of a 4-vector: p* = (E /c, p)T ; thus it makes
sense to refer to the rest energy Eo — which is the component of this 4-vector in the rest
frame Ky, i.e., the particular frame where p = 0.
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« ;! By contrast, the mass is a Lorentz scalar, namely p?> = m?c?; hence it is the same in
all inertial systems and it does not make sense to refer to the rest mass my as this term
suggests that there is a “non-rest mass” (which there isn’t).

« Einstein first derived the mass-energy equivalence in his Annus Mirabilis paper Ist die
Tréigheit eines Korpers von seinem Energieinhalt abhdngig? [10]. In the paper, the equation
is not given verbatim but encoded in the following statement:

Gibt ein Korper die Energie L in Form von Strahlung ab, so verkleinert sich seine
Masseum L] V2.

Einstein concludes:

Die Masse eines Korpers ist ein Mafs fiir dessen Energieinhalt; [...]. Es ist nicht
ausgeschlossen, daf3 bei Korpern, deren Energie in hohem Mafe verdnderlich ist
(2.B. bei den Radiumsalzen), eine Priifung der Theorie gelingen wird.

Einstein further elaborates on the relativistic energy relation and its implications in [66].
He provides self-contained step-by-step derivation in Ref. [67]. Additional insight was
provided over the years with alterantive derivations by various authors [68-70].

The derivation by Feigenbaum and Mermin in [70] is particularly insightful as it follows
Einsteins original derivation in [10] closely without invoking electrodynamics. They
also demonstrate that the heart of relativistic mechanics is actually Eq. (5.24) (where
mc? appears as a coefficient), and not Eq. (5.28) (which is conventional).

© Note 5.1: Some comments on E( = mc?

Eq. (5.28) is arguably the most famous equation in physics. The popularization of
scientific concepts is often accompanied by simplifications and distortions. This is also
the case for Eg = mc?2:

e Eo = mc? is often written as E = mc?2. This is either wrong or misleading
(depending on the interpretation of the symbols); in any case, it is not consistent
with modern conventions in RELATIVITY (> below).

e Eo = mc? is by no means Einstein’s most important equation. This is why it is
not refered to as “Einstein equation;” this honor goes to

R,u,v - %Rguv + Aguv = KTIW (5.29)
which are also known as the > Einstein field equations; these form the basis of
GENERAL RELATIVITY and are empirically of much greater value than Eq. (5.28).
Luckily, the Einstein field equations look daunting and are not nearly as accessible
as Eg = mc?; hence they weren’t seized (and multilated) by pop culture like
Eo = mc? was.

o How statements are phrased determines our conceptualization of the world. The
often heard phrase

“Eo = mc? says that mass can be converted into energy”

makes me think of “mass” as a sort of coal that can be lighted and then produces
energy (maybe in form of light and heat or an atomic explosion). I am quite
convinced that there are many who got “conceptually derailed” by statements
like this, and hence think of Einstein’s revelation as modern-day equivalent of an
early human realizing, perhaps by witnessing a lightning strike, that wood can be
kindled to produce heat. This is completely off the mark.
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Eo = mc? says that rest energy and inertial mass are equivalent; not that they can
be “converted” into each other. It means that the Lorentz symmetry of spacetime
necessitates that our concepts of “energy” (as a quantity that can make things
change in time) and “inertial mass” (as a quantity that measures how hard it is
to make the state of motion of an object change in time) are like two sides of the
same coin. Note that we did not arrive at the equation by studying the microscopic
dynamics and interactions of matter (like we do in quantum mechanics, and
especially quantum field theory); the equivalence of rest energy and mass is a
consequence of the symmetries of spacetime alone. One can take Eg = mc? thus
as a hint at the unanswered questions “What is time?” and “What is inertia?”
because energy is the generator of time translations (think of the time-evolution
operator in quantum mechanics) and mass quantifies the phenomenon of inertia.

To drive the point home, here a few examples:

- An atom in an excited electronic state is heavier than the same atom in the
ground state.

- A battery gets lighter when being discharged.
- A chunk of metal is heavier when it is hot.

- If you put an atomic bomb into an opaque, completely sealed “super box”
that survives the explosion, the weight of the box does not change when the
bomb goes off. This makes it clear that mass is not “converted” into energy.

- If the box is made out of “super glass” that lets only photons escape, the box
gets lighter by Ephot/c? if the photons carry away the energy Ephor.

« For these reasons, Eg = mc? is not a magical blueprint to build atomic bombs.

The equation is only relevant in this context because it provides a nice “shortcut”
to compute the energies that the fission (splitting) of isotopes can yield (or cost,
depending on the isotopes). Because one could measure the rest masses of isotopes
rather easily (using mass spectrometry [71]) - but had almost no clue how to
describe the inner workings (and therefore binding energies) of said nulei - the
equation allowed for a straightforward survey of the periodic table to identify
suitable isotopes that would yield energy under fission. Eq = mc? is not the
reason why atomic weapons work, and these weapons are not so powerful “because
they convert mass into energy.” This is pure nonsense. If you discharge the
battery of your phone, it a/so looses mass — because rest energy and mass are
equivalent: Eq = mc?! And yes, this mass difference is much smaller than the
mass difference accompanied by a nuclear explosion. But this is not the reason;
the reason is that the strength of electromagnetic interactions — which govern
chemical processes (like discharging your battery) - is dwarfed by the strength of
the strong interaction (and its residual, the nuclear force) - which governs nuclear
reactions.

In a nutshell:

When studying reaction processes (of any sort), the change of restmass predicted
by Eo = mc? is an 1 epiphenomenon. The mass change is not causal; it cannot be,
because it is a consequence of the symmetries of spacetime, and not of the inner
workings of matter.

ii | Unfortunately, the notation and interpretation of SPECIAL RELATIVITY has changed since
its inception. In former times it was conventional to introduce the concept of a

& Relativistic mass: m, == yym = ——— (5.30)
2
-2

c
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which depends on velocity. With this definition, the relativistic relation between 3-velocity

and 3-momentum reads p = m, v and parallels the Newtonian relation p = mu. The

relativistic energy relation then reads £ = m,c?.

The concept of a velocity-dependent, relativistic mass is avoided in most modern treatments
of RELATIVITY (and in this script). While this is mostly a matter of concepts and semantics,
there are good reasons why the concept of a velocity dependent mass is less useful than it
might seem (- below).

Here a few comments on various notations that you might encounter:

Eo = mc?  Correct ©

E-=7mc>  Only makes sense if m = m, (which we don’t use).

E oc”  Why mg? There is only m!

E =moc?  Energy is frame-dependent. Do you mean Eq? Otherwise: Wrong!

For more details and explanations see Refs. [72-74].

i =~ — Take home message:

There is only one mass: the rest mass m (which we call mass).

Thus mass does not depend on velocity.

This convention is used by almost all modern textbooks on RELATIVITY.

Unfortunately the old conventions (using relativistic, velocity-dependent masses) are still
used by school books and popular science books.

iv | Aside: Why introducing velocity depended masses leads nowhere.

If you are still inclined to think in terms of a velocity-dependent, relativistic mass m,., here is
a compelling argument why this is a useless and artificial concept that needs to die:

The 3-component of the relativistic equation of motion Eq. (5.16) reads

F= i (my,¥) = myya + m}/SMD' (5.31)
dr voc2
with two extreme cases:
ila = F=<myla (5.32a)
ilda = F=mpa (5.32b)

If you insist on introducing a “mass” as the proportionality factor between 3-force and 3-
acceleration to quantify the inertial response of an object at finite velocity, you are not only
forced (©) to make this mass velocity dependent, you also need #wo masses:

“Longitudinal mass”: m := my3 (5.33)
“Transverse mass”: m_J := my, (5.34)

The above result demonstrates that the concept of a mass as a measure for inertia is not very
useful in SPECIAL RELATIVITY. More precisely, the result shows that the quantitites ),
and m | are relational properties between an object and an observer (they depend on the state
of motion of the observer); they are not zntrinisic properties of the object itself. Only the
restmass /1 qualifies as such an intrinisc property. The velocity dependence of 71 and i is
not an intrinisc feature of matter, it is a feature of spacetime.
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This is why in modern textbooks there is only one mass m (the rest mass) which does ot
depend on v, and one has to accept that the Newtonian relation p = m? is no longer valid.
The concepts of “longitudinal mass” and “transverse mass” (and velocity dependent mass,
for that matter) are therefore no longer used in modern literature.
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dLecture11 [09.01.24]

12 | <t Non-relativistic limit:

mc? 2 15 4
EFE=—==—x mc* + —mv +(9(ﬂ) (5.35)
U2 N—— 2
1— 2 Rest N——
energy Newtonian
kinetic
energy

This shows again that the correspondence principle is satisfied: For small velocities compared to c,
the kinetic energy of Newtonian mechanics is (up to a constant shift given by the rest energy) a
good proxy for the true energy of the particle.

13 | The kinetic energy is: Exyn = E — Eg = E —mc?
— The velocity of a relativistic particle as a function of its kinetic energy is:

2 2
2 2)2 - mc B<k1 2FEn
'8 o (c N [Ekin + mc2 mc? (5:36)

Note that in the non-relativistic limit it is Ey, < mc?.

This velocity dependence has been confirmed experimentally to high precision; for example with
accelerated electrons [33] (see Refs. [33,34] for more technical details):

e = 28, fm

/("/cla= 1= {mc¥(m,c?s Ek,'!]2

1.0+ o .
{%r® -
el
+ |
/ Enol | Emet | v, | oar,
0.5y 0.5 i 867 752
19 2 -910 .828
. 3 960 922
4.5 9 .987 .974
15 30 1.0 1.0
¥ L T H i T 1 L
8 1 2 3 4 5 & 7 8 9 101 12

— The relativistic energy relation Eq. (5.24) is correct ©©

14 Massless particles:

So far we considered only particles with non-vanishing mass m # 0. The definition of the
momentum Eq. (5.1) and the relativistic energy Eq. (5.24) cannot be directly applied to particles
without mass. However:

i <Eq.(5.26) withm — 0:

E = |plc (linear dispersion) (5.37)
< Eq. (5.4) withm — 0:
p? =0 (light-like) = pHt= (|§|) (5.38)
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i! We take this as the definition of the 4-momentum for massless particles (it is the only
definition that is consistent with p* = mu* in the limit of vanishing mass). Note that there
is no finite 4-velocity u* associated to massless particles.

The fact that p* becomes light-like for massless particles already suggests that they move
with the speed of light. We can verify this:

E = y,mc? R 2 0 N
TP S E= S 225 Jhle (5.39)
p = Yymv v Eq. (5.37)

This limit is only consistent if v — ¢ form — 0:

All particles with vanishing mass move with the speed of light. (5.40)

« Examples: Photons, Gravitons (if they exist)
» Massless particles do not have a rest frame.

You would need a boost with v = ¢ to reach such a frame; but such boosts are not
defined (because the Lorentz factor diverges in this limit).

o ;! The relativistic energy E = y,mc? holds only for massive particles. For massless
particles it does not follow E = 0 but rather £ = |j|c # 0. So photons do have energy
and momentum, but no mass (neither rest- nor any other type of mass). You are also not
allowed to use the “forbidden” equation E = m,c? and declare m, = E/c? = |p|/c
as the “dynamic mass” of the photon because (1) we argued above that this concept is
not as useful as it sounds, and (2) you only renamed momentum, so what’s the point.
And if you are afraid that later - in GENERAL RELATIVITY- our photons will not be
deflected by stars or sucked into black holes because they “have no mass”: I assure you,
they will; they have energy and momentum, that’s enough.

 This demonstrates why the “speed of light” is sort of a misnomer in this context, and
we should have stuck to our v,y (but then all our equations would look different from
the literature). Then it would be conceptually clear that every particle with vanishing
rest mass “runs into” the universal speed limit vp,yx.

5.3. Action principle and conserved quantities

In this section we study a more formal (and more versatile) approach to describe the dynamics of relativistic

systems, namely in terms of the Lagrangian and the action. We do this for the free particle (no force!) and
consider electromagnetic forces in the next Chapter 6.

1 Action of free massive particle:

.
1

< Trajectory y parametrized by
xt = xH(A) with A € [Ag, Ap] and x#(A4) = a*, x*(Ap) = b*

Remember the characteristic property of the trajectory of a free particle (Section 2.4):
The proper time (= Minkowski distance) is maximized along the trajectory!

Ap
— Action: S[y]:= cx/ ds =« VN XHXY dA (5.41)
14 Aa
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sl e dxM
with x* = -

The prefactor « is undetermined so far (- next step).

i! The parameter A has no physical interpretation in this formulation as this action is reparametriza-
tion invariant (- Section 5.4).

i | Correspondence principle — o = —mc

To determine the parameter «, consider the non-relativistic limit of the Lagrangian in coor-
dinate time parametrization A = ¢:

2
= 5 Bk1 oV
L=ayc?-X2=ac 1—2—; e L%ac—z— (5.42)

C
——’
=Lmv2

The non-relativistic limit yields - up to a constant that doesn’t change the equations of
motion - the Lagrangian with Newtonian kinetic energy if we set @« = —mic.

iii | Lagrangian:

L(x*, x") = —me \/nup XXV = —me (/X x* (5.43)

e ;! This Lagrangian is only valid for massive particles.

o The Lagrangian Eq. (5.43) is fully specified as is; there is no need to fix a specific
parametrization. In this form, the Lagrangian [more precisely: the action Eq. (5.41)]
has a gauge symmetry: the parametrization A is arbitrary (> Section 5.4).

 On the contrary, if you fix a parametrization (= fix a gauge), e.g., by identifying A with
the coordinate time A = ¢ = x°/c (“static gauge”) or the proper time A = 7 (“proper
time gauge”), you obtain different (but physically equivalent) Lagrangians which have
no longer a gauge symmetry:

A=t & cA=x" = L,E %) =-me2y1-3¥2/c2, (5.442)

| | ~
A=t & xti, =c* = L.(x* ") = —mc?. (5.44b)

We denote gauge-fixed Lagrangians by L and the gauge-invariant Lagrangian Eq. (5.43)
by L. In the following we often work with the latter and choose specific parametrizations
at the end of our calculations to express results in known quantities.

2 | Euler-Lagrange equations:

5S+0 = d IL oL _, = d —meko _ 0 (5.45)
N droxe  9xo dA /%37 ‘
=0

These are 4 differential equations (o = 0, 1,2, 3)!

— Equations of motion in the “proper time gauge” A = 7 [where X, X" = u? = ¢?]:

w3 _ 4P 546
dr  dr (5:46)

This is Eq. (5.6) for vanishing 4-force ©
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3| < Action in “static gauge” A =t = x%/c:

A=X0 th . 193 5
spy] = st[;c(z)]=f LG %)de =—mc2/ J1- 2 (547
ta ta

i Canonical momenta (v = X):

(5.48)

_c_z

This is the expression for the relativistic 3-momentum Eq. (5.3) we found before, now derived
as the canonical momentum of a Lagrangian.

2
mc 5.26 -
= ch = ¢4/ p? + m?c?

ii | Hamiltonian:

Ht=ﬁ'lj—l:té (5.49)

This is just the relativistic energy Eq. (5.24) we found before, now derived from a Lagrangian.

o < Non-relativistic limit:

=2
=2 DT 2 =2
~ p 5 Kmc p
H, =mc?|1+ > R me? + = (5.50)
m#c ~—— 2m
Rest N——
energy  Newtonian
kinetic
energy

;! Contrary to the action Eq. (5.47), this Hamiltonian also makes sense for massless
particles:

H "=" |ple (5.51)

4 Noether’s (first) theorem:

Details: ® Problemset 6
x* cyclic — Spacetime translations x* + §&* are continuous symmetries of S

These transformations correspond to the inhomogeneous part of Poincaré transformations: x* =
x® + a*. Every relativistic theory must have this symmetry; for field theories one obtains then
four conserved currents: > Energy momentum tensor.

¥ Noether’s theorem — ¥ Conserved Noether charges Q,: (set A = 1 as the coordinate time)

Time translation = Energy E/c
Ou = (5.52)

Space translations = Momentum p

2

. 1 mc
L mexy, ¢ /1-p2
= —— = — = 5 = pM (553)
oxM 2 — 32 __mv
1-B2
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e Because x* are cyclic coordinates, we can obtain the Noether charges directly from the

L .

Lagrangian as 57 ; the additional minus is conventional to connect to our definition of the

4-momentum.
o ;! This shows that our definition of the 4-momentum is consistent, and the identification of

its time-component p° as the total energy was correct: By definition, energy is the Noether
charge that corresponds to translation invariance in time. Similarly, momentum is the charge

for translation invariance in space.

5 Noether charges for homogeneous Lorentz transformations?

Any relativistic theory is also invariant under (proper orthochronous) Lorentz transformations,

x# = A", x"; for these there must exist additional conserved Noether charges:

Infinitesimal Lorentz transformations x* + 8¢, x" are continuous symmetries of S

The infinitesimal transformation is antisymmetric: §&**, = —8e,”*, © Problemset 5.

o
— Conserved Noether charges:

v

& Angular momentum (tensor): LMY = x* p¥ — xV pt

This is an example of an antisymmetric (2, 0) Lorentz tensor.

Proof: ® Problemset 6

(5.54)

i| < Spatial components:
LB =x2p3 —x3p2 =1
L3 =x3pl —x'pP =1, with 3-angular momentum / = X x p.  (5.55)

L2 = x1p2_2pl =y

— 3-angular momentum / is not (part of a) Lorentz vector but of a (2, 0) tensor!

It is not surprising that invariance under spatial rotations SO(3) C O(1, 3) implies angular
momentum conservation.

ii | << Mixed components:
L0 = xlyvmc — ctp1 = cnq
L2 = xzyvmc — ctp2 =cny (5.56)
L3 = x3yvmc - ctp3 =cns3

with & dynamic mass moment
- - E_.
ii=myy (X —1U) = X —1p = const. (5.57)
c

This is the relativistic version of the ¥ center-of-mass theorem.

The center of mass (COM) is now the center of energy (COE). Since 7i (and E) is conserved,
we canset7 = O to find i = E/c?Xo, which is the initial center of energy of the system
(times E/c?).

For many particles this is slightly less trivial: One finds analogously the conserved quantity

- N E; . -
N = Zni = Z (Czlxi - lpi) = const. (5.58)
I 1
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Division by the total (also conserved) energy E = ) ; E; yields

> EiXi 2P -
= =t—— + const = t Vo + const (5.59)

Xcor(t) :=
cor(?) S E 7

with the total 3-momentum P = ), p;. Thus the & center of energy Xcor moves in a straight
line with constant velocity Vcog. Note that the center of energy becomes the Newtonian
center of mass in the non-relativistic limit where E; ~ E; o = m;c?.

6 <t Multiple particles (covariantly coupled by fields):

The above arguments can be directly generalized to many (non-interacting) particles. This im-
mediately yields the sum of the 4-momenta of these particles as conserved quantity. Interactions
between the particles must be covariantly mediated by fields - which also carry 4-momentum
(= Chapter 6):

Conserved Noether charge:

& Total 4-momentum: P" .= Z p;‘ + plffields (5.60)
i

with
. pf“ the 4-momentum of particle 7, and
* P, the total 4-momentum of the fields mediating the interations.

7 < Scattering process:

/L?M

’PMA o3
6 e o
A FPa-A.'f

\\A{L‘ a(‘{'\’.vu!

M M o
T'\u\(\ ‘P'uul ' e

Long before and after the interactions play a role we can approximate the system by non-interacting
particles and set p{:‘iel s =0—

no_ n
Z Pini = Z Pout, (5.61)
i j

— Conservation of energy (u = 0) and momentum (u = 1,2, 3)

e In RELATIVITY, conservation of total energy and total momentum is combined into the
conservation of 4-momentum.

o We will denote the 4-momenta of massive particles (solid lines) with p# and the 4-momenta
of massless particles with ¢** (wiggly lines).
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Examples:

Particle decay: <t Radioactive Nucleus — Nucleus 1 & Nucleus 2

/\ ;1
T\ Var

— Energy-momentum conservation:

p* =pl+py (5.62)
N—— N e’
in out =
"‘:/"\
< Center-of-mass frame where p = p; + p» =0 5
me? = mye? + Evin,1 + mac? + Exin,2 (5.63)
— Decay only possible if
m > my+ my (5.64)

If Exing # 0 or Eyinp # 0, itism # my + ma.
— The rest mass of composite objects is ot additive.

Composite objects also contain binding energy (potential energy) which contributes to the
rest mass of the object.

o
—

(m —my)?c? —m3c?

Eying = (5.65)

2m

In the COM frame, the kinetic energy of the two decay products is constant and depends
only on the masses of the particles. So if you find a non-trivial energy distribution for the
products of a decay process, there must at least three particles be produced (of which you
might not be able to detect all). This is how the neutrino was predicted by Pauli from the
decay of the neutron: n — p + e~ + V.

Particle creation:

Note that a single massless (light-like) particle (like a photon) cannot decay into two massive
(time-like) particles because (p1 + p2)* = ¢* = 0 cannot be solved if p? = m?¢? > 0.

Indeed (we set ¢ = 1): With the ¥ Cauchy-Schwarz inequality we find

mymz + p1 - p2 < \/m% + 51 \/m§ + 75 = pips (5-662)
= 0<mmy=<p1-p> (5.66b)
so that for arbitrary m; and m, (particle creation: g* = p|" + p5)
(p1+ p2)> =m3+m3+2p;-pr >0 = Time-like (5.67)
Furthermore, for m; = m, (scattering: p| — p5 = g"):
(p1 — p2)> =mi+m5—2p;-ps (5.682)

_ " .
<m?+m2—2mm, "="?0 EALEEN Space-like (5.68b)

(For the Cauchy-Schwarz inequality, equality holds iff the two vectors are linearly dependent;
for mq = my this is only possible if p; = p», i.e., in the trivial case of no scattering.)
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Eq. (5.67) shows that two particles (of arbitrary masses) can never annihilate into a single
photon, and, vice versa, a single photon can never create a pair of massive particles. This is
reason why we need an additional (heavy) nucleus for the creation of a particle & antiparticle
pair from a photon.

By contrast, Eq. (5.68) tells us that a single massive particle cannot emit or absorb a single
photon #f 7t cannot change its mass (i.e., has no different energy states). This is true for free
elementary particles like electrons (an electron cannot be excited, it always has the same
mass). Thus a free electron cannot emit a single photon. If the massive particle in question
has different internal energy states (and therefore the two masses 711 and m, can be different),
this argument does not hold. This is why atoms can spontaneously emit or absorb single
photons.

< Photon (+Nucleus) — Electron & Positron (+Nucleus)

— Energy-momentum conservation: ""?’

A
IN 2]
~ I A
Pinqu‘v_i_pl":pi"_i_pg‘_i_pMEPéflt '\3/\ \ /|l

m out Q
(5:69) '?"T ”71773”

With the mass M of the nucleus and the momentum/energy |¢| = E, /c of the incoming

photon, we find

2 2 2
(Ey+M02) _(ﬂ) :P.zépét:(ENuc+Ee—+Ee+) (5.70)

c c C

Rest frame of nucleus COM frame of system

where the right hand side was evaluated in the COM frame with ﬁout = 0 and the left hand
side in the rest frame of the nucleus (which is allowed since P2 = P P,, is a Lorentz scalar).

Please appreciate the subtlety of this evaluation: The 4-momentum conservation Eq. (5.69)
is Lorentz covariant. Therefore you cannot evaluate the left hand side P in one inertial
system and the right hand side P/, in another. However, in any inertial system Eq. (5.69)
implies P2 = P2,
evaluate the two sides in dzfferent inertial systems.

where left and right hand side are now Lorentz /nvariant; hence you can

> Threshold for particle creation:
2.2 Me 2
Eymin = 2m2c? (1 + M) > 2mec (5.71)

The threshold follows for vanishing kinetic energy of the products in the COM frame.

The threshold energy is larger than twice the rest energy of the electron 2m,c? (the positron
has the same mass as the electron) because the scattering products necessarily aquire kinetic
energy in the initial rest frame of the nucleus (to carry the momentum of the photon).

Annihilation: <t Electron & Positron — Photon & Photon
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———’
in out

— Energy-momentum conservation: e :4/4 N u
w 5 w w w w 1L|77: ;f‘ i
Pp=pi+p =90+ ="Pu (72
N %,
/ oA
o\
A 2

< COM frame:

Using that electron and positron have the same mass m,, we find for the energy of the emitted

E, = ¢/ p? + m3c? (5.74)

Note that the individual rest massess of particles in scattering processess are not conserved:
p? = p3 = m2c? > 0 for the incoming electron and the positron, but ¢? = g3 = 0 for
the outgoing photons. The rest mass of the composite system remains the same, though. In
particular, the two photons together have the same rest mass as the electron-positron system
before: P2, = P2 = 4(p? + m2c?) > 0.

out

photons:

— The rest masses of individual particles are noz conserved.

iv . Compton scattering: <( Electon & Photon — Electron & Photon
Details: © Problemset 6
Compton scattering is an example of V elastic scattering where the total kinetic energy is
conserved and the rest energies of in- and outgoing particles remains the same.
— Energy-momentum conservation: K
f'\/\\ ; g/t
W M w w T b
ql + pl = q2 + p2 (575) 19_
——— N—— @
in out
2
M
4’\ 5,771 K
A
With g7 = ¢3 = 0and p? = p3 = mZc? one finds:
2 ° °
EvEz/c?(1 —cost) =q1-q2 = p- (g1 —q2) = mec(E1/c — Ez/c)  (5.763)
Rest frame of e~ Lorentz invariant Rest frame of e~
1 1 1

— - — = 5 (1 —cos0) (5.76b)

E 2 E 1 MeC
Here the left and right hand sides are evaluated in the rest frame of the electron: p' =
(mec,0)7T; 0 is the angle between incoming and outgoing photon (scattering angle):
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- o
%
6\
ANV @
- -
E‘ a 'P‘L
\)

With the photon energy E; = hc/A; we find the change in wavelength due to scattering:

h
MeC
——
Ae

with & Compton wavelength A of the electron.

AL =2y — A1 =

(1 —cosb)

(5.77)

» With Compton scattering one can measure the Compton wavelength of the electron

and thereby determine the Planck constant /.

o Because the Compton wavelength is the natural length scale associated to a massive

quantum particle, it appears in many field equations of relativistic quantum mechanics

(Klein-Gordon equation, Dirac equation, ...).

5.4. I Reparametrization invariance

The action of the free relativistic particle Eq. (5.41) has the peculiar property of “reparametrization
invariance”, a feature that plays an important role in GENERAL RELATIVITY, and is also crucial for the

quantization of the relativistic string in string theory (* Nambu-Goto action).

1 < Trajectory y parametrized by x*(A) for A € [A4, Ap].

< Diffeomorphism ¢ : [A4, Ap] — [Aa, Ap] With A,/ = @(A4/p) and write A= o(A).

Diffeomorphism = Bijective map where both the map and its inverse are continuously differentiable.

— Define new trajectory y via ) = x“(q)_l(i)) = x*(X) with A € [Aa, Ap]-

(1) isa reparametrization of x** (1): X** and x* are different functions on [A,, A] that parametrize

the same trajectory in spacetime R!:3.
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— Action of new trajectory:

Ab . .
S X —me A VELQ)FR(A) dA

Rename the dummy variable: A — A

= —mc A " Vi) (R) dA

Use $#(1) = x*(1) and the chain rule

Ap
— —me / \/xu(x)—xu(x)TdA

Substitution in the integral: =90

= —mc [;b VX )XH (L) dA

— § is invariant under diffeomorphisms on parameter space.
— % Reparametrization invariance (RI)

2 | Infinitesimal generators:

(5.782)

(5.78b)

(5.78¢)

(5.784)

(5.78¢)

i | Consider infinitesimal deformations (1) of the parametrization (i.e., |e(1)| < 1 for all 1):

h=¢Q) = A +ed)

With this we find:
M) E R ) = T+ (L) = TR + ()0, T4 L) + O(e2)

ii | The infinitesimal variation of the trajectory is:
Sext = x* () — xH* (D)
= —e(X)9x" (1) + O(?)
= GexM + O(e?)
Note that we can replace X* by x* in linear order of ¢.

— #& Generators of one-dimensional diffeomorphisms:

Ge = —&(A)d, for arbitrary (infinitesimal) e(1).

iii | We can expand £(4) into a Taylor series e(A) = »_, %4 A" to write
€
Ge = Zn (=A"0;) = Z G

— Basis of generators that generate infinitesimal reparametrizations is given by

G, = —\A"9; forn € Nj.
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— RI = Infinite-dimensional continuous symmetry group

Note that in particular (1) can be chosen such that it is non-zero only for a compact subin-
terval of [A4, Ap], i.e., reparametrization invariance is a /oca/ symmetry (local in parameter
space).

— Rl is a gauge symmetry

3 | Conserved quantities:

You know from your course on classical mechanics that Noether’s theorem assigns a conserved
quantity to each continuous symmetry of an action. What are these quantities for the infinitely
many symmetry transformations G, associated to RI?

< Variation of the Lagrangian L = —mc /X, x* under G,:

oL
axH
Use S5t 1= XM — %H = 9, (8:x™):

581 MCXy

SSL == 85\56“’ (58521)

= e ] (5550
= I [ )RR+ e (V)] (5850

VXg X9
= mc /X xPe(A) + mee(R)0) /Xy xH (5.85d)

% [mcs()t),/fcufc“] — ddlis (5.85¢)

=:Ke(A,xH)

— 8¢ L is a total derivative — G, is a continuous symmetry of S

Note that in Eq. (5.78) we assumed A,/ = ¢(A4/p) Which correspondsto e(A,/5) = 0 =
K¢(Aq/p. ") such the boundary terms vanish and the action is completely invariant.

¥ Noether’s (first) theorem —

For each continuous symmetry §,x* = G,x* there is a conserved Noether charge:

"
0, = Sext— — K, S s(k)mcx—x.ﬂa —e(A)me/x xH =0 (5.86)

oxH VXoX
— The Noether charge corresponding to G, vanishes identically!

“Vanishing identically” means that Q.(A, x*, x*) = 0 for a/l functions x* (1), and not just
those that satisfy the equations of motion.

Naively, we expected infinitely many conserved quantities from the infinitely many symmetry
generators G,. We found them, but quite surprisingly, they turned out to be trivially zero.
This is a general feature of local or gauge symmetries; here we use the reparametrization
invariance of the relativistic free particle only as an example.

So while the conserved charges of local symmetries are trivial, such symmetries have other
non-trivial implications: they enforce constraints on the equations of motion, so that they are
no longer independent. Mathematically, this is described by ™ MVoether’s second theorem.

4 | We can illustrate the implications of Noether’s second theorem for the relativistic free particle:
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The Lagrangian

L = —mc/x;,xH (5.87)

leads to the conjugate momenta

oL mcxg

Po =526 = _W (5.88)

which satisfy the identity

p? = o = m?c? (5.89)

o Eq. (5.89) is an identity, i.e., it holds for arbitrary trajectories x*(1). In particular,

x*(2) does not need to satisfy the equations of motion for Eq. (5.89) to be valid. In
Hamiltonian mechanics, such constraints are called & primary constraints. So our four
canonical momenta p* are not independent!

o Eq.(5.89) is equivalent to:

dp? dp*
H =0 A= (W) Pu = 0 (5.90)

< Euler-Lagrange equations:

d oL L d L dpy _

AR o Tl T T 591)

— Four differential equations (o = 0, 1, 2, 3) for four undetermined functions x* ().

However: Eq. (5.91) not independent:

d 8L dp'u 5.90
nW_— " = _ =
P =P =0 (5:92)

Eq. (5.92) is again an édentity, i.e., valid for a// functions x#, and not only those that
satisfy the equations of motion.

As a consequence, the system of equations of motion Eq. (5.91) effectively looses one
of the four equations, and is therefore underdetermined.

Put differently, if you specify a spacetime position x*(1 = 0) and its first deriva-
tive X*(A = 0) (note that the Euler-Lagrange equations are second-order differential
equations), the equations of motion do #ot determine a unique solution x*(4). Math-
ematically speaking, the initial value problem is ill-posed. This is the characteristic
property of a gauge theory.

This makes sense in the light of reparametrization invariance: If x*(A) solves the
equations of motion, you can construct a new solution ¥*(1) = x*(¢(1)) where ¢ is
some diffeomorphism that is the identity except for a compact subinterval somewhere
in the interior of [A,, Ap]. In particular, ¥#(1) = x*(A) in the neighborhood of A,,
such that the two solutions cannot be distinguished by their initial value and derivative.
Note how important the locality of the symmetry is for this argument to hold!

This is a special case of ™ Noether’s second theorem [75,76].
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iii | The fact that our theory is a gauge theory has another, at first glance surprising, consequence:

mex, xt
H = prM — L = _—M,LL + mc\/)'cu)'cl* = 0 (5.93)
XpuX

— The (canonical) Hamiltonian vanishes identically

o ;! This does not mean that there is no time-evolution in our system. The Hamiltonian
Eq. (5.93) describes the “parameter evolution” in A — which, as we have seen, can be
modified arbitrarily by gauge transformations; A has therefore no physical significance.

This phenomenon will become important for the interpretation of the Einstein field
equations in GENERAL RELATIVITY.

» If one fixes a gauge, the Hamiltonian that describes evolution in this parameter is non-
zero in general. E.g., for the “static gauge” A = ¢ = x°/c one finds the Hamiltonian
Eq. (5.49) which coincides with the relativistic energy of the particle.
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dLecture12 [16.01.24]

6. Relativistic Field Theories I:

Electrodynamics

6.1. A primer on classical field theories

We start with a general discussion of classical field theories on Minkowski space; Maxwell’s electrody-

namics is the prime example for such theories (= next section).

Details: Chapter 1 of my QFT script [19]

6.1.1. Remember: Classical mechanics of “points”

With “points” we mean a discrete set of degrees of freedom.

1
2

< Degrees of freedom ¢; labeledbyi =1,..., N

Lagrangian L({gi}.{¢i}.1) =T =V
We write g for {¢;} = {q1,..., gn}. T is the kinetic, V' the potential energy.

Action S[g] = [dr L(q(1).4(t).t) €R

This is a functional of trajectories ¢ = ¢q(t).
Hamilton’s principle of least action:
3S1q]
8q

§ denotes functional derivatives/variations.

L0 o 5S=/dt8LéO (6.1)

Euler-Lagrange equations (i = 1,..., N):

— =0 (6.2)

6.1.2. Analogous: Lagrangian Field Theory

Now we consider a continuous set of degrees of freedom:

6 | <t One or more fields ¢ (x) on spacetime x € R!:> with derivatives d,¢(x)

If there are multiple fields we label them by indices: ¢ (x).
In the following we suppress these indices for the sake of simplicity.

&% Lagrangian density £ (¢, 0¢p, x)
Most general form: &£ ({¢x}, {0, Pk}, {x*}). (No explicit x*-dependence in the following!)

— Lagrangian L = fspace d3x £(¢,09)
(We omit the “density” in the following.)

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART

PAGE

147



SR » RELATIVISTIC FIELD THEORIES I: ELECTRODYNAMICS

8  Action:
1
Sipl = | &tL = | de d3x £(¢p, 0p) = — d* £(¢, 0 .
0= far= fudczgap=_ [ - avegon

S[¢] is a functional of “field trajectories” in R!:3.

9 | Action principle:

The classical field evolutions of the system extremize the action:

5S[¢] = 0 (64)
This variation can be evaluated along the same lines as for the classical mechanics of points:
= f d* s (6.52)
/d“ {8¢+ 0L ——8(0 ¢)} (6.5b)
0(0ug) " '
Add zero and use §(d,,¢p) = 9,,(5¢)
0L 0L L
= | d% {8 -0 ()8 +0 (8 )} 6.5¢
[ ot {agte () 20+ o (™ 05
Gauss theorem
AL
= do; sp + / d*x { ( )} § 6.5d
/l;oundary e a(augb) “?—’ a(augb) ¢ ( )
=0

« Note that ¢ is fixed on the boundary and therefore §¢p = 0.

« The second term vanishes because the integral must vanish for arbitrary variations §¢.

10 = Euler-Lagrange equations (one for each field):

0L 0L
7~ (a5,5) = “

 Note the Ernstein summation over repeated indices.

» These equations are manifestly Lorentz covariant if &£ is a Lorentz scalar; such field theories
are called & relativistic field theories.

o If there are multiple fields ¢, there is one Euler-Lagrange equation per field (it is straight-
forward to generalize the derivation above).

11 | Hamiltonian formalism:

Just like for the mechanics of points, we can define:

iz
i

% Momentum density conjugate to ¢ (6.7)

Like ¢ (x), the momentum is a field: 7(x). Here it is ¢(x) = do¢p(x).

—

H(m, ¢, Vo) :=nd — L(p, d¢) & Hamiltonian density (6.8)
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o Here ¢ is to be expressed as a function of the conjugate momentum via Eq. (6.7).
o The argument d¢ of &£ is short for {d,,¢} or {V¢, oL

—

H = / d3x # £ Hamiltonian (6.9)

For given fields 7 (x) and ¢ (x), H is a (potentially constant) function of time. By contrast, the
Hamiltonian density J is a function of space X and time ¢.

6.2. Electrodynamics: Covariant formulation and Lagrange function
We now want to reformulate Maxwell’s electrodyamics in this formalism, i.e., we want to find a Lagrangian
density (and an associated action) such that the Euler-Lagrange equations are the Maxwell equations.

1 Remember:

iV Maxwell equations (in cgs units):

Magnetic Gauss’s law: V-B=0 (6.10a)
Maxwell-Faraday law: V x E + %Bté =0 (6.10b)
Electric Gauss’s law: V.E = dmp (6.10¢)
Ampere’s law:  V x B — %Btﬁ = 47” i (6.10d)

with charge density p(x) and current density f(x) that satisfy the & continusty
equation

8;p+V-f=0. (6.11)

This follows from the two inhomogeneous Maxwell equations Egs. (6.10c) and (6.10d). Note
that here p and j are external fields and not dynamic degrees of freedom. The statement
is therefore that only for external fields that satisfy Eq. (6.11) the Maxwell equations yield
solutions for E and B.

i ' Homogeneous Maxwell equations (HME) Eq. (6.10a) & Eq. (6.10b)

> 3 “Scalar” potential ¢ and “Vector” potential A:
E = —Vop — %8,5 and B=VxA (6.12)
« Constraining the fields E and B to this form satisfies the homogeneous Maxwell equations

Egs. (6.10a) and (6.10b) automatically.

» Because of the two homogeneous Maxwell equations, the six fields{ Ex, E,, E;, By, By, B;}
are not independent so that all degrees of freedom can be encoded in the four fields
{¢, Ax. Ay, A;}. This suggests a reformulation of Maxwell’s theory in terms of these
“potentials”.
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Gauge transformation:

< Arbitrary function A : R"3 — R and define
A:=A+VL and ¢ :=¢— 19,4 (6.13)
This transformation of fields is called a % gauge transformation (> below).
S E=EadB=8
— The potentials ¢ and A are not unique.

Inhomogeneous Maxwell equations (IME) Egs. (6.10c) and (6.10d) in terms of the
potentials:

Eq. (6.10c) & V¢ + 13,(V-A) = —4np (6.14a)
Eq. (6.10d) < VZA-L3A=-42j4v (V A+ %3;(/)) (6.14b)

c

In this form, electrodynamics is a gauge theory because it has a local symmetry, namely the
transformation Eq. (6.13). Indeed, it is straightforward to show that if (¢, A) is a solution of
Eq. (6.14), then (¢, A given by Eq. (6.13) is another solution. Since A(x) is arbitrary, one
can choose continuously differentiable A(x) that vanish everywhere except for a compact
region of spacetime. This makes Eq. (6.13) a /ocal symmetry transformation of the PDE
system Eq. (6.14); such local symmetries are called # gauge transformations, and models that
feature such symmetries are refered to as % gauge theories. The locality of the symmetry has
profound implications:

Lotu( %),u«we \Lfy A
o (orwmation Alk)

g?u\c!

Thus, if we want a deterministic theory (meaning: a theory with predictive power), we
cannot interpret the gauge fields (¢, A) as physical (= observable) degrees of freedom. Our
only choice (to save predictability) is to identify the equivalence classes [(p, A)] of field con-
figurations that are related by (local) gauge transformations as physical states; this is the
defining property of a gauge theory. In a nutshell: local symmetries must be interpreted as
gauge symmetries and fields related by such transformations are mathematically redundant
descriptions of the same physical state.

Eq. (6.14) Gauge theory — Fix a gauge:

V-A+ 1310 20 & Lorenz gauge (LG) (6.15)

It is straightforward to show that for any given (g, A) there is a gauge transformation A such
that (¢’, A’) satisfies Eq. (6.15).
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Eq. (6.10c) < (0%8? — Vz) Q= 47” cp (6.16a)

Eq. (6.10d) < (clzaf - Vz) A=tz j (6.16b)

o Expressed in potentials in the Lorenz gauge, the inhomogeneous Maxwell equations
become a set of four decoupled wave equations.

e We do not have to consider the Zomogeneous Maxwell equations in the gauge field
representation because Eq. (6.12) ensures that Egs. (6.10a) and (6.10b) are automatically
satisfied.

2| Observation: Charge dg = pd>x in volume dV = d3x independent of inertial system:

/
/ 7/
/ 7
/ ‘ ,’
I = U e
7 r, e O /’{1
/
p , o[ te | dxfls st &
- Y e oA+t
/s /. >
/ / S
‘e dg=sdv -~
/ ¢ ~
¢ I'd ’——'_—_
’ -
’ (’

avt d

3. _ 543 3 mo— 543 = Llg% o/
pd’x =pdx = pdx dx pd x dt n - dx n (6.17)
4—vector
Scalar Eq. (4.23)
4—vector Scalay T vector

This suggests that charge and current density are actually components of a Lorentz 4-vector:

dxk
JH = p% = (;g) = (CJB) & 4-current (density) (6.18)

with % charge density p = p(x) and % current density ] = ] (x) = p(x)v(x).

o In the argument above, the trajectory X(¢) in x* = (ct, X(¢)) parametrizes the movement
of the infinitesimal volume dV = d3c with charge dg = pdV; the coordinate velocity
v(t) = ‘é—’t‘ is therefore the velocity of tl’ie charge distribution at position X (¢) at time ¢: v(x).
Thus, in general, the current density j (x) = p(x)¥(x) depends on position and time via
the charge density p(x) and the velocity field v (x).

 That the charge density p is not a Lorentz scalar is intuitively clear as it is defined as charge
per volume. Volumes, however, are clearly not Lorentz invariant because they are Lorentz
contracted. Since the charge (not the charge density!) s Lorentz invariant (this is an obser-
vational fact), the ratio of charge by volume must change under boosts.
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3 Eq. (6.18) and Eq. (6.16) suggest the compact notation
Eq. (6.16a
- (6-162) A" =4z i (IMEin LG) (6.19)
Eq. (6.16b)
Remember that 9> = 0 = 497 — V2.
with
w._ (? * :
A* = i % 4-potential (6.20)
The covariant components of the gauge field are 4,, = (¢, —A).
The transformation of the 4-potential must be that of a Lorentz 4-vector:
9% = 9 : Scalar [Eq. (4.36b -
; o [Eq. ( )] —  AF = A" AV : 4-vector  (6.21)
JH = A", ;" ¢ 4-vector [Eq. (6.18)]
With this transformation, the Maxwell equations in their simple formulation Eq. (6.19) are manifestly
Lorentz covariant:
K R.5.s.b £
PAr =2Z i — o GPAR =g (6.22)
4 | We can now rewrite our previous equations in tensor notation:
i | The Lorenz gauge condition can be compactly written as:
04 = 9,A" =0 (Lorenz gauge) (6.23)
— The Lorenz gauge is Lorentz invariant
Note: The Lorenz gauge is named after ® Ludvig Lorenz; by contrast, the Lorentz trans-
formation is named after ™ Hendrik Lorentz. Thus: The Lorenz gauge (no “t”) is Lorentz
imvariant.
ii | The continuity equation also becomes very simple (and Lorentz covariant):
dj = duj* =0 (Continuity equation) (6.24)
ii | The gauge transformation can be written as follows:
A" = A* —9*L  (Gauge transformation) (6.25)
Recall that 9" = (19,,—V).
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5 | Let us summarize our findings so far:

Maxwell equations : 924 = 4Z jK A PAr = Az jr
K—K _
Lorenz gauge : 0A =0 LN 04=0 (6.26)
Continuity equation : dj =0 3j=0

— Electrodynamics satisfies Einstein’s principle of Special Relativity 'SR

« In contrast to Newtonian mechanics, electrodynamics was a relativistic theory all along and
there was no need to modify it. It’s Lorentz covariance was simply not manifest and required
a bit of work to unveil.

o The treatment above relies on (1) expressing the Maxwell equations in terms of the gauge
fields and (2) choosing a particular gauge (the Lorenz gauge). While this is mathematically
legit (and not restrictive), it would be nice to have manifestly Lorentz covariant expressions
(1) withou fixing a gauge and (2) in terms of the physically observable fields E and B.

To achieve both goals, we first need a new tensorial quantity:

6 | Field strength tensor:

i = Motivation: We are looking for the simplest field that ...

* ...Is gauge-invariant (i.e., has a physical interpretation).

e ...is Lorentz covariant (i.e., can be used to construct Lorentz covariant equations).
i <t Discretized spacetime on a (hypercubic) lattice (here we consider the xy-plane):

 The gauge field A* lives on edges in p-direction.

 The gauge transformation A lives on vertices of the lattice.

A A
)\x,:, Ax~|gy,>_<+<’,(+g, Ascene,
> 4 > L 4 >
Aév?i*ff N N7 xeec, Xtlxtey
S
7 ' ' d
A
% A5 X+Cx ’\zs+s
N N
& >

— Discretized gauge transformation:

.,x,x+e,u = Axx+te, + % (/\x+eu - Ax) (6.27)

~OpA

— Sums along paths P transform non-trivially only at their “start site” s and “end site” e:

Do A= At H(e — ) (6.28)
ecP eeP

Edges e are pairs of adjacent lattice sites, e.g., e = (x, x + e, ) with lattice vector |ex| = &.

— Sums )., A. along closed loops L are gauge-invariant (because s = e)!
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— Smallest gauge-invariant loop (= loop around a single face / = yx):

Fyx := Ax xte, + Axterxtete, — Axtey xtete, — Axxte,

== (Ax,x-i—e,\» - Ax+ey,x+ex+ey) - (Ax5x+

_Ax+e)ux+ +ex)

(6.29a)

ﬂ 0yA, —0,A (6.29b)
iii | This motivates the definition:
Fuy = 0,A, — 0y A, # Field strength tensor (FST) (6.302)
0 Ey Ey E,
6.12
620 | =Ex 0 Bz By (6.30b)
_Ez _By Bx 0 MV

Details: © Problemset 7
— Fyv isa (0,2) Lorentz tensor

o The FST is gauge-invariant by construction. You can also check this by applying the
gauge transformation Eq. (6.25).

o Itis easy to see that the FST has the following properties:

Antisymmetry: F*’ = —F"# (6.31a)
Tracelessness: F¥, = g, F*" =0 (6.31b)

;! When we write “ E”, we refer to the x-component of the original electric field E as
it occurs in the Maxwell equations Eq. (6.10). In this context, an expression like £~
does not make sense since E is not a 4-vector but the component of a rank-2 tensor.

iv | Using that £#V*# is a Lorentz pseudo-tensor [recall Eq. (4.41)], we can define:

FRv o= %s“"“ﬂ Fup  #% Dual field strength tensor (DFST) (6.32a)

3 (6.32b)

Details: © Problemset 7
— FM isa (2,0) pseudo Lorentz tensor

o The dual field-strength tensor will be useful below.

o FM isobtained from F/¥ (contravariant!) by the substitution Ev> Band B +— —E.

[ Just like in vacuum the homogeneous Maxwell equations Egs. (6.10a) and (6.10b)
transform into the “inhomogeneous” ones Egs. (6.10c) and (6.10d)].
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7 = Transformation of the electromagnetic field:

The field strength tensor Eq. (6.30) has the useful properties that (1) we know how it transforms
under Lorentz transformations, and (2) we know how it relates to the observable fields E£ and B.
Hence we can use it to derive the transformation of the electromagnetic field when transitioning

from one inertial system to another.

i | The (contravariant) FST transforms under a Lorentz transformation A as follows:

F'(x) = AN F*P(x)
{E; (%), B; (%)} {Ei(x), B (x)}
Here itis F*’ = phopp Fp as usual.

i | <tBoost Az [Eq. (4.10)]:

5(3) = )/[E(x) + %T)xé(x)] —(y—])ﬁ'sz(x);)

> S S 3-B .
B 2y [Beo — Hox Ew] - 0 - 050

with x* = (A_)*, x".

i! Note that on the left-hand side the arguments are X and on the right-hand side x!

— Electric and magnetic fields “mix” under boosts!

(6.33)

(6.342)

(6.34b)

o Please appreciate what we showed: If you start from Maxwell Eq. (6.10) and perform an

NICOLAI LANG -

arbitrary Lorentzboost X = A, x¥, transforming the derivativesas d,, = A ,"d,, you
obtain a set of horribly looking PDEs. But if you recombine the equations appropriately,

group the terms according to Eq. (6.34) and define the new fields E(X), B(X), the
equations look again like Eq. (6.10), only with bars over coordinates and fields.

You could show this directly, without ever introducing the gauge field A* and without
using the machinery of tensor calculus (this is what Einstein did for a boost in z-direction
in his 1905 paper “Zur Elektrodynamik bewegter Kérper” [9]); but hopefully you agree
that our more advanced route (using the gauge field and tensor calculus) is a more
elegant approach.

Because of our motivation from Einstein’s principle of Special Relativity SR, we frame
our discussion in the terminology of passive transformations ( coordinate transforma-
tion): The same electromagnenc field that looks like £ (x), B (x) in an inertial system

K looks like E (X), B(x) in another system K.

Because we showed that the Maxwell equations satisfy [SR, they have exactly the same
form in K as in K. This, however, allows you to interpret the transformation actively:
If you are glven a solution of Maxwell equations E(x). B(x), then, for any v, the new
functions E (¥), B(x) defined by Eq. (6.34) and x* = (A_3)", XV are again solutions
(in the same coordinates). This shows that the Lorentz group is (part of ) the invariance
group of the PDE system Eq. (6.10) we call Maxwell equations (just like the Galiei
group was an invariance group of Newton’s equation, recall Section 1.2).
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dLecture13 [23.01.24]
ii | <t Non-relativistic limit:

~ E}E ~ E(x)+ 1% x B(x
Eq. (6.34) y—l> (x) )+ (x) (6.35)

B(E) ~ B(x) - 1o x E(x)

o The interconversion between magnetic and electric fields happens already in linear
orderof v/c.

o The separation of the electromagnetic field into “electric” and “magnetic” components
is observer dependent!

o Example: A charge at rest has a non-zero electric field, but a vanishing magnetic field.
The same charge as seen from an inertial system in relative motion gives rise to a
current that is accompanied by a non-vanishing magnetic field perpendicular to the
direction of motion and the electric field. This is a direct consequence of Eq. (6.35):

B(¥) ~ —1i x E(x) # 0.

¥ = (vx,0,0
iv | <t Special case: Boost A, in x-direction: Eq. (6.34) 2= 000
Ex=Ex, E,=y|[Ey—YB;|. E;=y[E.+%B)],. (6.362)
By =By, B,=y[B,+YE;|. B.=y[B.—YE,], (6.36b)

(Here the fields in K on the left-hand side are functions of X whereas the fields in K on the
right-hand side are functions of x.)

—_
« The field components parallel to the boost remain unchanged.
o The perpendicular components mix and get enhanced by a Lorentz factor y > 1.

« FEinstein derived this transformation directly (without using gauge fields and tensor
notation) in his 1905 paper “Zur Elektrodynamik bewegter Korper” [9]; you follow this
path in © Problemset 7.

v | Lorentz scalars:

The electric and magnetic field components transform in a complicated way under Lorentz
transformations. Is it possible to combine them into scalar quantities? Thanks to our knowl-
edge of tensor calculus and the field strength tensor, this question is easy to answer:

a | We can construct a scalar by contracting the FST with itself:

FMFy, = 00" Fop Fyy 2 2(B2 — E?) (6.37)

— If |E| Z |B| is true in one IS, it is true in all IS.

b | We can construct a pseudo scalar by contracting the FST with the DFST:

FMVFM]) - %8uvaﬂFaﬂFMp é _4(1_;4: . é) (6.38)

— If E L B istrue in one IS, it is true in all IS.
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Some comments:

o

e Note that F*V F,,, = —F"" F,,, (use contraction identities for Levi-Civita symbols
to show this, © Problemset 7); i.e., the two quantities above exhaust all elementary
gauge-invariant scalar fields that we can construct (4* A4, is of course also a scalar, but
not a gauge-invariant one).

o The combination of Eq. (6.37) and Eq. (6.38) can be used to infer whether inertial
systems exist in which either the electric or magnetic field vanishes. For example: If
FMF,, = 0and F*’F,, > 0, itis possible to find an inertial system where £ = 0
and B # 0 (but not the other way around). If FX F, wv 7 0 there is no inertial system
in which one of the fields vanishes.

8 Manifest covariant form of the Maxwell equations:

Using the FST and the DFST, we can write the Maxwell equations manifestly covariant without
using the gauge field and/or fixing a gauge (cf. Eq. (6.19)):

i | The equations we look for must be ...
o ...manifestly covariant (— tensor equations).

o ..linearin the FST or the DFST (the ME are linear in E and E’)
e ...use one 4-divergence d,, (the ME are first-order PDEs).
— <
~ 1
ay F[Ll) = EguvPoau(apAg - 80Ap) == 8MvpaavapAof = O (6393)
A, FHV = 9, (0" AY — 3V AH) = 9 (9A) — 9% A* (6.39b)

ii | The homogeneous ME Egs. (6.10a) and (6.10b) must be identically true if the fields are given
in terms of gauge fields. Eq. (6.39a) then suggests that the homogeneous ME are:

3 FH =0 Homogeneous ME (?) (6.40)
To check this evaluate:

. 1
0y FHY = Es“"’"’av Foo (6.41a)

1

1
=3 Z e"VP7 (3 Fpg + 0p Fov + 95 Fup) (6.41¢)

v<p<o

Here we used that the Levi-Civita symbol is invariant under cyclic permutations of (subsets)
of indices and that the FST (and the Levi-Civita symbol) is antisymmetric in its indices. Note
that for every fixed p there are 3! = 6 non-vanishing assignments of indices vpo. However,
pairs of terms like £#"°? 9, Fp = €*Y9P0, F,, are identical, so that only 3 distinct terms
remain. These can be w.l.o.g. written like cyclic permutations as in Eq. (6.41c). Note that for
a fixed index p, the sum contains only one non-vanishing summand.

—

Vocpco : O Foo +0pFey + 06 Fp =0 & V,: 0,F* =0  (6.42)

1 Bianchi identity (4 equations) (4 equations)
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It is straightforward to check by hand, using Eq. (6.30), that the four Bianchi identities
correspond to the four homogeneous Maxwell Egs. (6.10a) and (6.10b). For example:

301 Fo3 4+ 02F31 + 93F1 = —-V-B=0 < Eq.(6.102) (6.43)

Details: © Problemset 7

e Asshown in Eq. (6.39a), the homogeneous ME are identities if the FST is expressed in
terms of gauge fields.

» By contrast, if the FST is expressed in terms of physical fields E and B [as given in
Eq. (6.30)], the equation 9, F*¥ = 0 becomes a non-trivial constraint on the field
configurations.

i < Lorenz gauge Eq. (6.23) —
Eq (6.39b) = 9, F* = —3%4AH (6.44)

Compare Eq. (6.19) (inhomogeneous ME in Lorenz gauge):

4
—3PAM = K (6.45)
c
This suggests that the inhomogeneous ME are:
v 4 |
QFIHY = —— jH Inhomogeneous ME (?) (6.46)
c

It is straightforward to check by hand that these four equations are equivalent to the four
inhomogeneous ME Egs. (6.10c) and (6.10d) using Eq. (6.30). For example for u = 0:

NFO' 4+ 9, F02 4 9;F% 2 V. E=—-""7%=_47p <& Eq.(6.10c)
C
(6.47)

Details: ® Problemset 7

« In this form, the continuity equation Eq. (6.24) follows trivially from the antisymmetry
of the FST:

9t = —%avauwv =0 (6.49)

o Ifyouexpress the FST in terms of the gauge field, the inhomogeneous ME read (without
fixing a gauge!):

4
AN — 9H(0A) = 7” e (6.49)

This equation becomes Eq. (6.19) in the Lorenz gauge Eq. (6.23). It is easy to check
that this equation is still gauge symmetric under the transformation Eq. (6.25).

iv | Insummary, the 8 (=1+3+1+3=4+4) Maxwell equations can be written in the covariant form:

Homogeneous ME: 9, F*¥ = 0 (6.50a)

4
Inhomogeneous ME: 9, F*V = T iis (6.50b)
c
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;! Using Egs. (6.30) and (6.32), these equations make sense without introducing the
gauge field.

» Note that these equations show that under Lorentz transformations the four homo-
geneous (inhomogeneous) Maxwell equations mix among each other. You show this
explicitly in @ Problemset 7 for a boost in z-direction.

o In particular, this means that the Maxwell equations written in their conventional form
Eq. (6.10) (i.e., as two scalar and two vector equations) remain #o# invariant under
Lorentz transformations for each equation separately, rather the magnetic Gauss law
mixes with the Maxwell-Faraday law, and the electric Gauss law mixes with Ampere’s
law. This explains why showing the Lorentz covariance of the PDE system Eq. (6.10) is
quite messy and complicated without using the tensor formalism. This is why we say
that its Lorentz covariance s not manifest. By contrast, the Lorentz covariance of the
formulation Eq. (6.50) is manifest as these are tensor equations.

9 | Lagrangian formulation:

Our final goal is to make a connection to the formalism introduced in Section 6.1 and obtain the
Lorentz covariant Maxwell equations as the Euler-Lagrange equations of some action/Lagrangian:

i | Itis convenient to construct the Lagrangian as a function of the gauge fields A* because in
this formulation the HME are identically satisfied:

WFPY =0 = £ =%L(A,04) (6.51)

— Only the inhomogeneous ME must follow as Euler-Lagrange equations

Note that the counting matches: We have four fields A* and thus four Euler-Lagrange
equations - just as we have four IME: 9, F**V = —4T”j“.

ii | We have the following hints to construct a reasonable Lagrangian density:

o The IME are Lorentz covariant. This can be ensured by a Lagrangian density thatis a
Lorentz (pseudo) scalar.

o The Maxwell equations are linear (superposition principle!); thus the Lagrangian must
be quadratic in the fields.

e The IME are gauge invariant. This can be ensured by a Lagrangian density that is gauge
invariant up to a total derivative (here: surface term) which does not affect the equations
of motion.

— Most general form:

L(A,04) = ay F* Fyy + ax FMYFoy +as FPF +ay Ayj" (652)
N—— N——

~——
Surface XFHYFyy Gauge inv.
term up to surface
term
Details: © Problemset 7
o Itis straightforward to check that
FMWE,, = —F"F,, (6.53)

so that we can drop the a3-term without loss of generality.
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¢ One can also check that

i 1
FI Fuy = 2617 0, Ay = 80 A,)(0p Ao — D0 A,) (6.54a)

1
= 27 DuAvdp Ao + Dy Audo Ay — Dy AudpAs — 0uAvdoA,) (6540)

= 26"7P% (0, A,) (9, Aq) (6.54¢)
1 Chern-Simons 3-form
—_——

=20,¢e"P7(A,0,A5) (6.54d)

Surface term

so that the a,-term has no effect on the equations of motion and we can drop it as well.

Note: The a,-term is known as the 1 6-term and is special because it is topological (it
does not “feel” the geometry of spacetime). This is easy to see: One does not need a
metric tensor to construct it because the contravariant indices of the DFST stem from
the Levi-Civita symbol! Despite being a surface term, such terms are important when
one quantizes the theory and/or when the gauge theory is non-Abelian (like the SU(3)
gauge theory of the strong interaction). Note also that this term is a pseudo scalar, i.e., it
breaks parity symmetry (which we know electrodynamics does not).

The a4-term is not gauge invariant. However, the continuity equation ensures that it
modifies the Lagrangian only by a surface term under gauge transformations:

Apj" = (Ap = 0,21 = A" = @uM)j" = A" = 0, (A" (655)
~———
Surface term
(Here we used the continuity equation d,, j* = 0.)

Consequently, the equations of motion must be gauge invariant despite the a4-term.

It is easy to check that the quadratic Lorentz scalar A, A* is not gauge invariant (not
even up to a surface term); thus it is forbidden.

Note: Coincidentally, it is this term that would give the quantized excitations of the
A-field a mass. Thus if you want massive gauge excitations (like the W *-and Z-bosons
of the weak interaction), you must find a way to smuggle the term A4,, A* into your
Lagrangian. This is what the ™ Higgs mechanism achieves.

Thus we propose the
Lagrangian density for Maxwell theory:

1 1 .
£ = °<CMaxwell(A, aA) = _EF,UA)FMV - EAM]M (6.56)

The prefactors have been chosen such that the Euler-Lagrange equations match the IME
(> mext step).

Euler-Lagrange equations:

Details: ® Problemset 7

There are four (u = 0, 1, 2, 3) Euler-Lagrange equations:

ﬂ—a _a =0 6.57
04, " \80vAy)) (©57)
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Straightforward calculations yield:

oL 1 o5 1
— __Mn d —— =2 __ pmw 6.5
oA, ~ < M 3eAn T dn (658)

Hence the Euler-Lagrange equations are exactly the inhomogeneous Maxwell equations:
dy FHY = —— jH (6.59)
c

— Eq. (6.56) is the correct Lagrangian density for Maxwell theory.

10 | Coordinate-free notation:

Remember the coordinate-free concepts introduced in Chapter 3: All tensor fields 77, are the
chart-dependent components of chart-independent objects 7' (the actual tensor fields). This
formalism allows us to reformulate the Maxwell equations in the language of differential geometry,
without using coordinates altogether:

.
1

oo
m

First, write gauge field
A= A,dx* (6.60)

and the field strength coordinate-free:

1
F = F,,dx" @dx" = 5 Fu [dx* ® dx¥ —dx” ® dx*] . (6.61)

=:dx“ AdxV (“wedge product”)

We say that A is a 1-form and F is a 2-form.

We can evaluate  exterior derivative of the gauge field:

1
dA € dA, Adx” = 0,4, dx* Adx? = SFwdx Adx® = F (6.62)

The exterior derivative d maps k-forms onto k + 1-forms.

Now evaluate the exterior derivative of the field strength:

ef 1
dF & 29, Fp dx® Adx” A dx (6.632)
2
1
= (00 Fpuv + 0y Fop + 04 Fug) dx? Adx” Adx® (6.63b)
1
== Y (0o Fuv + 0 Fou + 0, Fuo) dx® Adx” Adx” (6.63¢)
o<v<p

(Here we used the antisymmetry of the wedge product in all factors.)
Thus we find:
AF =0 & oFuw+0vFopu+0,F0=0 o 9, =0 (6.64)

If the field strength is expressed in terms of the gauge field, the homogeneous Maxwell
equations 9, F'*V = 0 are identities. In the coordinate-free notation of differential geometry,
this identity follows from the fact that applying an exterior derivative twice produces the
zero field:

dF =dd4 =0 since d?>=0 (6.65)

The relation dF = 0 is known as a ™ Bianchi identity.
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v

vi

vii

viii

Define the linear  Hodge star operator (here for a 4-dimensional Minkowski manifold):

1
*(dxt) := as“vpa (dx¥ A dx? A dx?)
1
*(dx* A dx?) = 58‘“)'00 (dx” A dx?)
1
*(dx™ Adx¥ AdxP) = Fs’“’pg (dx?)

(6.66a)
(6.66b)

(6.66¢)

Note that the definition makes use of the metric tensor via pulling up/down indices of the
Levi-Civita symbols. This implies in particular that any equation that uses the Hodge star

depends on the geometry of spacetime (here flat Minkowski space).

The dual field-strength tensor (DFST) is the Hodge dual of the field-strength tensor (FST):

1
*F = 5 Fuv * (dx* A dx")

1
=7 e’ po (dxP A dx?)

= éﬁpg (dx? Adx%) = F

(6.672)
(6.67D)

(6.67¢)

Beware: The Hodge star * is not a multiplication symbol (as the notation on the right-hand
side might suggest) but a linear operator that acts on the differential form to the right.

The Hodge dual of the exterior derivative of the DFST yields:

*d(xF) = lg“"poaﬂFM * (dx™ A dx? A dx9)

4
1
= Z‘gu,v,oa

= Nyed, F*¥ (dx®)

6500 47 |
= T]a (dxa)

£7P% 0 FI* (dx®)

1
E(SZ N — ngwt)azr FH (dx*)

(6.682)
(6.68b)

(6.68c)

(6.68d)

(6.68¢)

Here we used a contraction identity for Levi-Civita symbols (over the two red pairs of indices).

This motivates the definition of the coordinate-free current:

4

J = —j,dx*
Cjux

(6.69)

In conclusion, the Maxwell equations can be written without using a coordinate system as:

Homogeneous ME:
Inhomogeneous ME:

dF =0
*d(xF) =T

(6.702)
(6.70b)

o Ifone uses that (x)?> = +1-1 on odd differential forms (d(% F) is a 3-form), Eq. (6.70b)
can alternatively be written as d(xF) = xJ. If one then defines the current not as
a 1-form but as the dual 3-form, J := 2%, « dx*, the inhomogeneous Maxwell
equations take their simplest form: d(xF) = J.

« Eq. (6.70) is the most general and elegant formulation of the Maxwell equations. In
this form, the equations remain valid even in GENERAL RELATIVITY on curved space
times. Then the Minkowski metric used in the definition of the Hodge star  (to pull
the indices of the Levi-Civita symbols up/down) must be replaced by the dynamic,
potentially curved metric of GENERAL RELATIVITY.
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6.3. Noether theorem and the energy-momentum tensor

In the following, we consider first a generic (classical, relativistic) field theory, and specialize to electrody-
namics later. This is to emphasize that most of the results in this chapter are not specific to electrodynamics.

Details: Chapter 1 of my QFT script [19]
1 < General transformation of field ¢ +— ¢’:
x> x'=x'(x) and ¢(x) > ¢'(x)) = F(p(x)) (6.71)

Two effects: coordinates and (values of the) field transformed
These are active transformations that change physics. x’ = x’(x) is not a (passive) coordinate
transformation; the frame of reference remains fixed in the following!

© Example 6.1: Homogeneous Lorentz transformations

The (active) homogeneous Lorentz transformation of a vector field A* reads

s x =AM x" and Ay (x) = A4, (X)) = AV Ay (x) (6.72)
—— —
F(Ap(x))

whereas the Lorentz transformation of a scalar field ¢ reads

xts M =AM x” and ¢(x) > @'(X) = @(x) . (6.73)

F(9(x))

2 < Infinitesimal transformations (IT) (Jwg| < 1):
x™ = xt 4w, 8% (x) and @' (X)) = p(x) + wye 8P (x) (6.74)
Here, w, denotes infinitesimal parameters of the transformation (sum over a implied!) and we
label different transformations by the labels a.
© Example 6.2: Homogeneous Lorentz transformations

Infinitesimal homogeneous Lorentz transformations take the form (@ Problemset 4)

i lwap|<K1 i
Ay = exp (—2waﬂ g“ﬂ) ~ - S gob (6.75)

(note that the a = «f are labels of generators that are not required to be tensor indices)

with generators
Gy =i (n‘wsf — 5@ nﬂ“) . (6.76)
With this it follows for the coordinates

i

1
Wqp §HB I = x'H — xH = 2waﬂ(gl"‘ﬁ)“vx” = Wap 5 (n““Sf — 8,‘j‘nﬂ“> x¥  (6.77)

FoBott
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so that
1
5B x1 = > (n““xﬂ — nﬁ“x“) . (6.78)

Similar arguments yield §*f A* = 1 (n®* AP — nPi A%) for a vector field and §*# ¢ = 0 for
a scalar field.

3 Generator of IT:

Sw(x) 1= ¢'(x) — ¢(x) = —iw’ Gadp(x) (6.79)

With (omit first line and refer to previous equation)
¢'(x) = ¢(x) + w Sadp (x) (6.803)
= ¢(x) — w(Sax")3,(x) + WSap(x') + O(w?) (6.80)

(Here we replaced x by x” in the last term because this is a @ (w?) modification.)

it follows (replace x’ by x; these are just labels!)

iGap = (8aXx")0pp — 80 (6.81)

This function describes the infinitesimal change of the field at the same point.

© Example 6.3: Translations

i XM= x4 wh = xM 4 w8, xH* with §,x* = §&
i | 0y¢ = 0 (Thisis true for scalar and vector fields.)
i | 1Gu¢ = §),0,¢ — 0and therefore

G, =—id, =P, (6.82)

— The “momentum operator” generates translations.

4 | So far the continuous transformations ¢ — ¢’ were arbitrary.

< Continuous transformation [with infinitesimal form Eq. (6.74)] which is a

Symmetry of the action &  S[¢] = S[¢'] (6.83)

In principle, the action can vary by a surface term - equivalently, the Lagrangian density &£ can vary
by a 4-divergence d,, K/ (¢, x) - under the symmetry transformation (because such modifications
do not affect the equations of motion). Here we consider for simplicity only the case where no such
terms exist and the action is strictly invariant.

Then one can prove (see Chapter 1 of my QFT script [19] or Refs. [1,77]): s
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5 & MNoether’s (first) theorem:

For solutions ¢ of the equations of motion, the # (canonical) (Noether) currents

* 0L 0L

e 9, — sl s — OF
e SETERS)

Ja

Sap (6.84)

(associated to the infinitesimal transformations of coordinates §,x" and fields §,¢)

satisfy the continuity equations

Va: 0 jilt=0. (6.85)

This means there is one conserved current j;* for each generator a of the continuous symmetry.

6 | Conserved charge:

The currents Eq. (6.84) are called “conserved” because they describe the flow of a conserved ...

04 = / dP~1y ;0 & (Noether) charge (6.86)
Space

There is one conserved charge Q, for each generator a of the continuous symmetry.
Indeed:

1d
149 :f dP 1y 9y 0 o2 —/ dP 1y g jk O —/ dogj¥ =0 (6.87)
c dt Space Space Surface

Here we assume that j; = 0 on the spatial boundaries—typically at infinity, i.e., the universe is
closed. k = 1,2, 3 denotes the spatial coordinates.

© Note 6.1
The current Eq. (6.84) is called canonical current because it is not unique:
jl=j 4+ 9,B*  with BAY = —BY* arbitrary =  9,7M =0 (6.88)

This is particularly important for the energy-momentum tensor (- below).

6.3.1. Application: The Energy-Momentum Tensor (EMT)

Details: © Problemset 7

7 < Infinitesimal spacetime translations:

X =xtrwt = Sxt =48 and 8,0=0 (6.89)

& Translation-invariant action: S’ = S (This includes translations in time!)
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8 Conserved currents: Eq. (6.84) —

oL oL
o1, =g, — s1E! §xP =
SO iy IS TERY

b v — 8 6.90
309) oo (6:50)

Note that the generator index a is in this case a proper Lorentz index v so that we can pull it up,
O* = pvP@",, and obtain:

& (Canonical) Energy-Momentum Tensor:

0L
A "p — 'L (6.91)
I(0u)
with
1
0,0"" =0 and four conserved charges PV := - / d> e%. (6.92)

 Note that these quantities are only conserved for so/utions of the Euler-Lagrange equations.

o PV isa4-vector (show this!). Note that this is a non-trivial statement because d3x is not a
Lorentz scalar and ©% not a 4-vector.

o The prefactor 1/c ensures that P? has the same dimension as a conventional 4-momentum
with p® = E/c; note that % has the dimension of an energy density because £ has this
dimension.

9 | Interpretation:
i| Energy (v =0):

/ d* 0% = / d3x %3"% } / A H(p, ) = (6.93)

f_l
Hamiltonian denmy Hamiltonian

— The Hamiltonian is the component of a 4-vector and not Lorentz invariant!
By contrast, the Lagrangian is Lorentz invariant (for relativistic field theories).

ii | Kinetic momentum (v = i)
/d3x eV = /d3 —( dip) = /d3x ;¢ (6.94)

7t is the canonical momentum conjugate to the ﬁeld ¢.

10 = The canonical EMT of electrodynamics:

i <CFree (j* = 0) electromagnetic field: Lem = — ¢ 6 —Fu F1Y
— Invariant under spacetime translations

Indeed, with x"* = x* + w* and the field transformation 4}, (x) := A, (x — w) itis
Sem[A'] = / d* Lem(A'(x), 04" (x)) = / d* Lem(A(x —w), dA(x —w))  (6.952)

- / &y Len(A(). 9A(Y)) = SemlA] (6.950)

where we integrate over the full Minkowski spacetime R13, substituted y* = x* — w* and

used d*x = d%y.
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i | — Canonical EMT conserved: 9, 0%, = 0 with

dLem 658 1 ntv
_Okem vy v 2P L pongy 4
0@, A, o e T T

Note that because the gauge field has multiple components A,,, there is now an additional
summation in the first term over these components (marked indices). This follows directly
from a generalization of the proof of Noether’s theorem for fields with multiple components.

Details: © Problemset 7
iii | Problems:
The canonical EMT ©%; has two problematic properties:

« Because of the term 0¥ Ay, O is gauge-dependent!

This is problematic because it means that we cannot hope to identify physical quantities
like the energy density or the momentum density of the electromagnetic field with (the
components) of this tensor.

o The canonical EMT is non-symmetric: Oy # Ok !

In GENERAL RELATIVITY, we will find that the right-hand side of the » Einstein field
equations (which determine how spacetime curves and evolves)

1
Ry — ERguv + Aguv = kT (6.97)

is given by the » Hilbert energy-momentum tensor

i 8($Matter)
V€ 8guv

where £paer describes the Lagrangian density of all fields in the universe (except
the metric tensor field). For example, &£ parer contains the Maxwell Lagrangian £ep
(“matter” here includes every degree of freedom that has energy & momentum, i.e.,
also electromagnetic radiation).

T = (6.98)

Note that TV is symmetric because the metric g, is. Hence it cannot be identified
with the canonical EMT ®#” in general (here for the example of Maxwell theory).

i! These problems are not specific to electrodynamics but typically affect all theories that are
gauge theories and/or include non-scalar fields.

— How to solve these issues?

6.3.2. The Belinfante-Rosenfeld energy-momentum tensor (BRT)

We consider again first a generic field theory, and specialize to electrodynamics later.

Details: © Problemset 7

11 | Remember (Note 6.1) that the canonical EMT is not the only conserved EMT because
OW 1= W + pKPHY  with KPHY = —KHPY (6.99)

yields another EMT ®” for any suitable tensor K°*".

— Idea: Find KP*¥ such that @*Y = @Y is symmetric (and hopefully gauge-invariant).
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12

13

14

Let us assume that our theory is also invariant under homogeneous Lorentz transformations (in
addition to the spacetime translations needed for the conservation of the EMT).

< Generators of homogeneous LT for coordinates:
1
Eq. (6.78) > §%Bxt = 3 (n““xﬂ - nﬂ“xa> ) (6.100)

Assume that fields transform as §%# ¢.

For the following arguments, we do not need to fix whether our fields transform as scalar, vector,
or even - spinor fields.

Eq. (6.84) & Eq. (6.91) & Eq. (6.100) —

Noether currents for homogeneous LTs:

1 1
Lyt 2 (01exh —o1b ) + Ssned (6.101)
with
0L
# Spin current:  S*P .= 2= 5By (6.102)
I(9.9)
which satisfies S#ef = —gnbe,
(This follows because §*# ¢ = —58%¢ as the generators of homogeneous LTs are antisymmetric.)
The continuity equation reads
3 LM =0, (6.103)

Because homogeneous LTs describe rotations in space and time, the conserved current L**# can
be identified as 1 (canonical) angular momentum current. The first part in Eq. (6.101) corresponds to
the (canonical) orbital angular momentum while the second part S#*# encodes the ntrinsic angular
momentum of the field (= its ¥ spin). This immediately explains why for a scalar field with §*# ¢ = 0,
the spin current vanishes S#*f = (.

Eq. (6.92) & Eq. (6.103) —

9, 51 = @b _ ghe (6.104)

This means that a non-vanishing divergence in the spin current is responsible for the “non-
symmetry” of the canonical EMT!

Now define

KPRV = — (SHP 4 SVRP _ gPVRY (6.105)

1
2
— KPHY = _KHPY (This follows from SHef = —grbe )
With this we can finally define the ...

& Belinfante-Rosenfeld energy-momentum tensor (BRT):

TH = O 4+ §,KP1 i= @1 — L, (SHP 4 SV _ gPvR) (6.106)
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15 | It remains to be shown that 7V is always symmetric:
6.104
T — T "="0 © (6.107)

It can be rigorously shown that the BRT is identical to the Hilbert EMT that shows up in GENERAL
RELATIVITY as the source of gravity [78]. This is why the BRT gets its own symbol 7#".
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dLecture14 [30.01.24]

16 The BRT of electrodynamics:

Details: ® Problemset 7
i | Using £em = — o= Fuv F™*¥ and the transformation of a vector field (= spin-1)
1
8 Ay = 5 (8147 — 5 4%) (6.108)
in Eq. (6.102) yields the spin current:

1
waB o we 4B _ puB g
Sem " = yy (F AP — F"P A ) (6.109)

i | Eq.(6.96) & Eq. (6.106) & Eq. (6.109) —

o 1
W = yp. FFEOFPY — Y Lem (6.110a)
1 P
= Fl FPY 4 TF Foo (6.110b)
. g |cn”
= - (6.110¢)
cll| X
uv
To show this you have to use the Maxwell equations in vacuum: 9, F'”, = 0.
Components:
: I 20 2
Energy density: & = g(E + B?) (6.111a)
- 1 = -
Momentum density: 1 = 4—(E x B) (6.111b)
e

1 [68;; = o
£ Maxwell stress tensor:  X;; = ™ |:%(E2 + B?) — E;E; — B; Bj:| (6.111¢)
T

i! Convince yourself that Ty is symmetric and gauge invariant. Note that we did not construct
it to be gauge invariant, only to be symmetric! We got this as a bonus.

iii | The conservation d, T = 0 of the BRT implies the following physical interpretations:
e V=0

108 -
9, THO = T +¢V-TIT=0 (6.112)
C

— ¥ Poynting’s theorem (in vacuum)

08 -
—4+V:-5§=0 (6.113)
at
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with

¥ Poynting vector: S = 2l = 41(177 x B) (6.114)
b

Eq. (6.113) — Poynting vector = Energy current density

This is simply the formal statement of energy conservation for the free electromagnetic
field. As energy is the Noether charge for translations in time, it is of course no coinci-
dence that the Poynting theorem follows from the time-component v = 0.
eV =1i:
oT1;
ot
— Conservation of momentum with ...

4+ 0k X =0 (6.115)

- Il;: i-momentum density
- Xj;: i-momentum current density
— Maxwell stress tensor = Momentum current density

Note that are three momentum densities and corresponding current densities because
there are three spatial momenta: i = x, y, z.

iv | Some final remarks:

o With the symmetric BRT one can define a gauge-invariant and conserved angular
momentum tensor

MPRY .= TPV _ TPVl (6.116)

with 9, MP*Y = 0 (show this!). The conserved Noether charges are
1 1
JH = —/d3x MO = —/d3x (TOx¥ — TOxH) (6.117)
c c

which encodes the total angular momentum of the field. Indeed, for the spatial compo-
nents one finds

Jl‘j = /d3x (Hixj — Hjx,-) . (6.118)

Since IT; is the momentum density, the three components J, = J3,, J, = Ji3 and
J; = J»; can be identified as the total angular momentum J of the field.

o If the electric current j* does not vanish (i.e., the field is not in vacuum), the BRT
derived above is no longer conserved. Rather one finds

1
0, TH = —EF”Pjp (6.119)

which can be identified as the Lorentz force density. This is perfectly reasonable as an
external (non-dynamic) current j/* breaks the translation symmetry of the system in
space and time on which the conservation of the BRT relies. Physically, the electromag-
netic field is no longer a closed system because it can exchange momentum and energy
with the charges described by j#. Only if one describes the charges as dynamic degrees
of freedom (> next section) and considers the total BRT

THY = T 4 T4 (6.120)

charges

one would recover the conservation d,,7*" = 0; this is then a statement about total
energy and momentum conservation, including the energy and momentum of the
charges.
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6.4. Charged point particles in an electromagnetic field

1 <N charged point particles with charge ¢; and mass m; in a EM field A4,
/4/’ e
Py o
® % w

Eq. (6.56) & Eq. (5.41) — Relativistic action of the complete system:

Sal{xi}]: N particles in static field A,

1 1
S[Hxxt, A] = /d“x[—mm FWF’“’—C—zAMj”]—Zmic/dsi (6.121)

Sem [A] Sc[{xk}aA] Sp [Xi]
EM field Coupling Particle i
S [A]: EM field with static current j
Note that the Lagrangian is a Lorentz scalar! S[{xz}, A] is short for S[xq,..., xn, Al
with current density
H H
. 6.18 dx; .. dx!
S =Y i) =) g8 - X)) - (6122)
. L S—
! ! Point particle

2 < Coupling:

Sc[{xk}, A] = —%/d“x Ap(x)jH(x) = Z {—qc—l / Aﬂ(ct,fi)dx#} (6.123)

4

Sc[xi,A]

dxl{‘
dr
4-vectorfield A, along the trajectory of particle i.

Here we used

dr = dx!*; the last integral is therefore a four-dimensional ¥ /ine integral of the

3 Hamilton’s principle:

8Sem[A] | 8Sc[{xk}. Al _ 8Sj[A]

= =0
_ 5A 5A 5A
8S[xr, Al =0 < $Selxi Al 5Slx] §Satxi )] (6.124)
Vi + = =0
8x; 8x; 8x;
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4 < Gauge field variations §A4:
Here we don’t have to do anything because we already computed the Euler-Lagrange equations:
8S:[A 6.56 & 6.58 A7 oL dxt
5A ¢ = dt
These are the inhomogeneous Maxwell equations with the NV point particles as sources of the EM
field. Note that this PDE system couples the particle coordinates {x}} to the EM field A%
5 < Particle trajectory variations 8x;:
i Eqgs. (6.121) and (6.123) —
. qi .
Sal{xk}] = —Z/ [mic‘/xiux# + FIAM(xi)x{L} di (6.126)
i
Note that this action is again reparametrization invariant.
> Euler-Lagrange equation for particle i:
8Salt *=xi' d rmex [ 94
A[lxk}] =0 7[ ml.cxlu :I + @ AM(X) o xv V(x) =0 (6127)
8x; dal /x,xrd dxH
i ' Choose proper-time parametrization A = t:
du ; dA 04, dxV
my s i S O =0 (6.128)
dr ¢ dr dxk dr
——
3AM M
axV dr
Thus we find as the EOM for particle i:
du ; (04 04
my e i (v ) (6.129)
dr ¢ \ox¥*  oxV
~————
Fuy
Or in the form discussed previously in Chapter 5 (we restore the particle index 7 ):
dp’ _ qi
_dtl = ?lFMv (xi)u} (6.130)
with 4-momentum pl“ = miu# .
i! The field strength tensor is evaluated at the position of the particle at a given time.
iii | Compare Egs. (5.6) and (6.130) — 4-force:
F-
~ dxV
K* = v ‘1= q—’F“V Vo —— (6.131)
YoF c dr
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— 3-force (we restore the particle index i ):

17",' = gi Ei + ﬂ(17i X Ei) Y Lorentz force (6.132)
c

with E; = E(x;), B; = B(x;) and v; = %
 This result demonstrates that our concept of the relativistic 3-force introduced in

Eq. (5.11) was reasonable: for a force due to an electromagnetic field, it exactly matches
the Lorentz force.

o Italso demonstrates that the common expression for the Lorentz force is already fully
relativistic. However, note that the 3-force determines the change rate of the relativistic
3-momentum p = y,mu, recall Eq. (5.16).

6 = Comments:

Egs. (6.125) and (6.130) together are the equations of motion of the composite system,
i.e., the EM field and the N particles. Note that the system of differential equations is
coupled: The dynamical positions of the particles determine the evolution of the EM field via
Eq. (6.125), and the dynamical EM field determines the trajectories of the charged particles
via Eq. (6.130).

This model of N charged particles interacting with and via an electromagnetic field is the
culmination of our discussion of relativistic mechanics in Chapter 5 and electrodynamics in
Chapter 6.

The theory Egs. (6.125) and (6.130) is fully relativistic as the EOMs are manifestly Lorentz
covariant (they are tensor equations).

Note that this model describes interactions between the N particles not directly via forces
(as one would in Newtonian mechanics), but via coupling to the dynamic EM field. Thus a
particle can locally affect the EM field due to its motion, the EM field then can propagate

with the speed of light through space and affect the trajectory of any other particle within
the lightcone of the first. There is no instantaneous interaction between the particles!

One can also consider the & = 0 component of Eq. (6.130). Then one finds with p? = E; /c:

de; , - .
g 4 Ei-v;. (6.133)

This is just the statement that the change of energy for particle 7 is given by the distance

it travels collinear with the electric field per time. This is no surprise: The Lorentz force
Eq. (6.132) tells us that the force due to the magnetic field is always perpendicular to the
direction of motion and therefore cannot not perform work on the particle.

7 | Corollary: Single particle in a static electromagnetic field:

.
1

The action follows from Eq. (6.126) with N = 1 as:

Salx] = / AAL(xH, ¥M) = — / [mc,/)'cu)'c“ + %Au(x,-)x“]dl (6.134)

where A, is a fixed parameter (the static field configuration).

< Parametrization in coordinate time A = ¢:

L(Z. %) = —mc? Lo
(X,v) = —mc l—c—2+zA-v—q<p (6.135)
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iii | Canonical momentum:

- oL - =
= = £y (6.136)
c

T = — =
v

with mechanical momentum p = my,v —

A (6.137)

QL
|

p=

p: Measurable momentum
— Mechanical momentum j gauge-invariant
— Canonical momentum 7 7o gauge-invariant

iv | Hamiltonian:

Mechanical energy

2
mc 5.26

N2
H=rg-v-L=% ——— —i—q(p:c\/(n—zA) + m2c? + g (6.138)
c

so that
E=H—qop (6.139)

E is gauge invariant — H is not gauge invariant

v | Summary:

b
I
T

<
I
T

—q¢ E +
=

97 e

c

R Gauge dependent (6.140)
P

Gauge invariant

SN
oy
Il

=1

q
4
c

ST
Il
L

For more details on the aspect of the gauge-(in)variance of certain quantities, see Ref. [79].
Note that these subtleties are not specific to a relativistic treatment, they already appear in
Newtonian mechanics (only the specific dependency of the Hamiltonian on the mechanical/-
canonical momentum and the functional form of the Lagrangian are relativistic).
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6.5. Summary: The many faces of Maxwell’s equations

Here is a compact overview over the many (physically equivalent) forms of Maxwell’s equations that we
encountered in this chapter:

Not manifest Lorentz covariant Manifest Lorentz covariant

6.10
Magnetic Gauss H1 : V-B=0
= > uy
Maxwell-Faraday H2: V X E + -0;B =0 Ok v
: = ¥ 4 DR
Electric Gauss [T1: V-E =4np dy FHY = —— jH
=Y
i Ampere 12: VxB—%BtE:“T”j
- Use
3 H=H1 + H2 F = 1F,,dx"Adx”
“_'; 1 =11+T12 Introduce
. Gauge fields: H: dF =0
.:: © Check consistency PE=- Vo — 19, A 1: xd(xF)=1J
§ Derivation B=VxA Use S0
Fuy =0udy — Ay @ Use F =dA
. FHrY = %SM”“‘SFaﬁ andd? =0
= 6.14 . - -
= I: Voo + 20/(V-A)=—4xn
& ¢+ 20 ) g [ I: xd(xdA)=1J
& 2 1927
% V<A — C—za,A =
o . - I
£ 12 —V(V-A+%a,<p = _4n; '
§ V
A
————————— »[ I: 024K —9M(34) =
Fix the
® Iiorenz gauge: Identify Introduce
0o+ V-A=0 (Dual) Field strength tensor:
4-current: ®
S 2. F,uv—auAv_avA,u
JH = (cp, J) Fuv — LsuvaBF wB
6.16 4-potential:
i (23 V2) =47”ch AH = (¢, A)
¢ ° [ I: 924t =
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7. Relativistic Field Theories II: Relativistic
Quantum Mechanics

Reminder

1| The ¥ Schrodinger equation (SE)
ihd, (1, %) = Hy (1. %)

is a linear field equation with ¥ Hamilton operator

=2 2

. ) h q
A= yve) = AtvE
2m 2m

and the complex-valued field ¢ : R}3 — C.

It describes the time evolution of a single quantum particle with mass m in a potential V(X) that is

initially described by the wavefunction v (X) = ¥ (0, X) atz = 0.

2 | The wavefunction has the interpretation
[ (¢, X)|* = (Probability to find particle at time 7 at position X)

which necessitates the normalization condition

Voo 9Ol = fd%c (B =

Thus the wavefunction is an element of the Hilbert space ¥ € L? = L?(R?, C) of square-

integrable functions.

The Hermiticity H = H of the Hamiltonian implies a unitary time evolution and thereby

guarantees a conserved norm:

Sl = [ & o a2 o e [pran—vain] 2o, o9

where we used that for ¥, ¢ € L? and a Hermitian Hamiltonian

/ g (Hy) & (@l & (ATly) < / & (i) y P / Sy (). 16

3 | Problem: The SE is Galilei covariant but 7ot Lorentz covariant! (recall © Problemset 1)

 The SE is of first order in time but of second order in the spatial derivatives. This asymmetry
already suggests that the equation cannot be Lorentz covariant: Time is treated differently

than space in (non-relativistic) quantum mechanics.

« We would like quantum mechanics to be described by a Lorentz covariant equation because
we subscribed to « Einstein’s principle of special relativity |SR at the beginning of this course:
All laws of physics must take the same form in all inertial systems (which are related by

Lorentz transformations). This certainly includes quantum mechanics.

However, [SR is just a (empirically motivated) principle, it is neither a law nor a theorem;
there may be conceivable universes in which [SR| simply does not apply to the quantum realm

- in which case the Schrodinger Eq. (7.1) would be a perfectly valid model.

As good physicists, we should seek for empirical evidence to settle the matter ...
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4 | Evidence:

o First: The Schrodinger equation, published and studied by Erwin Schrédinger in a sequence
of papers in 1926 [80-83] (so RELATIVITY was already known at the time), was (and is) a
highly successful theory that describes a plethora of microscopic phenomena remarkably
well. Examples are the ¥ double-slit experiment, ¥ quantum tunneling effects, and, of course,
the ¥ spectrum of the hydrogen atom:

The Hamilton operator for the relative electron-proton system of the hydrogen atom is

R hz 2
A=-—_v2_¢ (7.7)
2p ||

with reduced mass = memp/(m, +mp). The discrete part of the spectrum of the operator
H can be computed exactly (Eg is the ¥ Rydberg energy),

E, = ——f with principal quantum numbern € {1,2,...}, (7.8)
n

and determines the hydrogen spectrum:

= A -
= Condivmuu
0 - o
L Balwer  yz2
_'D'(snek
s gPed\u\u
s N2
L P oo
~ Grovad clakes
Yy
n=-1
-E t i

The transitions between the levels of the hydrogen spectrum can be measured by spectroscopy
(Y Lyman series [84], ¥ Balmer series [85], ...; these observations have been made around
1900). The explanation of these spectral lines by the non-relativistic Schrédinger equation is
the crown jewel of quantum mechanics, and one of the most remarkable advances of 20th
century physics.

» However, it’s not all sunshine and roses. It was already known at the end of the 19th century
(due to advances in spectroscopy [86]) that the spectral lines of various atomic species
(including hydrogen) had a v fine-structure. Expressed in terms of the energy levels of the
hydrogen atom, this means that some of the degenerate eigenstates of Eq. (7.7) are actually
not exactly degenerate:
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Note that this was known to Schrédinger when he published his equation in 1926; he writes
in Ref. [83] (p. 132-133):

Im Anschiufl an die zuletzt erwihnten physikalischen Probleme, [.. ], michte ich nun doch
die vermutliche relativistisch-magnetische Verallgemeinerung der Grundgleichungen [..]
hier ganzg keurz mitteilen, wenn ich es auch vorerst nur fur das Einelektronenproblem und
nur mit der allergrofSten Reserve tun kann. Letzteres aus zwei Grunden. Erstens beruht
die Verallgemeinerung vorldufig aufrein formaler Analogie. Zweitens fiihrt sie, wie schon
in der ersten Mitteilung erwdhnt wurde, im Falle des Keplerproblems zwar formal auf
die Sommerfeldsche Feinstrukturformel und zwar mit ,, halbzahligem” Azimutal- und
Radialquant, was heute allgemein als korrekt angesehen wird, allein es fehlt noch die zur
Herstellung numerisch richtiger Aufspaltungsbilder der Wasserstofflinien notwendige
Erginzung, die im Bohrschen Bilde durch den Goudsmit-Uhlenbeckschen Elektronen-
drall geliefert wird.

Note that Schrodinger was very much aware that his equation lacked Lorentz covariance and
viewed (and constructed) it as a non-relativistic approximation of a truly “relativistic quantum
mechanics” (which he didn’t know how to formulate consistently).

He also makes this clear in the introduction of Ref. [82] (p. 439):

Wesentlich groferes Interesse wird natiirlich die (hier noch nicht darchgefiihrte) An-
wendung auf den Zeemaneffekt bieten. Diese erscheint mir unloslich gekniipft an eine
korrekte Formulierung des relativistischen Problems in der Sprache der Wellenmechanik,
weil bei vierdimensionaler Formulierung das Vektorpotential von selbst dem skalaren
ebenbiirtig an die Seite tritt. Schon in der ersten Mitteilung wurde erwdhnt, daf3 das
relativistische Wasserstoffatom sich zwar ohne weiteres behandeln ldf3t, aber zu “hal-
bzahligen” Azimutalquanten, also zu einem Widerspruch mit der Erfahrung fiihrt. Es
mujSte also noch “etwas fehlen”. Seither habe ich [..] gelernt, was fehlt: in der Sprache
der Elektronenbahnentheorie der Drehimpuls des Elektrons um seine Achse, der ihm ein
magnetisches Moment verleiht.

» We can also make a back-of-the-envelope calculation to estimate whether relativistic effects
could be the root cause for the discrepancy between the non-relativistic Schrédinger equation
and the observed fine-structure:

In a classical approximation, kinetic and potential energy are of the same order:
1 2

S e .
Kinetic energy Emv2 ~ — Potential energy . (7.9)
r

Because the system is quantum, momentum and position obey the ¥ Heisenberg uncertainty
relation ApAr ~ h. In the energy eigenstates of an interacting quantum system (like an
atom) we typically have Ap ~ p and Ar ~ r,and in our semi-classical approximation it is
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p ~ muv, so that

e? e?

v ~ —— ~ —¢ = ac¢ = Fine-structure constant x ¢ ~

—_ 7.10
mvr  hc 137 (710)

The semi-classical velocity of the electron v is therefore much smaller than the speed of
light c; this explains why the non-relativistic Schrédinger equation is so successful (and your
course non non-relativistic quantum mechanics is no waste of time). However, the observed
fine-structure splitting of spectral lines is indeed very small, so it is reasonable that relativistic
effects can have small but measurable effects in atomic physics.

The situation is therefore similar to that of Newtonian mechanics before we made it relativistic:
We have a very successful Galilei covariant theory that, however, shows signs of being the low-
velocity/energy approximation of another, presumably relativistic theory.

(Note that Aistorically the situation is very different, though: While Newtonian mechanics, born in
the 17th century, had to wait more than 200 years to be “made relativistic”, the development of
relativistic quantum mechanics was very fast: Non-relativistic quantum mechanics was established
in 1925/26 - and just two years later, in 1928, Paul Dirac published the correct equation describing
relativistic electrons: the » Dirac equation [87].)

— Are there relativistic field equations which allow for a probabilistic interpretation?

7.1. The Klein-Gordon equation
The Klein-Gordon equation has been studied by Klein [88] and Gordon [89] in 1926 as a possible relativistic
version of the Schrodinger equation. Schrédinger and Fock found the equation independently as well.

1 < Complex scalar field: ¢ : R1:3 — C

— Most general quadratic (superposition principle!) and Lorentz covariant Lagrangian density:

Lxe(9. 9p) = (49)(0u9™) — M>¢pop* (7.11)

M = %% € R: arbitrary parameter (im will be the mass of the particle)

o Note that M = %€ = 2% has the dimension of an inverse length; here A = % is the
« Compton wavelength Eq. (5.77).

» One can also derive the non-relativistic Schrodinger equation from a Lagrangian density
(= below):

h2
Lse(Y, 0y) = ihy ™0,y — ﬁ(vw*)(vw) —V(x)y*y (712)

This is of course not a Lorentz scalar (you cannot write this combining only tensors).

2 | FEuler-Lagrange equations:

Trick: Consider ¢ and ¢p* as independent fields; let ¢* be the complex conjugate of ¢ at the end.
0LkG 0LkG
ap* (9.9

The Euler-Lagrange equations for the field ¢ yield the complex conjugate Klein-Gordon equation.

=0 = -—M?$p—3,0"¢=0 (7.13)
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—
(0% + MHp(x) =0 % Klein-Gordon equation (7.14)
The Klein-Gordon equation (KGE) is the simplest relativistic wave equation.
The non-relativistic Schrédinger equation follows along the same lines from Eq. (7.12):
3;6513 858513 . hz 2
- =0 = ihy-V —V*Yy =0 7.15
The Euler-Lagrange equations for * yield the complex conjugate of the Schrodinger equation.
3 Lorentz symmetry of the KGE:
The KGE is manifest Lorentz covariant. However, it is instructive (and useful for our derivation of
the Dirac equation - /ater) to check its invariance manually. To this end, we view Lorentz transfor-
mations as act/ve transformations, mapping solutions to different solutions. This is equivalent to
the passive viewpoint where the coordinate system is transformed instead:
i <t Coordinate transformation: ¥ = Ax & Field transformation: ¢ (%) = ¢ (x)
We write ¥ = Ax for ¥* = A¥, x".
i | <Cp(x) with (32 + M2)¢(x) = 0 for all x
That is, ¢ (x) is a solution of the KGE.
i | = ¢(x) 1= d(A~1x) is a new solution:
Use the chain rule in the first step twice:
09,8y + MAG(x) = [ (A7) 05 (A28, + M2p(A™ %) (1162)
Use invariance of the metric Eq. (4.21) (7.16b)
= (%050, + M*)P(A™"x) (7.16¢)
= (8% + MH)p(A~1x) PR (7.16d)
Here 0,4 (A~ x) must be read as do®(¥)|=p—1x, 1-€., we compute the derivative of the
function ¢ with respect to its argument y and then plug in the value A~ !x.
4 | Conserved current:
i = <t Global phase rotations:
@' (x) = e%p(x) for «€[0,27) (7.17)
with infinitesimal generator |o| = |w| K 1
P'(x) = p(x) +iwg(x) = ¢p(x) + wip(x) = Jp=i¢p (719
Note that this is an “internal symmetry” that has nothing to do with spacetime; thus éx = 0.
For the complex conjugate field ¢* one finds analogously 6¢* = —i¢*.
— Continuous symmetry:
£Lxc($,0¢) = Lxc(¢', 99") (7.19)
If the Lagrangian density is invariant, the action is trivially invariant!
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i | Noether theorem Eq. (6.85) — Conserved Noether current density Eq. (6.84):

Jxg =10 )™ —i (3 ™) (7.20)

Note that if one treats ¢ and ¢* independent fields, one has to sum over the two fields in the
evaluation of the Noether current; this then yields the real-valued current density above.

— Noether charge density:

prax) = o) = = (9¢* —9"¢) with pro(x) eR (2

— Conserved Noether charge:
0= [ patn = [ & (67— ¢%9) 022

Important: pxg(x) = 0 is nor positive-definit! —

PG (x) cannot be interpreted as a probability density! (7.23)

e To sum up:

- Theinner product (= positive-definite, symmetric sesquilinear form) on L2(R!-3, C)

$ly)ee = [ degmy (724
is not conserved under the time-evolution of the KGE.
- The indefinite symmetric sesquilinear form (which is not an inner product!)

ih
2mc?

@1V k6 = / & (99 — ¢* ) (7.25)

is conserved under the time-evolution of the KGE. But because it is not positive-
(semi)definite, we cannot interpret the induced “norm” as a probability.

The prefactor 22’7 is chosen such that it has the dimension of a time (because

i o ) has the dimension of a length). Then the square of the fields (= wave-

mc
functions) has the dimension of one over a volume - which is the conventional

dimension of wavefunctions. The factor % is chosen to simplify expressions later.

o Compare this to the conserved current for the same phase rotation symmetry that
follows for the Schrodinger field Eq. (7.12) with ¢ = iy and 8y * = —iy™:

= (o) B L 20

J = - = i * * .
7 \hjse PVYHY — (VY] p=i=1273
(Recall that you must sum over the fields ¢ and ¥ *.)

This is the positive-definite probability density you already know from quantum mechanics,

pse(x) = ()Y (x) = [y () 20, (7.27)
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and the V probability current density

- ih .
JsE =5 [(Vy )y — (Vy)y™].
m
In this context, Noether’s theorem ensures probability conservation:

dujlpg =0 & dipse + V- jsg = 0.

5 | Solutions: (for the free Klein-Gordon field)

i | The KG Eq. (7.14) is a wave equation:
m2e2
72

[Cizai—v%r }gb(t,;c’):o

— Solution space spanned by plane waves:

X—Et)

ST

$(1.3) = eh
Plug this ansatz into Eq. (7.30) — Dispersion relation:
E2 P2 m22

e Tt TR

E = £,/ p?c? + m?c*

« This is the relativistic energy-momentum relation Eq. (5.26).

!
=0

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

o ;! There are two solutions for each 3-momentum p, one of which has negative energy
E < 0 (if we interpret the prefactor of  as the energy as usual). This is a consequence
of the quadratic nature of the KGE (as compared to the SE), and therefore a direct

consequence of its relativistic covariance.

At the time of its inception, the negative energy solutions of the KGE could not be
interpreted properly. This (together with the fact that its conserved “norm” cannot
be interpreted as a probability and it fails to predict the fine-structure of the hydrogen

atom correctly, > below) lead to its dismissal as a relativistic wave equation for quantum

wave functions. It only became clear later that the negative energy solutions herald the
existence of antiparticles. Only in modern 1 relativistic quantum field theories [where the
KGE reappears as the equation of motion of (free scalar) quantum fields, see Chapter 2
of my script on QFT [19]] this “feature” can be cast into a consistent framework: The

negative energy solutions are interpreted as eigenmodes of antiparticles with positive en-

ergies (and norms). If the particles are charged, their antiparticles have opposite charge;
then the conserved Noether charge Eq. (7.22) is interpreted as charge conservation (and

not probability conservation).

ii | Asusual, one can “normalize” the plane wave solutions Eq. (7.31) if one considers a finite
system with volume V' = L3. Then one finds the “orthonormal” solution basis of the KGE:
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¢]§i)(t,)?) = N; JEFFOD i (7.34a)

Dispersion:  wj = \/12262 + m2c* /h?

- - 2w, 4
Momentum: p="hk € hf 7 (7349
. mc?
Normalization: Ny =
Vhoy

o Itis straightforward to check that these states are “orthonormal” with respect to the
Klein-Gordon sesquilinear form Eq. (7.25):

(ngx”wg;))KG = a(ga,ﬁ(glz’]z, with «, B € {£}. (7.35)

Note that the (—) states have negative “norm”.

» The fact that there are “twice as many” linearly independent solutions (two for each
momentum) means that you need “twice as many” parameters to specify a particular
solution (i.e., a linear combination of the plane waves). This corresponds to the fact
that the KGE is of second order in the time derivative, so that you need to provide both
$(t = 0,%)and (¢ = 0, ¥) to specify a unique solution.
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6 | Coupling to a static EM field:

The KGE can be coupled to the gauge field of electrodynamics. This is necessary to described
charged particles (in particular: the hydrogen atom). Note that in the following the gauge field is a
parameter and not a dynamic degree of freedom.

Goal: Construct Lagrangian density that is ...
« ... aLorentz scalar.
e ... quadraticin ¢.
* ... gauge invariant under the gauge transformation A}, = A, — 9,.A.
e ... couples ¢ and A, in a non-trivial way.
Without additional tools, this is a tough job!
< Gauge transformation 4}, = A4, — 9,A(x)

Let us assume that the KG field transforms under the gauge transformation as follows:
"(x) = i QA(x) ; * _ 4
P (x):=e ¢(x) with the & U(1) charge Q = e eR. (7.36)
c

q: electric charge of the particle described by the wavefunction ¢

« Itisreasonable to assume that the KG field must transform via phase factors because we
already know [recall Eq. (7.19)] that the KG Lagrangian is invariant under globa/ phase
transformations A(x) = const. Our hope is that we can “extend” this symmetry for
arbitrary non-constant A(x).

o The charge Q is a property of the field and quantifies how it transforms under gauge

transformations; it essentially plays the role of the electric charge of the particle de-
scribed by ¢; e.g., for an electron we would set 0 = 7% < 0.

The additional division by %c is necessary for dimensional reasons: [A] = L[g] with
A" = (¢, A); therefore [Aq] = L[pq] = L[E] = MT—L; and itis [Ac] = MT]; as well.
In natural units (where 7 = 1 = ¢, Q = ¢ is simply the electric charge.

o The term “U(1) charge” highlights that the gauge transformation ¢’2*™) € U(1)isa
U(1) gauge transformation; the charge is the generator of this Lie group.

Problem:

Derivatives transform complicated under gauge transformations:

9 (x) = €D [10(3, ) (x) + 3 (x)] (7.37)

— It is hard to combine derivatives of fields to construct gauge-invariant terms!
Solution:

Define the ...

& (Gauge) Covariant derivative: D, =9, +iQA, (7.38)

— Lorentz vector (thus we can it use to construct Lorentz scalars!)
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The covariant derivative has the following useful property:
D) ¢'=[0,+i0Au —i0@.1)] "¢ = ' Do (7.39)
— D, ¢ transforms like ¢ under gauge transformations. [and not as ugly as Eq. (7.37)!]

This is useful because it allows us to combine derivatives into gauge-invariant terms.

Using the covariant derivative, we can now construct the following general Lagrangian density
that satisfies our four requirements above:

£4(p,09) = (D"¢)(Dpud)* — M>po* (7.40)

Please appreciate the ingenuity of the term (D*¢) (D, ¢)*: It is Lorentz invariant because
we pair the indices correctly, and it is gauge invariant because we pair (D*¢) with its complex
conjugate (D, ¢)* (which is sufficient because D*¢ gauge-transforms like ¢).

This Lagrangian density is gauge-invariant by construction in the sense that

L4($.0¢) = Lar(¢'.0¢") or L($p.Dg) = L(¢'.D'¢"). (7.41)

* A comparison of the free Klein-Gordon Lagrangian Eq. (7.11) and the new one Eq. (7.40)
reveals that we simply made the substitution d,, + D, i.e., we replaced partial
derivatives by covariant derivatives (which depend on the gauge field). This trick is not
specific to the Klein-Gordon field and yields gauge-invariant theories in general. This
procedure is called  minimal coupling.

» Note that the transformation Eq. (7.36) is a local phase rotation of the KG-field. In
Eq. (7.17) we considered a global phase rotation and identified it as a continuous symme-
try of the KG Lagrangian £x¢. You can check that the new /oca/ transformation does
not leave £ invariant, but it does leave £ 4 invariant if A* transforms together with
¢ as defined above. The transition from £x¢ (with a global symmetry) to £4 (with a
local version of the same symmetry) is called gauging the symmetry. You can use this
line of reasoning to “invent” the electromagnetic gauge field: If you start from a global
continuous symmetry and demand that it becomes a local symmetry, you have to pay
for it by introducing a new field: the gauge field.

Klein-Gordon equation in a static EM field:

. ) Eq. (7.40)
The Euler-Lagrange equations of £4 yield: Eq. (6.6) ——

(D? + M*)¢p(x) =0 (7.42)

with D? = D), D" and M = %€,

In the form Eq. (7.42) both Lorentz covariance and gauge invariance are manifest (because
we use the covariant derivative). If we expand everything, we loose these features but obtain
a less abstract (but more complicated) form of the PDE:

m3c?

[Clz(at +chgo)2_ (V—in)an 2 i|¢(l‘,5€) =0 (7.43)

Here we used 4,, = (¢, —A) (covariant!).
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vi

Example: Hydrogen atom

Goal: Describe the electron of the hydrogen atom in the static EM field generated by the
proton in terms of the KGEj; i.e., we interpret the KG field ¢ naively as the wavefunction of
the electron. Our hope is that the energy spectrum of this relativistic theory explains the
observed fine-structure splitting.

d

< Coulomb potential (of proton with charge ¢ > 0) —

Choose a gauge where ¢(x) = l% and A=0 (7.44)
X
= With electron charge O = 72 < 0 one finds:
1 /. e? \2 2 m2c? R
[c—z(za, + m) + Ve — e ]¢(t,x) =0 (7.45)

< Ansatz ¢ (1, X) = d;(?c)e_%E ! — “Stationary” Klein-Gordon equation:
e\’
|:c2h2A + (E + ﬁ) — mzc4:| H(X) =0 (7.46)
X
Note that this PDE is guadratic in the energy E (and not linear, like the time-independent
Schrodinger equation).

One can use a clever mapping to the non-relativistic Schrédinger equation to solve for
¢(x) and determine the energies E for which solutions exist:

2

* mc . 2

- Epy=-————— with §=1+1-y/(+1) -2 (@)

I+ 2
(n—=67)
Heren = 1,2, ... isthe ¥ principal quantum number and | = 0, 1,2, .. .is the V¥ orbital
2 .

angular momentum quantum number. a = 5+ ~ % is the fine-structure constant.
Comments:

o The spectrum Eq. (7.47) predicts a splitting of the /-degeneracy; recall that this
degeneracy is perfect in the non-relativistic hydrogen atom [cf. Eq. (7.8)]. Unfortu-
nately, the spectrum Eq. (7.47) does not match observations! The reason is that
the Klein-Gordon equation does not know about the electron spin. Schrodinger
and his contemporaries were aware of this solution and its problems (this shines
through in the quotes at the beginning of this chapter). This failure to predict
the fine-structure correctly led to the dismissal of the Klein-Gordon equation and
motivated Paul Dirac to search for another equation (- next section).

« Today we know that the Klein-Gordon equation is #ot wrong: It simply does not
apply to particles with non-zero spin (and the electron in the hydrogen atom hap-
pens to have spin s = %) However, it does apply to spin-0 particles like 1 kaons (K
mesons, bound states of two quarks), ® prons (pi mesons), and the 1~ Higgs boson
(the latter being the only elementary particle with zero spin). But since we cannot
build hydrogen atoms out of these particles, the significance of the above solution
remains limited.

7 | First-order formulation:

Here we consider again the free KGE (without EM field) for simplicity.

KGE = Second-order PDE in time
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Problem: ¢(t = 0,X) does not specify the state of the system completely [unlike for the
Schrédinger equation one also needs ¢ (¢ = 0, X) to pick out a unique solution ¢ (7, X)].

Recall: Every higher-order differential equation can be recast as a first-order differential
equation with multiple components.

— Goal: Rewrite the KGE in the first-order form

ihd,® = Hxg® with & = (i*) . (7.48)
Downside: In this form, the KGE is no longer manifest Lorentz covariant.
i =~ Define
1 ih
me
so that
ih
o= +¢- and ——0p =g —¢_. (750)

i | Define the 2 x 2 differential operator

~ (Ho+mc? H, - . 2
Mo = ( “Hy  —Hy—mec?) "~ Hop ® (0° +io”) +mc*0® (751
with Hy = —%Vz the free particle Hamiltonian and the Pauli matrices

x_ (0 1 y (0 —i . (1 0
o = (1 E o’ = i o) o° = o —1)- (7.52)
Hyg is a linear operator on the Hilbert space L2 ® C2 of two-component square-integrable

functions. Note that . . = Ho ® (0% —i0?) + mc20?% # Hyg is non-Hermitian with
KG
respect to the conventional inner product on L? @ C?:

(®|¥) 2002 = /d3x O (X)W (x) = /d3x (prvs + o y_) . (7.53)

iv | Check that the differential equation in first-order Schrodinger form

N iha = (Ho + mc? + Hop—
79,0 = Hrgd & b+ = (Ho 9+ Of (7.54)
ihdip— = —Hogpy — (Ho + mc”)¢p—
is equivalent to the KGE:
a | Indeed, the difference of the two equations yields
h? A ) N 1 5 m2c?
— dex = (Ho+mc*)p+ Hop & —oix—Vop+ ¢ =0 (7.55)
mc? c? h?
where we defined ¢ := ¢+ + ¢_and y := ”:.—22(¢+ —¢-).
b | By contrast, the sum of the two equation yields
me?d;¢p = (ﬁo +me?)y — ﬁo){ & 0ip=y. (7.56)
¢ | Combining Eq. (7.55) and Eq. (7.56) returns the KGE:
1 ) ) m2 2
0—28t¢—V ¢+ W ¢=0. (7.57)
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v | If one defines the
# Klein-Gordon adjoint  ® := ®To* = (¢%, —¢*) , (7.58)

one can express the Klein-Gordon sesquilinear form Eq. (7.25) as

(@[ W) = / o ()W (x) E % / dx (679 - ¢"¥) F (PlY)ke.  (7.59)

Remember that this is not a proper inner product because it is not positive-definite.

vi | If one defines additionally for an operator 4 on L2 ® C? the
& Klein-Gordon adjoint A := 6% ATo% | (7.60)
it follows A% = ®A and A = A, and thereby
(®|AD) 2 (AD|V). (7.61)
vii | It is easy to verify that the KG Hamiltonian is “Klein-Gordon Hermitian”, namely
[_:IKG = A (7.62)

because 0%0Y0% = —0”.

viii | With this machinery, we have now a new method to check that the time-evolution generated
by the KGE leaves the KG sesquilinear form invariant:

d 25 d
3 @lVike = 3 {®1¥)ke (7.63)
= (®|V)kG + (P|V)ka (7.63b)
1 A 1 -
= E(¢|HKGW)KG - l.—h(HKGCDI‘IJ)KG (7.63¢c)
7o 1 ; A
== (<©|HKG‘P)KG - (¢|HKG‘IJ)KG) =0 (7.63d)

We already knew this from Noether’s theorem, but it is always nice to derive such statements
in various ways.

8 | Non-relativistic limit:

i | Goal: Derive a non-relativistic approximation of the Klein-Gordon equation

1., _, m?*?
[C—za,—v T

}¢>(t,55) =0. (7.64)

i | < Kinetic energy: Exin = E —mc? = /p2c2 + m2c* —mc? ~ 1mv? + O(B*)
(Note that both Eyi, and E are non-negative!)
< Ansatz:

v i e mip g w2
¢ (t,X) = pa(X)eT#El = g (X)e T Eunl T amet (7.65)
—
=4 (1,X)

(t, ¥) contains only the time evolution due to the kinetic energy, excluding the rest energy.
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iii | If we use that

Ppy = —Eii“gﬁ (7.66)
P+ = h2 s .

we can make the following approximation in the non-relativistic limit Ey, < mc?:

i A 2ime? . 2\2 |
Py = eThm ga%qsi F i — (%) b (7.672)
; 2imc? . . 22 Ean\2] -
_ _Fhme )y erC 3t¢i+(%) [1+(m‘;2) bu (7.67b)
i 2ime? . 2\2
%_e:Fﬁmczt + ll;l”lc 3z¢ﬂ:+(%) ¢:I:§ (7.67¢)
iv| Eq. (7.67c)in Eq. (7.64) yields:
; 2 2.2 2,27
T hmet [j: ;lma,+mh§ +v2—mh§ }m(:,fc):o (7.68)
And finally:
. .
+ihd,;Pps(t,X) = —%Vzgﬁi(l,x) (7.69)

This is the Schrodinger equation for a free particle.

Note that the “negative energy solutions” ¢_ lead to the time-inverted Schrodinger equation.

7.2. The Dirac equation

The Dirac equation was published by Paul Dirac in [87], only two years after Schrédinger published the
Schrodinger equation.
1 Goal:
The Klein-Gordon equation has a few undesirable quirks:

o It’s conserved U(1) current has no positive-definite density and therefore cannot be interpreted as a
probability current. Conversely, the conventional norm on L? is not conserved. In the first-order
SJormulation, this corresponds to a non-Hermitian Hamiltonian.

— Can we construct a relativistic field equation with a conserved positive-definite density
that gives rise to a norm and a Hermitian Hamiltonian?

o Inits manifest Lorentz covariant formulation, the KGFE is of second order in time, so that we must
provide both the wavefunction and its time derivative as initial data.

— Can we construct a relativistic field equation which is first order in time (just like the
Schrodinger equation)?
o For each momentum there is are two solutions: one with positive and one with negative energy.

— Can we get rid of the negative energy solutions?

The Dirac equation succeeds in solving the first two issues - but not the last one, i.e., there will
still be negative energy solutions.
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2 Observation:

To reach our goals we must equip our “toolbox” of tensor calculus with additional building blocks.
As it turns out, there is another type of field (besides the tensor fields we introduced in Chapter 3)
that plays an important role in quantum mechanics: 1 spinor fields.

Remember: Vector fields under rotations: ¢/(¥) = RG(R™1¥)

— In general, a field ¢ (x) € C” can transform under homogeneous Lorentz transformations as
¢L(x) = Map(Mgp(A™'x)  a=1,...,n (7.70)
where
MA)YM(A)(A"TA "1 x) = M(A'A)p((A'A)"Lx) (7.71)
is a n-dimensional representation of the (proper orthochronous) Lorentz group SO (1, 3).

e Regarding groups and their representations: @ Problemset 1.

e More explicitly: The tensor fields (of various rank) we know so far allow only for the descrip-
tion of particles with integer spin S = 0, 1,2, --- (spin = internal angular momentum). What
we are missing are fields that can describe particles with Aalf-integer spin S = %, %, ---; these
are the spinor fields.

The reason why this is crucial for relativistic quantum mechanics in particular has to do
with the fact that multiplying wave functions by a global phase does not change the state.
In mathematical parlance we are dealing with ™ projective Hilbert spaces and 1 projective
representations of symmetries. Thus if you are interested what rotations SO(3) do to the
quantum state of your system, you must study all projective representations of SO(3). It turns
out that these can be identified with the “conventional” (= linear) representations of another
group: SU(2) (the so called 1 double cover of SO(3)). And you know that the irreducible
, % 2,....In
general, the double covers of SO(n) are called * spin groups Spin(n), and similarly, the double
cover of the proper orthochronous Lorentz group SO (1, 3) is the group Spin(1,3) ~
SL(2, C) (the group of complex 2 x 2 matrices with determinant one). It turns out that the
irreducible representations of this group can be labeled by two numbers (m, n) with m,n =
0, % 1, % .... The spinor representations we are interested in (the ones missing from our
discussion of tensor fields) are the ones for which m + n is half-integer. Conversely, the (3, 3

representation is our well-known 4-vector representation A* and the (0, 0) representation is

that of a scalar like ¢.

representations of SU(2) are labeled by “spin quantum numbers” s = 0, 1. 1

3 We want a first-order relativistic field equation — Ansatz:
(0"9,, + const)p =0 = (iW"*d, + const)p =0 (7.72)
We do not yet know what B is (only that it cannot be a derivative).
The i anticipates wave-like solutions for real H.

A covariant equation of the form d,,¢ = 0 or d,,A* = 0 would of course also be possible; their
solutions, however, are either too simple or do not match observations.

4 | Then (combine 2 & 3)
i < Coordinate transformation x’ = Ax & Field transformation ¢’ (x") = M(A)¢(x)
i <C¢ with (/l*9, + const)¢(x) = O forall x

That is, ¢ (x) is a solution of the equation we want to construct.
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i - When is ¢/(x) = M(A)¢(A~1x) is a new solution?

We want the equation to be Lorentz covariant; this means that the Lorentz group must be
(part of) its invariance group: Lorentz transformations map solutions to new solutions.

(/W9 + const)d’ (x) = [ (A" 3, + const] M(A)p(A™'x) = 0 (7.73)
Multiply with M ~1(A):

& [ MTIA)WEM(A)ATY, 8, + const] p(ATIx) =0 (774

=

— W* = y* must be n x n-matrices with

MY AP M(A) = AP, pY (2.75)

The y-matrices “translate” the “spinor”-representation M (A ) into the “vector”-representation
A and vice versa.

5 | Question: How to find appropriate y* and M (A) that satisfy Eq. (7.75)?
Remember: SOT (1,3) is a Lie group (Recall © Problemset 4):

A = exp [—éa)aﬂ 5(“’3] w§1 1- %waﬂ gz“ﬂ (7.762)
M(A) = exp [-%%35""3] - %a)a,gé’“ﬂ (7.76b)

wqp antisymmetric tensor — 3 rotations (angles) + 3 boosts (rapidities)

Itis (g“ﬂ),w = i(8°‘8€ — 53‘8fi ; these 4 x 4 matrices §*# generate the 4-vector representation

123
%. % , i.e., the 4 x 4-matrices A. By contrast, the n x n-matrices 8¢ generate the spinor-

representation M(A) [we will find (%, 0) @ (0, %)]. The generators are antisymmetric in the
spacetime indices.

« Infinitesimal form of Eq. (7.75):
[v7. 898 = (goPyt,y = iy P — nPry) (277)
o < 4% (® Problemset 4) — Lie-algebra of Lorentz group (J = §, 4):

[J100, JOO) 2 i (P THT — P VT — O TR 4 gt IR (278)

The Lie algebra defines the structure of the Lie group by exponentiation and is therefore the
same for all representations, recall Eq. (4.63).

6 | Solution to Eq. (7.75) via Dirac’s trick [87]: <t y#* such that

Y yYy = 20" 1xn & Dirac algebra (7.79)

with the ¥ anticommutator {X,Y} = XY + YX.
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o Matrices y* = (y°, y!,y%, y?) that satisfy Eq. (7.79) are called & Dirac matrices or
& Gamma matrices.
o This is the 16-dimensional Clifford algebra Cl, 3(C).
Then
i
sHY = 3 [v*.7"] (7.80)
satisfies the Lorentz algebra Eq. (7.78) and Eq. (7.77).
Check this by plugging Eq. (7.80) into Eq. (7.78) and Eq. (7.77) and using Eq. (7.79)!
— Problem of solving Eq. (7.75) has been reduced to finding 4 matrices y* that satisfy Eq. (7.79).
7 Representations of Eq. (7.79):
o Atleast n = 4-dimensional
(Think of the y* as Majorana modes and construct ladder operators — 2 modes.)
« All 4-dimensional representations are unitarily equivalent
(Actually, they constitute the unique irrep of the Dirac algebra which is 4-dimensional.)
« We use the Weyl representation (sometimes called ckiral representation):
0 _ 0 1 i 0 O'i .
Yy = (]l 0) and y' = (—0’ 0 i=1,2,3 (7.81)
- Recall the Pauli matrices Eq. (7.52):
0 1 0 —i 1 0
g Y = L 2
o (1 0), o (i 0), o (0 _1). (7.82)
- Other common choices are the 1 Dirac representation and the ™ Majorana representation.
o Henceforth: A 1= M(A)
It turns out that these are two “copies” of a spin-% projective representation: A 1 corresponds
to the (1,0) @ (0, 3) representation of SL(2,C). Since n + m = 3, this is a spinor
representation, i.e., a projective representation of the Lorentz group SO (1, 3). The fact
that it is the sum of two such representations makes it reducible. The wavefunction W(x) has
therefore n = 4 components and is a spznor field (and not a tensor field).
8 Setting const = —M = —%< (which has dimension of an inverse length), we find:
(iy"9, — M)V =0 & Dirac equation (7.83)
Here, W(x) is a % (b)spinor-field:
R3S cCct=C?9C?. (7.84)
Introduce the # Feynman slash notation: @) := y* 0,
(Here, O,, stands for any object with a 4-vector index.)
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With the slash notation, the Dirac equation can be written as:

(id—M)¥ =0 (7.85)

The Dirac equation is engraved in a plaque on the floor of Westminster Abbey next to Isaac Newton’s
tomb (they abbreviate y - d = y*0,, and are in natural units # = 1 = ¢ where M = m):

(Photograph from https://cerncourier.com/a/paul-dirac-a-genius-in-the-history-of-physics.)
9 | The components W, (x) (¢ = 1,2, 3, 4) satisfy the KGE:

7.79

0= (—1y"0, — M)y dy — M)V = (3% + M>)W (7.86)

On the right hand side of Eq. (7.86) there is an identity 1 4x4 that we omit.

 The Dirac differential operator is the “square root” of the Klein-Gordon differential operator.

* i! Although W has as many components as the EM gauge field A*, we do not write these
components as W# | but either simply as W (and think of it as a four-dimensional column
vector), or as W, with spinor index a = 1,2, 3, 4. The purpose of this notational difference
is to denote the different ways the fields transform under Lorentz transformations:

A" = A" AY versus W = (Ay)apWp or simply V' = AW, (7.87)

Note that A = A", and A% = M(A) are not the same 4 x 4 matrices!

10 = Dirac adjoint:

We would like to find a Lagrangian density for the Dirac equation; since this must be a Lorentz
scalar, we ask the question:

How to form Lorentz scalars from Dirac spinors?

i First try: UTw

iy = gt AEA% v £ why (7.88)
2

~——
#1

A% is not unitary because §#" is not Hermitian for boosts (x = 0 and v = 1, 2, 3).

This is a consequence of the ™ non-compactness of the Lorentz group due to boosts.

ii | Define

U= w0 & Dirac adjoint (7.89)
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n

12

S0 = VATIA 1V = UV = Lorentz scalar
Use Eq. (7.80) and Eq. (7 76b) and the Dirac algebra to show this!

Lagrangian:

With these tools, it is reasonable to propose the following Lagrangian density:

LDirac = Wiy 9, — M)V = W(ij— M)V

o . . .
— Euler-Lagrange equations = Dirac equation
 Note that in explicit index notation, the Lagrangian density reads
xDirac = ilija 5[, (8M\Ijb) - M\ija v,

where sums over pairs of spinor indices are implied.

(7.90)

(7.91)

The Euler-Lagrange equations follow again by treating ¥, and W, as independent fields:

0L irac . ;
0= an; —0 — iyt @, W) — MY, =[(d—M)¥],
! achDlrac 8<:£D1rac

0_

0w, "0, V)

Note that the two equations are Dirac adjoints of each other.

e Let us check that £pjc is a Lorentz scalar:

/
‘:EDlrac

' (iyta, — M)V
WAL iy A0y = M)Ay @

\if(iAIIy“ALAL”a,, —M) v

I3

TP (A" yPA, Dy — M) W
Z\IJ(ZVVBV_M)\Ijszirac

Here we used the following fact:

~M B, i@ Bp)h, = [T M)¥]

The gamma matrices transform nor like Lorentz vectors: y'#* = y*.

(7.92a)

(7.92b)

(7.93a)
(7.93b)

(7.93c)

(7.93d)
(7.93€)

(7.94)

This is good because otherwise the Dirac equation would be different in different inertial systems.

This also means that slashed quantities (like § = y*d,,) are nor Lorentz scalars. Think of it like
this: they do not have a Lorentz index, but they do have a two spinor indices (which we don’t write)
because they are matrices. To get rid of these indices, you must pair them with the indices of spinor
fields. That is, slashed quantities become Lorentz scalars if put between two Dirac spinors like in

the Dirac Lagrangian: WjW s a scalar field.

Conserved current:

Now that we have a Lagrangian, it is just a straightforward application of Noether’s theorem to

obtain the conserved current associated to global phase rotations:

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART

Institute wr

U1 Zoretjcal
Ty i

PAGE

195



SR » RELATIVISTIC FIELD THEORIES II: RELATIVISTIC QUANTUM MECHANICS

i = <t Global phase rotations:

Eq. (7.90) is clearly invariant under global phase rotations of the spinors:

U(x) = e ®W(x) for «€l0,2n)
with infinitesimal generator |o| = |w| < 1

V(x)=¥Kx)+iwv(x)=¥x) +wi¥(x) =

— Continuous symmetry:

iDirac(qJ» 8\11) = iDirac(\y/v 8\1!’)

i | Noether theorem 6.85 — Conserved current density:

A straightforward calculation yields:

. 6.84 0L Dirac S 7.91
JDirac = BYEIR
(0,.%q)

W, = Wyt W, = WyHw.

.M _ = . .M _
JDirac = \Dy“\ll with a."LJDirac =0

(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

Since the Lagrangian density £pirc is @ Lorentz scalar, this Noether current must be a

4-vector. We can check this explicitly:

7.75

o= Wytw = \IJA?)/“A%\IJ =AM Uy = AR R

i~ Conserved Noether charge:

_ 3. 30y — 3. it
Q—/dx\lfy\D—/dx\I!\IJ >0

>0

Conserved norm on L2 @ C*: ||w|? := /d3x vy

(7.100)

(7.101)

(7.102)

o ! The positive-definite density W& = Wy%W is the time-component of a 4-vector
and therefore not Lorentz invariant. However, the Noether charge Q is a Lorentz scalar

so that the norm is Lorentz invariant: | /|| = || ¥||.

Note that not all Noether charges are Lorentz scalars. The total field momentum
Eq. (6.92), for example, is a 4-vector; similarly, the total field angular momentum
Eq. (6.117) is a tensor of rank 2. However, it can be shown that the Noether charges of
internal symmetries (like the U(1) symmetry considered here) are necessarily Lorentz

scalars (™ Coleman-Mandula theorem [90]).

Let us prove Q) = O, in the case where the Noether current j;* has no other Lorentz
index (and the internal group generators commute with the generators of Lorentz

transformations):
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a | We consider an infinitesimal Lorentz transformation.

Coordinates transform according to Eq. (6.78),

1
5B X1 = 5 (77"‘“x’3 — nﬂ"x"‘> , (7.103)
and, as a 4-vector, the components of the current transform in the same way:
. 1 . @) o .
8“’3]# o) (n‘”‘jf — nﬂ“j;"> =j7 (3v8“ﬁx“> ) (7.104)

(Thelabels a of the internal symmetry do not mix under this transformation because
the internal symmetry is assumed to commute with Lorentz transformations.)

The generator of Lorentz transformations acts then according to Eq. (6.81) on the
current field

—iG ji(x) = 8% j1 — (D, )% xV . (7.105)
In the following we suppress the indices o8 whenever possible.

b | Itis easy to check that d,6x" = 0; furthermore, we know that d,,j; = 0 from
the Noether theorem. Together, this allows us to write the action of infinitesimal
Lorentz transformations on the current as a 4-divergence:

—iGjg (x) = (0vj,) 6xM + j; (9,8x") — (3, j5")8x" — ji' (0,6x")  (7.106a)
—— h,o_/
=0 =
=0y (jg 8xM — jl8x") . (7.106b)
Here we used that §j)" = j2(0,8x").

¢ | We finally obtain for the infinitesimal Lorentz transformation of the Noether charge:

—iGQ, = / d*x (—iGj) (7.107a)
= / d* 0, (jrsx® — j28x") (7.107b)
= [ & 8; (jadx® — j8x") (7.107¢)
Gauss’s theorem
— [ dou (jiax® — j28e') =0 (1078

In the last step we used that on the surface d (typically spatial infinity) all fields
vanish (for wavefunctions in L? this is clearly true).

Thus any Noether charge derived from internal symmetries transforms as a Lorentz
scalar. In particular, the Dirac norm || W|| is invariant under Lorentz transformations
of the bispinor fields W(x).

13 Hamiltonian:

i | Since the Dirac equation is first order in time, we can easily bring it into Schrédinger form
and identify the Hamiltonian as the generator of time translations:

Eq. (7.83) < [ihyoat + ihcy'd; — mcz] v =0 (7.108)
Use (y%)2 =1 —

iho, W = [—ihcyoyiai + yomcz] Y (7.109)
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ii | Let us define the new matrices:

, e
B = VO = (]? (1;) , Q= )/O)/’ = ( g ;)i) i=1,2,3 (7.110)

with B2 =1 = cxiz and {o;,a;} = 0 = {o;, B} fori # j, and in particular

gt =p and aj =q;. (7.111)

i! Note that the spatial gamma matrices are anti-Hermitian: (y')T = —y'.

iii | With these matrices we can define the ...

& Dirac Hamiltonian:

Hpiree = —ihca -V +Bme? =ca- p+ pmc? (7.112)
with @ = (a1, a2, @3) and the ¥ momentum operator p = —ihV.
— The Dirac Hamiltonian is Hermitian:
(With respect to the standard inner product on L? ® C*):
Hgm— cat- T+ ptme? =ca- p+ Bme? = Hpirac (7.113)

Here we use that the momentum operator is self-adjoint (Hermitian) for (a dense subset of)
functions in L?(R3, C):

(V159) = / &y (—ihVe) = / B (CihVY)P = (FYld).  (7114)

We used partial integration and lim ¢(X) =0 = lim v (X) for admissible functions.
|%|—>00 |X|—>o00

iv | The Dirac equation then takes the Schrédinger form

ih0;W(x) = Hpirac ¥ (x) (7.115)

In this form its Lorentz covariance is no longer manifest.

v Eq. (7.102) conserved — < Inner product on L? ® C*:

(WD) :=/d3x\1ﬂ‘(z,£)q>(z,7c) with 0] = (¥]9) (7.116)

This inner product is constant under the evolution of the Dirac equation:
d o
Eq. (7.113) & Eq. (7.115) = a (v|®) =0 (7.117)

« This generalizes our previous finding in Eq. (7.102) about the conserved norm.
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 That the inner product is constant is straightforward to show:

%(\m@) = / & [\Iﬂ‘cb + \iﬁcb] (7.1182)
7115 % /d3x |:lIlJr (ﬁDiraccb) — (ﬁDirac‘l’)Jr q’] (7.118b)
7.113 % / FEN [\I’T (ﬁDiracq>> _yf (ﬁDiraCcp)] =0 (7.118¢)

14 | Conclusion:

Let us summarize our findings and compare them to the Klein-Gordon equation:

Klein-Gordon Equation Dirac Equation
0>+ M?>»)p =0 (i —M)¥ =0
Time derivative second order first order
Function space L*(R"3,C) L*R"3,C? ¢ C?)
Wavefunction | Complex scalar field ¢ (x) | Complex bispinor field ¥ (x)
Conserved form | i / & (pF 2 — d7¢2) / d3x \p;f\pz
Positive definite? X 4
Hamiltonian? x /

— What about the eigenenergies and eigenstates of Hpirac?

7.2.1. Free-particle solutions of the Dirac equation

15 | Eq. (7.86): Solutions of the Dirac equation satisfy the Klein-Gordon equation component-wise:

Eq. (7.34)
—— Ansatz:

i ) E N
UEx) = yE(pleTwP¥ with p® === /p2+m2c2>0 (7.119)

Cc

with complex-valued four-component s bispinor
o (Vi 4, 2 2
vE(p) = Wi eC*~C?aC?. (7.120)
R

o Weset p® > 0 for both positive (+) and negative (—) energy/frequency solutions and change
the sign of p in the exponent (to simplify the discussion below).

» Note that px = px* = Et — p - X.
16 Eq. (7.119) in Eq. (7.83) yields:

_ -
(" pu —me)y=(p) = (:l:’;:(f; j_:rig) (z%) =0 (7.121)

with po = pyo* ando* = (1,0%,07,0%) and 6* = (1, —0*, —0”, —0?%).
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17 Mathematical facts (check these!):

« (po)(po) = p? = m?c?

« Eigenvalues of po and pa: p° + |p| — for p® > 0 and m # 0 positive spectrum
— po and pa are invertible and the positive square roots ,/po and /po are Hermitian.
18 <y = /po &F with arbitrary, normalized [(£%)T6% = 1] & spinor £+ € C%:
Eq. (7121) = —mcJpoét + po W}% =0 (7.122)
Use ./po+/po = mc:

yi= i%éi — +.,/p5tt (7123)

— ¥ and Y are now parametrized by the spinor £ € C2 (which is unconstrained!).
The second equation in Eq. (7.121) yields the same solution.
19 Solutions:

Let us adopt the more conventional notation
U u

EF ¢
_ and _ (7.124)
§ gt

and choose the spinor basis €%, n* (s =1, |) with

1 0
etont = (0) and £V, b = (1) : (7.125)

Then linearly independent solutions of the free Dirac equation can be written as:

+ _ (JPOET\ _i .. .
lI!ﬁ,s(x) = ( Jp_éés) e #P*  (positive energy solutions) (7.1262)
——————
us(p)

_ JDPON* \ 4ipy . .
U (x) = ( _ ) e #P¥  (negative energy solutions) (7.126b)
p.s —porn’
| ——
v$(P)

with p* = (p°, p), p® = V/p2 + m2c¢2 > 0and s =1, |.
— Four linearly independent solutions for each 3-momentum p (+and s = 1,2).

You can easily check that Eq. (7.126) form an orthogonal eigenbasis of the Dirac Hamiltonian:

]—}Dirac\lj;'l‘:,s = :I:EI;lI’p“?L’S with spectrum  Ej; = / p2c? + m2c*. (7.127)
Their orthogonality follows with the identities

" (Pt (p) = 2E36, (DI (P) = 2Ez8, W (P)Tvi(-p)=0.  (7129)

— The Dirac equation still has negative-energy solutions. (7.129)
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20 Interpretation:

 The negative energy solutions are not problematic as long as we consider a single particle

(electron) without interactions (this is also why we can apply the Dirac equation to describe
the hydrogen atom, - below). However, in reality the electron couples to a dynamic elec-
tromagnetic field and therefore could emit a photon (thereby lowering its energy). If the
negative energy eigenstates really exist, there is no reason why this process should terminate;
as a consequence, no stable electrons should exist.

Dirac writes in Ref. [91]:

1t is true that in the case of a steady electromagnetic field we can draw a distinction
between those solutions [..] with E positive and those with E negative and may assert
that only the former have a physical meaning (as was actually done when the theory
was applied to the determination of the energy levels of the hydrogen atom), but if a
perturbation is applied to the system it may cause transitions from one kind of state to
the other. In the general case of an arbitrarily varying electromagnetic field we can make
no hard-and-fast separation of the solutions of the wave equation into those referring to
positive and those to negative kinetic energy. Further, in the accurate quantum theory in
which the electromagnetic field also is subjected to quantum laws, transitions can take
place in which the energy of the electron changes from a positive to a negative value even
in the absence of any external field, the surplus energy [..] being spontancously emitted
in the form of radiation. [..] Thus we cannot ignore the negative-energy states without
giving rise to ambiguity in the interpretation of the theory.

Dirac suggested a “fix” for this problem [91]: Because the electron is a fermion, it obeys
the Pauli exclusion principle. Thus one can imagine that (for some reason) all the negative
energy states are already occupied by electrons. The electrons we see can then only occupy
the positive energy states and cannot decay to states of arbitrarily low energy. This construct
is know as the 1 &ole theory because creating a “hole” in this * Dirac sea of electrons with
negative energy can be viewed as an excitation with positive energy. Dirac’s holes are of
course a precursor to what we know today as  antiparticles. (Dirac didn’t think of it this
way, he conjectured that the holes in his sea of electrons are the protons!)

However, Dirac’s interpretation is not how we deal with the negative-energy solutions today:
Within the modern framework of  relativistic quantum field theories, the four single-particle
wave functions are associated (through “second” quantization of the Dirac field and the
construction of a fermionic 1 Fock space) to two particle types, both with positive energy and
two internal spin-J states:

Type Momentum Spin Energy Charge
\IIII:T . fermion +p +1 +Ej +1
IDI‘{ % fermion +p —% +Ej +1 (7.130)
LY antifermion +p -1 +E 3 -1
‘III;’ v antifermion +p + % +Ej -1
Here “Spin” refers to the ¥ spin-polarization quantum number m, = :I:%.

— Take home message:

Relativistic quantum mechanics predicts spzn and antiparticles. (7.131)
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The negative energy solutions (and therefore the existence of antiparticles) are a necessary
feature of relativistic quantum mechanics (more precisely: relativistic quantum field theories,
via the © CPT*theorem).

By contrast, the fact that particles can have an internal angular momentum (spin), and that this
angular momentum can take half-integer values S = 0, % 1, % .
per se: Spin enters quantum mechanics the moment one considers spatial rotations and its
representations on the Hilbert space. Because these can be 1 projective, one is forced to study
the irreducible linear representations of SU(2) - the double cover of the rotation group SO(3)
- which happen to be labeled by the “spin quantum numbers” S = 0, 1,1, 2, .. .. Now, since
the rotation group is a subgroup of the homogeneous Lorentz group, SO(3) ¢ SO™ (1, 3),
the moment a quantum theory is relativistic [i.e., features a representation of SO™ (1, 3)],

spin enters the stage automatically. However, you can describe quantum particles with spin

..1is not a relativistic feature

without making quantum mechanics relativistic.

The Dirac equation applies to all spin-3 fermions. The most prominent example is of course
the electron e~ and its associated antiparticle, the positron e . However, all other elementary
fermions, namely leptons (like the muon/antimuon, the tau/antitau and the neutrinos) and
the six quark/antiquark pairs, are described by the Dirac equation as well.

7.2.2. The relativistic hydrogen atom

21

Dirac equation with a static EM field:

To couple the Dirac field W in a gauge- and covariant way to a static EM field A", we use the same
trick as for the Klein-Gordon equation:

« Minimal coupling Eq. (7.38) —

dut>Dy=0,+iQ4, = F>D=F+i0Ad=y"0,+i0y"A, (7132

For an electronitis Q = —# withe > 0.

—

(P —-MWY =0 (7.133)

In this form, the Dirac equation is manifest Lorentz- and gauge invariant.

We can expand Eq. (7.133) to obtain a less abstract (but more convoluted) expression:

[iy"0,— Qy" A, — M|V =0 (7.134a)
& [iny°0, +ihcy'd; —qy°e + gy  Ai —mc*| ¥ =0 (7.134b)
& [ihat+ihc&-V—q<p+q&-fT—ﬂmc2]\P=0 (7.134¢)

mc

Hereweused O = L, M = %< and 4, = (g, —fT); q is the charge of the particle.

In Schrodinger form the Dirac equation reads then:

ihd, W = [—ihc&-v+q¢—q&-l+ﬁmc2]qf (7.1353)
ihd W = [c&-(ﬁ—%/f)+qgo+,3mcz]\ll (7.135b)
ﬁDirac,A
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22 Choose the Coulomb potential (of the proton)

p(x) = |eT| and A=0 (7.136)
X
and set ¢ = —e (charge of the electron) —
2
ihd, U = [—ihc& .V — % + B mcz] v (7.137)
X

With the ansatz W(z, X) = ¥ (X)e™ #Et one obtains the time-independent eigenvalue problem
2
[—ihc& v % + Bmc? — E] Y(X)=0 with ¢ = (:/;;) cR¥P > C*. (7138)
X
Note that § (unlike ;) is an off-diagonal block matrix that mixes the two spinors ¥4 and _; this
complicates the solution. However, one can solve Eq. (7.138) exactly and compute the eigenvalues
E and eigenstates ¥ (X).

23 Solution: - Eigenenergies (including the rest energy of the electron):

_1
2
2
o
Enj=mc? 1+ 5 (7.139)
. 1 . 1\2 2
|:I’t—]—§+ (]+§) —Ol:|
with
o principal quantum number n = 1,2, ...
o\ total angular momentum quantum number j = %, %, o N — %
aA L
o\ fine-structure constant o ~ K]
The principal quantum number n = 1,2, ... constrains the allowed orbital angular momentum
to/ =0,1,...,n— 1. The allowed #otal angular momentum is then given by the usual rules of

angular momentum addition: |/ — %| <j=<|l+ %| (in integer steps, s = % is the electron spin).

So for example n = 1 allows only for / = 0 and therefore j = 1; this is the 151, orbital and
the ground state of the hydrogen atom. For n = 2 one finds again / = 0 with j = % (the 281,
orbital) but also / = 1 with j = % and j = % (the 2 P14, and 2 Ps/, orbitals - which are no longer
degenerate because E 1/, # E; 35).

This result explains why in the hydrogen spectrum the degeneracy of the 251/, and 2 P, orbitals is
lifted whereas the 2.51/, orbital remains degenerate with the 2 P1/, orbital (¢ fine-structure).

—

The Dirac equation explains the fine-structure of the hydrogen atom ©. (7.140)

Note: You may have encountered the following Hamiltonian for the hydrogen atom with added
relativistic corrections:

- 2 2 3
N p>  é? 1 p? e2 L-S e?h? 1
Heg=———— o) T -4 (7.141)
2m  r  2mc? \2m 2m2c2 r3 8m?2c r
Non-rel. Rel. kinetic energy Spin-orbit coupling Darwin term

hydrogen atom

Relativistic corrections

This Hamiltonian can reproduce the fine-structure as well. It has several drawbacks, though:
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o Itis only an approximation.

o Itis hard to solve (perturbation theory!).

 The Schrédinger equation 140,y = I:Irelw is not manifestly Lorentz covariant.
o The relativistic corrections are ad hoc and seemingly independent of each other.

Luckily, Eq. (7.141) does not have to appear out of thin air; one can show via a complicated derivation
(™ Foldy-Wouthuysen transformation) that it is indeed the non-relativistic limit [with corrections
in order (v/c)*] of the Dirac equation Eq. (7.138) in a Coulomb potential (without the rest energy
mc? of the electron).

7.2.3. The electron g-factor

Besides the fine structure, there is one other “mystery” that the relativistic treatment of the electron
in terms of the Dirac equation finally explains: The non-classical ratio between the electrons internal
magnetic moment and its spin.

24 < Dirac electron in homogeneous magnetic field B=VxA (9 = 0):

Ly

\I.I=’|//e_£ N N b 2
Eq. (7.135b) —— [coz . (p + ‘;’A) + Bmc” — E] v =0 (7.142)
with bispinor
Vo= (WL) - R? > C*. (7.143)
VR

Using Eq. (7.110) we can write this equation in terms of the two spinors:
(—com — E) Y +mc*ygr =0 (7.144a)
(+com — E)yr +mc*yr =0 (7.144b)

Here weused 7 = p + %/Tand introduced 6 = (0,07, 0%).
We can now use one of the two equations to decouple the system:
(co7 + E) (com — E) yr + (mc*)*Yyg = 0 (7.145a)
& PGn)*Yr—[E* — (mc*)?|yr =0 (7.145b)

o . . . . .
25 — Non-relativistic approximation:

We can use E2 — (mc2)? = (E — mc2)(E + mc?) ~ 2mc2E with E = E —mc?tofind a
non-relativistic approximation of Eq. (7.145b):

L(aﬁ)zw,g = Eyg (7.146)
2m

Last, use the Pauli algebra 0’0/ = § + iel/ko* and By = &;j5(d; A;) to show that (67)% <
72+ hf& - B. We end up with the non-relativistic, time-independent Schrodinger equation of a
charged particle in a magnetic field with a spin-dependent Zeeman term:

2m

1 N - 2 h N = ~
[_ (p_i_fA) +_e U.B]WR:EWR (7.147)
c 2mc

Particle in mag. field Zeeman effect
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— Potential energy of electron in magnetic field:

- = h - =
Ennag & —ji- B2 26%0 B (7.148)

26 — Magnetic moment (operator) of the electron:

o eh . IB 3
=g = — S 7.149
He Ime 8e 7 (7.149)
with V spin operator S = %8 and ¥ Bohr magneton up = % and
& Electron g-factor g, = —2. (7.150)

27 | Comments:

o What makes Eq. (7.149) with g, = —2 remarkable is that it is 7ot what one would expect
if the magnetic moment would be caused by a charge flying along a tiny orbit with angular
momentum S. Indeed, a straightforward classical calculation yields for the relation between
magnetic moment and (orbital) angular momentum L:

AL = gL/;—Bi with g7 =-—1. (7.151)

So, quite surprisingly, the Dirac equation predicts that the internal angular momentum (=
spin) produces “twice as much” magnetic moment as one would naively expect.

That this really is the case can be easily measured: Just apply a magnetic field to hydrogen
atoms and observe how strongly their spectral lines split as a function of the magnetic field
strength (™ anomalous Zeeman effect). This effect had already been experimentally observed
at the end of the 19th century [92,93]. Since it was unknown at the time that electrons had
spin, certain line splittings could not be explained (therefore “anomalous”). The fact that
the Dirac equation explains both - the electron spin and its “non-classical” g-factor - is
therefore a remarkable feature of relativistic quantum mechanics.

o If one measures the electron g-factor really, really precisely, one finds [94]
ge = —2.00231930436118(27) . (7.152)

You may notice that this is not exact/y —2 but a tiny bit off. One cannot explain this deviation
with the Dirac equation because it stems from “virtual particles” that modify how the electron
interacts with the EM field (and the Dirac equation is a single-particle wave equation). It is
therefore remarkable that modern theories can explain this deviation perfectly (up to error
bars), but for this one needs the machinery of  relativistic quantum field theory.
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dLecture16 [09.04.24]

8. Limitations of SPECIAL RELATIVITY

8.1. Reminder: SPECIAL RELATIVITY

1| SPECIAL RELATIVITY in a nutshell:

o ¢ Inertial frames [Section 1.1]

There exists a special class of infinitely extended reference frames (equipped with Cartesian
coordinates) in which the law of inertia holds (IN| = the trajectories of free particles are
straight lines that are traversed with constant velocity). All inertial frames move relative to
each other with constant velocities:

o ¢ Einstein’s principle of (special) relativity SR [Section 1.3]

The laws of physics (orange boxes in the sketch below) have the same form in all inertial
systems. This extends Galilei’s principle of relativity which makes this claim only for the
realm of mechanics. The modifier “special” emphasizes that the principle makes only claims
about the special class of inertial systems:

=
T sb
bk
A
*-A /-\ .' -t' :/\
y i
{ . . wal=F
wasF| P=&(2.0:5T) "
.. ]
.
‘. b
o .
) -
Y 4 [ W S—
“ ?J - % g
Eveuts
Obsnivakoy Obseivakiou

We characterized [SR previously as follows: No experiment can distinguish between inertial
[frames. This description can be misleading, so let me prevent any misconceptions: What we
mean is that there is no local physical experiment that you can perform in a sealed box (at rest
in some inertial system) that allows you to figure out in which inertial system your box is at rest.
In this way you probe the form of physical laws (e.g., whether there is an additional Coriolis

term in your equation of motion or not) and thus probe the validity of [SR as formulated
above.
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The statement above does 70t mean that there is no operational way to label specific inertial
systems. For example, we can define the (approximate) inertial frame in which the center of
Earth is at rest and, for comparison, another inertial frame in which the * cosmic microwave
background (CMB) has no dipole structure (the latter has a velocity of roughly 360 km s~1
wrt. the former). Clearly there are experiments to decide whether you are in one or the other
(measure the CMB dipole and/or the velocity of Earth relative to you). This does #oz violate
SR though, because all phenomena you observe in these frames of reference are described
correctly by the same equations (e.g. you can use the same Maxwell equations to describe the
CMB radiation in both inertial frames). This is also why the existence of the global inertial
frame labeled by a CMB without dipole is not in conflict with SPECIAL RELATIVITY. There

is a difference between physical states and physical laws; [SR| only makes claims about the latter.

o ¢ Lorentz transformations [Section 1.5]

The coordinate transformations that map the record of physical events from one inertial
system to another are given by Lorentz transformations (more generally: Poincaré transfor-
mations). (Proper orthochronous) Lorentz transformations form a group SO (1, 3) and are
parametrized by a three-dimensional rotation and a three-dimensional boost velocity. They
linearly map the spacetime coordinates (7, X) of an event in one inertial system K to the
spacetime coordinates (¢, X’) of the same event in another inertial system K.

A pure boost in x-direction has the form:

ct' =y (ct —%x )
( ¢ ) with Lorentz factor

x' = y(x —vxt)

AK 25 K'Y : ) , 1 8.1)
y=7 V1—v2/c?

7=z

o« Constancy of the speed of light 'SL [Section 1.5]

Lorentz transformations are characterized (and differ from Galilei transformations) by the
existence of a finite maximum velocity vm,y. Experience tells us to identify this velocity with
the speed of light c. Lorentz transformations then imply that this maximum velocity is the
same for all initial observers (« relativistic addition of velocities):

Experiments — vmax < 00 < Lorentz transformations (8.2a)

Umax = 00 < Galilei transformations (8.2b)

o & Tensor calculus [Chapter 3 and Chapter 4]

Combining the principle of relativity with the assertion that Lorentz transformations translate
between inertial systems implies that the laws of nature must be expressed as equations
that are forminvariant under Lorentz transformations (¢« Lorentz covariance). The Lorentz
covariance of a theory can be quite tedious to show and even more tedious to ensure when
constructing it from scratch. (Recall Maxwell equations in their conventional form!) This is
why we prefer equations in which the Lorentz covariance is mansfest. To achieve this, we
developed tensor calculus as a “toolbox” to construct Lorentz covariant equations from
Lorentz scalars, vectors, tensors, ....

For example, the equation of motion for a charged particle in an electromagnetic field reads
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and transforms as follows:

M= Auvpv
Inertial system K T o’ Inertial system K
"w I AW B ra o
dpi _tiu v Fy Aaly Fﬂ dpi _qiﬁu —p
_d_L. — ? " ui d-[ = ? v Mi (83)

2 | Problems:
Despite the undeniable success of SPECIAL RELATIVITY, it’s not just sunshine and roses:
« What about gravitation?

In our discussion of SPECIAL RELATIVITY we explicitly avoided the phenomenon of
gravitation (we will see below why). This makes SPECIAL RELATIVITY clearly incomplete
(and special) as a description of nature (which, on very large scales, is dominated by the
gravitational force) and asks for a more general theory.

« Why are inertial coordinate systems special?

SPECIAL RELATIVITY describes physics with respect to a particular class of reference
frames (inertial frames) in a particular class of coordinates (Cartesian coordinates). Only
in these coordinate frames the laws of nature take their “simplest” form and the Lorentz
transformation only translates between these special coordinate systems. However, in our
very general discussion of differential geometry (Chapter 3) we established the notion of
“geometric objects” that are independent of coordinates. We also interpreted coordinates as
mathematical auxiliary structures to label events, and denied their physical existence (“coor-
dinates do not exist”). SPECIAL RELATIVITY does not live up to this rather fundamental
claim with its focus on inertial coordinate systems. Shouldn’t there be a formulation of
physics in which coordinates play no role at all?

« What is the origin of inertia?

Remember Newton’s bucket (p. 13)? It’s punchline was to argue for the existence of an entity
(“absolute space”) which determines whether an object is accelerated or not. SPECIAL
RELATIVITY, of course, disposes of Newton’s absolute space wrt. to which position and
velocity can be measured (no ether!). The existence of such, however, was never implied by
the bucket experiment anyway, which asks about the absolute notion of acceleration. And
SPECIAL RELATIVITY is silent about the origin of inertia and what determines whether the
water in Newton’s bucket is concave or flat (we simply assumed that inertial frames exist, we
neither asked where they come from nor what makes them inertial in the first place). This
situation is clearly unsatisfactory.

3 | Non-problems:
Sometimes one hears that acceleration is a problem for SPECIAL RELATIVITY. This is not so:
« Accelerated motion v/

SPECIAL RELATIVITY of course describes accelerated objects perfectly well. Recall our
concept of 4-acceleration in Section 5.1, the relativistic equation of motion in Eq. (5.6), and
the validity of the proper time integral for arbitrary time-like trajectories in Eq. (2.25). Note
that these equations are only valid in inertial frames, though.

o Accelerated observers v/

While our equations were given in inertial systems (where, according to Einstein’s principle
of relativity, the laws of physics take the same and simplest form), SPECIAL RELATIVITY
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can describe the physics in accelerated non-inertial frames as well (e.g. using the concept of
instantaneous rest frames). In such non-inertial coordinate systems the physical laws do ot
take their simplest forms and can look messy (in particular, one cannot Lorentz transform
into these frames). This, however, does not mean that we cannot describe what happens in
such systems. As an example recall the relativistic rocket of @ Problemset 6. (For details see
Chapter 6 in MISNER et al. [2] and also Einstein’s original work [95].)

8.2. The special role of gravity

Let us now focus on the problem of incorporating gravity into SPECIAL RELATIVITY. It is important
to understand why the gravitational force poses a fundamental problem for the framework of SPECIAL

RELATIVITY (and is not just a technical inconvenience).

Note on nomenclature:

In English, there are two terms with slightly different meaning (if we take Merriam-Webster as a reference):

Gravity: the gravitational attraction of the mass of the Earth, the moon, or a planet for bodies at
or near its surface

Gravitation: a force manifested by acceleration toward each other of two free material particles or
bodies or of radiant-energy quanta

This distinction has no counterpart in German as far as I can tell (perhaps “Schwerkraft” vs. “Gravita-
tion”?). Given that even the English literature does not seem to be consistent, I will use these two terms

interchangeably. Their context will suffice to establish semantic clarity.

4 | Recall Newton’s law of universal gravitation:

< Mass distribution p(X) —
V2¢(X) = 4nGp(X) —  Gravitational potential ¢ (¥) (8.4)

G =~ 6.674301 x 107! m3s™2 /kg: Gravitational constant

Please appreciate the smallness of G (and therefore the weakness of gravity) as compared
to the human-scale units in which it is given. Gravity is, if compared to the other three
fundamental forces, by far (really really really far) the weakest force. It is a fundamental
unsolved problem of physics why this is so.

— Equation of motion of test mass (e.g. a satellite):

mir = —mgVe(F) (8.5)
my: inertial mass
mg: gravitational mass

We will discuss the relation of m and mg later (Section 9.1).

Example: Static point mass Mg > mg as source in origin (e.g. Earth):

GMg

- 32 Mg
o(X) = —ﬁ = myr=IF= —Gmr
X

8.6)
r2 (
If the source is dynamic as well, 7 is the relative distance vector between the two masses and
mp must be replaced by the reduced mass of the two bodies.

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART

Institute for
i:!oret'cal
] Physics

PAGE

210



Institute for
iiagret'cal

GR » LIMITATIONS OF SPECIAL RELATIVITY hyslcs

i Observation: Equations [especially Eq. (8.4)] are not Lorentz covariant!
You can check that they are « Galilei invariant, recall Eq. (1.18).

This is no surprise: We already know from our discussions in Section 6.4 that in RELATIVITY,
classical forces can only act locally, and not at a distance. Interactions between distant objects
must be mediated by dynamical degrees of freedom (a “field”) to obey the speed limit for
information propagation imposed by Lorentz symmetry. But Newton’s gravitational potential
¢ is static and not dynamic!

5 Problem: “Action at a distance” (Gravitational force acts instantaneously and has no dynamics.)
Isaac Newton writes in a letter to Bentley in 1692 [96]:

1t is inconceivable, that inanimate brute Matter should, without the Mediation of something
else, which is not material, operate upon, and affect other Matter without mutual Contact,
as it must be, if Gravitation in the Sense of Epicurus, be essential and inherent in it. And
this is one Reason why I desired you should not ascribe innate Gravity to me. That Gravity
should be innate, inherent and essential to Matter, so that one Body may act upon another at
a Distance through a Vacuum, without the Mediation of any thing else, by and through which
their Action and Force may be conveyed from one to another, is to me so great an Absurdity,
that I believe no Man who has in philosophical Matters a competent Faculty of thinking, can
ever fall into it. Gravity must be caused by an Agent acting constantly according to certain
Laws; but whether this Agent be material or immaterial, I have left to the Confederation of
my Readers.

Thus even Newton himself was not entirely satisfied with his law of universal gravitation (which
describes an action at a distance) and anticipated some entity that mediates the force.

6 First try: Make gravitational potential a dynamic field:

Poisson equation Eq. (8.4) —

1
Wave equation: 3% (¢, X) = (6—28% - Vz) ¢ = —4nG p(t,X) (8.7)

— Gravity propagates with the speed of light ©

% Problems:

For a detailed study of a fully specified scalar theory of gravity: © Problemset 1 (also Exercise 7.1
in MISNER et al. [2]). See also Ref. [97].

« Electromagnetic field cannot couple to gravity — No bending of light ®

Today it is a well tested fact that light follows a curved trajectory in strong gravitational fields
(= later). Thus any theory that does not couple the EM field to gravity must be incorrect.

Here is a quick-and-dirty explanation why a theory of the form Eqg. (8.7) fails to couple to the
electromagnetic field in a relativistic setting:

Since ¢ is assumed to be a scalar field, for Eq. (8.7) to be Lorentz covariant, p must be a
scalar as well. In a relativistic theory, energy and (inertial) mass are equivalent (Eq = mc?).
If we assume that gravitational mass and inertial mass are equivalent (> /ater), this implies
that energy (density) must be a source of gravity. The problem is that the energy (density)
(of any theory) is the 00-component of the « energy-momentum tensor T°° (this is the charge
density associated to the Noether current that comes from translation symmetry in time); in
particular, the energy density is 7ot a scalar and therefore cannot be used as a source on the
right-hand side of Eq. (8.7). The only scalar we can construct from the energy-momentum
tensor is the # Laue scalar T = T", = n,,T"", i.e., the trace of the EMT. Thus a
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simplistic but fully Lorentz covariant form of scalar gravity is
Pp=-2ET. (8.8)

(For a complete theory one also needs a Lorentz covariant analog of Eq. (8.5) which deter-
mines the motion of matter in dependence of the gravitational field ¢. This equation is not
relevant for the following argument.)

If the EM field couples to gravity, it must also be a source of gravity. This coupling is then
described by the EMT of Maxwell theory Eq. (6.110) (in its symmetric, gauge-invariant form).
The problem is that the trace of this particular EMT vanishes identically, T, = (Tem)” =0
(check this!), so that the scalar gravitational field and the EM field do not “feel” each other.
In particular, there is no bending of light in the vicinity of massive bodies.

« Wrong value for perihelion precession (even with a wrong sign) ®

The 1 perihelion precession of Mercury deviates measurably from its Newtonian value (which is
caused by perturbations by other planets). For Einstein, this anomaly served as a “litmus test”
on his quest to generalize SPECIAL RELATIVITY, and his first application of GENERAL
RELATIVITY was the successful explanation of Mercury’s anomalous perihelion precession
[13] (» later). Thus any theory that does not predict the correct value for the perihelion
precession cannot be correct.
Historically, this first approach [Eq. (8.7)] to patch up Newton’s theory and make it consistent with
SPECIAL RELATIVITY goes back to the Finnish physicist GUNNAR NORDSTROM. He quickly
dismissed Eq. (8.7) because of fundamental problems (especially its linearity, » below). He then
proposed another (non-linear) scalar theory of gravity (™ Nordstrom’s theory of gravitation) which
circumvented the most glaring issues but still failed to predict the bending of light (for the same
fundamental reason sketched above) and produced the wrong value for the perihelion precession
(even with a wrong sign!). Nonetheless, the theory merits consideration because it led EINSTEIN
and ADRIAAN FOKKER to a groundbreaking realization [98]: Properly reformulated, the scalar
field could be interpreted as a local “stretching” of the Minkowski metric. For the first time there
was a clear formal link between a relativistic theory of gravity and a geometric deformation of
spacetime, where the shape of the latter is determined by the distribution of mass and energy.

For a historical account of Nordstrom’s gravity and its role in the genesis of GENERAL RELATIV-
ITY see Refs. [99,100].

7 Second try: Make potential a vector field:

Since scalar gravity fails to match observations, a natural next step would be to consider a vector field
and treat gravity analogous to Maxwell theory. This is also reasonable insofar as the gravitational
potential of a point mass in Newton’s theory and the Coulomb potential of a point charge in
Maxwell’s theory share the same form. For example, we can take Eq. (6.121) as a blueprint and
propose an analogous Lagrangian for a vector gravitational field:

Eq. (6.121) — < Vector field ¢#* & particle with trajectory y*(1):

7 +1 — m )
Scly, @] 2 m/d“x GuwG" —mc/ ,/y“yud)\—?/gbuy“dk (8.9)

Gravitational field Relativistic particle Coupling
with “charge” m

with y# = % and the “gravitational field strength tensor” G, := 0,0y — dvey.

 Note the sign difference compared to Eq. (6.121)!
This ensures that equal charges (= masses) aztract each other.
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o The Lagrangian for the relativistic particle differs from the one given in Exercise 7.2 in
MISNER et al. [2]; the two are equivalent and lead to the same equations of motion.

% Results:

For details see Exercise 7.2 in MISNER et al. [2]; see also Ref. [97].
« No bending of light ®
« Wrong perihelion precession ®
« Gravitational waves have negative energy ®

8 Third try: Make potential a tensor field:

At that point, desperation starts to kick in. But since scalar and vector fields failed miserably, we
have no other choice: add another index and consider a tensor field. Interestingly, this makes it
rather straightforward to write down a Lorentz-covariant modification of Eq. (8.8) [or Eq. (8.4)]
where we no longer must butcher the EMT by taking a trace:

< Symmetric tensor field p*¥ = ¢pVH:

167G
o4

2P’ = — THY (8.10)

The EMT on the right is the symmetric BRT of whatever matter occupies space (Section 6.3.2).

% Results:
For details: © Problemset 1 (also Exercise 7.3 in MISNER et al. [2])
« Light is bent around gravitational potentials ©
« Gravitational waves have positive energy ©
« Describes perihelion precession not correctly ©®
« Theory not self-consistent ©®
Notes:

« Eq. (8.10) will describe the linearized version of the correct field equations of GENERAL
RELATIVITY (the > Einstein field equations) with ¢*" essentially the (small) deviation of
the metric tensor from flat Minkowski space.

« That the linear tensor theory of gravity Eq. (8.10) is not self-consistent follows if one com-
pletes the theory with dynamic matter (which is the source of the gravitational field, but also
influenced by the latter). Then one can show that this system of differential equations as no
solution.

« As we will discuss below, the deficiency of this theory is its /inearity (in the gravitational
field); this is the root cause for its inconsistency and wrong predictions. And here comes a
fascinating insight: One can show [101] that if one systematically fixes the inconsistencies
of this theory, it becomes inevitably non-linear and one eventually ends up with the correct
equations of GENERAL RELATIVITY (which we will find much later via a different route)!

9 | So far, all our tentative theories of relativistic gravity failed (none of them describe observations
correctly and they even suffer from intrinsic inconsistencies). There is a simple argument why this
must be so, and why the correct theory must be more complicated:

i = The source (= charge) of gravity is, by definition, the gravitational mass mg.

This is a physically vacuous statement.
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A relativistic theory of gravity must be a field theory with a dynamical field.
This is necessary so that gravity does not propagate faster than the speed of light.
Since the field is dynamical, it has a non-vanishing energy density.

Recall that energy is the Noether charge of time translations and therefore generates the
time evolution (think of the Hamiltonian in quantum mechanics).

As a relativistic theory it must obey the mass-energy equivalence: Eq = myc?.
We write m to emphasize that SPECIAL RELATIVITY only knows about nertial mass.
Experiments tell us that inertial and gravitational mass are the same: m; = mg.
We will discuss this, and the closely related » equsvalence principle, in detail below.
Thus a gravitational field has a non-vanishing density of gravitational mass mg.

Please appreciate how strange this is! If an analog statement were true for Maxwell theory
(which it is not), electromagnetic waves would be electrically charged, and other electromag-
netic waves could scatter off them!

Excitations of the gravitational field are sources of the gravitational field.

This means that a relativistic theory of gravity must allow for self-interaction. In particular,
it cannot feature a ¥ superposition principle and the field equations must be non-linear.

The field theory of gravity must be non-linear and allow for self-interactions.

All of the above theories are linear in the gravitational field; hence they are bound to fail!

This argument also clarifies the fundamental difference between relativistic theories of gravity
and electrodynamics (both of which are classical field theories that mediate forces): The EM
field is also dynamical and carries energy, hence, via the mass-energy equivalence and the
equivalence of inertial and heavy mass, it is a source of gravity. But the mass/energy carried
by the EM field is not the source of the EM field (electrical charge is). Thus Maxwell theory
does not close the “vicious circle” from above and can be both relativistic and linear.

If you want an even more boiled down version:
Gravity is special in RELATIVITY, because SPECIAL RELATIVITY has something to say

about (inertial) mass (Eq = mjc?) and the latter is - via the > equévalence principle - the
source of gravity.
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dLecture17 [16.04.24]

10 | Yet another problem:

Besides the formal complications encountered above, there are also less formal yet fundamental
lines of reasoning that suggest that the phenomenon of gravitation and the premises of SPECIAL
RELATIVITY are incompatible:

i = Experimental facts:
« Gravity cannot be shielded.
Contrary to all other forces (which have negative charges), there is no negative mass.
o Gravity is typically snhomogeneous.
In a gravitationally homogeneous universe there are no planets and we wouldn’t exist.
« In free fall, gravity is exactly countered by the inertial force.
We will discuss this in more detail later (= equivalence principle).

ii | For the machinery of SPECIAL RELATIVITY to work, we need inertial frames.
Can we find inertial frames in the presence of gravity?

Thought experiment:

a | <t Laboratory on the surface of Earth:

Yy

-

SOOI S S S

— Not an inertial system ®

The problem is that we cannot simply shroud our lab by some magic material that
shields the gravitational force. By contrast, this can be done for the electromagnetic
field (v Faraday cage, ™ Mu-metal). Note that this is not a technical problem, it is a
fundamental one!

b <t Interior of orbital space station:

/\

%6

— Approximate inertial system ©

The space station is equivalent to a free falling laboratory, where the gravitational force
is canceled exactly by inertia. What makes a space station so convenient is that it also
has orbital velocity so that it “falls around Earth” and therefore can be used much longer
than a free falling lab that eventually crashes on the surface.
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This is a situation where it actually makes sense to use the terms “gravity” and “gravita-
tion” differently: In the space station, there is no gravity (the astronauts float), but there
is a gravitational field! (The latter is just canceled by the inertial force due to free fall.)
This situation is different from being in a spaceship far away from Earth in interstellar
space where no gravitational forces can be measured. (Although these two situations
cannot be distinguished from within a small space station/spaceship, - later.)

< Very large orbital space station:

A

.A{W Last

o
Cewder of Gaurs

%

L}
) —{oo clow
\|./

UUUW‘)

1 Tidal forces — Not an inertial system ©

When we extend the size of the space station, the inhomogeneity of the gravitational
acceleration becomes noticeable and the “inertial test” [IN fails. Inhomogeneous gravi-
tational fields therefore constrain the size (both in space and time) of reference systems
that satisfy the properties of an inertial system. Hence our assumption that inertial
systems cover all of spacetime (and therefore can describe arbitrary physical phenomena,
not just local ones) is invalidated by the presence of inhomogeneous gravitational fields.

Note that there is another way to detect the inhomogeneous gravitational field and make
the system non-inertial: Stay in the small spacecraft and wait longer. At some point you
will notice that the two balls drift apart—even when they are only centimeters apart.
This shows that the approximate inertial system really must be small in space and time.

< Two small orbital space stations:

— Local inertial systems accelerated wrt. each other ®

If you imagine that these small inertial systems overlap on their boundaries, you could
ask how to transform the coordinates of an event in this overlap from one of these
systems into the other. Because these systems are accelerated wrt. each other, this
transformation cannot be linear, in particular it cannot be a Lorentz transformation!
There seems to be something missing; what determines this transformation?
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i | This thought experiment leads us to the following (troubling) conclusion:

Inertial systems can only exist /ocally in an inhomogeneous gravitational field.

How to transform between these local inertial systems is unclear (- /azer).

— Extended phenomena cannot be described by SPECIAL RELATIVITY!

“Extended” here means “on the scale of gravitational inhomogeneities.”

11 | In a nutshell:

SPECIAL RELATIVITY cannot...

o ... describe the gravitational field itself.

o ... describe physics in inhomogeneous gravitational fields.

How to fix this? — GENERAL RELATIVITY

8.3. 1 The gravitational redshift and curved spacetime

Quite surprisingly, one can derive some predictions of GENERAL RELATIVITY without knowledge of
the detailed theory. One is the - gravitational redshift of light, which, again without the usage of heavy
math, implies that GENERAL RELATIVITY must describe a curved spacetime.

The following is based on Sections 7.2 and 7.3 of MISNER ef al. [2] and Section 2.1 of CARROLL [102].

1 Gravitational redshift:

EINSTEIN already concluded in 1908 that light leaving a gravitational potential must be red-
shifted [95]. The following he showed in 1911 [103], that is, years before he finalized GENERAL
RELATIVITY.

i <t Particle of rest mass m in (homogeneous) gravitational potential:

In the following, we assume that /nertial and gravitational mass are equal: m; = m = mg.

Time

>

©® Crenkou
Poavtiele g \4 Process

@ A . >‘M+Em?

] A \
h \ \
v

@ : ']. \.\'\
/A l..\'w\H"M
\|/ ‘3 o 'P\out?

SIS Sl S S

)
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i | Step 1: Drop the particle by # — New total energy:
Ewot = mic? + mggh = m(c? + gh) (8.11)

i | Step 2: Assume electron annihilates into a photon with energy:

E| = Eo (8.12)

iv | Step 3: Let the photon propagate upwards by 7 — New photon energy E:
« Possibility 1: Photon is nor affected by gravity — E4 = E| > mc? X

This immediately leads to a violation of energy conservation because the photon can
now be used to recreate the particle plus some kinetic energy that wasn’t there before.

« Possibility 2: Photon is redshifted by gravitational field such that E4 = mc? v/

This is the only possibility consistent with energy conservation, i.e., the photon must
loose energy just as a particle would when climbing the potential.

v | Thus we find for the photon energies:
Er 2 gh
E¢=C—2(c +gh)=E¢(1+C—2 (8.13)
vi | <Ud% Redshift parameter z :== AL/ = (Ay — L)) /A,
The redshift z measures the relative change in wavelength A wrt. a reference wavelength A.

— Gravitational redshift: (Use the photon energy £ = hv = he/A.)

 E h
I4z="t=b o4 8

N = (8.14)

Using the ™ MofSbauer effect, ROBERT POUND and GLEN REBKA verified this prediction
in 1960 with their famous 1 Pound-Rebka experiment [104,105].

2 | Schild’s argument:

The following reasoning goes back to ALFRED SCHILD (see references in [2]) and demonstrates
that a relativistic theory of gravity cannot be formulated on a flat Minkowski spacetime:
i Assumptions:

 There exists an extended inertial frame K attached to Earth’s center.
(We relax our definition and allow particles to be accelerated near earth.)

o In this frame, proper time and lengths are given by the Minkowski metric.

« There is some gravitational field (of unspecified nature) that matches observations.
(This implies the gravitational redshift derived above.)

i | Thought experiment:

a <t 'Two observers O 4 at height z 4 with z4 =z + hatrestin K
b Observer O emits a light signal with wavelength A,
— Time for one wavelength: Azy =1 /c

Note that since both observers are at rest in K, their proper times and the coordinate
time of K coincide.
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¢ | Observer Oy receives the signal with wavelength A4
— Time for one wavelength: Aty = 14/c
d | Redshift — AT > X¢ — AIT > Al¢
e | Butin the Minkowski diagram of the (imagined) global inertial frame, the experiment
looks as follows:
A
2
Qf1\
L —]
24 / /_
) / /
e/
aty
|9 ¢
S LIS
— At = At 1 4
Note that the only important aspect for the contradiction is that the two world lines
of the start and end of one wavelength are congruent in Minkowski space. That is, we
do not need to know how gravity affects the trajectory of light (maybe it is bent). The
only important thing is that both trajectories are bent in the same way, which is to be
expected in a static scenario where the gravitational field does not change.
iii | Conclusion:
In the presence of gravity, the trajectories of light signals in spacetime must be congruent
(if they are straight: parallel)—but at the same time their distance in time direction must
change! This is impossible in the flat (pseudo-)Euclidean geometry of Minkowski space; but
it Zs possible in a curved spacetime. As we will see > /ater, the tendency of initially parallel
“straight lines” (- geodesics) to approach or recede from another is exactly what characterizes
a curved space(time):
— Spacetime must be curved!
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3 | We can summarize:

A Lorentz covariant theory of gravity cannot be formulated on Minkowski space.

This already suggests that we will need the more general machinery of differential geometry,
introduced in Chapter 3, to model spacetime not as flat Minkowski space, but as a more general,
curved pseudo-Riemannian manifold.
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9.

Conceptual Foundations

9.1. Einstein’s equivalence principle

The wording of the equivalence priciples are paraphrased from CARROLL [102].

1

Remember:

There are two concepts of mass in Newtonian physics:

Inertial mass m;:  F = myd (9.1)

Gravitational mass mg: F = —mgV¢ (9.1b)

Strictly speaking, two gravitational masses must be conceptually distinguished: The passive gravita-
tional mass is the charge that couples to the gravitational field via Eq. (9.1b). The active gravitational
mass is the source of the gravitational potential ¢ = —GMg/r. However, given that Newton’s third
law is valid (action equals reaction), the situation is completely symmetric and these two masses
can be identified. Thus, in the following we only distinguish between inertial and gravitational
mass.

— Gravitational acceleration:
mg GM [«
mp  r2
——
g

ag = 9.2)

It has been long known (since Galileo Galilei) that the gravitational acceleration is independent of
the material of the body (if one can ignore air resistance): A/l bodies fall at the same rate.

Experience:

m . ) m
—S —const —  Choose units appropriately: =S = (9.3)
mp mi

In classical mechanics, this is just an observation; it is neither explained nor necessary for its
consistency.

The Eotvos experiment [106]: (See also the later publication [107].)

While there have been earlier experiments that quantitatively tested the equivalence of inertial
and gravitational mass, the experiment by Hungarian physicist ROLAND EGTvOs made huge im-
provements in precision. The experiment was used by Einstein as an argument for his - equivalence
principle.
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< Torsion balance with two different test bodies: (Details: ® Problemset 1)

Ccmln'{u’.l
e qe‘u\e-- Hoyy

A Oy
g X
S &
S Li"l‘ Seurce 17” Tz(m-fu
o
© Problemset 1 —
/
m m
Torque: t©~ mgax! e —,I (9.42)
N—— \ MG mG
#0
mp mj
t=0 < — = —; =const (9.4b)
mg mg
~—— ——
Material A Material B
— Result by EOTVOs [106]:
dm mp—m _
ToTTTC o 3x107? 9.5)

m my

The latest (2022) and most precise results testing the equivalence of inertial and gravitational mass
come frome the satellite-based MICROSCOPE experiment [108]; it improved the upper bound
for a violation of the equivalence to §m/m < 107!5. Recent experiments also demonstrated the
equivalence for antimatter [109].

— Experimental fact:

Inertial mass and gravitational mass are proportional (w.lo.g. m; = mg). (9.6)

This trivial sounding assertion (when have you ever distinguished between these two masses?) has
profound consequences: Recall that SPECIAL RELATIVITY is concerned with the concept of
inertia (e.g. by using inertial systems); in particular, the (rest) mass that shows up in the mass-energy
equivalence Eg = mc? is the inertial mass m; of the system. The equivalence above now links this
mass to the gravitational mass, and therefore asserts the the inert bodies of SPECIAL RELATIVITY
must be affected by (and be sources of ) gravity. But SPECIAL RELATIVITY had nothing to say
about gravity! Quite to the contrary: as discussed in Section 8.2, the theory cannot accomodate
gravity in a consistent way.

3 | Classical mechanics does not explain Eq. (9.6). However, if we take Eq. (9.6) for granted, a
homogeneous gravitational field vanishes in an accelerated frame:

<C N particles of (inertial = gravitational) mass my, in gravitational field:

dz)_ék - = - - .
m ?= mrg +ZFkl(xk—Xl) withk =1,...,N. 9.7)
t
" Gravity I#k
Inertia
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< Coordinate transformation into free-falling frame:

-

"=t and X, =X — %gtz. (9.8)
This coordinate transformation is non-linear, in particular, it is not a Galilei transformation!
> Equations of motion in the free-falling coordinate system:
d2%,
dr’?

=3 Fu( —%) withk=1,....N. (9.9)
1#k

— No graviy in the free-falling frame!

mg

This matches our experience and can be illustrated with the following though experiment:

a=o

>

PEY

]

e N
SILL SISO S s ’ID ﬂ'|

| 9,

R
4 Caveat: Only true for somogeneous gravitational fields: my g.
What about inhomogeneous gravitational fields?

Note that the inhomogeneity of gravity is essential for planets and stars to form; it is the root cause
for complexity in the world that is neccessary for life to exist. This is not a slight inconvenience we

can sweep under the rug!

— Small enough regions look homogeneous:

\}H/‘/;/
A=
SN

— Gravity can be compensated Jocally in an accelerated frame.

i! This implies that there is no transformation to a global free-falling reference frame in which
inhomogeneous gravitational fields vanish. Thus acceleration and gravity are only equivalent locally;
globally, they are physically distinct. In particular, this means that the phenomenon of gravity is
not just “acceleration in disguise.” As mentioned previously, accelerated coordinate systems (and
bodies) are something that SPECIAL RELATIVITY can handle. If gravity and acceleration were
equivalent globally, SPECIAL RELATIVITY would be sufficient to describe gravity and there was
no need for GENERAL RELATIVITY.
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5 | Given all these facts, it is reasonable to proclaim the following principle:

§ Postulate 1: Weak equivalence principle Wer (Univesality of free fall)

In small enough regions of spacetime, the motion of freely-falling particles in a
gravitational field and free particles in a uniformly accelerated frame are the same.
(This formulation formalizes the idea sketched in the upper panel of the sketch above.)
Equivalently:

For every event, there is a local reference frame, covering small enough regions of
spacetime in its vicinity, such that gravity has no effect on the motion of arbitrary
particles in this frame and the law of inertia holds.

(This formulation formalizes the idea sketched in the lower panel of the sketch above.)

6 | Einstein’s generalization:

The local equivalence of gravity and accelerated frames is true for a// physical phenomena
(and not only classical mechanics).

Einstein was aware of the E6tvos experiment and was convinced that the equivalence of inertial
and gravitational mass hinted at a deep relationship between inertia (acceleration) and gravitation.
He wrote in 1907 [95] (highlights are mine):

Bisher haben wir das Prinzip der Relativitdt, [.. |, nur auf beschleunigungsfreie Bezugssysteme
angewendet. Ist es denkbar, dafS das Prinzip der Relativitdt auch fiir Systeme gilt, welche
relativ zueinander beschleunigt sind? [..]

Wir betrachten zwei Bewegungssysteme X1 und X,. X1 sei in Richtung seiner X -Achse
beschleunigt, und es sei y die (zeitlich konstante) GrifSe dieser Beschleunigung. %, sei
ruhend es befinde sich aber in einem homogenen Gravitationsfelde, das allen Gegenstinden
die Beschleunigung —y in Richtung der X -Achse erteilt.

Sowert wir wissen, unterscheiden sich die physikaliscben Gesetze in bezug auf X1 nicht von
denjenigen in bezug auf Yo, es liegt dies daran, daf? alle Kérper im Gravitationsfelde
gleich beschleunigt werden. Wir haben daher bei dem gegenwdrtigen Stande unserer
Erfahrung keinen Anlafl zu der Annahme, dafS sich die Systeme ¥ und X, in irgen-
deiner Beziehung voneinander unterscheiden, und wollen daher im folgenden die vollige
physikalische Gleichwertigkeit von Gravitationsfeld und entsprechender Beschleuni-
gung des Bezugssystems annehmen.
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Pictorially, Einstein claims that any fype of local experiment cannot distinguish gravity from accel-
eration (here, for example, some quantum mechanical scattering process):

- %
%

| 1%
SI0L S SES S SS s || D ﬂ'|

a=o

E

VA2

7 | We can formalize this as follows:

§ Postulate 2: Einstein’s equivalence principle EEP

In small enough regions of spacetime, the laws of physics reduce to those of
SPECIAL RELATIVITY: It is impossible to detect the existence of a gravitational
field by means of local (non-gravitational) experiments.

Equivalently:

For every event, there is a local reference frame, covering small enough regions of
spacetime in its vicinity, such that gravity has no effect on any (non-gravitational)
experiment in this frame and the law of inertia holds.

o The [EEP implies the [WEP.

 Excluding non-gravitational experiments means that the intrinsic gravitational energy of our
experiment does not contribute significantly to its mass (see [SEP. below). Note that we do not
require that gravitational experiments (using large masses) can locally distinguish between
gravity and acceleration; the [WEP| does simply not constraint such experiments.

« Itis important to appreciate the profound implications of this principle for doing physics
in a gravitational field: It asserts that as long as your laboratory is small (compared to the
inhomogeneties of the gravitational field) and free-falling (e.g. a space station in orbit),
SPECIAL RELATIVITY is sufficient to describe al/ experiments that you can conduct in
this lab. In particular, the fact that SPECIAL RELATIVITY cannot describe gravity is not
important because in the free-falling lab there is none. This means that everything we
discussed last term remains valid—and therefore useful—/ocally. Thus gravity does not
completely invalidate SPECIAL RELATIVITY, it only restricts its domain of validity to local,
free-falling inertial frames. I hope you are happy to hear that!

» More precisely, for every event (point in spacetime) there is an equsvalence class of local
inertial frames (related by boosts), equiped with inertial coordinate systems (related by trans-
lations and rotations), in all of which SPECIAL RELATIVITY holds good. The coordinate
transformations between these systems are given by Lorentz transformations. (You can check
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the existence of such frames in our Newtonian calculation above by adding a term vz to the
transformation of the position coordinates.)

* Inour mathematical framework of differential geometry, the equivalence class of local inertial
systems at a spacetime point will be identified with the « tangent space of the spacetime
manifold at that point.

8  Concerning gravitational laws of physics:

In our defintion of the [EEP, we excluded experiments that depend on the gravitational interaction
itself (e.g., use objects with considerable intrinsic gravitational energy). This exclusion follows
SCHRODER [3], whereas other authors like CARROLL [102] include the (unkown) gravitational
laws of physics in the [EEP..

For us, it makes then sense to define an extension of the [EEP' as follows:

§ Postulate 3: Strong equivalence principle |SEP

The Eep is valid for all laws of physics, including the gravitational laws.

e GENERAL RELATIVITY satisfies the [SEP. (and thereby the [EEP| and the [WEP)).

 The reason to separate the [EEP! from the [SEP is that alternatives to GENERAL RELATIVITY
can satisfy the [EEP. (and the WEP) but vio/ate the [SEP.. This alternatives can be metric theories
like GENERAL RELATIVITY with additional fields; see Ref. [110] for details.

o In particular, the [SEP. requires that the universality of free fall (WEP') also holds for large
bodies like planets (not just small test particles) with significant amounts of gravitational
self-energy. More precisely, the [SEP| demands that the rest mass Egray/c? that comes from
the gravitational self-energy Egr,, accelerates just like any other rest mass in an external
gravitational field.

Note that the validity of the [SEP| cannot be deduced from typical experiments that test the
WEP. because these experiments use small test masses with a gravitational self-energy that is
way too small to detect any violation of the [SEP| (because gravity is such a weak force). One
needs to use planet-sized objects to draw conclusions about the [SEP| (- next).

» Using reflectors on the moon (left by Apollo 11 in 1969), lunar laser ranging (LLR) can be
used to experimentally test the [SEP| since the fractions of gravitational self-energy of moon

and earth are different enough to modify moon’s orbit measurably if the [SEP| was violated.

To date there is no evidence of such a violation to high precision [111,112], hence we will
assume that the [SEP holds.

9 | If SPECIAL RELATIVITY explains everything you can do in a local, free-falling laboratory, at
which point does gravity enter the picture? Well, the hitch is that not all physical processes can be
restricted to a single, local inertial frame:
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< Meteroid traversing the inhomogeneous gravitational field of earth:
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How to model the trajectory?

Imagine you start in a local inertial system where you know the initial data (position, velocity) of
the meteroid. Since SPECIAL RELATIVITY is valid in this small patch, you can use the known
equations of relativistic mechanics to compute the trajectory of the meteroid. However, at some
point, the meteroid will leave the local inertial system and enter another one. To proceed with your
application of relativistic mechanics, you need to know the coordinate transformation that maps

the coordinates of the final position and velocity in the first inertial system to the coordinates of
the next.

But a priori these inertial system are unrelated, in particular, they can be accelerated with respect to
one another (recall the two small space stations in Section 8.2). To proceed with your application
of relativistic mechanics, you need this coordinate transformation! And this is where gravity hides:
The gravitational field (here generated by earth) and the pattern of local coordinate transformations
are one and the same thing! This is what is meant by gravity becoming a geometric property of spacetime.

—

The gravitational field is the (dynamical) structure that determines which local

frames of reference are inertial or, equivalently, how to transform from one local
inertial frame to the next.
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dLecture18 [23.04.24]

9.2. General relativity and covariance, background independence

The equivalence principle [EEP| is the foundation of GENERAL RELATIVITY; it motivates both the
metrization of gravity (Section 9.4 and ??) and the minimal coupling of matter to gravity (??). How-
ever, there are additional principles that are conceptually important to understand and were historically
important for the genesis of GENERAL RELATIVITY as well:

10  Motivation:

« No global inertial systems anymore — More general coordinate charts needed!

As we have seen, the description of gravity forces us to give up the restriction to formulate
physical models within the distinguished family of infinitely extended inertial coordinate
systems. Hence we must formulate our physical theories in a way that is valid for arbitrary
coordinate charts, and allows for arbitrary coordinate transformations between them.

Einstein was not satisfied with the distinguished role of inertial systems in SPECIAL RELA-
TIVITY. After all, RELATIVITY is all about the relativity of states of motion, i.e., only motion
of systems with respect to one another are of physical significance - and no class of states
of motion should be distinguished. SPECIAL RELATIVITY clearly does not live up to this
rigorous form of relativity as it singles out inertial frames as special. Einstein’s ultimate goal
was to make all states of motion (including accelerated motion) “equivalent.” GENERAL
RELATIVITY does not achieve this goal! Even in GENERAL RELATIVITY, inertial motion is
physically distinct from accelerated motion; the new thing is that mass and energy determine
which states of motion are inertial.

We are therefore in the strange (and confusing) situation, that Einstein’s original motivation
to seek out equations that have “the same form” in all coordinate systems does not achieve
its goal, but nevertheless is the correct way forward (see » next point). We will also see
that “having the same form” means something different in SPECIAL RELATIVITY than in
GENERAL RELATIVITY because the former is formulated on a fixed background (Minkowski
space) and the latter not (= background independence) - and this changes what it means for two
equations to have “the same form.” The situation is quite convoluted and we can disentangle
it not until the end of this course.

 Chapter 3: Physics describes relations of geometric entities (‘“Coordinates don’t exist.”)
— Coordinates should play no role in the formulation of physical models!

Recall our motivation in Chapter 3 for the introduction of tensor fields: We realized that
coordinates are mathematical artifacts that we use to label events in spacetime. The essence
of physical laws should clearly be independent of the labeling scheme we choose. Thus we
should strive for a formulation of physical models (which, hopefully, capture physical laws)
that is independent of coordinates, or at least makes it manifest that physical predictions do
not depend on the choice of coordinates.

Note that this argument is very different from Einstein’s hope to extend the principle of special
relativity [SR by “equalizing” more states of motion. The argument is way more fundamental,
has nothing to say about states of motion, and, in some sense, is almost tautological. It’s only
physical content is the rather uncontroversial statement that “coordinates do not exist as
physical entities.”
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This motivates the following definition:

* Definition 1: General covariance 6¢ (Coordinates don’t exist)

An equation is said to be % generally covariant if it is forminvariant under arbitrary
(differentiable) coordinate transformations.

— Tensor equations are automatically generally covariant.

Generally covariant equations have an alternative % coordinate-free formulation in terms of geomet-
ric objects on a manifold (* differential forms):

Examples:

+ < Two vector fields A = A*d, and B = B*0,:

- 0x0 x0
V4= 7 gPa+ A
P4 = ¢B o o
- N Al = ... 2N AMZBM s A=1RB (9‘10)

B = Manifestly Coordinate

Bl =... (generally) free

covariant
Generally

covariant

- While mathematicians often prefer the coordinate-free notation, in physics, the coordinate-

dependent, manifestly covariant notation is more widespread. This has to do with how
physics is done: While coordinates do not exist a priors, physicists typically make them
exist in their labs because measurements always use some form of reference system.
The generally covariant equations are more useful in that regard because they can be
specialized to any coordinate system most convenient for an experiment.

— In this course we will only use the manifestly covariant notation.

To decided whether an equation remains form invariant under arbitrary coordinate
transformations, you must first know how the elementary fields of the equation trans-
form. This is why the #on-manifest notation is so cumbersome: In addition to the
equation(s), you must figure out (or specify) how the different fields transform. (Recall
the non-tensorial form of the Maxwell equations and how cumbersome it was to check
their Lorentz covariance [see Eq. (6.34)]!)

This makes the benefit of the manifest notation clear: First, by convention, the tensor
notation A* implies that the transformation of the field is A* = g’;f AY, and second,

because of the rules of tensor calculus, checking the general covariance of a (valid)

tensor equation is trivial.

o < Inhomogeneous Maxwell equations on arbitrary spacetime (??):

FW, =4t & d(xF)=xJ (9.11)
Manifestly covariant Coordinate-free

Remember that ;v denotes the « covariant derivative Eq. (3.79) which implicitly depends on
the metric of spacetime. In the coordinate-free notation, the metric is hidden in the definition
of the ™ Hodge star operator x.
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13

We can now use this definition to formulate our physical insight that the equations that describe
physical laws must not single out specific coordinate systems:

In Einstein’s words [20]:

Die Gesetze der Physik miissen so beschaffen sein, daf$ sie in bezug auf beliebig bewegte
Bezugssysteme gelten. (p. 772)

Die allgemeinen Naturgesetze sind durch Gleichungen auszudriicken, die fiir alle Koor-
dinatensysteme gelten, d.h. die beliebigen Substitutionen gegeniiber kovariant (allgemein
kovariant) sind. (p. 776)

§ Postulate 4: General relativity GR

Models of laws of nature must take the same form in a// coordinate systems;
i.e., they must be expressed in terms of generally covariant equations.

Here the “must take the form” means that it must be possible to formulate them in a coordinate-
independent wayj; if this were not the case, the theory (and its prediction) would implicitly depend
on (and single out) a specific coordinate system. Note that there is nothing wrong in formulating
such a theory in a way that is not generally covariant.

For example, Maxwell equations in their conventional (non-tensorial) form are not generally
covariant, they are only Lorentz covariant. This is not a problem, though, because these equations
are just a specialization of Eq. (9.11) to a particular class of coordinate systems (namely inertial
systems). If you (naively) apply these specialized equations in a non-inertial frame (such as a
laboratory on the surface of earth!), you can get seemingly paradoxical results (© Problemset 3 and
Ref. [113]).

What is the physical content of R ?

GR, while being important for the formulation of physical models in general and being strictly
satisfied in GENERAL RELATIVITY, is neither specific nor fundamental to and for GENERAL
RELATIVITY. For example, the Maxwell equations in the manifestly covariant form of Eq. (9.11)
satisfy the [6R| on the fixed background of Minkowski space and have nothing to do with GENERAL
RELATIVITY.

—

The principle of general relativity R has (almost) no physical content.

The “almost” referes to the fact that the principle asserts that there are no distinguished coordinate
systems that exist as physically independent structures.

 The relativity postulate [GR, and its mathematical manifestation as general covariance [GC
have been criticized already in 1917 by KRETSCHMANN [114]:

[Man] vergegenwdirtigt sich, dafS alle physikalischen Beobachtungen letzten Endes in
der Feststellung rein topologischer Beziehungen (“Koinzidenzen™) zwischen rdumlich-
zeitlichen Wahrnehmungsgegenstinden besteht und daher durch sie unmittelbar kein
Koordinatensystem vor irgend einem anderen bevorrechtigt ist, so wird man zu dem
Schlusse gezwungen, dajl jede physikalische Theorie ohne Anderung ihres-beliebigen—
durch Beobachtungen priifbaren Inhaltes mittels einer rein mathematischen und mit
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hdchstens mathematischen Schwierigkeiten verbundenen Umformung der sie darstellen-
den Gleichungen mit jedem beliebigen-auch dem allgemeinsten—Relativitdtspostulate in
Einklang gebracht werden kann.

 To drive the point home: One can also formulate good old non-relativistic Newtonian me-
chanics in a generally covariant form (it’s quite ugly, though)! See the original literature [115]
and MISNER et al. [2] (Box 12.4 and §12.5):

Any physical theory originally written in a special coordinate system can be recast in
geometric, coordinate-free language. Newtonian theory is a good example [..]. Hence,
as a sieve for separating viable theories from nonviable theories, the principle of general
covariance is useless.

o For a detailed account on the role general covariance plays in GENERAL RELATIVITY (and
historically played in its inception), see Ref. [116].

14 | We can summarize the relation of [SR, [EEP|, and [GR  as follows:

Greuese| Rela Koty E ? , Sy_(cla(l T(e{uJ;V{JZ

/VmJumﬁa/ %%%q g'l’:ﬁ:‘;z;u.
@z— \,‘,
%‘ <_ 2 jayay

SISO S s
7 |
+ GR Cpecialitatiou
Geunally V\’:F’“s > o coordivete

b
SIS0 00 s 207 A Puysically

wdisku :m suatle

 Both[SR and [EEP| make claims about the equivalence (indistinguishability) of certain states
of motion. These are physical claims about reality that can be assessed by experiments.
Note that to check whether they are false or true you do not even know how to work with
mathematical equations. It’s a simple matter of collecting the results of experiments (recall
the « Michelson-Morley experiment). It is this physical content that makes SR and [EEP the
foundations of SPECIAL RELATIVITY and GENERAL RELATIVITY, respectively.

« By contrast, [6R makes no such claims about reality. [6R does 7ot claim that all states of
motion are indistinguishable (they are not, even in GENERAL RELATIVITY you can tell local
inertial frames and accelerated frames apart); the principle only claims that all fundamental
theories of physics should have a formulation that can be applied by all possible observers.
GR| is therefore more a statement about physical models than about reality.

« The sketch makes it clear that the [EEP| is actually more similar to the [SR (in the role it plays
for GENERAL RELATIVITY) than the [GR is. In that sense “principle of general relativity”
is kind of a misnomer.

15 | There is another important concept that (contrary to [6€///6R)) distinguishes GENERAL RELATIV-
ITY from other theories and must itself be distinguished from [6C //GR:
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* Definition 2: Background independence BI (No prior geometry)

Physical models that do not contain the geometry of spacetime as an absolute
element are called # background independent. This implies that the geometry of
spacetime emerges dynamically as solutions of the theory.

(Counter-)examples:

e vV GENERAL RELATIVITY is (and historically was the first example of ) a background
independent theory (= below):

ot
167G

SEinstein—Hilbert [g ] =

[ d*v /gR (9.12)

Here R is the » Ricci scalar that depends in a complicated way on the metric tensor field
guv(x). /g is short for /| det[g,., (x)]| (Minkowski metric: /5 = 1).
« X Maxwell theory is not background independent (recall Eq. (6.56)):

1
SMaxwell[A] = /d4x \/§ (_Eguagbﬂ Faﬂ F,uv) (9-13)

with field-strength tensor F*V = g*AY — 9V A*.

- Note that you do not extremize this action wrt. the metric g; the metric (e.g. Minkowski
metric g = n) is given as a parameter (absolute element) of the theory. Hence it plays
the role of a static background.

- Note also that the Maxwell equations (and their Lagrangian) are generally covariant:
they are tensorial expressions that descibe geometric objects on a manifold. That does
not prevent them to have a tensor field (the metric) as an absolute element.

16 = Beware:

GENERAL RELATIVITY is most likely the first (and possibly last) generally covariant and background-
independent theory that you will encounter in your university courses. Thus it is important to
mention a peculiarity that, if ignored, can lead to lots of confusion when studying such theories:

i < Trajectory of particle in spacetime:

X 4 courd
-
A \
v Coewllw\k
X >
S -l-mw(o\wd\wm

D
SP ace

Because of general covariance (/6€)) there is always a coordinate system in which the (spatial)
coordinates of an object are constant in time.

— One cannot infer from coordinates whether an object is moving!
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(There is no absolute notion of “motion” in GENERAL RELATIVITY; the only motion that
makes sense is motion wrt. some reference object, - next step.)

i | <t Two objects at rest in some coordinate system:

1 t Medrc i = coutt
= (oMU X = v
K= O Pxx At 0
~ _ _ —
— 9
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_ S E—
SPM( DiNM'-‘CE &(Q\L_)

In a background-independent theory (BI]) the metric is a dynamic degree of freedom. There-
fore two objects a and b can have constant coordinates in space while their distance varies
over time! Note that the coordinates are completely independent of the metric in general.

— One cannot infer from coordinates whether distances of objects change!

We can sum this up as follows:

Coordinates have no physical meaning in GENERAL RELATIVITY;
they are simply (arbitrary) labels of events.

« Please make sure you grasp this statement fully (we will see explicit examples later when we
understand GENERAL RELATIVITY better):

If I tell youin SPECIAL RELATIVITY that (in some inertial frame) two test particles have
constant spatial coordinates x’ and y*, you immediately know their relative velocity and
distance: vy = ¥ — y = Oand Al2 = —(x* — y¥)2 = |¥ — J|%.

By contrast, if I tell you in GENERAL RELATIVITY that two test particles have (in some
coordinate system) constant spatial coordinates x’ and y', this tells you nothing about their
distance; not even whether it is constant or varies in time! This information is hidden in the
values of the metric field, not in the coordinates.

 This is important, for example, when studying the effects of gravitational waves (- later).

17 Summary:

 Every reasonable fundamental theory has a generally covariant formulation.
e A generally covariant theory does not need to be background independent.
e GENERAL RELATIVITY is background independent and generally covariant.

o We will return to the question of general covariance, background independence (and diffeo-
morphism invariance) - /ater when we know more about GENERAL RELATIVITY. At this
point it is only important that you know the conceptual difference between the terms general
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covariance |6C and background independence [BI] and the requirement of the principle of general
relativity GR..

» One sometimes hears that general covariance |6€| is a distinguishing feature of GENERAL
RELATIVITY (as explained above, it is not). Sometimes even the very concepts of general
covariance |6C and background independence [BI are confused. This confusion is partially
rooted in history because Einstein himself didn’t separate the two concepts clearly. MISNER
et al. explain [2] (p. 431):

Mathematics was not sufficiently refined in 1917 to cleave apart the demands for “no
prior geometry” and for a “geometric, coordinate-independent formulation of physics.”
Einstein described both demands by a single phrase, “general covariance.” The “no-prior-
geometry” demand actually fathered general relativity, but by doing so anonymously,
disguised as “general covariance,” it also fathered half a century of confusion.

 For more details on the relation between the concepts of background independence, general
covariance, and diffeomorphism invariance see Ref. [117] (and references therein).

9.3. Mach’s principle (an its failure in GENERAL RELATIVITY)

Mach’s principle is not a logical postulate of GENERAL RELATIVITY and mostly of historical (and
perhaps philosophical) importance. However, it is also conceptually interesting because at a fist glance
once might conclude (as Einstein did), that GENERAL RELATIVITY actually satisfies the principle. It is
rather subtle (and instructive) why this is not so:

18 | Recall « Newton’s bucket:

uo relbve wokiou relbve wokiou uo relukve wokiou
Question: Rotation with respect to what determines the shape of the water surface?
NEWTON: Absoute space!

Note that the experiment already suggests that this “absolute space” must have certain symmetries
since the experiment cannot distinguish specific points nor specific states of uniform motion.
SPECIAL RELATIVITY tells us that the correct symmetry group of spacetime is the Poincaré
group. So from our modern perspective, Newton’s answer must be read as follows: The experiment
demonstrates the independent existence of an entity which determines the local inertial systems. We may
call this entity “spacetime.”

19 | The austrian physicist ERNST MACH fervently disagreed with Newton [118]:

Der Versuch Newton’s mit dem rotirenden Wassergeféiss lehrt nur, dass die Relativdrehung des
Wassers gegen die Gefisswinde keine merklichen Centrifugalkrifte weckt, dass dieselben aber
durch die Relativdrehung gegen die Masse der Erde und die iibrigen Himmelskorper geweckt
werden. Niemand kann sagen, wie der Versuch verlaufen wiirde, wenn die Geféisswinde
immer dicker und massiger, zuletzt mehrere Meilen dick wiirden. Es liegt nur der eine Versuch
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vor, und wir haben denselben mit den dibrigen uns bekannten Thatsachen, nicht aber mit
unsern willkiirlichen Dichtungen in Einklang zu bringen.

MAcH denied NEWTON’s notion of an independent entity responsible for inertia and proposed
that the large-scale structure of matter in the cosmos determines the local inertial systems instead

( relationalism):

§ Principle: Mach’s principle [MP

Local inertial frames are determined by the cosmic motion and distribution of

matter.

* MAcH never formulated his principle precisely, which leaves room for interpretation and
personal taste. This is why there are various readings of [MP| in the literature, not all equivalent.

The above phrasing is a rather strict version of the principle.

o Here is an alternative way to illustrate the point by STEVEN WEINBERG [119] (p. 17):

Put this way, the situation is quite puzzling indeed and Mach’s principle doesn’t seem far

There is a simple experiment that anyone can perform on a starry night, to clarify the
issues raised by Mach’s principle.

First stand still, and let your arms hang loose at your sides. Observe that the stars
are more or less unmoving, and that your arms hang more or less straight down. Then
pirouette. The stars will seem to rotate around the zenith, and at the same time your arms
will be drawn upward by centrifugal force. It would surely be a remarkable coincidence
if the inertial frame, in which your arms hung freely, just happened to be the reference
[frame in which typical stars are at rest, unless there were some interaction between the
stars and you that determined your inertial frame.

fetched at all.

e EINSTEIN was responsible for coining the term “Mach’s principle” and was influenced
by it during his construction of GENERAL RELATIVITY. At first, he believed that in his
new theory of gravity the principle was indeed satisfied. He writes in a letter to Mach in

1913

(You may wonder how Einstein could write this letter in 1913 when he finalized GENERAL
RELATIVITY in November of 1915. Einstein refers to his paper with Marcel Grossmann
published in 1913 [121] in which they established the “Entwurftheorie”, a precursor of
GENERAL RELATIVITY that already included most of the pieces needed [but not yet the

[120]:

Dieser Tage haben Sie wohl meine neue Arbeit iiber Relativitit und Gravitation erhalten,
die nach unendlicher Miihe und qudlendem Zweifel nun endlich fertig geworden ist.
Ndichstes Jahr bei der Sonnenfinsternis soll sich zeigen, ob die Lichtstrahlen an der
Sonne gekriimmt werden, ob m. a. W. die zugrunde gelegte fundamentale Annahme
von der Aequivalenz von Beschleunigung des Bezugssystems einerseits und Schwerefeld
andererseits wirklich zutriff.

Wenn ja, so erfahren Ihre genialen Untersuchungen tiber die Grundlagen der Mechanik
- Planck’s ungerechtfertigter Kritik zum Trotz - eine glinzende Bestdtigung. Denn
es ergibt sich mit Notwendigkeit, dass die Trighert in einer Art Wechselwirkung der
Korper ihren Ursprung hat, ganz im Sinne Ihrer Uberlegungen zum Newton’schen
Eimer-Versuch.

correct field equations].)

20 | So here is the case MACH (& early EINSTEIN) vs. NEWTON:
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« NEWTON:
Space exists as an independent entity and determines locally which frames are inertial.
e MAcH:

Space emerges from the relations between matter and does not exist independently. Hence
the distribution of matter in the universe completely determines the local inertial systems.

Who is right according to GENERAL RELATIVITY?
21 Answer: Both ...(in a sense, though Newton is more correct)

« NEWTON’s conclusion was correct: Because of locality (constancy of the speed of light)
the matter distribution of the cosmos (the fixed stars) cannot immediately influence the
local inertial frame; there must be a mediator, some “background” that is here right now.
GENERAL RELATIVITY tells us what this is: the metric tensor field that determines the
geometry of spacetime.

e MACH was right insofar as it is indeed not a coincidence that the local inertial frame on
earth is at rest with respect to the fixed stars. There 7s a relation, although not a direct and
immediate one. GENERAL RELATIVITY tells us that the large-scale distribution of matter
(and energy) in the universe determines the (large-scale) metric of spacetime, which, in turn,
determines the local inertial systems everywhere. But there is a hitch: the metric is not
uniquely determined by the mass distribution. Thus the metric (and therefore spacetime)
carries independent degrees of freedom. There is more than matter in the world, spacetime
is a real entity!

Notes:

« Today we know that there are solutions of the Einstein field equations (e.g. the * Gddel
universe [122]) that violate Mach’s principle explicitly [123].

e MACH, in his critique of NEWTON’s bucket experiment, asked (rhetorically) what would
happen if the walls of the bucket would become very thick and massive. His point was that it
is not excluded that at some point the rotation of the bucket would influence the shape of the
water. GENERAL RELATIVITY tells us that this is so indeed, because a very massive bucket
affects the geometry of spacetime. This is known as the - Lense-Thirring effect [124,125]
(also know as ™ frame-dagging) and has been experimentally confirmed (not with a massive
bucket, of course, but with earth) [126,127]. However, for the reasons explained above, this
effect does not make GENERAL RELATIVITY comply with Mach’s principle in the strict
sense.

 Because of the many different versions of [MP| floating around, for some the case is still not
closed (at least for philosophers of science, it seems). For doing physics with GENERAL
RELATIVITY, |[MP is irrelevant.

« MaAcH advocated a relational view of space(time): Only relations between the degrees of
freedom of matter are observable. There is no independent meaning of| say, an electron
being /ere now. It is interesting to realize that this relational view might very well be true
(and in accordance with GENERAL RELATIVITY) if one accepts that the metric field is just
another collection of degrees of freedom which can be in relations (coincide or interact) with
other degrees of freedom. For example, an electron being Aere now might simply mean that
an excitation of the field that describes the electron coincides/interacts with a particular
degee of freedom of the metric field.

22 | Conclusion:

The controversy about the [MP| essentially boils down to the question whether spacetime has
independent degrees of freedom (and therefore exists in a physical sense):
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In its strict version, the [MP| denies spacetime this independent role. By contrast, GENERAL
RELATIVITY grants spacetime independent degrees of freedom because the » Einstein field
equations only constrain the > Einstein tensor but not the metric directly (- Gravitational waves):

GENERAL RELATIVITY violates Mach’s principle MP because matter influences
the geometry of spacetime but does not determine it uniquely.

This situation is exemplified by gravitational waves: When in 2015 the interferometers of LIGO
detected a gravitational wave passing earth, the spacetime geometry in our vicinity changed by a
very tiny bit. However, the mass distribution in the vicinity of earth didn’t change at all. So while
the geometry of spacetime certainly is influenced by earths mass, it is not uniquely determined by it.
LIGO therefore measured directly the dynamics of the degrees of freedom the existence of which
MP. denies.

9.4. Overview and Outline

Now that we know the conceptual starting point of GENERAL RELATIVITY, and argued that more
general spacetimes than flat Minkowski space are needed to accomodate gravity, we can reveal the gist of
GENERAL RELATIVITY and sketch the plan for the remainder of this course:

i! You are not required to fully grasp the #ow and why of the following statements. Understanding the
details is the objective of this course. However, I think that it is useful to start off with a rough picture of
what we want to accomplish because otherwise one is easily swamped by the details along the way.

GENERAL RELATIVITY in a Nutshell

« Ontology:

Spacetime = 4D differentiable manifold M
Gravitational field = pseudo-Riemannian metric g with signature (1, 3)

— Spacetime is a « 4D Lorentzian manifold

- Note that we only fix the dimensionality of M (and thereby its local topology) but not its
global topology (i.e., whether it is simply R*, a sphere, a torus, or something even more
fancy). Thus, for example, GENERAL RELATIVITY makes no a priori statement about the
finiteness of the universe. (Asking about the /ocal topology is like asking where space and
time come from—and GENERAL RELATIVITY is silent about that. A reasonable theory of
quantum gravity must address this question!)

- At this stage it is sufficient to interpet the points £ € M of the manifold as points in
spacetime and therefore as (equivalence classes of ) events. However, we will see that this
interpretation is problematic (- Hole argument) because of the diffeomorphism invariance
of GENERAL RELATIVITY. It is thus questionable whether points of the manifold (and
thereby the manifold itself)) can be associated to any existing entity. An entity that certainly
does exist, however, is the metric field.
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 Equivalence principle:

The [EEP is built right into the mathematical framework of GENERAL RELATIVITY:

For every point with coordinates y, there exists a coordinate transformation ¢, with
X = ¢y (x) such that:

dxH axV

_ _ X~y - L x=y
g“”(x):&c—afbc—ﬂg“ﬂ(x) ~ " and 0,87 (%) &~ 0 (9.14)

with Minkowski metric

nMV —

+
8 o0 (9.15)
0

— Locally inertial coordinates v/ (© Problemset 2)

The [EEP motivates the metrization of gravity. (9.16)

- ! In the presence of gravity, there is #o coordinate transformation that brings the metric
into Minkowski form everymwhere on the spacetime manifold. Conversely, if this zs possible,
spacetime is flat Minkowski space and you were doing SPECIAL RELATIVITY all along
(perhaps in curvilinear coordinates).

- Note that metrization of gravity is not a mathematical corollary of the [EEP (the latter is
a physical principle, not a rigorous mathematical statement). However, the [EEP| is most
naturally incorporated into a mathematical framework where gravity is described by a metric
because the gist of the [EEP is that all (local) physical phenomena are affected by gravity
in the same way. This is exactly what happens if gravity is identified with the geometry of
spacetime!

- Atevery point, the basis {0,} of the tangent space forms a so called # local Lorentz frame.
You can choose such a basis for all points of spacetime. However, in general there is no
coordinate system that induces this basis everywhere; you have to use multiple charts to
patch together spacetime.

 Important fields:

All degrees of freedom (some gauge, some physical) of GENERAL RELATIVITY are stored in the
metric tensor field. From the metric, one can then derive other fields that play important roles in
the formulation of the theory:

: Connection R C
%ﬁéﬁ}f (no tensor) y Wy &
—_— ——
or. T2 Roopu Gy
N —

0
guv (x ) —g> I A v
) Sec. P? N — Sec.??  Curvature
= = tensor
Gravitational Gravitational

potential field strenght

Einstein
tensor

Ricci
scalar
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Note that the Einstein tensor is non-linear in the metric an contains (up to) second-order derivatives.

Einstein field equations (EFE): (here without cosmological constant)

The centerpiece of GENERAL RELATIVITY is a tensorial partial differential equation that deter-
mines the metric tensor field in dependence of the energy momentum tensor of matter:

Einstein — Energy-momentum

tensor Guw =k Tw <~ B eor (9.17)
~—— ~——
“Geometry” “Matter”

il “Matter” refers here to all degrees of freedom that carry energy and/or momentum. This
includes bodies with rest mass but also electromagnetic radiation etc.

< Eq. (9.17): Non-linear, second-order PDE for g, :

GENERAL RELATIVITY describes the geometry of space as a dynamical field that evolves “in
time” according to a highly nontrivial PDE: —

GENERAL RELATIVITY = & Geometrodynamics (9.18)

The nonlinearity makes Eq. (9.17) hard to solve, even in vacuum were the right-hand side vanishes.

- Spacetime geometry is dynamical — Background independence v/
- Tensor equation — General covariance (no preferred coordinate system) v/

- Mass distribution determines metric determines local inertial frames
However: Fixing G, leaves some degrees of freedom of g, unconstrained!
— Boundary conditions required for unique solution
— Mach’s principle is not satisfied (but partially survives in spirit) X/v

- Recall Eq. (8.10) and our discussion that followed (also © Problemset 1). Eq. (9.17) is
structurally similar but fixes the problem of linearity because the Einstein tensor is a non-
linear function of the metric.

Physics with gravity:

Once gravity is described by the metric, one must generalize the other relativistic theories (me-
chanics, electrodynamics, ...) into a generally covariant form that couples to the metric. This
generalization is a priori not unique because matter can couple in various ways to the fields derived
from the metric.

However, the [EEP] severely restricts the couplings that are allowed and leads to a “recipe” how the
Lorentz covariant equations of SPECIAL RELATIVITY must be rewritten to match the principles
of GENERAL RELATIVITY (> “Comma-Goes-to-Semicolon Rule”, Minimal coupling):

The 'R demands physical theories to be specified by tensor equations.

The [EeP restricts the possible couplings of matter and metric.

i d

- Mechanics: (with u# = % the 4-velocity)

Du* d2x# dx® dx#
_ n _ w
m — =m——+m ——— = K (9.19)
Dt dz? b dr dt  ——
N—— —— —— 4-force
Absolute 4-accel. New!
derivative
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— Free particle: K* = 0 — Geodesic equation (“straight lines” in spacetime)

- Electrodynamics: <t Inhomogeneous Maxwell equations: (cf. Eq. (6.50))

SPECIAL RELATIVITY GENERAL RELATIVITY

4 | 4
FR =——jt - FY, =——JHK (9.20)
’ C —_——— C
Covariant
derivative

The covariant derivative contains the connection I" and therefore the metric g. This is how
the electromagnetic field is affected by the gravitational field (e.g., bent in the vicinity of
heavy masses). Conversely, the EM field gives rise to the energy momentum tensor 7y
[« Eg. (6.110)] and thereby contributes to the right-hand side of Eq. (9.17).

— Energy-momentum tensor 7, is dynamical

A generally relativistic theory of matter, interacting with and via gravity, is then described by a
coupled, non-linear, higher-order system of partial differential equations (where T},,, depends on the
dynamical variables of the matter theory).

— Hard to solve in general — Approximations needed!

Outline of this course

Here is our approach for this course to study these various aspects of GENERAL RELATIVITY:

« Step 1 (Section 9.4): How to describe non-Euclidean manifolds mathematically?

In Chapter 3 we introduced the concept of differentiable manifolds and introduced the concept
of a (pseudo-)Riemannian metric to measure lengths of curves on the manifold. To formulate
GENERAL RELATIVITY mathematically, we need to revisit and extend this toolbox of tensor
calculus.

In particular, we will study two (at first independent) structures that can be put on a differentiable
manifold:

> Affine connection —  Determines parallel transport, straight lines, and curvature
< Riemannian metric —  Determines lengths, shortest lines, and angles

As it turns out, when you are given a Riemannian metric, there is a unique way to construct an
affine connection. This means that once you are given a spacetime manifold with a (pseudo-)
Riemannian (Lorentzian) metric, all concepts in the list above are well-defined. This is then the
framework we will use: The spacetime of GENERAL RELATIVITY is a Lorentzian manifold and
the degrees of freedom (field) of the theory is the Lorentzian metric itself.

« Step 2 (2?): How to formulate relativistic theories on non-Euclidean spacetimes?

In the first part of this course, we first established the tenets of SPECIAL RELATIVITY (Lorentz
symmetry) and then incorporated them successively in known theories of physics (point mechanics
in Chapter 5, electrodynamics in Chapter 6, quantum mechanics in Chapter 7). Now that we
established the tenets of GENERAL RELATIVITY (the spacetime metric is not necessarily the
Minkowski metric but an arbitrary Lorentzian metric), we must again reformulate our theories to
comply with this new insight. Recall p. 16 in the introduction:
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Gevernl Gevern |
Relehvidy Relekvity

This will lead us to generally covariant formulations of relativistic mechanics in ?? and electrody-
namics in ?? (we will skip quantum mechanics this time, but this is also possible). Thanks to the
combination of [EEP| and [@R (and tensor calculus), the recipe to go from the equations of SPECIAL
RELATIVITY to that of GENERAL RELATIVITY will be very simple.

o Step 3 (??): How to determine the geometry of spacetime dynamically?

Up until this point we simply declared that the metric of spacetime is an arbitrary Lorentzian metric
and studied the effects on physics given such a metric. The core idea of GENERAL RELATIVITY
(and maybe /e most important insight of Albert Einstein) was that this metric was not part of
the laws of nature but just another degree of freedom that had to be dynamically determined.
This means that there is no a priori geometry of spacetime, a principle known as « background
independence. The equations that dynamically determine the metric are the » Einstein field equations
Eq. (9.17); they are the centerpiece of GENERAL RELATIVITY and determine the geometry of
spacetime, given the distribution of mass and energy and some boundary conditions. We will derive
these equations via an action principle from a Lagrangian.

Together with Step 2, this completes the framework of GENERAL RELATIVITY.
 Step 4 (??): What does GENERAL RELATIVITY predict?

If we combine the results of Step 2 and Step 3 we obtain a self-contained, background indepen-
den framework to describe physics: Matter determines the geometry of spacetime (Step 3) and,
conversely, this geometry determines how matter evolves (Step 2). This interplay makes for
beautiful but mathematically complicated models. Thus, to study the predictions of GENERAL
RELATIVITY, we typically resort to simplified approaches:

- Consider a static, inhomogeneous distribution of large masses (e.g. the sun). Using the
Einstein field equations from Step 3 (and reasonable boundary conditions), calculate the
geometry of spacetime induced by this distribution. Then use the results of Step 2 to
determine the evolution of small test particles on this curved spacetime (without taking their
backaction on spacetime into account). This approach leads to a variety of phenomena, e.g.,
the slowing down of clocks close to large masses (??), the perihelion precession of Mercury
(??), the bending of light (??), etc.

- Consider the Einstein field equations in vacuum, i.e., without any matter (or energy). Because
the EFEs are non-linear (recall Section 8.2) and the geometry of spacetime is not uniquely
determined by the distribution of mass and energy, this situation is not as boring and trivial
as it sounds (its actually very complicated). But even in the weak field limit (where one drops
the self-interactions) one finds something interesting: gravitational waves (??).

- Consider an idealized universe that is homogeneously filled with matter and energy (and
potentially dark matter and dark energy). If one calculates the solutions of the EFEs in such
a scenario, one obtains the (approximate) spacetime geometry of the whole universe. This
leads into the field of ™ relativistic cosmology and to the current standard model of cosmology,
known as “ ACDM”. This is where one finds the possiblity of an expanding universe and its
origin, the Big Bang; this is also where the cosmological constant becomes important (??).
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10. Mathematical Tools II: Curvature
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