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Abstract

If you are not a scientist with background in physics and/or mathematics, you may want to
read the“popular summary.”

Falls Sie kein Wissenschaftler mit fundierten Physik- oder Mathematikkenntnissen sind,
bietet es sich an die“Zusammenfassung für Nichtphysiker” zu lesen.

This thesis is based on a collection of papers and addresses several questions
on properties and applications of “topological matter,” a concept that drives a
particularly active and increasingly complex field of condensed matter physics. If
the reader is familiar with this field, there is nothing new I can tell in the few
paragraphs of an abstract; if he or she is not familiar with the field, an abstract
cannot do justice to the complexity of the field anyway. In any case, I recommend
reading Sections 1.1 and 1.3 which provide a self-contained and fairly comprehensive
review of “topological matter,” its properties and possible applications.

So let me start right away with a structured abstract of the contents:

→ In Chapter 1, we review the theoretical foundations of this thesis and locate it
within the ever-growing field of condensed matter physics. We start with an
introduction to the general concept of topological quantum phases and discuss
the role played by symmetries in this context. We address the classification
of topological phases with and without interactions between their fermionic
or bosonic constituents. Then, we discuss two paradigmatic models—the
Su–Schrieffer–Heeger chain and the Majorana chain—as examples of non-
interacting topological phases in one dimension. Both models are closely
related and used repeatedly in this thesis, either as motivation for or key
element of the presented projects. Finally, we review various proposals
for applications of topological phases—both quantum and classical—to
demonstrate that the concept is more than a theorist’s delight. We briefly
comment on experimental results to make contact with the real world.



→ In Chapter 2, we study a microscopic model of interacting fermions with
topologically protected ground state degeneracy. The model, introduced
in Ref. [1], is based on a double-wire setup with local interactions in a
number-conserving setting. A compelling property of this model is the exact
solvability for its ground states and low-energy excitations. We demonstrate
the appearance of topologically protected edge states and derive their braiding
properties on a microscopic level. We find the non-abelian statistics of Ising
anyons which can be interpreted as Majorana-like edge states. As a result,
the model qualifies as a number-conserving relative of Kitaev’s paradigmatic
Majorana chain.

→ In Chapter 3, we show that a linear network of coupled bosonic degrees
of freedom, characterized by topological bands, can be employed for the
efficient exchange of quantum information. Features of the proposed setup,
published in Ref. [2], are that it is robust against quenched disorder, all
relevant operations can be performed by global variations of parameters, and
the time required for communication between qubits approaches linear scaling
with their distance. We show how the proposed concept can be extended to
an ensemble of qubits embedded in a two-dimensional network to allow for
communication between all of them.

→ In Chapter 4, we focus on the application of the one-dimensional Majorana
chain as a topological quantum memory and construct a strictly local decoder
based on a self-dual cellular automaton. We study numerically and analytically
its performance and exploit these results to contrive a scalable decoder with
exponentially growing decoherence times in the presence of noise. These
results, published in Ref. [3], pave the way for scalable and modular designs
of actively corrected one-dimensional topological quantum memories.

→ Chapter 5 is a safe haven for all projects that do not deserve their own chapter
but are still interesting enough to be discussed somewhere. Some—mostly
conceptual—are possible starting points for future projects, some are closely
related to projects of the main part, and some are contributions to publications
(in particular Ref. [4]) that are not covered in the other chapters.

It is advisable to have a look at“How to Read This Thesis” where the organization of this
document is illustrated and explained.
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Zusammenfassung für
Nichtphysiker

Entsprechend der Promotionsordnung der Universität Stuttgart ist einer eng-
lischsprachigen Dissertation eine Zusammenfassung in deutscher Sprache beizufü-
gen. Nun verlangt das Verfassen wissenschaftlicher Texte, deren vorrangiges Ziel ja
die Wissensvermittlung ist, in der Regel eine Anpassung an die Leserschaft.

An wen richtet sich also die geforderte Zusammenfassung? An Spezialisten
der behandelten Themen sicher nicht; für viele der Fachbegriffe existieren nicht
einmal anerkannte deutsche Übersetzungen. Dann vielleicht an Physiker im All-
gemeinen? Oder—noch weiter gefasst—Naturwissenschaftler? Auch das scheint
mir, speziell im Licht der Internationalisierung praktisch aller naturwissenschaft-
licher Disziplinen, nicht überzeugend. Es ist daher unwahrscheinlich, dass ein
Leser, der von einer deutschen, fachlichen Zusammenfassung profitieren würde, das
physikalisch-mathematische Rüstzeug besitzt ihr inhaltlich auch folgen zu können.

Um dieser Zusammenfassung zumindest ein wenig Sinnhaftigkeit zu verleihen,
nehme ich mir die Freiheit, diese dediziert Nichtphysikern zu widmen, ja auch
Lesern ganz ohne naturwissenschaftlichen Hintergrund.

Populärwissenschaftliche Publikationen—seien es Bücher, Dokumentationen,
oder die vorliegende Zusammenfassung einer Dissertation—sind ein zweischnei-
diges Schwert. Zum einen sind sie essenziell um die Naturwissenschaft in der
Breite der Gesellschaft zu verankern, um Menschen an die naturwissenschaftliche
Methodik heranzuführen und um allgemein für Grundlagenforschung zu werben.
Aber komplexe, hoch spezialisierte Wissenschaft einem Laienpublikum verständlich
darzulegen ist, abhängig vom angestrebten Resultat, kompliziert bis unmöglich.
Der Grund ist eine praktisch unüberbrückbare Disparität zwischen den Bildern im
Kopf des Laien und denen im Kopf des Wissenschaftlers. Die Ursache hierfür ist
nicht mangelnde Intelligenz, sondern mangelnde Erfahrung. Und Erfahrung—im
Gegensatz zu Wissen—kann man nicht weitergeben. Der Unterschied sind Jahre
des Studiums der Physik, Jahre der Gewöhnung an die Seltsamkeiten der Quan-



tenmechanik und die Eigenarten der Relativitätstheorie. Ich kann Ihnen die Bilder
in meinem Kopf—mein Verständnis—nicht weitergeben. Seien Sie sich also dieser
Grenzen bewusst, denn gefährlicher als Unwissen ist Scheinwissen. Seien Sie
sich bewusst, dass die Bilder in Ihrem Kopf nur Karikaturen der meinen sind.
Überstrapazieren Sie die Aussagekraft von Analogien und Bildern nicht, mögen sie
noch so schön sein. Die Quantenmechanik ist nicht einfach.

Worum geht es in dieser Dissertation? Fangen wir vorne an: Sie ist angesiedelt
im Bereich der theoretischen Physik. Während Experimentalphysiker im Labor
physikalische Phänomene untersuchen, konstruieren theoretische Physiker abstrakte,
mathematische Modelle (mit Bleistift und Papier oder am Computer) um die
Beobachtungen der Experimentalphysiker zu erklären. Dieser Ablauf ist aber nicht
zwingend: Theoretiker haben eine blühende Fantasie. Nicht selten schlagen sie
theoretische Modelle vor, die erst im Anschluss von Experimentatoren im Labor
realisiert werden (oder auch nicht; es ist erstaunlich schwer, die Natur dazu zu
bringen, das zu tun, was Theoretiker sich ausdenken). Die vorliegende Dissertation
ist von dieser Art: Sie befasst sich mit theoretischen Modellen die—zumindest
auf dem Papier—interessante (und nützliche) Eigenschaften haben. Bis auf eine
Ausnahme wurde keines dieser Modelle bisher in Experimenten realisiert. Das
klingt nicht sehr ermutigend, ist in der theoretischen Physik aber eher die Regel als
die Ausnahme.

Was ist überhaupt ein Modell? In der theoretischen Physik muss man sich unter
einem “Modell” einen mathematisch präzise definierten Rahmen vorstellen mit
abstrakten Objekten, die ein idealisiertes, physikalisches System beschreiben. In der
Regel bedient man sich mathematischer Konzepte wie Vektoren und Funktionen, um
den Zustand eines physikalischen Systems abstrakt darzustellen. Diese werden dann
mit Gleichungen in Beziehung zueinander gesetzt, um die zeitliche Entwicklung
oder die Reaktion des Systems auf eine Störung vorherzusagen. Ein Modell erlaubt
also die mathematische Beschreibung realer Prozesse und Phänomene. Modelle sind
das Handwerkszeug jedes theoretischen Physikers.

Um welche Modelle geht es also? Die vorliegende Dissertation ist im Bereich
der kondensierten Materie angesiedelt. Dabei handelt es sich um ein Fachgebiet
der Physik, das sich mit den Eigenschaften und der Beschreibung von Materialien
beschäftigt, die vergleichsweise “kalt” und “dicht” sind. Die elementaren Bausteine
dieser Materialien sind Atome (oder Ionen, also elektrisch geladene Atome) und
Elektronen. Wichtige Teilbereiche dieses Gebiets sind die Festkörperphysik, die
z. B. kristalline Materialien oder die Halbleiter in Computern untersucht, und
die Physik der Flüssigkeiten, die sich mit der Dynamik und den Turbulenzen von
solchen befasst. Typische Aufgaben der Physik der kondensierten Materie sind
zu erklären, wieso Metalle Strom leiten, warum Halbleiter (z. B. Silizium) es nur
unter bestimmten Voraussetzungen tun oder weshalb sich Eisen magnetisieren
lässt. Ein wichtiger Teilaspekt in diesem Zusammenhang sind Phasenübergänge.
Phasenübergänge beschreiben die abrupte Veränderung eines Materials, wenn
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externe Parameter (z. B. die Temperatur oder der Druck) bestimmte kritische
Werte über- oder unterschreiten. Die wohl bekanntesten Phasenübergänge sind
das Gefrieren von Wasser bei 0 °C und das Verdampfen bei 100 °C. Obwohl die
Bausteine—die Wassermoleküle—in allen drei Phasen dieselben sind, sind Eis,
Wasser und Dampf doch völlig unterschiedlich. Solche Unterschiede zu erklären
und systematisch zu erfassen ist ein zentrales Anliegen der Physik der kondensierten
Materie.

Die letzten 100 Jahre der Physik wurden von zwei einflussreichen Theorien
bestimmt: der Relativitätstheorie von Albert Einstein und der Quantenmecha-
nik (verknüpft mit Namen wie Werner Heisenberg, Max Born, Erwin
Schrödinger u.v.m.). Für die Physik der kondensierten Materie ist die Quan-
tenmechanik von überragender Bedeutung, da ihr Ziel die Beschreibung vieler,
atomar kleiner Bausteine bei oft sehr niedrigen Temperaturen ist. Die Relativitäts-
theorie hat auch ihre Auftritte, soll uns hier aber nicht weiter beschäftigen. Bei
der Beschreibung von Phasen und ihren Übergängen wurde den Physikern des
20. Jahrhunderts schnell klar, dass die Seltsamkeiten der Quantenmechanik die
Eigenschaften von Materie fundamental beeinflussen. Phasen, die nur bei sehr nied-
rigen Temperaturen auftreten und ausschließlich mit Hilfe der Quantenmechanik
beschrieben werden können, nennt man Quantenphasen. Das wohl eindrücklichste
Beispiel einer solchen ist die supraleitende Phase bestimmter Metalle (z. B. von
Quecksilber oder Aluminium). Solche Metalle leiten bis zu einer materialspezifi-
schen kritischen Temperatur nahe dem absoluten Nullpunkt (-273 °C) den Strom
wie gewohnt (d. h. mit einem Widerstand, der zu Verlusten führt). Unterhalb der
kritischen Temperatur verschwindet dieser Widerstand vollständig und Strom kann
verlustfrei fließen (ein Phänomen, das z. B. bei der Kernspintomografie Anwendung
findet). Diese supraleitende Phase unterscheidet sich damit fundamental von der
üblichen, metallischen Phase und der Übergang zwischen beiden ist ein weiteres
Beispiel für einen Phasenübergang. Die erfolgreiche Beschreibung des widerstands-
freien Ladungstransports in Supraleitern ist eine der großen Errungenschaften der
Quantenmechanik und markiert einen Meilenstein in der Physik der kondensierten
Materie.

Ein wichtiges Motiv der Physik ist die Verallgemeinerung. Physiker versuchen
Phänomene anhand von Spezialfällen zu lernen, um sie dann mit allgemeinen
Prinzipien zu erklären. Solche Verallgemeinerungen führen oft zu neuen Theorien
und können die Denkweise ganzer Generationen von Physikern prägen (man spricht
dann von Paradigmen). Sowohl das Gefrieren von Wasser als auch der Übergang in
den supraleitenden Zustand sind Phasenübergänge. Die nahe liegende Frage eines
Physikers wäre dann, ob es allgemeingültige Prinzipien gibt, die auf alle Phasenüber-
gängen anwendbar sind. Gibt es ein allgemeines Ordnungsprinzip, das beschreibt,
worin sich unterschiedliche Phasen unterscheiden? Ein solches Ordnungsprinzip
wurde vom sowjetischen Physiker Lev Landau (Nobelpreis für Physik 1962) in
den 1930er Jahren vorgeschlagen und maßgeblich entwickelt. Die Grundidee ist
recht einfach: Unterschiedliche Phasen unterscheiden sich in ihren Symmetrien. Eine
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Symmetrie eines physikalischen Systems ist eine Transformation, die das System
nicht verändert. Eine perfekte Kugel ist z. B. rotationssymmetrisch: Wenn man
sie dreht, sieht sie immer gleich aus. Landaus Ordnungsprinzip besagt, dass sich
Phasen durch ihre Symmetrien charakterisieren lassen. Am Beispiel von gefrieren-
dem Wasser wird sofort deutlich, was gemeint ist: Während eine Flüssigkeit unter
beliebigen Rotationen immer gleich aussieht, ist das bei zu Kristallen gefrorenem
Wasser nicht mehr der Fall. In verallgemeinerter Form lässt sich diese Idee auf viele
Phasen und Phasenübergänge anwenden—auch auf Supraleiter (dort allerdings mit
einer abstrakteren Symmetrie). Landaus Ordnungsprinzip wurde unter dem Namen
“spontane Symmetriebrechung” bekannt, weil Phasenübergänge dadurch gekenn-
zeichnet sind, dass bestimmte Symmetrien einer Phase beim Übergang “spontan
gebrochen” werden (z. B. bricht der Eiskristall die Rotationssymmetrie flüssigen
Wassers “spontan” indem er sich in einer unbestimmten Richtung ausbildet). Die
Theorie der spontanen Symmetriebrechung war so erfolgreich, dass Physiker bis
in die 1960er Jahre davon überzeugt waren, dass Sie im Grunde alles verstanden
hatten was es zu (Quanten-)Phasen und ihren Übergängen zu wissen gibt.

Aber in den frühen 1970er Jahren verdichteten sich die Anzeichen, dass die
Sache doch etwas komplizierter sein könnte. Speziell wurden (theoretische) Modelle
gefunden, die Phasen mit exakt denselben Symmetrien aufweisen, obwohl diese
durch einen Phasenübergang voneinander getrennt sind. Im Jahr 1980 beobachtete
dann Klaus von Klitzing (Nobelpreis für Physik 1985), dass sich eine
spezielle Form der Leitfähigkeit von zweidimensionalen Halbleitern nur in exakt
bestimmten Schritten ändert, wenn ein starkes Magnetfeld eingeschaltet und
variiert wird. Die gemessene Schrittweite ist praktisch unabhängig vom Material
(selbst für Proben mit Verunreinigungen) und hängt direkt mit fundamentalen
Naturkonstanten zusammen. Dieses Phänomen ist bekannt als Quanten-Hall-Effekt1

und markiert eine Zäsur der modernen Physik. Es ist völlig unverständlich wieso
ein Material mit natürlichen Verunreinigungen bei Messungen perfekte Werte
bestimmter Naturkonstanten liefern sollte. Physikern war eine solche “Robustheit”
realer Systeme noch nicht untergekommen. Zu allem Überfluss schienen die beim
Quanten-Hall-Effekt realisierten Phasen alle dieselben Symmetrien zu besitzen.
Damit war es unbestreitbar, dass Landaus Ordnungsprinzip nicht ausreicht, um alle
Quantenphasen beschreiben zu können.

Dank der Arbeiten theoretischer Physiker wurde schnell klar, dass ein in der
Physik bis dato selten genutzter Teilbereich der Mathematik von Nöten ist, um diese
Phänomene zu verstehen: die Topologie. Die Topologie befasst sich (im Gegensatz
zur Geometrie) mit gegen Verformung robusten Eigenschaften von Körpern. Stellen
Sie sich vor, Sie hätten eine Schnur, und Ihr Ziel sei es, sich mit ihrer Hilfe eine
Zahl (sagen wir 5) zu merken. Eine mögliche Lösung wäre, die Form der Zahl “5”
mit der Schnur nachzulegen; in diesem Fall wäre die Zahl in der Geometrie der
Schnur codiert. Diese Methode funktioniert zwar, ist aber nicht sonderlich robust:
Jede unbedachte Berührung der “5” kann ihre Form—und damit die codierte

1Die quantisierte Version des klassischen Hall-Effekts. Dieser ist benannt nach Edwin Hall.
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Information—zerstören. Eine weitaus cleverere Methode wäre, sich die Schnur
fünfmal um den Unterarm zu wickeln und sie dann zu verknoten. So lange die
Schnur nicht reißt, wird sich die Zahl der Windungen nicht ändern; selbst wenn sie
sich beim Gehen ständig verformt. Die Windungszahl der Schnur ist eine topologische
Eigenschaft, da sie robust gegen geometrische Deformationen ist. Es sind solche
topologischen Windungszahlen, die für die robusten Leitfähigkeiten des Quanten-
Hall-Effekts verantwortlich sind (nur winden sich in diesem Fall keine Schnüre,
sondern mathematische sehr abstrakte Objekte, die zur quantenmechanischen
Beschreibung des Systems dienen). Diese Windungszahlen von Quantenphasen
werden als topologische Indizes bezeichnet; sie lassen sich üblicherweise nicht direkt
messen, haben aber messbare Effekte (wie z. B. die diskreten Leitfähigkeiten).
Die Windungszahlen lösen praktischerweise auch das Rätsel um die scheinbar
ununterscheidbaren Phasen: Diese haben schlicht unterschiedliche topologische
Windungszahlen. Da man die Windungszahlen einem Material nicht direkt ansieht
(sie sind in seiner quantenmechanischen Struktur “versteckt”), scheinen diese
Phasen gleich zu sein, obwohl sie es nicht sind: Wenn man versucht von einer zur
anderen zu kommen, wird man einen Phasenübergang beobachten an dem sich
scheinbar nichts ändert; tatsächlich spring dort aber die Windungszahl von einer
ganzen Zahl zur nächsten.

Dieses Konzept bildet die Grundlage für einen der derzeit aktivsten Bereiche der
Physik und hat unsere Sicht auf mögliche Quantenphasen (und die damit einherge-
henden Materialien) von Grund auf verändert. Die theoretische und experimentelle
Erforschung dieser topologischen Quantenphasen ist nicht annähernd abgeschlos-
sen. Sie ist inzwischen so taktgebend für die Physik der kondensierten Materie
(und darüber hinaus), dass die theoretischen Vordenker dieser Disziplin—David
Thouless, Duncan Haldane und Michael Kosterlitz—im Jahr 2016
mit dem Nobelpreis für Physik ausgezeichnet wurden. Der Übergang von Landaus
Ordnungsprinzip der spontanen Symmetriebrechung zum weitaus vielfältigeren
Konzept der topologischen Phasen lässt sich am ehesten mit dem Übergang vom
Schwarzweiß- zum Farbfernsehen vergleichen: Die Landschaft der Quantenphasen,
die noch in der zweiten Hälfte des 20. Jahrhunderts grau-in-grau war, schillert heute
in allen Farben des Regenbogens. Um dem Leser eine Einordnung der Größe dieses
Forschungsfeldes zu ermöglichen, sei hier darauf hingewiesen, dass alleine im Jahr
2018 über 1300 Veröffentlichungen mit dem Schlüsselwort “topologisch” im Titel
gelistet sind; also zwischen 3 und 4 wissenschaftliche Artikel am Tag. Allein diese
Zahlen sollten dem Leser verdeutlichen, dass das oben gezeichnete Bild die wahre
Komplexität des Themas nicht annähernd widerspiegelt.

Die vorliegende Dissertation ist ein Beitrag zum Themenkomplex der topologi-
schen Phasen (und mindestens zwei der mit ihr verknüpften Publikationen zählen
zu den 1300). An dieser Stelle bietet sich eine Bemerkung zum Entstehen und
Aufbau dieses Dokuments an: Während frühe Doktorarbeiten in der Physik zumeist
einen monografischen Charakter hatten, also mit einem einzigen, zusammenhän-
genden Problem befasst waren, findet heute die kumulative Dissertation zunehmend
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Verbreitung. Hierbei werden verschiedene, weitgehend unabhängige Projekte vom
Doktoranden im Laufe der Promotion bearbeitet (auch in Kollaboration mit anderen)
und als eigenständige Artikel veröffentlicht. Die Dissertationsschrift fasst diese
schon zuvor veröffentlichten Resultate in einem Dokument zusammen und bettet
sie in einen gemeinsamen Themenkomplex ein. Die vorliegende Dissertation ist
von dieser Form: Kapitel 1 führt das oben erläuterte Konzept der topologischen
Phasen auf einem für Masterstudenten der Physik verständlichen Niveau ein. Die
anschließenden Kapitel 2, 3 und 4 bauen auf diesen Grundlagen auf und befassen
sich je mit einem spezifischen Projekt. Dabei werden Details, die in den zugehörigen
Publikationen aus Platzgründen gestrichen werden mussten, ebenfalls behandelt.
In Kapitel 5 werden schließlich kleinere Nebenprojekte vorgestellt, die zum Teil
Vorläufer oder Abkömmlinge der drei Hauptprojekte sind.

Lassen Sie mich nun die geleistete Vorarbeit nutzen um Ihnen, zumindest in groben
Zügen, einen Überblick über diese Projekte zu geben:

→ In Kapitel 2 definiere und analysiere ich ein neues Modell einer topologischen
Phase in einer Dimension. (In der Festkörperphysik sind Modelle mit weniger
als drei Raumdimensionen keine Seltenheit. Es ist durchaus möglich, eindi-
mensionale “Drähte” künstlicher Quantenmaterialien im Labor zu erzeugen.)
Die Bausteine des untersuchten Modells sind stark wechselwirkende Fermio-
nen (denken Sie an Elektronen). Seine Eigenschaften werden mit exakten
mathematischen Methoden untersucht und mit numerischen Simulationen
überprüft. Die topologischen Eigenschaften des Modells manifestieren sich in
einer robusten “Entartung des Grundzustandes”: Ein physikalisches System,
das durch dieses Modell beschrieben wird, kann bei Temperaturen nahe dem
absoluten Nullpunkt verschiedene Zustände einnehmen, die sich nur schwer
unterscheiden lassen. Diese Ununterscheidbarkeit kann man ausnutzen um
das System zum Manipulieren von Qubits, den “Quantenbits” eines hypo-
thetischen Quantencomputers, zu verwenden. Das Modell ist also nicht nur
aus akademischer Sicht interessant, sondern verspricht auch die Robustheit
topologischer Phasen für die Manipulation von Quanteninformation nutzbar
zu machen. (Eine Idee, die nicht auf mich zurückgeht und inzwischen einen
eigenen Forschungszweig begründet. Dieser befasst sich mit der theoretischen
Beschreibung sogenannter topologischer Quantencomputer.)

→ In Kapitel 3 benutze ich das Modell einer schon lange bekannten topologi-
schen Phase (wieder in einer Dimension) und übersetze es in einen völlig
neuen Kontext. Das ursprüngliche Modell wurde eingeführt, um die Leitfä-
higkeit eines speziellen Polymers (Polyacetylen) besser verstehen zu können.
In diesem Zusammenhang beschreibt es die Bewegung schwach gebundener
Elektronen entlang eines Kohlenwasserstoffmoleküls. Nach meiner “Überset-
zung” beschreibt es Photonen (also Lichtteilchen) in künstlichen Netzwerken
aus Resonatoren. Diese Netzwerke “erben” die topologischen Eigenschaften
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des ursprünglichen Modells. Ziel ist die Konstruktion eines robusten Mecha-
nismus zum Transport von Quanteninformation (also eine Methode, um ein
Qubit zwischen zwei Punkten auf dem Chip eines Quantencomputers zu trans-
portieren ohne es dabei zu zerstören). Die Topologie hilft dabei, indem die
zum Transport genutzten Eigenschaften von möglichen Fertigungstoleranzen
entkoppelt werden; ähnlich wie die Leitfähigkeit beim Quanten-Hall-Effekt
wegen ihres topologischen Ursprungs von der Unordnung im System nichts
mitbekommt. Bei diesem Projekt steht also die Anwendung topologischer
Phasen für den Transfer von Quanteninformation im Vordergrund.

→ In Kapitel 4 untersuche ich eine weitere, eindimensionale topologische Phase
aus Fermionen mit dem Ziel, einen skalierbaren Quantenspeicher zu konstru-
ieren. Diese Phase ist verwandt mit dem in Kapitel 2 untersuchten Modell,
allerdings einfacher theoretisch zu beschreiben. Auch experimentell ist sie
leichter zu realisieren. Ihre Einfachheit macht sie zu einer der wenigen
topologischen Phasen, die man (hoffentlich) in naher Zukunft in künstlichen,
skalierbaren Strukturen aus Halbleitern und Supraleitern implementieren
kann. Die topologische Robustheit dieser Phase macht sie zu einem möglichen
Baustein eines Quantenspeichers. Der “Random-Access-Memory” (RAM)
eines klassischen Computers funktioniert nur, weil er ständig auftretende
Fehler aktiv korrigiert (daher verschwinden die Daten auch bei einem Strom-
ausfall). Der in Kapitel 4 untersuchte topologische Quantenspeicher hat dasselbe
Problem: Ohne aktive Fehlerkorrektur “vergisst” er das gespeicherte Qubit.
Ziel des Projektes war der Entwurf eines Systems zur Fehlerkorrektur, das den
Eigenheiten der topologischen Phase Rechnung trägt und zugleich skalierbar
bleibt (je besser der Speicher vor Fehlern schützen soll, desto größer muss er
sein; wobei “groß” hier Längen im Bereich von Mikrometern bezeichnet).
Um dieses Ziel zu erreichen, wurde das Konzept sogenannter zellulärer
Automaten aus dem Gebiet der Computerwissenschaften übernommen. Auch
dieses Projekt behandelt demnach eine mögliche Anwendung topologischer
Phasen in der Quanteninformationstechnologie; in diesem Fall das Speichern
von Quanteninformation.
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Popular Summary

According to the degree regulations of the University of Stuttgart, a thesis in
English is to be accompanied by a summary in German. I doubt that there is a
single physicist who would profit from a German summary. Therefore, I decided
to dedicate it to non-specialists and readers without scientific background. What
follows, is a translation of this text.

Publications of popular science—be it books, documentaries, or the summary
at hand—cut in both ways. On the one hand, they are essential to bond science
and society, to introduce people to the scientific method, and to promote basic
research in general. But the communication of complex, highly specialized science
to a lay readership is, depending on the desired result, complicated to impossible.
There is a virtually unbridgeable disparity between the images cast in the mind
of the layman and those in the mind of the scientist. The reason is not a lack of
intelligence but a lack of experience. And experience—unlike knowledge—cannot
be shared. The difference is years of studying physics, years of getting used to the
oddities of quantum mechanics and the peculiarities of relativity. I cannot convey
you the pictures in my mind—my insight. So be aware of these limits, because more
dangerous than ignorance is pseudo-knowledge. Be aware that the pictures I will
draw in your mind are just caricatures of mine. Do not trust analogies beyond their
domain of validity. Quantum mechanics is not easy.

What is this thesis about? Let’s begin at the beginning: It contributes to the
field of theoretical physics. While experimental physicists study physical phenomena
in the laboratory, theoretical physicists construct abstract, mathematical models
(with pencil and paper or on the computer) to explain the observations made by
experimental physicists. But this order is not mandatory: Theoreticians have a
wild imagination and often they propose theoretical models that are realized only
afterwards in the laboratory (if at all; it is surprisingly difficult to make nature
do what theoreticians cook up). The thesis at hand is of this kind: It describes
theoretical models that—at least on paper—have interesting (and useful) properties.



With one exception, none of these models has yet been realized in experiments.
That doesn’t sound very encouraging, but this is the rule rather than the exception
in theoretical physics.

What is a model anyway? In theoretical physics, a “model” is a mathematically
precisely defined framework, with abstract objects describing an idealized, physical
system. Mathematical concepts such as vectors and functions are used to describe
the state of the system. These are then related by equations to predict the time
evolution or the response of the system to perturbations. In other words, models
allow for the mathematical description of real processes and phenomena. Models
are the bread-and-butter tools of theoretical physicists.

What are the models studied in this thesis? The thesis at hand belongs
to the field of condensed matter physics. This discipline is concerned with the
properties and the description of materials that are comparatively “cold” and
“dense.” The elementary building blocks of these materials are atoms (or ions,
i.e., electrically charged atoms) and electrons. Important branches of this field are
solid-state physics that describes, e.g., crystalline materials and the semiconductors
used for computers, and the physics of fluids that describes their dynamics and
turbulences. Condensed matter physics explains why metals conduct electricity,
why semiconductors (e.g. silicon) do so only under certain conditions, and why iron
can be magnetized. An important aspect in this context are phase transitions. Phase
transitions describe abrupt changes of the properties of a material when external
parameters (e.g., temperature and pressure) rise above or fall below certain critical
values. The best known phase transitions are the freezing of water at 0 °C and its
vaporization at 100 °C. Although the building blocks—the water molecules—are the
same in all three phases, ice, water and steam are completely different. Explaining
and characterizing such differences is a central topic of condensed matter physics.

The last 100 years of physics were dominated by two influential theories: the
theory of relativity by Albert Einstein and quantum mechanics (pioneered by
Werner Heisenberg, Max Born, Erwin Schrödinger and others).
For condensed matter physics, quantum mechanics is of paramount importance
because its goal is the description of many, atomically small particles at very low
temperatures. The theory of relativity also plays a role in this context, but we
shall not dwell on these issues here. Searching for descriptions of phases and
their transitions, the physicists of the 20th century realized that the oddities of
quantum mechanics fundamentally influence the properties of matter. Phases that
occur at very low temperatures and can only be understood in terms of quantum
mechanics are called quantum phases. Probably the most impressive example is
the superconducting phase of certain metals (e.g., mercury and aluminum). Above a
material-specific critical temperature close to absolute zero (-273 °C), these metals
conduct electricity as usual (that is, with a small but non-zero resistance that leads
to losses). Below the critical temperature, this resistance disappears completely
and current can flow without losses (a phenomenon that is put to use in magnetic
resonance scanners). This superconducting phase differs fundamentally from the
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common metallic phase, and the transition between the two is another example of a
phase transition. The successful description of resistance-free charge transport in
superconductors is one of the great achievements of quantum mechanics and marks
a milestone of condensed matter physics.

An important motive of physics is generalization. Physicists learn phenomena
on the basis of special cases, and then try to explain them with general principles.
Such generalizations often lead to new theories and can shape the mindset of entire
generations of physicists (then called paradigms). Both the freezing of water and the
transition to the superconducting state are phase transitions. The obvious question
to ask is whether there are universal principles that govern all phase transitions. Is
there a general ordering principle that describes what distinguishes different phases?
Such an ordering principle was proposed and developed by the Soviet physicist
Lev Landau (Nobel Prize for Physics 1962) in the 1930s. The basic idea is quite
simple: Different phases differ in their symmetries. A symmetry of a physical system
is a transformation that does not change its appearance. For instance, a perfect
sphere is rotationally symmetric: When rotated, it always looks the same. Landau’s
ordering principle states that phases can be characterized by their symmetries. The
example of freezing water nicely illustrates the rationale: Liquid water always looks
the same under arbitrary rotations. A statement that is no longer true for water that
is frozen to crystals. In a generalized form, this idea can be applied to many phases
and phase transitions—including superconductors (there, however, with a more
abstract symmetry). Landau’s ordering principle became known as “spontaneous
symmetry breaking” because phase transitions are characterized by the fact that
certain symmetries of one phase are “spontaneously broken” at the transition to
another phase (for example, ice crystals break the rotation symmetry of liquid water
“spontaneously” as they grow along randomly selected directions). The theory of
spontaneous symmetry breaking was so successful that until the 1960s, physicists
were convinced that they had basically understood everything there is to know about
(quantum)phases and their transitions.

But in the early 1970s, there were signs that things could be a bit more
complicated. Theoretical models were developed that exhibit phases with exactly
the same symmetries while being separated by phase transitions. In 1980, Klaus
von Klitzing (Nobel Prize for Physics 1985) observed that a special form of the
conductivity of two-dimensional semiconductors only changes in precisely defined
steps when a strong magnetic field is applied and varied. The measured step size is
practically independent of the material (even for samples with impurities) and is
directly related to fundamental constants of nature. This phenomenon is known as
the quantum Hall effect2 and marks a milestone of modern physics. It is completely
opaque how measurements on a material with natural impurities can yield perfect
values of certain constants of nature. At that time, physicists had not yet come
across such “robustness” in real systems. To make matters worse, the phases

2The quantized version of the classical Hall effect, named after Edwin Hall.

xv



realized in the quantum Hall effect all appeared to have the same symmetries. Thus
it was undeniable that Landau’s ordering principle cannot account for all quantum
phases.

Soon after these discoveries, theoretical physicists pointed out that a discipline
of mathematics rarely used in physics is needed to understand these phenomena:
Topology. Topology (as opposed to geometry) deals with deformation-resistant
features of objects. Imagine you are given a string and your goal is to use it to
remember a number (say 5). One solution would be to mimic the shape of “5” with
the string; in this case, the number is encoded in its geometry. This approach is viable
but not very robust: The shape of the string is easily destroyed by unintentionally
touching it (and then the encoded information is lost). A much more sophisticated
method would be to wrap the string five times around your forearm and knot it.
As long as the string does not break, the number of turns cannot change; even if
it is deformed by moving around. The number of turns is therefore a topological
property as it is robust against geometric deformations. It is such a topological
winding number that is responsible for the robust conductivities of the quantum
Hall effect (only in this case, the role of strings is played by abstract, mathematical
objects that are used for the quantum mechanical description of the system). These
winding numbers of quantum phases are called topological indices; they can usually
not be measured directly, but have measurable effects nonetheless (such as the
discrete conductivities). The winding numbers also solve the mystery of seemingly
indistinguishable phases: They have simply different winding numbers. Since these
numbers are not directly accessible (they are “hidden” in the quantum mechanical
structure of a material), these phases seem to be the same, even though they are
not. When you try to get from one to the other, a phase transition occurs where
seemingly nothing changes; however, there the winding number jumps from one
integer to the next.

This concept forms the basis for one of the most active research areas of
physics at the time and has radically changed our view on possible quantum
phases (and related materials). The theoretical and experimental exploration of
these topological quantum phases is not nearly complete. By now, the concept has
become so influential in condensed matter physics (and beyond) that the theoretical
masterminds of this discipline—David Thouless,Duncan Haldane and
Michael Kosterlitz—were awarded the Nobel Prize for Physics in 2016.
The transition from Landau’s principle of spontaneous symmetry breaking to the
much more diverse concept of topological quantum phases can be compared to the
transition from monochrome to color television: The landscape of quantum phases,
which until the second half of the 20th century was gray-in-gray, has now turned
into a rainbow-colored painting riddled with mysteries. To gauge the scope of this
rather novel field of research, let me point out that in 2018 alone, more than 1300
publications with the keyword “topological” in their title are listed online; that is
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roughly 3 to 4 scientific articles per day. These figures alone should make it clear to
the reader that the picture drawn above cannot reflect the true complexity of this
topic.

This doctoral thesis is a contribution to the research field of topological phases
(and at least two of the publications it is based on belong to the 1300). Let me briefly
comment on the structure of this document: While early doctoral theses in physics
often had a monographic character, treating a single problem with a guiding thread
throughout the thesis, nowadays, theses that are based on a collection of papers
become more and more common. In the course of such a doctorate, several, mostly
independent research projects are conducted (often in collaboration with others) and
published as independent articles. The doctoral thesis summarizes these previously
published results in a single, comprehensive document and integrates them into a
common framework. The thesis at hand is of this form: Chapter 1 introduces the
concept of topological phases discussed above on a level accessible to students with
an undergraduate degree in physics. Each of the following Chapters 2 to 4 builds
on these foundations and treats a single project. Calculations that were omitted in
the original publications are presented in detail. Finally, in Chapter 5, a few side
projects are presented, some of which precursors or descendants of the three main
projects.

Let me now use your new knowledge of topological phases for a brief outline of
these projects:

→ In Chapter 2, I define and study a new model of a topological phase in
one spatial dimension. (In solid-state physics, models with less than three
dimensions are not uncommon. It is possible to create one-dimensional
“wires” of artificial quantum materials in the laboratory.) The building
blocks of the investigated model are strongly interacting fermions (think of
electrons). Its properties are examined with exact mathematical methods and
cross-checked with numerical simulations. The topological properties of this
model manifest in a robust “ground state degeneracy”: A physical system
described by this model at very low temperatures can be in different states
that are hard to distinguish. This indistinguishability can be exploited to
manipulate qubits, the “quantum bits” of a hypothetical quantum computer.
Hence, the model is not only interesting from an academic point of view, but
demonstrates how to harness the robustness of topological phases for the
manipulation of quantum information. (An idea that has been around for a
while and already spawned a dedicated branch of research concerned with so
called topological quantum computers.)

→ In Chapter 3, I use the model of a well-known topological phase (again in one
dimension) and translate it into a completely different context. The original
model was introduced to understand the conductivity of a particular polymer
(polyacetylene). In this context, it describes the movement of weakly bound
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electrons along a hydrocarbon molecule. After my “translation,” it describes
photons (i.e., particles of light) in artificial networks of resonators. These
networks “inherit” the topological properties of the original model. The
goal is to construct a robust mechanism for the transmission of quantum
information (i.e., a method for the non-destructive transport of qubits between
two sites on the chip of a quantum computer). In the studied approach,
topology helps to decouple the properties used for transport from possible
manufacturing tolerances; similar to the conductivity of the quantum Hall
effect that, due to its topological origin, is oblivious to disorder in the system.
In summary, this project demonstrates an application of topological phases
for the transfer of quantum information.

→ In Chapter 4, I examine another one-dimensional topological phase of
fermions with the goal of constructing a scalable quantum memory. This phase
is related to the model of Chapter 2, but easier to describe theoretically. It
is also easier to realize it experimentally. Its simplicity makes it one of the
few candidates for topological phases that can (hopefully) be implemented
in the near future in artificial, scalable structures of semiconductors and
superconductors. The topological robustness of this phase makes it a possible
building block for a quantum memory. The random access memory (RAM) of
a classical computer only works because it corrects errors actively (this is why
the data is lost in case of a power failure). The topological quantum memory
studied in Chapter 4 faces the same problem: Without active error correction,
it “forgets” the stored qubit. The goal of the project was the design of an
error correction mechanism that takes the peculiarities of the topological
phase into account and, at the same time, remains scalable (the performance
of the memory increases with its size; here we are talking about lengths in
the range of microns). To achieve this goal, I borrowed the concept of so
called cellular automata from the field of computer science. In conclusion,
this project demonstrates another possible application of topological phases
in quantum information technology; in this case, the storing of quantum
information.
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1
Introduction

“There was so much to grok,
so little to grok from.”

— Robert A. Heinlein
in Stranger in a Strange Land

Here we review the theoretical foundations of this thesis and locate it within
the ever-growing field of condensed matter physics. In Section 1.1 we introduce
the general concept of topological quantum phases and discuss the role played by
symmetries in this context. We address the classification of topological phases
with and without interactions between their fermionic or bosonic constituents. In
Section 1.2 we discuss two paradigmatic models—the Su–Schrieffer–Heeger chain
and the Majorana chain—as examples of non-interacting topological phases in one
spatial dimension. Both models are closely related and used repeatedly in this thesis,
either as motivation for or key element of the presented projects. In Section 1.3 we
review various proposals for applications of topological phases—both quantum and
classical—to demonstrate that the concept is more than a theorist’s delight. We
briefly comment on experimental results to make contact with the real world.
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PHASES OF MATTER

1.1 Phases of Matter

Energy can be thought of as a “fifth” dimension (extending our 3C 1-dimensional
spacetime) in that it defines the relevant constituents and their interactions that
govern the physics on a specific energy scale. For instance, the Planck energy
� 1019GeV defines the realm of “quantum gravity” (whatever this is) with possibly
“stringy” constituents. Down the energy axis, we pass the standard model of
high-energy physics with quarks and leptons as constituents interacting through the
exchange of strong, weak and electromagnetic gauge bosons. At even lower energies,
we enter the realm of nuclear physics with neutrons and protons that interact via the
nuclear force (a residual of the strong force).

Here we are interested in (conventional5) condensed matter physics that seeks for
descriptions of states of matter on the energy scale of � 1 eV and below (far away
from the � 1MeV of nuclear physics). Thus the constituents (or particles) are
negatively charged electrons and positively charged nuclei among which interactions
are mediated by the electromagnetic field. The term “condensed” refers to systems
that are governed by interactions (as in liquids or solids) rather than kinetic energy
(as in gases or plasmas). Typically, this requires temperatures of the order of (or
below) the interaction energies that determine the dynamics of the constituents.

The objective of condensed matter physics is the quantitative and qualitative
description of systems that comprise many (possibly strongly interacting) particles.
That this quest turns out to be highly non-trivial and theoretically demanding is not
a consequence of the (rather sparse) set of constituents, but of the vast possibilities
to combine them into qualitatively distinct, more or less correlated structures. The
latter are referred to as phases and form the centerpiece of condensed matter physics.
A system with fixed particle content can be in different phases, depending on the
temperature and the parameters that control the interactions between the particles.
For instance, atoms on a lattice that interact via their magnetic dipole moments
can be in a ferromagnetic phase at low temperatures (where all dipoles point into
the same direction) and in a paramagnetic phase at high temperatures (where the
orientation of dipoles is scrambled by thermal fluctuations). These two states of
matter are qualitatively different (for instance, the ferromagnetic phase displays a
macroscopic magnetization whereas the paramagnet does not). Interestingly, this
qualitative change in the macroscopic properties of a system can be triggered by
small and continuous changes in the temperature (or the parameters of the system).
This suggests that the properties of phases and the transitions between them are
emergent phenomena that can only be explained by the collective behavior of many,
strongly correlated particles.

5Some concepts of condensed matter physics are so fundamental that their validity extends to
other energy scales. For instance, the theory of Fermi liquids—typically used to describe electrons in a
metal—can also be applied to protons and neutrons in atomic nuclei.
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INTRODUCTION

Formally, phases are defined through the transitions between them: Two
systems are in the same phase if they can be parametrically connected without
a phase transition (which are typically indicated by non-analytic thermodynamic
potentials and/or diverging response coefficients and correlation lengths). This
definition qualifies phases as equivalence classes of which particular systems can be
representatives; furthermore, it formalizes the term “system X is in phase Y” as
“the state of system X is a representative of the class of states Y.” If a system crosses
the border between two equivalence classes, it undergoes a phase transition. Note
that the converse is not necessarily true: Crossing a phase transition does not imply
a change of phases (despite the term’s naïve interpretation) because critical lines
in parameter space can terminate at critical points; for example, liquid and gas
“phases” of fluids are actually the same phase (they share the same symmetries, see
below) despite their separation by a first-order transition at low temperatures.

Now that the notion of phases and phase transitions has been formalized, a
natural next step is the characterization of these equivalence classes or phases.
Indeed, a major goal of condensed matter physics is the construction of “labeling
schemes” such that two representatives belong to the same class if and only if their
labels are identical. The most successful “labeling scheme” as been introduced by
Lev Landau [5–7] and is nowadays known as the paradigm of spontaneous symmetry
breaking. According to Landau, the “labels” that characterize phases (and hence
are shared by all its representatives) are the symmetry group GS of the system and
the symmetry group GE under which the equilibrium state is invariant. In the
“disordered” phase, the state inherits all symmetries from the Hamiltonian that
describes the system: GE D GS . In the example of atoms that try to align their
magnetic moments, this corresponds to the high-temperature paramagnetic phase
where both Hamiltonian and state are invariant under rotations: GE D O.3/ D GS .
If a system is driven across a phase transition into another phase (e.g., by lowering
the temperature), the symmetry of the Hamiltonian remains unchanged, G 0

S D GS ,
but the state breaks some (or all) of these symmetries spontaneously: G 0

E � G
0
S .

Thus the “labels” of the phases of a system with fixed symmetry group GS are
given by subgroups G.1/E ; G

.2/
E ; : : : � GS under which representative states are

invariant. Then, transitions between different phases are signaled by a change
of symmetry G.1/E ! G

.2/
E in the equilibrium state of the system. Phases that

do not inherit the full symmetry group of the system, GE ¤ GS , are referred to
as ordered or symmetry-broken phases. In our example, the ferromagnetic phase
(where all moments point into the same direction) breaks the full rotation symmetry
GS D O.3/ of the Hamiltonian down to GE D O.2/. This happens spontaneously6

in that the direction of the moments is not determined by the description of the
system (recall that GS D O.3/ implies that the Hamiltonian has no preferred
direction).

6Strictly speaking, spontaneous symmetry breaking is only possible in the thermodynamic limit,
i.e., in infinite systems. The same is true for non-analyticities and divergences at phase transitions.
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PHASES OF MATTER

The concept of symmetry breaking is tightly related to the notion of an order
parameter that indicates the phase transition. In Landau theory [5, 6] (of which the
phenomenological Ginzburg-Landau theory is a special case [7]), order parameters
are local quantities that vanish in the disordered phase and (continuously) develop
a non-zero expectation value in the symmetry-broken phase. Order parameters
transform non-trivially under the action of the symmetries that are spontaneously
broken and thereby provide a “label” for the distinct equilibrium states that are
mixed by the symmetry transformations. In the Heisenberg model, the order
parameter is the local magnetization of the spins; it vanishes in the paramagnetic
phase and points into a spontaneously chosen direction in the ferromagnetic phase.

That there is more to (continuous) phase transitions than spontaneous symmetry
breaking and local order parameters became clear in the early 1970s when Kosterlitz
and Thouless studied two-dimensional models with continuous symmetries [8]; in
particular the XY model [9] (which describes ferromagnetically coupled, classical
spins on a lattice that rotate in the plane). This model features a continuous
O.2/ symmetry that cannot be broken at finite temperature due to the presence
of a gapless Goldstone mode—a consequence of the Mermin–Wagner–Hohenberg
theorem [10–12]. Nevertheless, the two-dimensional XY model exhibits a phase
transition at finite temperature with (weak) singularities that separates a disordered
high-temperature phase (with exponentially decaying correlations) from another
disordered phase with correlations that decay algebraically (so called “quasi long-
range order”). The theoretical description of this transition by mean field arguments
and renormalization group techniques earned John Kosterlitz and David Thouless
(together with Duncan Haldane, see below) the 2016 Nobel Prize in Physics.

So far we only skimmed the microscopic mechanism that is responsible for
phase transitions. In classical physics, transitions between symmetric and symmetry-
broken phases are driven by thermal fluctuations (recall the example of a ferromagnet
where thermal fluctuations above a critical temperature destroy the alignment of
magnetic moments). However, at very low temperatures, quantum mechanics
provides another mechanism that allows for phase transitions: quantum fluctuations
that arise from non-commuting terms in the Hamiltonian. Since the strength of such
fluctuations is completely controlled by the relative strength of these terms, such
phase transitions can occur even at zero temperature, i.e., in the absence of thermal
fluctuations. These phases—and the transitions between them—are referred to as
quantum phases and quantum phase transitions [13].

Here we are interested in quantum phases that do not break the symmetries of
the Hamiltonian and cannot be identified by local order parameters; i.e., quantum
phases that are “disordered” according to Landau’s paradigm of symmetry breaking.
Examples are quantum spin liquids [23–26] (where quantum fluctuations due to
frustration can preclude long-range order), fractional quantum Hall fluids [27–29]
(where strong electron-electron interactions can destabilize the formation of Wigner
crystals), and Fermi liquids [30] (which are adiabatically connected to a Fermi gas).
In this scenario—and in the light of the results by Kosterlitz and Thouless—a
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natural question to ask is whether Landau’s symmetry-based “labeling scheme” is
exhaustive for quantum phases. In other words: Are there systems with several
“disordered” phases at zero temperature that nevertheless are separated by a phase
transition? If so, what are the “labels” that characterize these phases? Just as
quantum fluctuations provide a new mechanism for phase transitions, there might
be genuine “quantum ingredients” that allow us to distinguish phases even if their
symmetry is the same.

1.1.1 Intrinsic Topological Order

The new ingredient is entanglement. The pattern of entanglement in the many-body
ground state wave functions of gapped quantum systems constitutes a new “label”
that is not accessible by symmetries, local order parameters or correlations [31, 32].
Nonetheless it allows for the characterization of quantum phases in the absence
of symmetry breaking [16]: There are global features of entanglement patterns
that cannot be removed by smooth variations of local Hamiltonians as long as the
system remains gapped (which can be read as the absence of continuous phase
transitions, see Ref. [16] and references therein). These features give rise to distinct
equivalence classes of long-range entanglement, where the equivalence relation is
given by the transformation of one ground state into the other by means of gapped,
local Hamiltonians, or, equivalently, local7 quantum circuits of constant depth8 [16].
Thus ground states that are equivalent (belong to the same phase) share a common
pattern of long-range entanglement and differ only by local unitary deformations.
The equivalence class that contains states that can be transformed into a product
state (e.g., a simple paramagnet jCi1 ˝ jCi2 ˝ : : :) is referred to as trivial phase,
whereas the other classes are identified with different types of intrinsic topological
order (the “intrinsic” is often omitted). The latter is a genuine quantum property
and has no counterpart in classical physics.

The concept of topological order marks a paradigm shift in condensed matter
physics and was spearheaded by the discovery of the fractional quantum Hall effect
in 1982 by Daniel Tsui and Horst Störmer [27]. In the wake of this discovery (for
which Tsui, Störmer and Robert Laughlin were awarded the 1998 Nobel Prize in
Physics), the study of topologically ordered phases became a prominent field of
research that demonstrated the incompleteness of Landau theory and brought an

7Here,“local” characterizes operators with non-trivial action on a finite number of nearby degrees
of freedom. The important point is that this “radius of action” does not grow with the system size.

8The term “long-range entanglement” is not used consistently in the literature. Here we use
Xiao-GangWen’s definition [16] that relies on local unitary deformations of states. Another convention,
introduced by Alexei Kitaev, attributes “long-range entanglement” to states for which the topological
entanglement entropy does not vanish [31]. Kitaev’s definition relates more directly to fractional
statistics (see below), while Wen’s definition gives rise to an equivalence relation that is more suitable
to classify phases. An example where the two definitions differ are integer quantum Hall states: they
are short-range entangled by Kitaev’s definition [33] but long-range entangled according to Wen [34].
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unforeseen variety of quantum phases to light. As it turns out, fractional quantum
Hall liquids are paradigmatic for the concept of topological order in that they
exhibit many features that are associated with non-trivial patterns of long-range
entanglement:

→ They cannot be characterized by a local order parameter and all correlations
decay exponentially.

→ The ground state degeneracy on closed manifolds depends on their topology
(whether it is a sphere, a torus, etc.) and is robust in the presence of arbitrary
perturbations that do not close the gap [35].

→ There are exponentially localized excitations (quasiparticles) that carry frac-
tionalized charges [36].

→ These excitations obey neither fermionic nor bosonic statistics—they are
anyons and obey fractional or anyonic statistics [37, 38].

→ On manifolds with boundaries, there are robust, gapless edge states that allow
for scattering-free transport [39].

→ The low-energy effective description is given by a topological quantum field
theory (TQFT) (see Ref. [40] and references therein), i.e., a quantum field
theory defined by an action that is a topological invariant9 [14].

Several—but not all (detailed below)—of these features are theoretically pre-
dicted for other topologically ordered phases as well; e.g., Kitaev spin liquids [24],
quantum double models like the toric code [45], and Levin-Wen string-net conden-
sates [46]. In particular, the existence of anyonic excitations, the robust ground state
degeneracy on non-trivial manifolds, and the description in terms of topological
quantum field theories are mutually dependent features that give rise to one of
the most exciting crossovers of condensed matter physics and quantum informa-
tion theory: topological quantum computation [45, 47, 48] and topological quantum
memories [49, 50]. The former exploits the peculiar braiding properties of anyonic
excitations to apply fault-tolerant unitary gates to qubits that are encoded in delocal-
ized degrees of freedom of topologically ordered states, while the latter leverages
the robust degeneracy on topologically non-trivial surfaces to encode qubits that are
then naturally protected from decoherence.

We conclude with a few remarks: First, long-range entanglement is necessary
but not sufficient for the anyonic statistics of intrinsic excitations. For instance,
integer quantum Hall states are long-range entangled but do not host excitations

9This is the case for actions that do not depend on the metric so that the field theory is oblivious
to smooth deformations of the system and, consequently, features only global degrees of freedom.
Examples are Chern-Simons theories [41] that describe fractional quantum Hall states [40,42] and BF
theories [43] that describe conventional superconductors [44].

8
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with fractional statistics [34] (an example of so called invertible topological order [51]).
Second, gapless edge states are not tied to topological order either. The toric
code [45, 52] is a prime example of topological order that hosts anyonic excitations
without gapless edge states. Third, topological order is not restricted to two-
dimensional systems (as the fractional quantum Hall states might suggest) but
can be realized in arbitrary dimensions10 with higher-dimensional (e.g., string-
like) excitations11. And finally, the mathematical machinery needed to capture
and classify the characteristic features of topologically ordered phases is category
theory [55, 56]. For instance, the description of fusion, braiding, and rotation of
anyons in two-dimensional topologically ordered phases requires categories with
additional structures known as ribbon fusion categories and unitary modular tensor
categories [48, 57]. Compared to group theory (the mathematical framework of
spontaneous symmetry breaking) this abstract and rather special field of mathematics
is less well understood and its application to condensed matter physics is an active
area of research [58].

Although topological order is not the main focus of this thesis, we touch
on the subject in Section 5.2 where we study an unconventional construction of
fractional quantum Hall states, in Chapter 2 where we analyze the non-abelian
braiding statistics of endpoints in networks of one-dimensional quantum wires, and
in Section 5.5 where we discuss certain aspects of topological quantum memories.

1.1.2 Symmetry-Protected Topological Order

So far, we can label quantum phases by the symmetries they break and their pattern
of long-range entanglement. The latter allows us to distinguish phases that do not
break any symmetry of the Hamiltonian—phases that have traditionally been viewed
as disordered under Landau’s paradigm of spontaneous symmetry breaking. The
concept of topological order demonstrates that quantum states can exhibit “hidden”
types of order that cannot be probed by local order parameters. Ground states with
different “hidden” orders are nonetheless separated by quantum phase transitions,
which makes the concept of topological order just as relevant as the concept of
symmetry breaking.

Before we add another ingredient to obtain an even more fine-grained charac-
terization of quantum phases, we stress that the two concepts we discussed so far
are by no means exclusive [16]: It is conceivable that a symmetry-broken “phase”
splits further into distinct phases that share a common symmetry but differ in their

10Except for one-dimensional spin systems [17].
11Contrary to many expositions in the literature, conventional s-wave superconductors in three

dimensions are topologically ordered if the electromagnetic gauge field is dynamical [53] (which it
undeniably is in the real world). Then, fractional statistics is associated with the braiding of point-like
quasiparticles and string-like vortex loops [44]. Thus the conventional wisdom that fractional quantum
Hall states are the first topologically ordered states of matter that have been found in nature is, strictly
speaking, not correct [54].
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patterns of long-range entanglement. For instance, chiral spin liquids [59, 60] sponta-
neously break time-reversal and parity symmetry (and develop a corresponding local
order parameter); however, they are also topologically ordered which manifests, for
example, in ground state degeneracies on compact manifolds [61]. Hence the new
“labeling scheme” for quantum phases can be illustrated as follows:

Landau theory

Short-range
entangled

Long-range
entangled

Symmetric Symmetry-broken

Topological order

Let us now split this landscape even further. To this end, assume that we have two
gapped HamiltoniansHi (i D a; b) with corresponding ground states j�ai and j�bi.
According to the sketchy definition given at the beginning of Subsection 1.1.1, they
belong to the same phase if there is a family of gapped and local Hamiltonians OH.˛/
that depends continuously on ˛ 2 Œ0; 1� such that Ha D OH.0/ and Hb D OH.1/.
The two constraints (gapped and local) ensure that the macroscopic properties
of the ground states only change gradually along the path (which precludes the
traversal of phase boundaries).

Now let us forget quantum mechanics for a second and return to thermodynamic
phases, say, the phases of water. Schematically the phase diagram looks as follows:

Pr
es
su
re

Temperature

Gas

Liquid

Solid

As mentioned earlier, gas (or vapor) and liquid are actually the same phase since
there are continuous paths through the supercritical regime that connect these
states without hitting a phase transition (dashed path). So why do we refer to gas
and liquid as different phases in everyday life? The reason is that the temperature
Tcr � 370

ıC and pressure Pcr � 22MPa of the critical point (red dot, where the
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first-order transition terminates) are far away from the values we usually experience.
Thus the relevant phase diagram for most physical processes on earth looks rather
like this:

Pr
es
su
re

Temperature

This is just a “masked” version of the complete phase diagram. But under the
additional constraint of physically realistic temperatures and pressures, there is no
longer a path that connects the two phases without crossing a phase transition. In
this restricted parameter space, gas and liquid are indeed different phases that are
completely separated by a phase transition.

The bottom line of this detour is that continuous paths connecting two states of
matter might not be relevant (or accessible) in a specific context due to constraints
imposed by the setting. Such constraints do not necessarily take the form of
quantitative restrictions of parameters. In quantum mechanics, for instance, systems
often feature characteristic symmetries that govern the dynamics and are not violated
by typical perturbations of the idealized model. For example, closed systems often
come with a natural U.1/ symmetry in the form of particle number conservation.
Such symmetries can restrict the allowed paths that connect different states and
thereby induce an effective separation of phases into different “patches” that cannot
be connected without crossing a phase transition or violating the symmetry.

Another perspective is the following: Assume we find a system that supports
gapless edge modes on its boundaries. As it happens, there is a continuous path
of Hamiltonians (with a gapped bulk) that connects this peculiar state to a trivial
product state where the edge modes are gone. According to the definition of
topological order, both states belong to the same phase and are thereby assigned
the label “trivial.” Apparently the “labeling scheme” of topological order is too
coarse as it misses the existence of edge states (which clearly are an interesting
feature and may even be useful for applications). It does so because this feature
(the edge states) does not rely on long-range entanglement and can be removed
from the system without a phase transition in the bulk. The question that comes to
mind is whether there is an appropriate “mask” for the phase diagram that excludes
this path and splits the “trivial” phase into two patches—separated by a phase
transition—such that all states in one patch exhibit gapless edge modes while the
states in the other patch do not. Such a restricted phase diagram would be useful as
it conveys information on the perturbations that can be added to the system without
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gapping out the edge modes. As it turns out, the “mask” we are looking for exists
and is again defined by certain symmetries that the Hamiltonian(s) must satisfy.
From this perspective, symmetries are means to an end and perturbations that violate
the symmetries must be avoided (e.g., by energy penalties).

The last two paragraphs motivate the use of protecting symmetries as another
ingredient for the classification of quantum phases. In contrast to Landau theory, we
are not interested in ground states that break them but in Hamiltonians that preserve
them. To formalize this, we modify the equivalence relation from above:

Assume that we have two gapped Hamiltonians Hi (i D a; b) with common
symmetry group G, represented by unitary operators Ug for g 2 G. Denote
the corresponding ground states as j�ii and assume that there is no spontaneous
symmetry breaking, i.e., Ug j�ii D j�ii for all g 2 G. Then, the states j�ii
belong to the same phase if there is a family of gapped, local and symmetric12

Hamiltonians OH.˛/ that depends continuously on ˛ 2 Œ0; 1� such thatHa D OH.0/

andHb D OH.1/.
This equivalence relation is applicable to both sort-range and long-range

entangled states. Since the new definition is more restrictive than the old one, states
with the same pattern of long-range entanglement can fall into different phases
under the new definition. The structure of these new phases depends obviously
on the choice of the symmetry group GP (P for “protecting”). If we focus on
systems without spontaneous symmetry breaking (GE D GS ), there are two classes
of phases to be considered:

→ States that can be connected to a product state are “trivial” both in symmetry
breaking terms and in the context of topological order. However, depending
on the protecting symmetryGP , this equivalence class can split into “patches”
of short-range entangled states, separated by phase transitions, that can only
be connected to the trivial product state if the protecting symmetry GP is
violated along the path OH.0/ ! OH.1/ (or if a phase transition occurs, of
course). These “patches” are referred to as symmetry-protected topological13

(SPT) phases [34]. The most prominent example is the famous Haldane
phase of the one-dimensional spin-1 Heisenberg antiferromagnet [62, 63]
which is protected by (optionally) spin-rotation, time-reversal or inversion
symmetry [64, 65].

→ Similarly, states with long-range entanglement that can be smoothly connected
might get separated by an additional protecting symmetry. The resulting
“patches” of long-range entangled states are called symmetry-enriched topologi-
cal (SET) phases [34]. The term “enriched” refers to the fact that symmetries
can endow anyonic excitations (which are tied to topologically ordered phases)

12That is, Œ OH.˛/; Ug � D 0 for all ˛ 2 Œ0; 1� and g 2 G.
13The term“topological” is somewhat misleading as these states are not topologically ordered.

Thus“SPT” is sometimes read as “symmetry-protected trivial” instead.
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with fractional charges14. For example, the fractional charges of quasiparticles
in fractional quantum Hall liquids [36] and the quantized Hall conduc-
tance of these systems [27] are symmetry-protected by charge conservation
GP D U.1/ [66, 67].

We conclude that with symmetries as “masks,” the new, more fine-grained landscape
of quantum phases can be sketched as follows:

SPT phases
Short-range

entangled

(Symmetric)

Long-range
entangled SET phases

trivial trivial

tr
iv

ia
l

Note that it is also conceivable that there are no new SPT or SET phases defined by
imposing a protecting symmetry (illustrated by GP1 above).

Given this rather abstract concept of symmetry-protected quantum phases, it is
natural to ask for a “labeling scheme,” i.e., a mathematical framework that, given a
protecting symmetry GP and a spatial dimensionD, assigns “labels” to all ground
states of gapped Hamiltonians that do not break GP , such that two states carry
the same “label” if and only if they belong to the same GP -protected phase. In
other words: We are looking for a replacement of group theory (which underlies
spontaneous symmetry breaking).

In the following, we focus on SPT phases to avoid the intricacies of topological
order and fractionalized excitations15. Even though we thereby discard a plethora of
interesting states of matter (such as fractional quantum Hall liquids), the ensuing
picture is stunningly complex. The quest for the classification of SPT phases gave
rise to (at least16) three major directions of research that attracted lots of attention
in recent years:

14Formally, the anyons transform under projective representations of the global symmetry group; a
phenomenon known as symmetry fractionalization. See Subsection 5.1.3 for an application of projective
representations in the context of SPT phases.

15We are a bit sloppy here: The classification schemes discussed below capture also some phases
that are actually long-range entangled according to Wen’s definition (see Footnote 8); examples are
the 1DMajorana chain and the 2D integer quantum Hall states [34]. The important point is that we
exclude phases with anyonic bulk excitations.

16See Ref. [68] for a review on the various approaches to classify quantum phases in the presence
of symmetries.
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→ The classification that has been studied most intensively (and is by now well
understood) covers non-interacting fermion Hamiltonians and the quantum
phases that are realized as their many-body ground states (constructed by
filling all single-particle eigenstates with negative energy).

The first and most prominent phases that fall under these restrictions are
the integer quantum Hall states [69] which can be understood in terms of
non-interacting fermions. Different quantum Hall states are characterized
by their quantized Hall conductance which, in turn, can be related to a
topological invariant � 2 Z known as TKNN invariant17 [70]. � is the first
example of a “label” that discriminates quantum phases that cannot be
characterized by the symmetries they break. A few years later, Haldane
introduced the prototype of a Chern insulator and showed that the magnetic
field is not crucial for a quantized Hall conductance [71], a phenomenon
called quantum anomalous Hall effect. Since the Haldane model breaks time-
reversal symmetry (just as quantum Hall systems do), it seemed reasonable
that this is a necessary ingredient for the emergence of topological states
of matter. However, in 2005 Kane and Mele came up with a time-reversal
symmetric model that cannot be deformed into a trivial insulating state
without closing the gap or breaking time-reversal symmetry [72]. The Kane-
Mele model realizes the quantum spin Hall effect and became the prototype
for a class of quantum states nowadays known as topological insulators (TI)18.
It is associated with a new topological invariant � 2 Z2 which separates
the trivial (� D 0) from the topological phase (� D 1) [73]. Shortly
afterwards it was predicted [74] and experimentally demonstrated [75] that
the quantum spin Hall effect can be realized in HgTe quantum wells. In the
same year, generalizations for topological insulators in three dimensions were
proposed [76, 77], followed by experimental observations one year later [78].
Another diverse class of quadratic Hamiltonians—so called Bogoliubov-de
Gennes (BdG) Hamiltonians—describes conventional superconductors on the
mean field level (with fermion parity symmetry and broken U.1/ symmetry).
Due to mathematical similarities in the description of band insulators and BCS
superconductors, it comes as no surprise that many of the topological features
found for insulators have superconducting counterparts. Indeed, in 2000
Read and Green introduced a time-reversal breaking p-wave superconductor
with chiral edge modes [79] (in analogy to integer quantum Hall states), and
the discovery of the Kane-Mele model was followed by the construction
of superconductors (and superfluids) with counterpropagating edge modes
protected by time-reversal symmetry [80,81]. These edge modes are rather

17Mathematically an example of a (first) Chern number.
18The term“topological insulator” is not used consistently in the literature: Sometimes it refers

specifically to the Kane-Mele model, sometimes it is used as a label for the class of gapped free fermion
theories with time-reversal symmetry and particle number conservation, and sometimes it refers to
arbitrary band insulators with topologically protected edge modes (including, e.g., Chern insulators).
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special: they are Majorana modes, a characteristic feature of superconductors
due to their intrinsic particle-hole symmetry. Majorana modes can also appear
at the boundaries of one-dimensional superconductors [82] (Subsection 1.2.2)
and in vortices [83].

All these models can be described by non-interacting fermion Hamiltonians
and are covered by the classification of topological insulators and superconductors19.
There are two ingredients that make this classification possible: First, the
restriction to non-interacting fermions allows for the description of the
many-body ground states in terms of single-particle eigenstates. And second,
the protecting symmetries are restricted to the generic symmetries20 T (time-
reversal symmetry), C (particle-hole symmetry), and S D T � C (chiral- or
sublattice symmetry). It can be shown that there are only ten possibilities for
a quadratic Hamiltonian to transform under these symmetries. Translated to
the single-particle Hamiltonian, these define ten classes of random matrices
that are characterized by certain reality conditions, a scheme known as
Altland-Zirnbauer classification or “tenfold way” [90] which can be traced
back to Wigner and Dyson [91–93]. Each of these ten classes corresponds
to a specific “mask” on the parameter space of non-interacting fermion
Hamiltonians which may or may not give rise to new phases. These phases
can be labeled with integers known as topological invariants, which often can be
evaluated explicitly in translationally invariant systems by an integration over
the Brillouin zone [70, 73, 94] (the most prominent example being the TKNN
invariant). The topological invariants and their allowed values depend on the
symmetry class and the spatial dimension and define the SPT phases that
can be distinguished under these circumstances [22, 95]. Various methods
can be used to derive this classification scheme in arbitrary dimensions:
Most notably, the description of Anderson localization [96] in terms of
nonlinear � models (NL�M) [21, 95, 97] and the mathematical framework of
K-Theory [22]. A central result of both approaches is that in every dimension
D, five of the ten symmetry classes support non-trivial21 topological phases
and, quite surprisingly, the labeling scheme is periodic in D: the allowed
topological indices inD andDC 8 dimensions are the same (a feature known

19Here, the term“topological insulator” is used in the widest sense, i.e., it refers to arbitrary band
insulators with non-trivial topological indices and robust edge modes; see Footnote 18.

20These symmetries are the only ones that a disordered fermion systemwithout any unitary symme-
try on the single-particle level can possess; this is what makes them“generic.” Unlike “conventional”
symmetries, they are realized as antiunitary symmetries or unitary/antiunitary “pseudo-symmetries”
on the single-particle Hamiltonian (“pseudo-symmetries” anticommute with the Hamiltonian). See
Ref. [84] for a mathematical treatment and Ref. [85] for a pedagogical exposition. We stress that
one can extend the classification by considering additional unitary symmetries. This has been done
for spatial symmetries (reflections etc.) and results suggest that it complicates the classification
considerably [86–89].

21Non-trivial topological phases have a non-zero topological invariant.
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in K-Theory as Bott periodicity [22]). This motivates the term “periodic table
of topological insulators and superconductors” [22]; here we will refer to it
simply as the tenfold way22.

Finally, let us point out that the phase of a system is a property of the
bulk; it does not depend on the presence or absence of boundaries because
phases are, strictly speaking, only well-defined in the thermodynamic limit
where boundaries clearly are irrelevant. However, a unifying property of the
topological insulators and superconductors presented above is the existence
of gapless edge modes that are exceptionally robust to disorder. Thus, while
boundaries do not affect the bulk, the bulk clearly affects the boundaries.
As it turns out, the existence of gapless edge modes is a mathematical
consequence of the topologically non-trivial bulk23, a relation known as bulk-
boundary correspondence24 [98, 99] (see also Ref. [100] and references therein).
It essentially states that whenever two media with different topological
indices touch, there are necessarily gapless modes localized at the boundary25.
Thereby the robustness of these edge modes derives from the robustness of
the topological invariants that describe the bulk.

For a pedagogical introduction to the tenfold way we refer the reader to
Refs. [85, 101], for comprehensive and historical reviews on topological insula-
tors and superconductors see Refs. [102, 103]. Finally, we note that recently a
generalization to so called “higher-order topological insulators (HOTI)” has
been proposed [104, 105]; in contrast to “conventional topological insulators,”
these states feature no conducting surfaces but gapless modes bound to hinges
or corners. Recent experimental results established bismuth as a HOTI with
symmetry-protected conducting hinge modes [106].

In this thesis, we make use of the tenfold way repeatedly in Chapter 3 and Chap-
ter 4 where we employ one-dimensional models that can be classified in this scheme.
In Section 1.2 we introduce and discuss these models.

→ We saw that non-interacting fermion Hamiltonians give rise to a variety of
interesting SPT phases and, at the same time, describe many real-world
materials reasonably well (as explained by Fermi liquid theory). This, however,
is not always true and a more generic classification that includes interactions
is desirable. From the perspective of the tenfold way, this means that
restrictions are loosened such that additional (interacting) paths can be used

22Strictly speaking, the“tenfold way” refers only to the Altland-Zirnbauer classification of random
matrices—without any association to topological invariants or SPT phases. As we are primarily
interested in the latter (and“tenfold way” is short and catchy), we use it to refer to the periodic table
of topological insulators and superconductors instead.

23This relation allows for the characterization and classification of topological phases by means of
their boundary physics, an approach taken by the NL�M-based classification scheme [21, 95, 97].

24Sometimes called bulk-edge correspondence.
25This explains the appearance of robust edge modes at the boundaries of topological insulators

and superconductors because the surrounding “vacuum” always has a topological index equal to zero.
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to connect gapped Hamiltonians. Thus it is conceivable that distinct phases
in the tenfold way can be connected by paths through interacting regions of
parameter space. This is similar to our classical example above: Removing
the “mask” from the phase diagram of water makes liquid and vapor belong
to the same fluid phase.

Indeed, it can be demonstrated explicitly that certain one-dimensional
topological superconductors—which are classified by a Z topological index26

in the tenfold way—are classified by a Z8 topological index when interactions
are allowed [107]: Removing the “mask” from parameter space connects an
infinite number (Z) of disconnected patches such that only 8 separate regions
survive (Z8); similar results can be shown in two dimensions [108].

Contriving a general classification of interacting, symmetry-protected topolog-
ical phases is a highly non-trivial endeavor for several reasons: First, whereas
the tenfold way classifies quantum phases by classifying single-particle Hamil-
tonians instead, such a simplification is not possible for interacting theories.
Second, the tenfold way only covers three generic symmetries; a complete
classification, however, should be applicable to more general symmetries as
well. And third, there might be SPT phases that are intrinsically interacting,
i.e., phases that lack non-interacting representatives (actually, there are such
phases [109]).

While the classification in one and two dimensions has been intensively
studied [109–113], proposals for a complete classification in three dimensions
are still scarce [114, 115]. The most prominent mathematical toolset employed
for these classifications is “group supercohomology27” [19], while another
proposal makes use of cobordism groups [20] (an approach that extends to
interacting bosonic phases as well). Thus, at the time of writing, the
classification of interacting fermions is very much “work in progress”—even
more than for bosons (see below). We refer the reader to Ref. [115] and
references therein for a recent review with focus on classification schemes
and to Ref. [116] for a more model-centered perspective.

In this thesis, we study a symmetry-protected topological phase of interacting fermions
in Chapter 2, although we do not relate it to a classification scheme due to subtleties
to be discussed.

→ Topological phases that are protected by symmetries (with or without long-
range entanglement) can also arise from bosonic constituents. However, there
is a fundamental difference between bosons and fermions: The many-body
ground states of non-interacting (i.e., quadratic) fermionic Hamiltonians

26Topological indices label distinct phases: Ground states with different indices cannot be smoothly
connected without closing the gap or violating the symmetry; see Section 1.2 for examples.

27A generalization of the mathematical concept of group cohomology (which can be used for the
classification of bosonic SPT phases, see Subsection 5.1.3 for an application).
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give rise to quantum phases that inherit their features from a significant
part of the single-particle spectrum due to the Pauli exclusion principle
(by filling the bands with negative energy). In particular, filled bands
with a topological character (e.g., non-vanishing Chern number) imprint
these properties on the many-body ground state wave function [117, 118], with
measurable consequences, e.g., for transport [70,73]. The same single-particle
Hamiltonians can also be used to describe bosons (on the single-particle level,
statistics is meaningless). But the many-body ground states of these non-
interacting theories are simply Bose-Einstein condensates (where all bosons
condense into a single lowest-energy mode). These states do not probe
entire bands but only single modes and therefore cannot inherit any of their
topological features (if present).

The upshot is that there are no non-interacting topological quantum phases
of bosons and there is no bosonic counterpart of the tenfold way28. Thus
any classification of bosonic SPT (or SET) phases necessarily involves
interactions—which makes it mathematically much more challenging, see
Ref. [34] and references therein. At the time of writing, the most comprehen-
sive classification scheme makes use of suitable “fixed point” representations
of many-body ground state wave functions and employs algebraic properties of
their transformation under the symmetry operations to characterize quantum
phases [17, 18, 64, 112, 119, 120]. Formally, the scheme is built on group
cohomology theory and quantum phases are labeled by elements of certain coho-
mology groups that encode algebraic properties of the protecting symmetries;
however, recent results suggest that in 3D there are SPT phases that are not
captured by this classification [121–123]. In the wake of these findings, it has
been proposed that cobordism groups may provide a unifying toolset for an
exhaustive classification of SPT order in any dimension [124, 125]. Thus, just
as for interacting fermions, the classification of bosonic SPT phases is subject
to ongoing research and a conclusive picture—comparable to the tenfold way
for free fermions—has yet to be drawn.

In this thesis, the cohomology-based classification of one-dimensional SPT phases of
interacting spins (alternatively: hard-core bosons) plays a role in Chapter 5, more
precisely in Section 5.1 where we discuss and apply the framework in an experimentally
relevant setting.

28This does not mean that there is no use for the fermionic tenfold way in bosonic settings. The
crucial point is that only single-particle excitations can be affected (see Chapter 3 for an example and Sec-
tion 1.3 for proposed applications) but not the features of quantum phases (which are characterized by
many-body ground states).
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1.2 Examples in One Dimension

1.2.1 The Su–Schrieffer–Heeger Chain

The Su–Schrieffer–Heeger (SSH) chain is a model of non-interacting, spinless
fermions in one dimension that has been introduced by Su, Schrieffer and Heeger in
1979 to describe soliton formation in polyacetylene [126]. The model has become
the example of choice to illustrate topological invariants and the emergence of
robust edge modes [127]. It is classified by the tenfold way and hence the prime
example of a non-interacting, fermionic, symmetry-protected topological phase.

The model is defined on a one-dimensional lattice of spinless fermion modes ai
and bi , 1 � i � L, that are grouped into L unit cells:

The Hamiltonian that defines the SSH chain is given by simple fermion hopping
with alternating amplitudes t and w:

HSSH D t

LX
iD1

.a
�
i bi C b

�
i ai/C w

L0X
iD1

.b
�
i aiC1 C a

�
iC1bi/ ; 1.1

where L0 D L � 1 for open (OBC) and L0 D L for periodic boundary conditions
(PBC). Let us focus on PBC where we can use translational invariance to (partially)
diagonalize the Hamiltonian by a Fourier transform. In the Fourier basis Qak and Qbk
the Hamiltonian (1.1) reads

HSSH D

X
k2BZ

h
Qa
�

k
Qb
�

k

i
�

�
0 t C we�ik

t C weik 0

�
„ ƒ‚ …

h.k/

�

�
Qak
Qbk

�
1.2

with the Bloch Hamiltonian h.k/; as traceless and Hermitian 2 � 2-matrix, it can be
expanded in Pauli matrices:

h.k/ D .t C w cos k/ �x C w sin k �y D d.k/ � � 1.3

with the three-dimensional vector

d.k/ D

24t C w cos k
w sin k
0

35 : 1.4
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The eigenvalues of H.k/ are simply

E˙.k/ D ˙jd.k/j D ˙
p
t2 C w2 C 2tw cos k 1.5

and collectively constitute the single-particle spectrum of HSSH. The band gap is
easily evaluated and reads�E D 2 jjt j � jwjj: the system is a gapped band insulator
for all t; w 2 R except for jt j D jwj where the gap closes. Let us focus on the
case where t; w � 0 (the other three cases can be shown to be equivalent via a
canonical transformation of the fermion modes). Then the two regimes t < w

and t > w both constitute gapped phases with many-body ground states given
by a completely filled lower band. Connecting these two phases via HSSH is not
possible without crossing the critical, gapless point at t D w where �E D 0. This
(continuous) phase transition suggests that the two regimes for t < w and t > w
are actually different phases. If so, there should be some qualitative feature that is
stable but different in the two parameter regimes and changes abruptly at t D w.
Let us try whether Landau’s paradigm of spontaneous symmetry breaking tells
us anything useful: According to Landau—if different—the two phases should
transform differently under the symmetries of the Hamiltonian. But this cannot
be the case because in both regimes the ground state is unique. So Landau tells
us that the two regimes actually belong to the same disordered phase. What is the
conclusion within the scope of the new concepts introduced in Subsections 1.1.1
and 1.1.2? Let us first show that the “coarser” notion without symmetry-protection
(the one that defines intrinsic topological order) comes to the same conclusion
as Landau. We will then argue that this definition is too blunt to characterize
the SSH chain properly and demonstrate that the more “fine-grained” concept of
symmetry-protected topological phases is the appropriate framework.

Recall the definition of quantum phases according to which two ground states
belong to the same phase if and only if there is a continuous family of gapped,
local Hamiltonians that interpolates between them. We already saw that the paths
OHSSH.t; w/ � HSSH parametrized by w and t fail miserably because they must cross
a gapless point at w D t . But the definition is very permissive: It allows for
arbitrary modifications of the Hamiltonian as long as it remains local and gapped.
Thus we are free to choose OH.t; w; �/ � OHSSH.t; w/C �H

0 to connect the gapped
Hamiltonians HSSH.t < w/ D OH.t < w; 0/ and HSSH.t > w/ D OH.t > w; 0/; our
goal is to circumvent the gap closing by switching on another local HamiltonianH 0

(� > 0), cross the point w D t (where the gap no longer closes due to H 0), and
then switch H 0 off again (� D 0). The correct choice for H 0 follows from the
spectrum (1.5) and the vector (1.4). Indeed, with a staggered chemical potential

H 0
D

LX
iD1

.a
�
i ai � b

�
i bi/ 1.6
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the Bloch Hamiltonian of OH.t; w; �/ leads to

d.k/ D

24t C w cos k
w sin k
�

35 1.7

so that the modified spectrum

˙E˙.k/ D jd.k/j D
p
�2 C t2 C w2 C 2tw cos k � j�j 1.8

becomes gapped for arbitrary t and w (in particular t D w) if � > 0. We conclude
that the two gapped phases of the SSH chain are actually the same phase if we use
the definition that underlies the concept of intrinsic topological order.

Note that the spectrum (1.5) becomes flat for t � w D 0 and the many-body
ground state of HSSH for t > 0 and w D 0 is a simple product state at half-filling
with one delocalized fermion per unit cell; we label this state as “trivial.” For
t D 0 and w > 0 the bands are again flat and the many-body ground state can
be read off the Hamiltonian (1.1): now the fermions are delocalized between two
modes of adjacent unit cells. The family of Hamiltonians OH.t; w; �/ connects these
two representatives adiabatically, i.e., without crossing a phase transition. Thus,
according to this concept of phases, the state with t D 0 and w > 0 is just as
“trivial” as the one with t > 0 and w D 0.

However, in Subsection 1.1.2 we argued that this classification scheme can be
too coarse—it might fail to capture the characteristic features of the system. We
provided arguments why a more fine-grained classification of phases is desirable.
Let us revisit these arguments for the SSH chain:

→ Symmetries are of paramount importance in quantum mechanics. Often the
symmetries of a system can be divided into accidental and natural symmetries.
Natural symmetries are robust symmetries of the Hamiltonian that survive
typical perturbations of the system. By contrast, accidental symmetries
require fine-tuning and are therefore less robust.

Obvious symmetries of HSSH are…

– particle number conservation, i.e., the U.1/ symmetry generated by the
particle number operator N D

P
i.a

�
i ai C b

�
i bi/ and represented by the

unitary operators R� D e
i�N for � 2 Œ0; 2�/.

– time-reversal symmetry ZT2 D f1; T g, here represented by the antiunitary
operator T D K (K denotes complex conjugation) that leaves the
(spinless!) fermions invariant: T xiT

�1 D xi with x 2 fa; bg.
– translation symmetry ZL, represented by unitary operators Dn that act

as DnxiD
�1
n D xiCn mod L.

– particle-hole symmetry ZC2 D f1;Cg, here represented by the unitary
operator C D

Q
i.a

�
i � ai/.b

�
i C bi/ with the action CaiC

�1 D a
�
i and

CbiC
�1 D �b

�
i .
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It is easy to check that all four operators commute with the many-body
Hamiltonian (1.1): ŒHSSH;X� D 0 for X 2 fR�;Dn; T ;Cg. The total
symmetry group GS of the system of course includes arbitrary products of
these operators. As we will see, one is particularly important for the SSH
chain:

S D T ı C D
Y
i

.a
�
i � ai/.b

�
i C bi/ ıK : 1.9

The invariance ŒHSSH;S � D 0 is called sublattice symmetry (see the remarks
in Subsection 5.1.1 for a motivation of the name; for now, regard it as
a label). The classification of non-interacting fermion Hamiltonians—the
tenfold way—is based on the presence or absence of the three symmetries
fT ;C ;Sg. One can show [85] that always S2 D 1 but for T and C one finds

T 2
D 1 or T 2

D P 1.10a

and C2
D 1 or C2

D P ; 1.10b

where P D .�1/N is the fermion parity operator. For a specific Hamiltonian,
the absence or presence of the three symmetries fT ;C ;Sg, in combination
with (1.10), gives rise to the 10 symmetry classes of the tenfold way29. Note
that the representations of these symmetries depend on the system, i.e., a
sublattice symmetry may not be represented by Eq. (1.9) in other systems.

The 10 symmetry classes are given labels that are motivated by mathematics30.
It is easy to check that the representations fT ;C ;Sg that are symmetries of
HSSH satisfy T 2 D 1 D C2; therefore the SSH chain belongs to a symmetry
class with the label BDI. Now we could have a look at the classification tables
of the tenfold way [85] to check if (or which) topological phases can be
protected in one-dimensional systems that belong to this symmetry class (the
answer would be that there is a Z topological index, i.e., there are infinitely
many topological phases labeled by an integer � 2 Z).

While the SSH chain can be placed in BDI, it is not its natural symmetry
class. Recall that we started this discussion with the distinction of natural
and accidental symmetries. It is reasonable that we should only take natural
symmetries into account for the symmetry protection of topological phases as

29AgivenHamiltonianmay ormaynot commutewith the time-reversal symmetry of the system. If it
does, the time-reversal operator squares either to1 or P . This yields three possibilities, usually labeled
by T D 0;C1;�1 where T D 0 denotes the absence of time-reversal symmetry and T D C1.�1/
denotes the presence of a time-reversal symmetry with T 2 D 1.P /. Similarly, particle-hole symmetry
gives rise to three possibilities: C D 0;C1;�1. This yields 3 � 3 D 9 symmetry classes. The
sublattice symmetry S D T ıC is not independent: its presence (S D 1) is implicit whenever C ¤ 0
and T ¤ 0. But for T D 0 D C there are two cases: S may (S D 1) or may not (S D 0) be a
symmetry since T ı C has still the chance to commute with the Hamiltonian even if T and C do not
commute with it separately. In total, there are 3 � 3C 1 D 10 symmetry classes—which explains the
name“tenfold way.” See Ref. [85] for more details.

30By Élie Cartan’s classification of symmetric spaces.
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these are the more robust ones (this is a physical argument, not a mathematical
one). So which of the SSH chain symmetries fR�;Dn; T ;C ;Sg are natural
and which are accidental? The answer depends on what we deem “natural
perturbations” of HSSH and thereby on the physical system that it describes. A
reasonable approach is to classify perturbations that only alter the parameters
of HSSH (but not its form) as “natural.” In this sense, the “generic”
Hamiltonian of the SSH chain reads

QHSSH D

LX
iD1

.ti a
�
i bi C t

�
i b

�
i ai/C

LX
iD1

.wi b
�
i aiC1 C w

�
i a

�
iC1bi/ ; 1.11

where ti ; wi 2 C are now site-dependent and possibly complex hopping
amplitudes. It is clear that translations Dn are no longer a symmetry of
this Hamiltonian; the same is true for time-reversal T and the particle-hole
transformation C . However, particle number conservation R� and, most
importantly, the sublattice symmetry S still commute with QHSSH. We conclude
that only fR�;Sg should be counted as natural symmetries of the SSH chain:
a real system that implements the SSH-physics is likely to possess the
robust symmetries fR�;Sg; by contrast, fDn; T ;Cg are, at best, accidental
symmetries that require fine-tuning of the couplings.

If we return to the tenfold way (which only involves the generic symmetries
fT ;C ;Sg), only the sublattice symmetry S remains as robust candidate for
symmetry protection. The symmetry class of Hamiltonians that only31 exhibit
a sublattice symmetry is labeled AIII and features also a Z topological index in
one dimension [85]. We conclude that the proper symmetry class of the SSH
chain is AIII and conjecture that the two regimes w > t and w < t , separated
by the critical point w D t , are actually different topological phases (labeled
by different topological indices) if the sublattice symmetry is not broken. In
a physical setting where S is a natural symmetry, all continuous paths that
connect the two regimes would then necessarily cross the phase transition
at w D t ; in this situation, it makes sense to consider the regimes w > t

and w < t as different phases—despite the existence of (inaccessible) paths
that circumvent the phase transition. This argument parallels our classical
example: it makes sense to consider liquid water and vapor as different phases
if we do not have the means to connect them via the supercritical regime.
However, there is a crucial difference: liquid and vapor can be distinguished
by the local density. There is no such thing for the two phases of the SSH
chain. They differ by a global property that is hidden in the band structure;
this property is quantified by a topological index that also serves as a “label”
for the two phases.

31Of course additional, accidental symmetries are allowed. The SSH chain with its additional
time-reversal and particle-hole symmetries is an example.
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To understand the definition of this topological index and its relation to the
sublattice symmetry, we have to understand the restriction that S imposes
on the Bloch Hamiltonian h.k/. Note that particle number conservation
ŒHSSH;R�� D 0 does not impose any restrictions on h.k/, see Eq. (1.2). By

contrast, the condition SHSSHS�1 Š
D HSSH is equivalent to

�´ h.k/ �´
Š
D �h.k/ for all k 2 BZ 1.12

which, in turn, can be rewritten as

�´ �˛d˛.k/ �
´ Š
D ��˛d˛.k/ , d´.k/

Š
D 0 for all k 2 BZ : 1.13

Here, �˛ denotes Pauli matrices and we use the Einstein sum convention. It is
evident that our modification with the staggered chemical potentialH 0 violates
this condition with d´.k/ D �, recall Eq. (1.7). The path OH.t; w; �/ that
connects the two regimes is therefore forbidden if the sublattice symmetry
S is required. This is consistent with the conjecture that the two regimes
constitute different phases, but it does not disprove the existence of other
paths. This is where the topological index enters the stage:

Recall that the band gap at momentum k is given by the length of the vector
d.k/ 2 R3: �E.k/ D 2jd.k/j. Hence we can normalize this vector for all
k 2 BZ,

Od.k/ �
d.k/

jd.k/j
; 1.14

whenever the Hamiltonian is gapped. In the thermodynamic limit (L!1),
the Brillouin zone is a continuous interval BZ D .��; �� with the topology
of a circle S1. Then, the normalized vector Od.k/ W S1 ! S2 defines a
continuous map from the circle S1 to the sphere S2. Pictorially, Od.k/
“draws” a circle on the sphere; it is intuitively clear that two such circles
Od1.k/ and Od2.k/ can always be continuously deformed into each other. In
mathematical terms, this is equivalent to the triviality of the first homotopy group
of the sphere: �1.S2/ D 0. Physically, this means that the corresponding
HamiltoniansH1 D HŒd1� andH2 D HŒd2� can be continuously connected
without closing the gap. We illustrated this with the staggered chemical
potential above. But if we require the sublattice symmetry, the condition (1.13)
confines d.k/ to the x-y-plane and Od.k/ W S1 ! S1 now maps the circle
of the Brillouin zone to a great circle of S2. It is a well-known (and quite
intuitive) fact of topology that there are different equivalence classes of such
continuous maps Od.k/ that cannot be continuously deformed into each other.
The label that distinguishes these homotopy classes is the number of times that
the domain-circle S1 “winds around” the image-circle S1, a fact that leads to
the non-trivial first homotopy group of the circle: �1.S1/ D Z. This winding
number � can be calculated by a simple integration over the domain of the
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map, in our case the Brillouin zone:

� D �Œ Od � D
1

2�

Z
BZ

h
Od.k/ � @k Od.k/

i
� e´ dk ; 1.15

where e´ is the unit vector in ´-direction and “�” denotes the cross product
in R3. It can be shown that � is always integer if Od.k/ sticks to the x-y-plane,
i.e., if the Hamiltonian does not violate the sublattice symmetry32. � is the
topological index that labels quantum phases in the symmetry class AIII in one
dimension; that it takes values in Z is in accordance with the tenfold way for
one-dimensional systems [22, 95].

Using (1.4) one can check that for the SSH chain

� D

(
0 for t > w

1 for t < w :
1.16

This proves our conjecture: The phase with t > w is characterized by � D 0
and is called trivial phase. The phase with t < w is characterized by � D 1
and constitutes the topological phase of the SSH chain. If we remain in the
domain of the tenfold way (where interactions are forbidden) and do not break
the sublattice symmetry S , these two phases cannot be connected without
crossing a phase transition because � takes different integer values on these
phases and depends continuously on the Hamiltonian via (1.15). The value of
� can only jump if it is ill-defined; this happens exactly when the gap of the
system closes because then the normalization d.k/! Od.k/ is not defined.

Finally, note that the tenfold way guarantees the existence of the topological
index � 2 Z if the sublattice symmetry is present. The classification does not
make any claim about the actual realization of topologically non-trivial phases
(with � ¤ 0) in a specific system. The SSH chain is an interesting model
because there happens to be a phase with � D 1. But the tenfold way and
Eq. (1.15) also allow for � > 1; these phases cannot be realized with the SSH
chain Hamiltonian (1.1).

→ So far we considered only periodic boundary conditions. This allowed us a
treatment of HSSH in momentum space and eventually led to the definition of
the topological index �. This index explains mathematically why we cannot
hope to connect the two SSH phases without crossing a phase transition
or breaking the sublattice symmetry. But the index is not an observable (at
least not in a straightforward sense)—it is a topological feature of the band
structure. Is there any observable difference between the two phases?

32If it does violate the symmetry, � can take real values that continuously interpolate between these
integers.
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The answer is positive and this brings us to our second argument why
distinguishing symmetry-protected topological phases is useful for the char-
acterization of quantum systems. The most striking difference between the
two phases can be observed if the system is cut open, i.e., for L0 D L � 1

in Hamiltonian (1.1). In Subsection 1.1.2 we discussed the bulk-boundary
correspondence which predicts gapless edge modes whenever a topologically
non-trivial bulk (� ¤ 0) has an interface with the vacuum (� D 0). If this is
true, then our previous findings suggest gapless edge modes at the endpoints
of an open SSH chain for t < w and their absence for t > w. That this is
indeed the case, is particularly evident at the special points where the bands
are flat. In the trivial phase, at t > 0 and w D 0, the Hamiltonian can be
illustrated as follows (edges denote non-zero fermion hopping amplitudes):

There is nothing interesting happening at the endpoints: clearly there are
no zero-energy modes because all fermion modes are dimerized into pairs
and form (anti)symmetric on-site eigenmodes with positive and negative
eigenenergies. However, in the topological phase, at t D 0 and w > 0, the
pattern of dimers is shifted by half a lattice site; this leads to one missing
dimer due to the open boundary conditions:

Consequently, the outermost modes al � a1 and br � bL drop from the
Hamiltonian and therefore define fermionic zero-energy eigenmodes located
at the boundaries. The many-body ground state jnl ; nri of this chain is then
four-fold degenerate and can be labeled by the edge mode occupation numbers
nl D a

�

l
al and nr D b

�
rbr .

The existence of these states is not tied to the special points with flat bands
but rather a generic feature of the entire topological phase with t < w,
i.e., where the on-site hopping t is weaker than the inter-site hopping w.
This non-trivial fact is dictated by the bulk-boundary correspondence and the
� D 1 topological index for t < w. Recall that for the definition of � we had to
consider the thermodynamic limit L!1 to make the Brillouin zone a true
circle; only then the winding number of continuous maps Od.k/ can be properly
defined. Thus the bulk-boundary correspondence implies the existence of
exact zero-energy edge modes only for L ! 1. In finite systems, the
degeneracy of the four states will generally be lifted by corrections that vanish
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exponentially with the system size L (only at the special points depicted
above it is exact even for finite L). The exponentially small splitting can be
understood with perturbative arguments: Starting from t D 0 and w > 0,
one can treat a weak on-site hopping 0 < t � w as a perturbation of the
perfectly dimerized system. The degeneracy of the four ground states is then
lifted by tunneling of fermions between the edge modes a1 and bL; but these
are processes of order O.L/ and therefore suppressed by .t=w/L. Solving
the SSH chain with 0 < t < w and open boundaries exactly is challenging
(see ⁂ Subsection 3.D.2). However, approximate expressions for the edge
modes read as follows:

Qal D N

LX
iD1

�
�
t

w

�i�1
ai ; 1.17a

Qbr D N

LX
iD1

�
�
t

w

�i�1
bL�iC1 : 1.17b

Here, N is an appropriate normalization. It is straightforward to show that
these fermionic modes are zero-energy eigenmodes of HSSH up to corrections
that vanish with .t=w/L. Note that these edge modes are no longer perfectly
localized but decay exponentially into the bulk; the perfect localization on the
edge is a special feature of systems with t D 0.

To conclude this subsection, let us point out that the existence and degeneracy
of edge modes does not depend on translation invariance—even though the
definition of the topological index in terms of band vectors Od.k/ suggests
otherwise. In fact, it is a central (and non-trivial) result of the tenfold
way [22, 95] that these topological features are robust even in the presence of
disorder as long as it (i) does not close the gap and (ii) respects the sublattice
symmetry.

In Chapter 3, we translate the SSH Hamiltonian into a setting of coupled bosonic modes
and show how its edge states can be used for controllable transfer of quantum information.
In Section 5.1, we study an interacting SSH chain filled with hard-core bosons and discuss
its classification in terms of group cohomology.

1.2.2 The Majorana Chain

The Majorana chain is another model of non-interacting, spinless fermions in
one dimension that has been introduced by Kitaev33 in 2001 to demonstrate the
appearance of unpaired Majorana modes at the endpoints of superconducting
quantum wires [82]. It is the simplest topological superconductor and therefore a
prime example for the interplay of topology and superconductivity [128].

33Hence it is also known as “Kitaev chain.”
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The Majorana chain is defined on a one-dimensional lattice of L spinless
fermion modes ai and the quadratic Hamiltonian is of the Bogoliubov-de Gennes
(BdG) form [82]

HMC D �

L0X
iD1

�
w c

�
i ciC1 ��ciciC1 C h.c.

�
�

LX
iD1

�

�
c
�
i ci �

1

2

�
; 1.18

where w is the tunneling amplitude, � the superconducting order parameter, and �
denotes the chemical potential. As before, we set L0 D L � 1 for open and L0 D L

for periodic boundary conditions. In contrast to the SSH chain, HMC violates the
U.1/ symmetry due to the mean field pairing terms with � D ei� j�j 2 C. A
canonical transformation of the fermions Oci � ei�=2ci can absorb the complex phase
of � so that w.l.o.g. �! j�j can be taken as real and positive (we relabel Oci ! ci
in the following). For periodic boundary conditions, the Hamiltonian (1.18) becomes
block-diagonal if expressed in terms of Fourier modes Qck:

HMC D
1

2

X
k2BZ

h
Qc
�

k
Qc�k

i
�

�
�.2w cos k C �/ �2j�ji sin k
2j�ji sin k .2w cos k C �/

�
„ ƒ‚ …

h.k/

�

�
Qck

Qc
�

�k

�
: 1.19

The Bloch Hamiltonian h.k/ can again be expanded in Pauli matrices,

h.k/ D �.2w cos k C �/ �´ C 2j�j sin k �y D d.k/ � � 1.20

with the vector

d.k/ D

24 0

2j�j sin k
�.2w cos k C �/

35 : 1.21

The single-particle spectrum of HMC is then given by34

E.k/ D jd.k/j D

q
.2w cos k C �/2 C 4j�j2 sin2 k 1.22

and we conclude that for j�j ¤ 0 the single-particle gap can vanish either at k D 0
or at k D �; this leads to j ˙ 2w C �j D 0 and we find a gapless system for
2jwj D j�j. Let w;� � 0 in the following. Then, the Majorana chain exhibits two
gapped phases for 2w > � and 2w < �, separated by a phase transition at 2w D �.
Moreover, if one sets j�j D w > 0 and � D 0 or j�j D 0 D w and � > 0, the
spectrum (1.22) becomes flat. All this sounds very familiar and suggests a relation
to the SSH chain.

34Note that the calculations are a bit more involved than for the SSH chain because the spinors of a
BdG Hamiltonian live in an extended“Nambu-space” with an intrinsic particle-hole symmetry. This
leads to an artificial doubling of the spectrum and is responsible for the factor 1

2
in Eq. (1.19). The

single-particle spectrum ofHMC then corresponds to the positive eigenvalues of the Bloch Hamiltonian,
see Ref. [129] for detailed calculations.
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To make this relation explicit, we define Majorana operators

2i�1 � ci C c
�
i and 2i � i.c

�
i � ci/ 1.23

for i D 1; : : : ; L. One checks easily that �n D n and 2n D 1. They obey (up to
normalization) fermionic anticommutation relations35 :

fn; mg D 2ın;m for n;m D 1; : : : ; 2L : 1.24

According to (1.23), each “complex” fermion ci can be decomposed into two real
Majorana fermions: its “real part” 2i�1 and its “imaginary part” 2i . Then

ci D
1

2
.2i�1 C i2i/ and c

�
i D

1

2
.2i�1 � i2i/ 1.25

can be used to expressHMC in terms of Majorana fermions. We find

HMC D
i

2

L0X
iD1

Œ .j�j C w/ 2i2iC1 C .j�j � w/ 2i�12iC2 �

�
i

2

LX
iD1

�2i�12i

1.26

where the i is necessary for the Hermiticity of the Majorana pairs. The connection
to the SSH chain becomes manifest for j�j D w,

HMC D �
�

2

LX
iD1

.i2i�12i/C w

L0X
iD1

.i2i2iC1/ 1.27

with the identification ��=2 $ t and w $ w. And indeed, the critical point
jt j D jwj of the SSH chain translates into the critical point 2jwj D j�j of the
Majorana chain. In this case, we can illustrate the couplings between Majorana
modes as follows:

This parallels the figure of the SSH chain. Its physical interpretation is completely
different, though: Here, each colored disc corresponds to “half” a fermion (a
Majorana mode) and the black circles denote single fermion modes. A Majorana
chain of length L has therefore L fermionic degrees of freedom, an SSH chain of
the same length has 2L.

35These Majorana fermions are—as the term suggests—fermionic quasiparticles of superconduc-
tors [34]. They are not anyons.
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The vector d.k/ in Eq. (1.21) can again be used to define a topological index via a
winding number. One finds � D 0 in the phase with 2w < � and � D 1 for 2w > �.
The latter is therefore the topological phase of the Majorana chain. The crucial
symmetry needed for this classification is the intrinsic particle-hole symmetry of
Bogoliubov-de Gennes Hamiltonians. This symmetry does not impose restrictions
on the many-body Hamiltonian HMC but is a consequence of its description in an
extended mode space of Nambu spinors ‰ D Œc1; c

�
1; : : : �

T . The components of
this spinor are not independent degrees of freedom but related via the fermion
algebra. This leads to non-trivial constraints on the Bloch Hamiltonian that take
the form of a particle-hole symmetry. This symmetry is qualitatively different from
the particle-hole symmetry of the SSH chain as it cannot be broken as long as the
system remains in the BdG class. This symmetry places the Majorana chain in class
D of the tenfold way and defines a Z2 topological index in one dimension [85]. In
addition, the Majorana chain is symmetric with respect to a (physical) time-reversal
symmetry T . In combination with the intrinsic particle-hole symmetry, this defines
a (physical) sublattice symmetry that places the Majorana chain also in the class
BDI with the same Z topological index that applies to the SSH chain. Since the
time-reversal symmetry can be broken, this classification is not as robust as the
Z2 classification that only relies on the particle-hole symmetry36. Here we shall
not focus on the topological band structure and its associated topological indices
but on the peculiar structure of the degenerate many-body ground states for open
boundary conditions (the existence of which is—as for the SSH chain—dictated by
the bulk-boundary correspondence and the non-zero topological index for 2w > �).

The features we are interested in are most evident in the case of flat bands, i.e.,
for w D j�j > 0 and � D 0 or w D j�j D 0 and � > 0; these two points are also
convenient to demonstrate the fundamentally different physics of Majorana and
SSH chain (despite their mathematical similarities).

→ Let us start with the case w D j�j D 0 and � > 0. The Hamiltonian reads

HMC D �
�

2

LX
iD1

.i2i�12i/ D �

LX
iD1

�

�
c
�
i ci �

1

2

�
: 1.28

The ground state is even more trivial than its SSH counterpart: for � > 0, it
is the Fock state where all microscopic fermion modes ci are filled. For open
boundary conditions there is no degeneracy and the ground state is unique
(consistent with � D 0).

36The difference between the Z2 classification of D and the Z classification of BDI is not important
for a singleMajorana chain but becomes crucial for bundles of parallelMajorana chains: If time-reversal
symmetry is not broken, these systems realize topological phases with � > 1.
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→ For w D j�j > 0 and � D 0 the dimerization is such that the Majorana
modes of different (physical) fermions form pairs:

HMC D w

L0X
iD1

.i2i2iC1/ D w

L�1X
iD1

.i2i2iC1/ : 1.29

As a consequence of the shifted pairing, the edge Majorana modes l � 1
and r � 2L do not appear in (1.29). This is completely analogous to the
SSH chain. But there the edge modes were fermions—now they are “half”
fermions. To appreciate the implications of this curiosity, we define new
fermion modes as

ci �
1

2
.2i C i2iC1/ and c

�
i D

1

2
.2i � i2iC1/ 1.30

for i D 1; : : : ; L � 1. It is easy to check that the ci indeed form a fermion
algebra: fci ; c

�
j g D ıij . In these modes, the Hamiltonian (1.29) reads

HMC D 2w

L�1X
iD1

�
c
�
i ci �

1

2

�
: 1.31

Compared to the trivial case, Eq. (1.28), there seems to be one fermion mode
missing. This missing mode is formed by the two Majorana modes that do
not appear in the Hamiltonian:

e �
1

2
.2L C i1/ and e� D

1

2
.2L � i1/ : 1.32

We call it “e” for “edge.” The ground state of (1.31) is characterized by
empty ci -modes (for w > 0), but the occupation of the e-mode is not fixed
since ŒHMC; e� D 0. The ground state j�ni can therefore be labeled by the
edge occupation n D e�e and is two-fold degenerate. This is in stark contrast
to the SSH chain which had a four-fold degeneracy due to its fermionic
edge modes; the Majorana chain features only a single fermionic mode that
is delocalized between the two endpoints of the chain. This curiosity has
profound implications:

Let us construct the two many-body ground states of (1.31) from the physical
vacuum j0i with ci j0i D 0 for all i D 1; : : : ; L. To this end, we define

j�iL �

L�1Y
iD1

ci j0i : 1.33

If this state is normalizable (i.e., if j�iL ¤ 0), it is one of the ground states
of HMC (up to normalization). At this point, its is unclear how j�iL relates
to j�0i and j�1i. Let P D .�1/N denote the fermion parity operator
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with N D
P
i c
�
i ci . Then it follows that P j�iL D .�1/L�1j�iL is a

parity eigenstate. We claim that j�iL is (proportional to) the equal-weight
superposition

j˛i �
X

n2ZL
2 with

.�1/jnjD˛

jni �
X
n.˛/

jni 1.34

of all fermion Fock states

jni � .c
�
1/
n1.c

�
2/
n2 : : : .c

�
L/
nL j0i 1.35

if one sets ˛ D .�1/L�1. Here, jnj �
P
i ni denotes the total number of

fermions in the configuration n 2 ZL2 . The parity is therefore the defining
property of this state and there is no other microscopic structure that
characterizes it.

Proof. To prove this statement, we note that the quasiparticles ci can be
written in terms of the original fermions ci as

ci D
i

2

�
c
�
i � ci C ciC1 C c

�
iC1

�
1.36

and the edge mode reads

e D
i

2

�
c
�
L � cL C c1 C c

�
1

�
: 1.37

The proof is by induction: Let L D 2. Then indeed

j�i2 D c1 j0; 0i / j1; 0i C j0; 1i D j˛ D �1i 1.38

and our claim is true for L D 2. Let us introduce the shorthand notation

jni D jn0; nL�kC1; : : : ; nL�1; nLi 1.39

where we write only the last k components of n explicitly. Now assume
that our claim holds for some L � 2. Then we have for L0 D LC 1 with
˛0 D .�1/L

0�1 D �.�1/L�1 D �˛

j�iLC1 D

LY
iD1

ci j0i D cL

L�1Y
iD1

ci j0
0; 0i / cL

X
n0.˛/

jn0; 0i ; 1.40

where we used the induction hypothesis for the last step. Write the occupation
of the mode cL explicitly and split the sum as follows:X

n0.˛/

jn0; 0i D
X

n00.˛/

jn00; 0; 0i C
X

n00.�˛/

jn00; 1; 0i : 1.41
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Now we can use Eq. (1.36) to show

j�iLC1 /

X
n00.˛/

.c
�
L C c

�
LC1/ jn

00; 0; 0i

C

X
n00.�˛/

.�cL C c
�
LC1/ jn

00; 1; 0i :

1.42

Recall that c�Ljn
00; 0; 0i D ˛jn00; 1; 0i but cLjn00; 1; 0i D .�˛/jn00; 0; 0i as

there is one fermion less to commute with; therefore

j�iLC1 /

X
n00.˛/

�
˛jn00; 1; 0i C ˛jn00; 0; 1i

�
C

X
n00.�˛/

�
˛jn00; 0; 0i C ˛jn00; 1; 1i

�
1.43

which can be combined to (˛0 D �˛ and L0 D LC 1)

j�iL0 /

X
n.˛0/

jni : 1.44

This concludes the proof. �

Using similar arguments and keeping the fermion ordering (1.35) in mind, one
can show that the edge mode e acts on j�iL as follows:

ej�iL /

(
0 for L even
j˛ D �1i for L odd

1.45

and similarly

e�j�iL /

(
j˛ D C1i for L even
0 for L odd :

1.46

The gist of these results is that, independent of L, the many-body ground
state j�0i of the Majorana chain with empty edge mode is the equal-weight
superposition of all fermion configurations with odd parity: j�0i D j˛ D �1i.
Conversely, the ground state j�1i with occupied edge mode is given by
the equal-weight superposition with even parity: j�0i D j˛ D C1i. Thus
the two degenerate ground states differ only in the total fermion parity.
Locally, they are completely featureless and look the same; only a global parity
measurement with P or e�e can distinguish them. This is the many-body
manifestation of the topologically protected degeneracy for open boundary
conditions.

It is instructive to compare these results with the SSH chain. Recall that the
degeneracy of the edge modes in the topological phase is dictated by the bulk-
boundary correspondence which, in turn, requires specific protecting symmetries
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to be robust. This implies that local perturbations cannot gap out the edge modes
unless they break the protecting symmetry. Consider the two degenerate ground
states j0; 0i and j1; 0i of the SSH chain; they differ by the occupation of the left
edge mode a1 (and also by their global parity). If we perturb the HamiltonianHSSH

with the local chemical potential nl D a
�
1a1, their degeneracy is immediately lifted

since the local observable nl can distinguish the two states. This is completely
consistent with our previous findings because nl violates the sublattice symmetry S .
By contrast, to lift the degeneracy of j�0i and j�1i in the Majorana chain,HMC must
be perturbed by n D e�e. This operator does not violate the protecting particle-
hole symmetry37; instead, it is highly non-local and therefore not an admissible
perturbation of the Hamiltonian in the first place.

These arguments suggest that the two-fold degeneracy of the Majorana chain
is qualitatively different from the four-fold degeneracy of the SSH chain. Indeed,
the degeneracy of the former is robust to any local perturbation whereas the latter
requires the protecting sublattice symmetry (which can be broken by physical terms).
Therefore the SSH chain is indeed a symmetry-protected topological phase—but
the non-trivial phase of the Majorana chain is actually topologically ordered in that it
requires no symmetry protection at all [22, 34].

Here we discussed only the topological degeneracy of the Majorana chain. We
omitted several interesting features regarding the braiding of its edge modes [130].
We briefly comment on these features in Subsection 1.3.1 where the Majorana chain
appears as primitive for topological quantum computing. Details on the relation of
Majorana fermions and non-abelian braiding can be found in ⁂ Subsection 2.D.1.

Concluding Remark — The statement that the Majorana chain does not require any
symmetry is subtle. To see this, one can check that the Majorana edge modes
l D 1 and r D 2L act on the ground states as follows:

l j˛i D j�˛i and r j˛i D i˛ j�˛i : 1.47

Since these operators are Hermitian and can be constructed from local fermion
modes, we could add them to the Hamiltonian as a perturbation, e.g., QHMC D

HMC C l . This perturbation lifts the degeneracy such that the ground state of QHMC

is unique, namely jC1i � j�1i. This is not surprising as l violates the fermion
parity symmetry Z

f
2 D f1;P g. So the Majorana chain is protected by a symmetry

after all: fermion parity. In the literature, however, this symmetry is often not
counted as a real symmetry but as an implicit feature of fermionic Hamiltonians
(for instance, quadratic Hamiltonians automatically commute with P ). This makes
sense for the following reason:

37As mentioned above, this symmetry is intrinsic to the BdG Hamiltonian and cannot be violated
on the operator level.
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Assume that the Hermitian (and unitary) operators l and r are admissible
observables of the theory. Make the length L of the chain large and assume
that Alice can measure l D c1 C c

�
1 on the left endpoint while Bob can apply

the unitary gate r D i.c
�
L � cL/ on the right endpoint. Define the basis jxi �

jC1i C .�1/x j�1i and let the system be initialized in the symmetric state jx D 0i
so that Alice measures C1 with certainty. Now Bob can send Alice a classical bit
x 2 Z2 of information by flipping or not flipping this state with r :

.r/
x
j0i /

(
j0i for x D 0

j1i for x D 1 :
1.48

This clearly violates causality since the bit x can be transmitted instantaneously over
arbitrary distances L; this is really a “spooky action at a distance” and should not be
possible with local measurements and operations. Therefore l and r are actually
non-local operators, despite their local appearance in terms of fermion modes! The
reason is that fermions are intrinsically non-local objects due to their statistics, and
this non-locality becomes relevant for operators that violate fermion parity. The
upshot is that the parity symmetry required for the Majorana chain (or any other
fermion Hamiltonian) is a logical consequence of locality—and not an additional
symmetry constraint.

One application of the Majorana chain—as topological quantum memory—is discussed
in Chapter 4. In Chapter 2, we study a one-dimensional system of interacting fermions
and argue that it plays the role of a particle number conserving relative of the mean field
Majorana chain. In Chapter 3, we use the Majorana chain as blueprint for the construction
of bosonic networks geared towards transfer of quantum information.

1.3 Applications & Experiments

In Section 1.1, we already mentioned a few experimental breakthroughs that
established some of the paradigmatic models in the field of topological quantum
matter as valid descriptions of real world materials. From the perspective of
“pure” condensed matter physics the pivotal question is: Which quantum phases are
conceivable? This is what the classification schemes attempt to answer.

However, the overarching theme of this thesis is the application of topological
matter for the purpose of quantum information processing. We do not extend the
classification but use it as a tool to identify systems of interest. Thus we ask the
more mundane question: What can we do with these states of matter? After all, possible
applications have been the predominant driving force of the field in recent years.
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These applications fall into two categories, depending on whether they depend
on quantum phenomena or can be described by purely classical means. That classical
applications exist at all may be surprising at first sight (given the fact that all our
discussions so far were concerned with quantum phases). The explanation is subtle
but important: There are (at least) two distinct notions of “topology” that play a
role in the classification of quantum phases:

1 Topologically ordered states of matter are long-range entangled quantum
phases with a low-energy physics that is described by topological quantum
field theories (i.e., quantum field theories with topological terms in their
action—this is were topology enters the stage). These systems exhibit typically
anyonic bulk excitations and stable ground state degeneracies on closed
manifolds with handles (but not necessarily gapless edge modes on manifolds
with boundaries). Examples are fractional quantum Hall states and some
quantum spin liquids. Since these states are characterized by their long-range
entanglement (which is a necessary ingredient for both the existence of anyons
and topological ground state degeneracies), topological order is a phenomenon
that is inherently quantum—with no classical counterpart.

2 The topological insulators and superconductors classified by the tenfold way
are not topologically ordered but symmetry-protected topological phases38.
They are labeled by topological invariants (this is where topology comes into
play) that are defined by single-particle Hamiltonians; thus it is the topology
of band structures (in the mathematical sense of fiber bundles [101]) that
makes them “topological.” This is very different from the entanglement-
based notion of topology in that band structures are not tied to quantum
systems. In fact, many classical systems (such as metamaterials) can be
described by these mathematical objects as well and are thereby affected by
their topological properties. This explains how classical applications come
about but gives rise to another subtlety: In quantum systems, the Pauli
exclusion principle allows for the construction of many-body ground states
from band structures by filling them with non-interacting fermions. These
many-body ground states define quantum phases in the thermodynamic limit
which—for topological bands—are referred to as “topological phases.” In
classical systems, however, band structures typically describe the dynamics of
coupled degrees of freedom in terms of eigenmodes, and not (thermal) phases
that one might call “topological.”

In the following, we provide a brief survey of proposed and—in some cases—even
realized applications of topological states of matter both in quantum and classical
systems. Note that this survey is by no means exhaustive.

38Up to some subtleties, see Footnote 15.
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1.3.1 Quantum Systems

→ The most prominent, most cited, but also most elusive application of
topological states of matter is known as topological quantum computation
(TQC) [45, 131, 132], see Ref. [47] for a review of this mathematically
sophisticated concept. Despite its mathematical depth, the rationale of TQC
is easy to understand: Topologically ordered phases host localized bulk
excitations, called anyons, that obey neither bosonic nor fermionic statistics
(this is true up to some subtleties, see Footnotes 8 and 15). Anyons come in
two flavors: abelian and non-abelian. Exchanging abelian anyons results in a
global phase that depends only on the topology of their world lines but not
their geometric shape—a feature that makes these phases exceptionally robust.
Phases, however, are not enough for a full-fledged quantum computer where
unitary gates must be applied to a degenerate state space of logical qubits.
Here non-abelian anyons excel due to a peculiar feature: Imagine a state with
a well-defined pattern of anyons. If (and only if ) the anyons are non-abelian,
there are multiple orthogonal quantum states that give rise to this pattern. It is
the superpositions of these states that realize the logical qubits of a topological
quantum computer. Measurements on these states can be performed by
bringing two anyons together (called fusion) and observing the anyon they
form as a compound39. Unitary gates can be applied by winding anyons
in intricate patterns around each other, terminating with the initial pattern
(called braiding). Since, for non-abelian anyons, this pattern corresponds to
a degenerate subspace, braiding can give rise to unitary operations on the
latter. Just as the phases for abelian anyons, these unitaries are completely
determined by the world line topology40 of the braiding procedure. They
realize the unitary gate sequences of a topological quantum computer in an
inherently robust and decoherence-free manner.

Given the fact that decoherence is the nemesis of quantum information
processing, the prospect of topological quantum computation ignited a hunt
for materials with topological order and non-abelian anyons. Luckily, the
first family of candidates had already been observed in the laboratory when
TQC was invented: fractional quantum Hall states [27–29]. Whereas the
first state discovered at filling fraction � D 1=3 is presumably described by a
so called Laughlin wave function with abelian excitations [36], the state with
filling fraction � D 5=2 observed a few years later [29] is believed to be
described by a Moore-Read wave function which supports non-abelian Ising
anyons [38]. Although the unitaries that can be implemented by braiding
Ising anyons are not sufficient for universal quantum computation, there are
specific proposals to use the � D 5=2 state as substrate for TQC [133, 134].

39It can happen that two anyons annihilate; formally this is described as a “trivial anyon” or the
vacuum.

40How word lines “tangle” in the 2C 1-dimensional spacetime of the system.
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Even more interesting is the experimentally observed state at filling fraction
� D 12=5 [135] which might realize a non-abelian Read-Rezayi state [136].
In contrast to Ising anyons, this state facilitates a universal set of unitary
gates by braiding. While the existence of these fractional quantum Hall states
is undeniable, the theoretically predicted non-abelian braiding statistics of
their excitations is experimentally hard to verify. At the time of writing, the
fractional charge of quasiparticles at filling � D 1=3 has been experimentally
verified [137–139], and similar result were later obtained for the � D 5=2

state [140–142]. While these results are consistent with theoretical predictions,
the smoking gun—non-abelian statistics—requires sophisticated interference
experiments [143, 144].

The non-abelian Ising anyons of the � D 5=2 Moore-Read state are also
predicted for rather different systems, namely chiral px C ipy superconductors
where Majorana zero modes are bound to vortices [79,83]; by now, there are
various theoretical proposals to realize this physics on different platforms,
e.g. Refs. [145–148]. Later it has been argued that very similar physics can be
realized on the surface of three-dimensional topological insulators [149] and in
even simpler semiconductor heterostructures [150, 151]. Recent experimental
evidence indeed supports the presence of Majorana bound states in vortices
of certain superconductors [152–154].

An alternative, experimentally more accessible way to non-abelian Ising anyons
has been paved by Kitaev who pointed out that unpaired Majorana zero modes
can appear at the endpoints of one-dimensional p-wave superconductors [82]
(Subsection 1.2.2). Although “braiding” of point-like particles is only
well-defined in two spatial dimensions in a strict sense (because only in
3 D 2C 1 spacetime dimensions one-dimensional world lines can be non-
trivially knotted), the non-abelian braiding statistics of Ising anyons41 can be
recovered in networks of one-dimensional quantum wires [130], a scheme that
may be simplified even further in Floquet settings [157, 158]. The anticipated
observation of Majorana bound states at the endpoints of quantum wires has
been driving experimental solid-state physics in recent years, ever since it has
been realized that spin-orbit coupling in semiconductor quantum wires that
are proximity-coupled to conventional s-wave superconductors might do the
trick [159, 160]. Shortly after, first experimental evidence of Majorana bound
states has been reported [161], strengthened by subsequent experiments, see
Ref. [162] and references therein.

41In a strict sense, the endpoints give rise to a projective representation of Ising anyons, i.e., they
are Ising anyons“up to phases.” The reason is that Majorana zero modes bound to the endpoints of
quantum wires are not intrinsic excitations of the system (like anyons in fractional quantumHall states)
but extrinsic deformations of the Hamiltonian (they are defects). This is also the case for vortices in
px C ipy superconductors when the gauge field is static. In both cases, only the“non-abelian part”
of Ising anyons can be recovered; the collected abelian phase (which is fixed for Ising anyons due to
algebraic constraints [24]) is non-universal and depends on the braiding procedure [155, 156].
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So far, only systems with fermionic constituents played a role. This is
not necessary, though: In 2005, Kitaev introduced a spin-1

2
model on

the honeycomb lattice with strong frustration due to anisotropic spin-spin
interactions that prevent magnetic ordering [24]. Its ground states are
examples of spin liquids and accessible analytically by a formal mapping to
free fermions. The Kitaev honeycomb model features two phases: one is
gapped and hosts abelian anyons akin to the toric code (see below), the other
is gapless but becomes gapped in a magnetic field where it hosts non-abelian
Ising anyons. This phase is sometimes referred to as Kitaev spin liquid and
the search for “Kitaev materials” that realize this state of matter picked up
pace after a mechanism had been found that might give rise to the required
anisotropic spin-spin interactions in certain crystalline compounds with a
planar honeycomb structure [163,164] (these compounds belong to the diverse
family of iridates). At the time of writing, no Kitaev spin liquid states have
been identified in experiments although evidence for anisotropic interactions
has been reported [165] (see Ref. [166] for a review on iridates). Recently,
other materials have been identified that are conjectured to be in (or close to)
a Kitaev spin liquid phase with experimental results that are predicted by the
Kitaev honeycomb model [167,168]. We refer the reader to Refs. [26,169,170]
for broad reviews on the diverse field of spin liquids and to Ref. [171] for a
dedicated review on Kitaev materials.

In Chapter 2, we study the properties of a one-dimensional symmetry-protected
topological phase of interacting fermions and demonstrate that braiding implements
unitary gates on the ground states.

→ Scalable quantum computation does not only require tools for manipulating
qubits but also for storing them reliably in the presence of noise. The idea
behind topological quantum memories is to leverage the robust degeneracy of
topologically ordered media on manifolds with handles (or tailored boundaries)
to encode qubits. These qubits are naturally protected from decoherence
because topological degeneracies cannot be lifted by local perturbations.
Topological quantum memories are conceptually simpler than topological
quantum computers since abelian phases suffice for the former but not for the
latter. The most prominent model of this kind is Kitaev’s toric code42 [45],
but alternatives are also explored [172, 173]. The toric code can be realized
by placing qubits/spins on the edges of a two-dimensional square lattice
with toroidal geometry (i.e., periodic boundary conditions) and encodes
two protected qubits non-locally. A similar but technically more accessible
approach uses planar patches of the square lattice with appropriately chosen
boundaries (then referred to as surface code). For comprehensive reviews on
topological quantum memories see Refs. [50, 174].

42Here, “code” is a fancy name for a linear subspace of the Hilbert space to which the condensed
matter physicist would refer as “ground state space.”
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Surface codes are one of the most promising candidates for feasible quantum
memories due to their high error threshold and the comparatively simple,
local operations needed to perform error correction (essentially four-qubit
parity measurements). This explains why the preparation and control of
surface code states has been a driving force of experimental efforts in recent
years: First minimal instances were realized with photons [175, 176], quickly
followed by solid-state platforms with superconducting circuits [177–181]; see
Ref. [182] for a review of this promising and rapidly evolving field. Encouraged
by these experimental achievements, various scalable implementations of
surface codes (and its relatives) in solid-state systems have been contrived,
e.g. [183–187]. Note that the toolkits provided by ultracold atoms [188, 189]
and trapped ions [190] open alternative routes to reach these goals.

In Chapter 4, we study a strategy to store quantum information reliably in the ground
state space of a one-dimensional topological superconductor.

→ There are three pivotal tasks that must be solved before we can construct
scalable quantum computers: the reliable transformation, storage, and transport
of quantum information. For the first two we already discussed possible
approaches that leverage the peculiar features of topological quantum matter.
What about transport?

An outstanding feature of many two-dimensional topological phases is the
existence of stable, gapless boundary modes that are immune to scattering
from impurities (either due to the breaking of time-reversal symmetry, as in
quantum Hall states, or protection by time-reversal symmetry, as in topological
insulators). It has been proposed to employ these scattering-free channels
for the coherent transfer of quantized excitations (and thereby quantum
information) in chiral spin liquids [191] and bosonic counterparts of quantum
Hall systems [192]. However, the implementation of these concepts is
experimentally challenging; useful tools are provided by platforms with
ultracold atoms [193] and topological photonics [194, 195] (see below). In
experiments, chiral edge states in synthetic matter have been reported for
bosonic and fermionic ultracold atoms using artificial gauge fields [196, 197],
and an implementation of the Haldane model with ultracold fermions [198]
demonstrates that quantum phases with topological bands and chiral edge
modes can be engineered in systems that allow for exceptional control of their
constituents.

In Chapter 3, we study the capabilities of a one-dimensional network of bosonic
modes (derived from a one-dimensional topological insulator) to transfer quantum
information.
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1.3.2 Classical Systems

→ Mechanical metamaterials are artificially designed structures of mechani-
cal degrees of freedom (e.g. oscillators) that are coupled such that their
macroscopic, collective degrees of freedom display interesting and/or useful
properties. They are described by Newton’s equations of motion, a system
of ordinary differential equations where the connectivity of the elementary
degrees of freedom is naturally encoded in a matrix [199]. This matrix
provides the connection to topological band theory and allows for classical
analogs of quantum mechanical models that are described by single-particle
Hamiltonians.

The field was pioneered by Kane and Lubensky who studied mechanical con-
structs called isostatic lattices [200]. Some of these systems exhibit curiously
robust zero-frequency modes at boundaries (“floppy modes”). Indeed, it can
be shown that this robustness is a consequence of topologically non-trivial
bands and the bulk-boundary correspondence [200]. By now, topological
“floppy modes” have been applied in several ways, e.g., for Origami fold-
ing [201]. While zero-frequency “floppy modes” can influence the low-energy
response of a mechanical system, topologically protected, chiral edge modes
with non-zero frequency allow for robust and scattering-free excitations—a
useful feature for information and/or energy transmission. This has been
demonstrated experimentally by mechanical analogs of the time-reversal break-
ing Chern insulator [202] (realized as a gyroscopic phononic crystal [203])
and the time-reversal protected quantum spin Hall insulator [204]. Both setups
allow for scattering-free transport along their edges, a feature that suggests
technological applications [205]. Recently, even higher-order topological
insulators with protected corner modes have been implemented with mechani-
cal metamaterials [206]. For a pedagogical review of the emerging field of
“topological mechanics” see Ref. [199]. Finally, we note that the related field
of “topological acoustics” [207] follows the same rationale to transmit sound
waves through robust, scattering-free channels; see, e.g., Ref. [208] for the
experimental demonstration of an “acoustic Chern insulator.”

→ Topological mechanics and acoustics are facets of a more general principle:
Any theory that exhibits wave-like excitations can, in principle, be affected
by non-trivial band topology and its associated phenomena—and classical
electrodynamics is no exception. This particular incarnation of topological
band theory is known as “topological photonics” [195] and was kick-started
by Haldane and Raghu [209, 210] who proposed a classical analog of the
Chern insulator for photonic crystals. Similar to topological mechanics—and
contrary to the “quantum applications” in Subsection 1.3.1—experimental re-
sults followed soon after: Using magneto-optical photonic crystals, Wang et al.
demonstrated the appearance of time-reversal breaking, chiral edge modes
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for microwaves [211], results that were transferred to the optical regime by
Rechtsman et al. without magnetic fields in a Floquet setting [212]. At
the same time, symmetry-protected analogs of topological insulators were
presented in a silicon-based lattice of photonic resonators [213]. See Ref. [195]
for a review of platforms used for the implementation of topological photonic
circuits.

It is worthwhile to note that the scope of topological photonics extends
beyond microwaves into the radio-frequency regime where circuits composed
of lumped elements (inductors, capacitors, etc.) can be tailored to exhibit
symmetry-protected edge modes [214]. The ensuing concept of “topoelectri-
cal circuits” [215] is one of the cheapest and most accessible routes to explore
topological phenomena with table-top experiments, an approach that seems
particularly suited for lab courses [216]. Finally, we note that higher-order
topological insulators have already been experimentally realized both in the
microwave regime [217] and with “topoelectrical circuits” [218].

→ Topological photonics provides us with scattering-free waveguides on the
boundary of topological metamaterials. Adding gain and loss into the mix, one
arrives at the intriguing concept of “topological insulator lasers” [219] where
the chiral edge mode serves as a cavity for efficient single-mode lasing. And
indeed, lasing in the topological edge modes of arrays of coupled resonators
has already been observed experimentally [220,221].

→ Last but not least, we stress that the link between robust boundary physics and
topologically non-trivial bulk properties is neither restricted to artificial nor to
small systems: Recently it has been realized that the fluid dynamics on the
surface of rotating spheres exhibits robust, chiral modes that are trapped at the
equator and protected by non-zero Chern numbers43 [222]. These modes have
long been known to influence Earth’s atmospheric and oceanic flow systems.
Thanks to findings in an entirely different field of science—condensed matter
physics—we now have a mathematically satisfying and elegant explanation for
their existence.

43A consequence of the Coriolis force which breaks time-reversal symmetry and vanishes at the
equator, effectively creating a boundary that separates the two hemispheres.
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2
Majorana-Like Edge States in a
Number-Conserving Theory

“The prosaic fact of the universe’s existence alone
defeats both the pragmatist and the romantic.”

— Stephen King
in The Dark Tower: The Gunslinger

In this chapter, we study a microscopic model of interacting fermions with
topologically protected ground state degeneracy. The model, introduced in Ref. [1],
is based on a double-wire setup with local interactions in a number-conserving
setting. A compelling property of this model is the exact solvability for its ground
states and low-energy excitations. We demonstrate the appearance of topologically
protected edge states and derive their braiding properties on a microscopic level.
We find the non-abelian statistics of Ising anyons which can be interpreted as
Majorana-like edge states. As a result, the model qualifies as a number-conserving
relative of Kitaev’s paradigmatic Majorana chain.
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IN A NUTSHELL

The very purpose of a personal computer is to manipulate data. And the fact that
there are personal computers already tells us that this cannot be too hard. Indeed,
manipulating classical information (bits) is rather straightforward with electronic
circuitry once controllable “switches” can be integrated in vast amounts. In classical
computers, they are realized as transistors that are lithographically etched into a
silicon slab; two of them are enough to implement basic logic gates (AND, OR, NAND,
...), and there are more than a billion of them in modern processors. Apparently
the underlying physical mechanisms scale well, and this makes the manipulation of
classical information cheap (from both economical and technological perspective).

Manipulating quantum information is not. The controlled manipulation of quan-
tum bits (qubits) poses a formidable technological challenge since “manipulation”
always entails the coupling of the information carrier (e.g., a single atom) to a
typically much larger system that performs the operation (e.g., a laser). But nature
makes no distinction between a “useful” system that controls a qubit and the rest of
the world (viz. the environment). Uncontrolled environmental couplings are the
nemesis of scalable quantum information processing as they accompany operations
on qubits quite naturally. The study of concepts that decouple the environment with-
out detrimental effects on controllability is therefore a major topic of research. The
most promising solution is referred to as topological quantum computation (TQC)—so
far, an entirely theoretical proposal with only few proof-of-principle experiments
that focus on partial aspects of the concept.

The roots of TQC go deep, all the way down to category theory, a mathematical
discipline of great beauty, sometimes affectionately referred to as general abstract
nonsense. Fortunately, category theory is not needed to grasp the essence of
TQC: The idea is to encode quantum information into degenerate states of two-
dimensional physical systems (e.g., spins on a lattice) that are topologically ordered.
This means that the degeneracy is robust against local perturbations and the
stored qubits are completely delocalized. But delocalized qubits decouple from the
environment because the latter acts locally on the system. This solves the problem
of “unwanted” operations on the qubit, that is, decoherence.

What about controlled manipulations? Here another property of topologically
ordered systems comes to the rescue: The delocalization of qubits is accompanied
by a pattern of long-range entanglement that can endow localized excitations with
a permutation statistics44 that is neither fermionic nor bosonic—they are anyons.
Some have the peculiar property that a given configuration of well-separated anyons
corresponds to more than one quantum state (such anyons are called non-abelian).
This defines the required degenerate subspace in which quantum information can
be encoded reliably. The key to TQC is that unitary operations on this subspace
can be realized by winding anyons around each other, a dynamical process that
returns to the initial anyon configuration; this is called braiding. These unitaries

44To be more precise, in two dimensions particles are braided, not permuted. In three and more
dimensions, this is the same because the world lines of particles cannot be tangled in a spacetime of
four dimensions and more.
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are “discrete” in that they depend only on the topology of the anyon world lines
(how they are “tangled” in spacetime) but not on their geometry (their shape). Since
uncorrelated noise can only nudge anyons locally, it might deform the shape of
their trajectories but not their topology (as long as the anyons remain far apart when
braided). This scheme facilitates the controlled manipulation of qubits without
making them susceptible to environmental noise. It is one of the most elegant
concepts for scalable quantum computation—but also the most demanding in terms
of technological requirements, most of which are far beyond current capabilities.

Thus, whether or not a topological quantum computer truly can be built is
unclear. All the more important is the exploration of systems that might host
topological phases and allow for braiding of anyons. One-dimensional p-wave
superconductors have been identified as a promising framework that features all the
needed key mechanisms if generalized appropriately. The Majorana chain, discussed
in Subsection 1.2.2, is the prime example which, if extended to networks, allows
for the braiding of particles known as Ising anyons45 (which are non-abelian). Here,
“particles” refers to the endpoints of one-dimensional chains that carry “half” a
fermion each (a Majorana mode). Braiding them generates robust unitaries on qubits
encoded in the degenerate ground state space of the network. Although these
unitaries do not cover all transformations needed for universal quantum computation,
they still are useful building blocks for fault-tolerant quantum operations.

The popularity of the Majorana chain (and its derivatives) is partly rooted in
its analytical accessibility: as quadratic theory of non-interacting fermions, all its
physical quantities can be computed efficiently and the topological features are
not obfuscated by the clutter of many-body physics. This simplicity, however, is
consequence of a mean field approximation, the validity of which is not guaranteed
for closed systems with a well-defined number of particles (a property met in cold
atom settings).

In this chapter, we introduce and study a number-conserving model that features
many of the peculiar properties of a topological phase. Most notably, we will
show that its chain endpoints behave like Ising anyons—a property that makes
it a number-conserving cousin of the Majorana chain and potentially useful for
topological quantum computation.

Our model is defined on an open double-chain of spinless fermions ai (upper
subchain) and bi (lower subchain) of length L, Figure 2.1 (a). The Hamiltonian

H D H a
CH b

CH ab 2.1

combines intra-chain contributionsH x (x D a; b) with inter-chain couplingsH ab,
Figure 2.1 (b). The intra-chain Hamiltonian takes the form

H x
D

L�1X
iD1

Axi
�
1C Axi

�
2.2

45This statement is only true “up to phases,” see Footnote 41.
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Figure 2.1 • Setup & ground states. (a)We consider a double-chain of length L with open
boundary conditions and spinless fermions ai and bi living on the sites. (b) The number-
conserving Hamiltonian is given by intra-chain termsAxi (x D a; b) that describe single-particle
hopping as well as density-density interactions, and the inter-chain couplings Bj that encode
correlated pair hopping together with four-fermion density-density interactions. (c) For a fixed
number of particles, there are two degenerate zero-energy ground states, characterized by their
(upper) subchain parity ˛.

with the single-particle hopping terms

Aai D aia
�
iC1 C aiC1a

�
i and Abi D bib

�
iC1 C biC1b

�
i : 2.3

H x combines single-particle hopping with a nearest-neighbor attraction on each
chain separately. The inter-chain interactionH ab takes a similar form,

H ab
D

L�1X
iD1

Bi .1C Bi/ ; 2.4

with the pair hopping between the two chains

Bi D a
�
i a
�
iC1bibiC1 C b

�
i b
�
iC1aiaiC1 : 2.5

H ab describes correlated pair hopping and four-fermion density-density interactions
between the chains. The Hamiltonian H conserves the total number of particles
N such that the filling � D N=2L is the only free parameter of the model. It
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also features two additional symmetries: The subchain parity Px for x D a; b, and
time-reversal symmetry T . The former follows since H ab exchanges only fermion
pairs between the chain while the latter is a consequence of the real-valued hopping
amplitudes and the absence of spin. Since PaPb D .�1/N relates the two subchain
parities to the total number of fermions, one can chose ˛ � Pa and N to label
subspaces HN

˛ of the Hilbert space that are not coupled byH .
We can make use of this restriction and the form of H x andH ab to derive the

(unique) ground state jN; ˛i in each sector HN
˛ exactly. This is possible because the

interactions in terms like Bi.1C Bi/ make H a positive semi-definite46 operator.
The ground states jN; ˛i are zero-energy eigenstates of H and their structure is
amazingly simple: Given 0 � N � 2L and ˛ D ˙1, add up all states that describe
fermion configurations on the double-chain with N fermions in total and subchain
parity Pa D ˛; up to normalization, this is jN; ˛i. Note that for a fixed particle
number N , HN

C1 ˚HN
�1 is the Hilbert space of accessible states. This includes the

degenerate zero-energy subspace of states j‰i D  CjN;C1i C  �jN;�1i which
can be used to store a qubit reliably (under which conditions this is true will be
discussed in detail), see Figure 2.1 (c).

Due to the structural simplicity of the states jN; ˛i, the evaluation of correlators
and overlaps reduces to combinatorial expressions that can be computed efficiently.
For instance, fermion pair correlations become constant and do not vanish in the
limit L!1 for fixed filling 0 < � < 1,

jhx
�
i x

�
iC1yjyjC1ij ! �2.1 � �/2 for i ¤ j I x; y 2 fa; bg I 2.6

this indicates a condensate of p-wave pairs with true long-range order.
The intra-chain single-particle correlations ha�i aj i (the Green’s function) can

also be computed straightforwardly. They decay exponentially in the bulk,

ha
�
i aj i D e

�.�/ji�j j for 1� i; j � L ; 2.7

where  is some function of the filling with .0:5/ D 1. Interestingly, there is a
revival at the endpoints of the chain independent of their distance,

jha
�
1aLij ! �.1 � �/ > 0 ; 2.8

that heralds exponentially localized edge states with perfect localization at half-filling
� D 0:5, Figure 2.2 (a). Less formally: There is something special about the
endpoints of the chains.

Their importance is confirmed if we focus on overlaps hN;�˛jO�
j jN; ˛i instead

of correlations. Here, O
�
j D e

i�a
�
j bj C e

�i�b
�
j aj describes single-particle hopping

between the chains; it violates subchain parity (and time-reversal symmetry if �
is not a multiple of �). One can think of O

�
j either as perturbations of H or as

intended couplings that realize the “fusion” of two chain endpoints. In any case,

46I.e., all its eigenvalues are non-negative.
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Figure 2.2 • Ground state properties. (a) Intra-chain single-particle correlation ha�i aj i
(Green’s function) as a function of the distance ji � j j on a chain of length L D 30 (here for
i D 1 and j running). The revival for ji � j j � L indicates exponentially localized edge states.
The correlation length depends on the filling �. (b)Overlap of the ground states jN;˙1i for
time-reversal invariant (TRI) and time-reversal breaking (TRB) single-particle hopping O

�
i;j

(� D 0; �
2
) in dependence of the position i; j at half-filling � D 0:5. Note that time-reversal

invariant single-particle hopping does not create overlaps between the ground states, and time-
reversal breaking hopping does so only close to the endpoints.

a finite overlap hN;�˛jO�
j jN; ˛i ¤ 0 would lift the two-fold degeneracy of the

ground state space. Let us focus on the time-reversal invariant/breaking (TRI/TRB)
couplings for � D 0 and � D �

2
, respectively; one finds

TRI W hN;�˛jO0
ı jN; ˛i ! 0 2.9a

TRB W hN;�˛jO
�
2

ı
jN; ˛i ! e��.�/ı 2.9b

for the distance ı � L from the endpoints of the double-chain, Figure 2.2 (b).
Surprisingly, single-particle hopping between the chains does not create overlaps if
the coupling is time-reversal invariant; and even when this symmetry is broken, only
hopping close to the endpoints can lift the degeneracy of two ground states.

The bottom line is that a qubit j‰i that is encoded in the degenerate ground
state space of jN;˙1i can be protected from decoherence either by subchain-parity
or time-reversal symmetry. This qualifies our model H as a so called symmetry-
protected topological phase (SPT), a less versatile (but more accessible) relative of the
topologically ordered phases described above.

The states of a SPT can often be identified by their entanglement structure.
A quantity that has proven particularly useful in this context is the entanglement
spectrum, the spectrum of an artificial Hamiltonian that encodes information on
the entanglement between a (macroscopic) subsystem and its complement. We
find a two-fold degeneracy of this spectrum for jN; ˛i, a well-known manifestation
of topologically protected ground state manifolds. Interestingly, the amount of
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entanglement (measured by the entanglement entropy) that is shared between a
subsystem of size S and its complement grows logarithmically with S . For quantum
chains, this heralds a gapless spectrum of the Hamiltonian.

Indeed, the single-chain Hamiltonians H x (x D a; b) with open boundaries
can be mapped to the ferromagnetic, isotropic Heisenberg model via Jordan-Wigner
transformation47. We exploit this mapping and construct the analog of single-
magnon states for the double-chain Hamiltonian, denoted jkIN; ˛i and labeled by
wavenumbers k D m�

L
with 0 � m < L. These are exact eigenstates of H in the

sector HN
˛ with the quadratic spectrum Ek D 4 sin

2
.k=2/. As anticipated from the

growth of the entanglement entropy, the energy gap between ground state and first
excited state vanishes for L!1. ThatH is in a gapless phase is a consequence of
particle number conservation and sets it apart from the mean field Majorana chain
(which is gapped).

So far, we discussed the double-chain Hamiltonian, its ground states, and some
of its excited states. The robust ground state degeneracy qualifies the model as
(symmetry-protected) topological phase, and the single-particle correlators (and
overlaps) certify the presence of edge states.

The stage is set—what about braiding? The anyons we would like to braid
can be identified with the endpoints of chains because these are the only locations
where single-particle hopping induces unitaries on the ground state space (recall
the overlaps!). In order to braid two endpoints, we go beyond the single double-
chain setup and consider a wire network of four open subchains with parities ˛i ,
coupled by a common “bath” chain as depicted in Figure 2.3 (a) and described by
a Hamiltonian H0. To braid two of the four endpoints, we need only interactions
between the four open chains. Thus, the total subchain parity ˛ D ˛1˛2˛3˛4 is
conserved and can be fixed (here ˛ D �1); this reduces the number of relevant
ground states to 8, Figure 2.3 (b). The braiding is described completely within
this 8-dimensional ground state space of H0, and implemented by a Hamiltonian
Hint.t/ that encodes the smooth sequence of single-particle hopping depicted in
Figure 2.3 (c). Hint.t/ hybridizes edge states such that the 8-fold degeneracy is lifted
and only 4 ground states remain degenerate during the braiding protocol. We are
then interested in the unitary realized by braiding on this 4-dimensional subspace
(which encodes two qubits).

To this end, we start with one of the four initial zero-energy states ofHint.t D 0/

which we denote by j00i; it is characterized by ˛1 D �1 D ˛2 and ˛3˛4 D �1, see
Figure 2.3 (d). If we apply the cyclic time evolution that describes the braiding, j00i
is mapped to the orthogonal state

j11i D T exp
�
�i

Z 8

0

dt Hint.t/

�
j00i D UBj00i 2.10

47Amathematically exact transformation that maps fermions to spins and vice versa.
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(b)

(c)
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Figure 2.3 • Braiding. (a)Wire network of four open chains Li , i D 1; : : : ; 4, (black) with
controllable weak single-particle couplings between the inner four endpoints (gray square). The
partner chains (gray) are not involved in the braiding and take the role of a “bath.” (b) The
dynamics takes place in the 8-dimensional Hilbert space spanned by zero-energy ground states
with fixed total parity ˛ D ˛1˛2˛3˛3 D �1. The colors label the subchain parities ˛i of the
four black chains. (c) A black arrow indicates single-particle hopping between the endpoints of
chains. Braiding is achieved by the composition of two exchanges, each subdivided into 4 steps
that are interpolated smoothly viaHint.t/. (d) The braiding unitarily rotates the state j00i into
the orthogonal state j11i. This can be interpreted as the braiding of two “Majoranas” � , each
of which belongs to a pair created from the vacuum 1; afterwards, the pairs fuse to fermions‰.

characterized by ˛1 D C1 D ˛2 and ˛3˛4 D �1. (T denotes the time-ordering
operator.) The unitary UB represents the braiding of two anyons on the four-fold
degenerate ground state space of Hint.0/; its effect is to invert the parities of the
open subchains 1 and 2.

What are the implications for the “particles” attached to the endpoints? To
understand this, one has to associate the parity ˛i of a subchain to the result one
obtains when its two endpoints are fused, i.e., combined to a new “particle”; in
practice, this is achieved by single-particle hopping between the two endpoints.
This establishes periodic boundary conditions—and we show that there are two
possible outcomes: For odd subchain parity, the energy density at the relevant edge
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remains zero, whereas for even subchain parity, it is finite. In condensed matter
physics, a localized finite energy density is nothing but a “particle”; here we call it a
fermion ‰. If we denote the particles attached to the endpoints as � (and write 1
for the “trivial” particle that indicates the absence of both ‰ and �), we can write
formally

� ˝ � D 1˚‰ ; 2.11

i.e., combining (˝) two endpoints (�) yields either zero energy (1) or (˚) non-zero
energy (‰). Equation (2.11) is the fusion rule that characterizes Ising anyons, a
particular class of non-abelian anyons that also describe the edge modes of the
Majorana chain (where � labels the Majorana modes). In this parlance, the braiding
described above reads as follows [see Figure 2.3 (d)]: We start with two pairs of
“Majoranas” � that fuse to the “vacuum” 1 (because ˛1 D �1 D ˛2 in j00i). By
braiding two “Majoranas” of different pairs, the pairs fuse to fermions ‰ afterwards
(because ˛1 D C1 D ˛2 in j11i). This is a characteristic feature of Ising anyons and
substantiates the role of our model as number-conserving cousin of the Majorana
chain.
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2.1 Introduction

Topologically protected ground state degeneracies in many-body quantum systems,
and the closely related (non-abelian) anyonic statistics of excitations and defects, are
of special interest from a theoretical point of view [37,223], and have been recognized
as promising concepts for scalable, fault-tolerant quantum computation [45, 47].
Intensely studied and well understood are topological states with Majorana zero-
energy edge modes that appear within mean field descriptions of topological
superconductors [224]. Due to their description in terms of matrix ensembles, these
free fermion theories have been classified exhaustively [22, 97], and the properties
of the Majorana zero modes at boundaries [82] and in vortices [83] have been
characterized. By contrast, interacting and gapless phases are intrinsically harder
to explore and therefore less well understood [17, 110, 119, 225]: To which extent
existence and non-abelian properties of edge states carry over to interacting theories
is an interesting question lacking conclusive answers [226].

Our understanding of topological phases is driven by exactly solvable micro-
scopic models; archetypal for the existence of topologically protected Majorana
edge modes is the one-dimensional Majorana chain [82]. It has inspired a
variety of proposals for its experimental realization in condensed matter sys-
tems [159, 160, 224, 227], and signatures consistent with Majorana modes have
been experimentally observed [152, 161, 228,229]. However, such models require
large particle reservoirs to justify their mean field description, whereas very little is
known about the fate of Majorana zero-energy edge modes in intrinsically interacting
and particle conserving settings—a particularly important scenario for realizations
with ultracold atoms in optical lattices. Previous attempts for number-conserving
theories featuring Majorana-like edge states relied either on bosonization [230–234]
or on numerical methods (DMRG) [235], while the only exactly solvable models
require unphysical long-range interactions [236].

In this chapter, we introduce and study a microscopic, number-conserving
theory with local interactions that features non-abelian edge states at the boundaries.
The theory allows for an exact derivation of its many-body ground state as well as
its low-energy excitations, and thereby provides a viable playground for analyzing
its characteristic properties. We show that the ground state is characterized by a
condensate of p-wave pairs with a robust, topological degeneracy. The Green’s
function exhibits a revival at the edges, revealing the presence of edge states.
Remarkably, the model can be generalized to arbitrary wire networks, which allow us
to derive the non-abelian braiding statistics of the edge states on a microscopic level.

The presentation of these results is structured as follows:
We start with the definition of the model in Subsection 2.2.1 and proceed with

the derivation of its exact ground states in Subsection 2.2.2 where we find a two-fold
degeneracy for a fixed particle number. In Subsection 2.3.1, we exploit the simple
structure of these ground states to calculate their correlations; in particular, the
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Green’s function reveals localized states at the boundaries. In Subsection 2.3.2, we
proceed with symmetry considerations and show that local perturbations cannot
lift the ground state degeneracy in the bulk but only at the edges and only if
time-reversal symmetry is broken. This classifies the ground state manifold as a
symmetry-protected topological phase. We substantiate this claim in Subsection 2.3.3
by an analysis of the entanglement spectrum which features a robust two-fold
degeneracy. In this context, a logarithmic growth of the entanglement entropy hints
at a gapless spectrum due to the presence of a Goldstone mode. This is underpinned
in Subsection 2.4.1 where we derive a submanifold of exact eigenstates with a
quadratic excitation spectrum. In Subsection 2.4.2, we complete this picture with a
discussion of the gap scaling for open and closed boundary conditions. In the last
part, we first generalize the model to more complicated networks of coupled wires in
Subsection 2.5.1. In particular, we show that the ground states of these networks are
still analytically accessible. In Subsection 2.5.2, we use a particular arrangement of
wires—and our knowledge of their ground states—to simulate the braiding of edge
states on a microscopic level. As a main result, we find the non-abelian statistics
of Ising anyons which qualifies the edge states as number-conserving analogues of
mean field Majorana modes. We conclude in Section 2.6 where we also point to
related results that supplement the findings of this chapter.

Additional results are presented in the appendices where we describe the ground
states as matrix product states (⁂ Section 2.A), derive rigorous bounds on the
spectral gap (⁂ Section 2.B), calculate exact eigenstates with Bethe ansatz methods
(⁂ Section 2.C), and discuss possible remnants of the Majorana (Clifford) algebra
(⁂ Section 2.D).

2.2 A Chain of Interacting Fermions

We start in Subsection 2.2.1 with the definition of the fermionic Hamiltonian the
properties of which are subject of this chapter. Subsequently, in Subsection 2.2.2,
we derive and describe its exact zero-energy ground states. The simplicity of these
ground states is a characteristic feature of the introduced Hamiltonian and allows
for the efficient analysis of its quantum phase.

2.2.1 Definition of the Model

We consider a double-chain (“two-leg ladder”) of spinless fermions with L lattice
sites and open boundary conditions. The fermionic annihilation operators at site
i are described by ai (upper chain) and bi (lower chain), see Figure 2.4 (a) for a
schematic illustration.
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The many-body Hamiltonian

H D H a
CH b

CH ab 2.12

describing the interacting fermion theory combines intra-chain contributions H x

(x D a; b) with inter-chain couplingsH ab. The intra-chain Hamiltonian takes the
form

H x
D

L�1X
iD1

Axi
�
1C Axi

�
2.13

with the single-particle hopping terms

Aai D aia
�
iC1 C aiC1a

�
i and Abi D bib

�
iC1 C biC1b

�
i : 2.14

Thus, the terms of the sum (2.13) combine single-particle hopping with a nearest-
neighbor attraction nxi C n

x
iC1 � 2n

x
i n
x
iC1 on each chain separately. The inter-chain

interactionH ab takes a similar form,

H ab
D

L�1X
iD1

Bi .1C Bi/ ; 2.15

with the pair hopping between the two chains

Bi D a
�
i a
�
iC1bibiC1 C b

�
i b
�
iC1aiaiC1 : 2.16

The terms in (2.15) then expand to a correlated pair hopping and additional
four-fermion density-density interactions between the chains.

Let us briefly comment on reasons to consider Hamiltonian (2.12) in the first
place: Recall that we are looking for a number-conserving analogue of the parity-
conserving Majorana chain. As we showed in Subsection 1.2.2, the two many-body
zero-energy ground states of the Majorana chain differ only in their total fermion
parity. The fact that a global quantity like parity is inaccessible to local observables
renders their degeneracy topological. But fixing the total particle number fixes also
the total parity. Hence we resort to a double-wire setup where the total particle
number does not fix the parities of each subchain. A reasonable Hamiltonian has
to conserve this subchain parity. Generically, this leads to a Hamiltonian with
single-particle hopping within the chains and a correlated pair hopping between
them; this is realized by the linear terms Axi and Bi in (2.12). The quadratic terms
.Axi /

2 and B2i do not violate the subchain symmetry and turn .2:12/ into the parent
Hamiltonian of ground states with exceptionally simple structure, in analogy to the
“sweet spot” of the Majorana chain (see Subsection 2.2.2 below).
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(a)

(b)

Figure 2.4 • Setup. (a)We consider a double-chain (“two-leg ladder”) of lengthL with open
boundary conditions and spinless fermions ai and bi living on the sites; the upper/lower chains
are labeled by a/b,respectively. (b) The number-conserving Hamiltonian is given by intra-chain
termsAxi (x D a; b) that describe single-particle hopping as well as density-density interactions,
and the inter-chain couplingsBj that encode correlated pair hopping together with four-fermion
density-density interactions.

Since the Hamiltonian H conserves the total number of particles N , this
defines the only free parameter of the theory and is conveniently expressed as the
density � D N=2L. Besides the global U.1/ symmetry,H features two48 additional,
relevant symmetries:

1 The already mentioned subchain parity

Px � .�1/
P

i x
�

i
xi for x D a; b ; 2.17

2 and time-reversal symmetry T �K, represented by complex conjugation K

and T x.�/i T �1 � x
.�/
i for x D a; b.

Time-reversal symmetry is also present in the mean field Majorana chain and,
if preserved, protects Majorana edge modes that transform identically under T
from gapping out49. The subchain symmetry Px, however, differs quite a bit
from the total parity P conserved by the Majorana chain in that the former is an
intrinsic symmetry of the Hamiltonian which can be broken by additional terms

48There is a third one which we do not consider here, namely the “chain exchange symmetry”
ai $ bi . We refer the reader to Ref. [237] for more information.

49This is a manifestation of the Z topological index in symmetry class BDI of the tenfold way [97].
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even odd

odd odd

odd

even

even

even

Figure 2.5 • Ground states—Degeneracy. For every fillingN with total parity P D .�1/N ,
there are two degenerate zero-energy ground states for open boundary conditions, characterized
by their (upper) subchain parity ˛ D Pa.

without modifying the structure of the theory (single-particle hopping between the
chains does the job). By contrast, a quadratic fermionic theory that describes a
closed system always conserves the total fermion parity. In reality, though, there
is always an environment that interferes; for the Majorana chain, tunneling of
single quasiparticles from a (superconducting) environment can violate the parity
symmetry (this is know as quasiparticle poisoning [238, 239]). But this cannot be
described without enlarging the system (i.e., the Hilbert space) to encompass the
environment. By contrast, subchain parity can be violated within the double-wire
setup alone.

2.2.2 Ground States

A characteristic feature of Hamiltonian (2.12) is that its ground states can be
derived exactly. To do this, the observation that H is the sum of local projectors
and therefore a positive semi-definite operator50 is crucial (for brevity, we omit the
“semi-definite” in the following). We can then exploit that any zero-energy ground
state must be annihilated by all local terms in (2.13) and (2.15) separately. That is, if
we find a state with zero energy which is annihilated by all local terms, we can be
sure that it is a ground state. This yields a viable method to construct them from
scratch—provided zero-energy ground states exist.

For a ladder with open boundary conditions, one finds exactly two degenerate
zero-energy ground states for each filling 0 < N < 2L denoted as jN; ˛i and
characterized by the upper subchain parity ˛ � Pa 2 fC1;�1g, see Figure 2.5.
Before we discuss their derivation below, let us first comment on their structure:

50To show that H is positive (semi-definite), recall that the sum of positive operators is again
positive. So we can prove the positivity ofHx andH ab separately which, in turn, boils down to the
positivity of their summands. The eigenvalues of Axi and Bi are easily calculated as 0 and˙1. Thus
the eigenvalues of Axi .1CA

x
i / andBi .1CBi / are 0 and 2, which qualifies them as positive operators

(and explains why we choose this form, and not just Axi and Bi as in Ref. [235].).
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Figure 2.6 • Ground states—Fermion gauge. The shown fermion ordering defines a particular
basis of the Fock space. The chosen gauge is needed for the simple description of the ground
states in terms of these basis states.

For an appropriate choice of the fermion ordering51 (see Figure 2.6), each ground
state is given by the equal-weight superposition of distributing N particles on the
two chains, constrained by the fixed subchain parity ˛.

To cast this in a formal description, we first introduce the fermion number states
jnix with x D a; b and n 2 f0; 1gL, i.e.,

jnia D .a
�
1/
n1: : : .a

�
i /
ni: : : .a

�
L/
nLj0ia 2.18

for the upper chain with the number of fermions jnj D
PL
iD1 ni . Then, the

equal-weight superposition of states on each chain with a fixed number of particles
n can be written as

jnix �
X

jnjDn

jnix I 2.19

note that this state is not normalized. Finally, the equal-weight superposition with
fixed particle number N and subchain parity ˛ is given as

jN; ˛i � N
�1=2
L;N;˛

X
n;.�1/nD˛

jniajN � nib 2.20

where N
�1=2
L;N;˛ is the normalizing factor that counts the number of superimposed

fermion configurations (see Section 2.3 for an explicit expression).
By contrast, for a ladder with closed boundary conditions the situation is more

subtle: For even total particle number N D 2K, there is a unique zero-energy
ground state j2K;�1i in the odd-odd (˛ D �1) subchain-parity sector, whereas
in the odd-N sectors all states are lifted to finite energy. This is summarized in
Figure 2.12 where we discuss the low-energy scaling of H , see Subsection 2.4.2.

At this point, it seems advisable to compare the ground states jN; ˛i with those
of a single (mean field) Majorana chain which, in analogy, features two zero-energy
ground states jP D ˙1i for open boundary conditions (see Subsection 1.2.2 and
Ref. [82]): For vanishing chemical potential (i.e., perfectly localized edge modes),

51The ordering of fermions determines a particular number basis of the Fock space but has no
physical meaning; it can therefore be seen as a gauge condition fixing a purely mathematical freedom.
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the ground states of the Majorana chain are given by the equal-weight superposition
of particle number states with fixed global parity P D ˙1 but undetermined particle
number N ; a manifestation of the superconducting condensate where pairs of
quasiparticles can fuse to the vacuum. By contrast, here the chains act as mutual
particle reservoirs and the ground state degeneracy arises due to two admissible
subchain parity configurations within each fixed particle number sector (Figure 2.5).

We now prove that jN; ˛i are the only zero-energy ground states of H . The
reader may skip this derivation on first reading and proceed with Section 2.3.

Construction of the Ground States

It is straightforward to show that the two states jN; ˛ D ˙1i in each filling sector
N are annihilated byH , and therefore belong to the ground state space (recall that
H is a positive operator). Here we want to show more, namely their uniqueness,
by constructing all zero-energy eigenstates from scratch. To this end, consider the
binary vectors .n;m/ 2 f0; 1g2L describing the fermion configurations on the ladder.
The Fock space H is spanned by the number states jn;mi � jniajmib 2 H , where
we choose the fermion ordering (gauge) according to Figure 2.6; this defines a
representation of the fermion algebra fai ; a

�
i ; bi ; b

�
i j 1 � i � Lg on H .

It is easy to show that the action of this representation allows us to write

Axi .1C A
x
i /jn;mi D jn;mi � j"

x
i .n;m/i 2.21

and
Bi.1C Bi/jn;mi D jn;mi � j�i.n;m/i 2.22

(this is where the ordering of Figure 2.6 becomes important). Here we used the
single-bit swap-operators

"ai ..: : : ; ni ; niC1; : : : /;m/ � ..: : : ; niC1; ni ; : : : /;m/ 2.23a

"bi .n; .: : : ; mi ; miC1; : : : // � .n; .: : : ; miC1; mi ; : : : // 2.23b

for arbitrary .n;m/ and the bit-pair swap-operators

�i..: : : ; ni ; niC1; : : : /; .: : : ; mi ; miC1; : : : //

� ..: : : ; mi ; miC1; : : : /; .: : : ; ni ; niC1; : : : //
2.24

if and only if ni D niC1 and mi D miC1 with �i D Id otherwise.
It is convenient to introduce the partition

S
N BN D f0; 1g

2L of binary vectors
with the decomposition BN D BC

N [ B
�
N , where B˛N is the set of vectors .n;m/

with filling
P
i.ni Cmi/ D N and subparity

Q
i.�1/

ni D ˛. It is now easy to see
that

1 "xi ; �i W B
˛
N ! B˛N are bijections for x D a; b and 1 � i � L � 1 (note that

"xi "
x
i D Id D �i�i ), and
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2 for any pair .n;m/; .n0;m0/ 2 B˛N there is a finite sequence � of "xi ; �i such
that .n;m/ D �.n0;m0/. That is, the connected components of f0; 1g2L

under the described family of bit-operations

… � f�g D f"ai ; "
b
i ; �i j 1 � i � L � 1g 2.25

are exactly the B˛N for N D 0; : : : ; 2L and ˛ D ˙1.

We proceed with a generic state j‰i 2 H ,

j‰i D
P
.n;m/‰.n;m/jn;mi 2.26

and evaluate its energy expectation value

h‰jH j‰i D
X
i;x

h‰jAxi .1C A
x
i /j‰i C

X
i

h‰jBi.1C Bi/j‰i 2.27

which reads

h‰jH j‰i D
X
�2…

X
.n;m/
.n0;m0/

‰�.n0;m0/‰.n;m/

� hn0;m0
j Œ jn;mi � j�.n;m/i �

2.28a

D

X
�2…

X
.n;m/

�
‰�.n;m/‰.n;m/ �‰��.n;m/‰.n;m/

�
: 2.28b

Doubling the sum, substituting �.n;m/ ! .n;m/, and using the bijectivity
�f0; 1g2L D f0; 1g2L, yields

h‰jH j‰i D
1

2

X
�2…

X
.n;m/

�
‰�.n;m/‰.n;m/ �‰��.n;m/‰.n;m/

�
C
1

2

X
�2…

X
.n;m/

�
‰��.n;m/‰�.n;m/ �‰�.n;m/‰�.n;m/

�
D
1

2

X
�2…

X
.n;m/

j‰.n;m/ �‰�.n;m/j2 : 2.29

Splitting the second sum into the connected components B˛N gives the final result

h‰jH j‰i D
1

2

X
N;˛

X
�2…

X
.n;m/2B˛

N

j‰.n;m/ �‰�.n;m/j
2
: 2.30

Since j‰i is a zero-energy eigenstate if and only if52 h‰jH j‰i D 0, and the B˛N
are the connected components under the repeated action of …, we conclude that for
any normalizable zero-energy state, it is necessary and sufficient that the amplitudes

52The implicationH j‰i D 0) h‰jH j‰i D 0 is trivial. The other direction follows from the
positivity of H : Consider the spectral decomposition H D

P
� �j�ih�j with eigenvalues � � 0.

Then 0 D h‰jH j‰i D
P
� �jh�j‰ij

2 implies that �jh�j‰ij2 D 0 for all eigenvectors j�i, i.e., j‰i is
a linear combination of eigenvectors with eigenvalue � D 0 and thereforeH j‰i D 0.
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are constant within each sector B˛N ,

H j‰i D 0 , ‰.n;m/ D ‰˛N 2 C; 8.n;m/ 2 B˛N : 2.31

These are exactly the equal-weight superpositions jN; ˛i of fixed particle number N
and subchain parity ˛ defined in Eq. (2.20).

We stress that these statements are modified for closed boundary conditions
within the even-even and odd-even/even-odd subchain-parity sectors where some
of the summands in Eq. (2.30) read j‰.n;m/C‰�.n;m/j2 due to the fermionic
statistics. From this it follows immediately that no normalizable state with
zero eigenenergy can exist, though the ground state energy may vanish in the
thermodynamic limit (see Subsection 2.4.2).

2.3 Ground State Properties

In this section, we harness the simple structure of the zero-energy ground states
jN; ˛i to explore their properties in detail. In Subsection 2.3.1, we calculate
important correlators and use the Green’s function to uncover non-local correlations
between the edges. Possible perturbations of the Hamiltonian H are studied in
Subsection 2.3.2: We show that the ground state degeneracy can only be lifted if
time-reversal symmetry is broken close to the boundaries of the chain. Finally, in
Subsection 2.3.3, we discuss the entanglement spectrum of the ground states and
find a logarithmic growth of the entanglement entropy.

These results follow from combinatorial considerations dictated by the structure
of the ground states. In this context, quantities termed parity-split binomial coefficients
appear frequently and allow for terse expressions. Thus we preface the following
discussion with some preliminary notes:

Mathematical Preliminaries

As we will show below, the evaluation of arbitrary expectation values and correlators
of the zero-energy ground states jN; ˛i is particularly efficient because the evaluation
of matrix elements reduces to counting fermion configurations on g�1 subsystems53

of size L1; : : : ; Lg�1 with parity constraints ˛1; : : : ; ˛g�1 2 f˙1g.

53The gth subsystem is the “rest” or the “environment,” the parity ˛g of which is determined by
the total number of particlesN and the parities of the other g � 1 subsystems.
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Definition 2.1: Parity-split binomial coefficients (PsBC)

Therefore we introduce the parity-split binomial coefficients (PsBC) 
L1; : : : ; Lg

˛1; : : : ; ˛g�1

!
N

�

NX
n1;:::;ng�1

 
Lg

N �
Pg�1
iD1 ni

!
g�1Y
iD1

ı˛i
ni

 
Li

ni

!
2.32

with ı˛i
ni
� Œ1C ˛i.�1/

ni � =2. Here,
Pg
iD1Li D L is the total number of sites, 0 �

N � L the number of particles to be distributed, and ˛i D ˙1 fixes the parity of the i th
segment.

The PsBC counts the number of possibilities to distribute N identical particles
on L sites, partitioned into g segments of length Li (i D 1; : : : ; g), so that the
parity of each segment is ˛i . Note that for g D 1 there are no parity constraints
and the PsBC is the usual binomial coefficient

�
L

N

�
. The PsBCs can be evaluated

efficiently on a computer, though we are not aware of closed forms for arbitrary
splittings g.

However, the simplest non-trivial PsBC (which describes the splitting of the
double-chain in upper and lower wires of equal length L) allows for a closed form,
namely  

L;L

˛

!
N

D
1

2

 
2L

N

!
C
˛

2

1C .�1/N

2
.�1/N=2

 
L

N=2

!
: 2.33

Thus the leading order is 1
2

�
2L

N

�
. This is exact for odd N , as one would expect due

to the exchange symmetry mapping between even-odd (˛ D C1) and odd-even
(˛ D �1) subparities. For even fillings N , however, there are corrections of order�
L

N=2

�
due to the inequivalence of even-even and odd-odd subparities54.

As a final remark, we give the alternative form of a generic g D 2 PsBC 
L1; L2

˛

!
N

D
1

2

 
L1 C L2

N

!
C
˛

2

NX
nD0

.�1/n

 
L1

n

! 
L2

N � n

!
; 2.34

which separates the leading contribution from the ˛-dependent corrections. We
make use of this result below.

2.3.1 Correlations and Edge States

We start exploiting the concise description of the ground states to derive simple
expressions for density correlations, superfluid order parameter and the Green’s
function (single-particle correlation). Due to the simple structure of the ground

54This inequivalence is most pronounced for smallN , e.g., forN D 2 one hasL2 possible patterns
in the odd-odd sector but only 2L.L � 1/=2 D L2 � L in the even-even sector.
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states, all correlation functions and expectation values of jN; ˛i can be rewritten
in terms of finite combinations of PsBCs. Let us explain this rationale using the
example of the normalizing factor NL;N;˛ introduced in Eq. (2.20). It can be
computed as follows:

NL;N;˛
def
D

X
.n;m/2B˛

N

X
.n0;m0/2B˛

N

hn;mjn0;m0
i„ ƒ‚ …

ın;n0ım;m0

2.35a

D jB˛N j 2.35b

D

ˇ̌̌̌
ˇ̌̌
8̂<̂
:
Configurations .n;m/ 2 ZL2 � ZL2

with
P
i.ni Cmi/ D N particles

and parity constraint
Q
i.�1/

ni D ˛

9>=>;
ˇ̌̌̌
ˇ̌̌ 2.35c

def
D

 
L;L

˛

!
N

: 2.35d

The normalization of the two ground states jN; ˛i is therefore given by Eq. (2.33).
To keep our discussion of the following results free from technicalities, we postpone
similar counting arguments to the end of this subsection.

As a first result, we find that the inter- and intra-chain density-density correlation
function factorizes,

hnxi n
y
j i D hx

�
i xiy

�
j yj i ! �2 for i ¤ j I x; y 2 fa; bg ; 2.36

in the thermodynamic limit L;N ! 1 with fixed particle density � D N=2L.
Furthermore, the pair correlations become constant and non-zero

jhx
�
i x

�
iC1yjyjC1ij ! �2.1 � �/2 for i ¤ j I x; y 2 fa; bg ; 2.37

which indicates a condensate of p-wave pairs with true long-range order. Note
that the results for both correlators do not depend on the subchain parity ˛ of
the ground states. As we show below, this is true up to exponential corrections
vanishing with L!1. For particularly symmetric setups (e.g., x ¤ y and N odd)
these corrections even vanish identically.

The intra-chain Green’s function (indicating single-particle off-diagonal long-
range order [240]) can also be expressed in terms of PsBCs (j > i C 1),

ha
�
i aj i D N �1

L;N;˛ ŒƒC1;�˛ �ƒ�1;˛� ; 2.38

where ƒ˛1;˛2
�
�
j�i�1;L�jCi�1;L

˛1;˛2

�
N�1

; see below for the derivation. In the
thermodynamic limit, one finds exponentially decaying correlations in the bulk (see
Figure 2.7),

hx
�
i xj i D e

�.�/ji�j j for 1� i; j � LI x 2 fa; bg 2.39
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Figure 2.7 • Ground state properties—Edge states. Intra-chain single-particle correlation
ha
�
i aj i (Green’s function) as a function of the distance ji � j j for three densities � D

0:5; 0:25; 0:0 and a chain of length L D 30. The revival for ji � j j � L indicates expo-
nentially localized edge states (gray region).

where  is some function of the density with 0 < .�/ � 1 and .1=2/ D 1.
Most importantly, the boundary terms read

jha
�
1aLij ! �.1 � �/ > 0 2.40

in the thermodynamic limit, indicating the existence of exponentially localized edge
states with perfect localization at half-filling � D 1=2, Figure 2.7.

Derivation of the Correlators

Let us now discuss how the density-density correlations, the superfluid pair
correlations, and the intra-chain Green’s function can be expressed and evaluated in
terms of PsBCs. The reader may skip these derivations on first reading and proceed
with Subsection 2.3.2.

We start with the density-density correlations for which simple counting of
fermion configurations in jN; ˛i that are not annihilated by nxi n

y
j yields

hx
�
i xiy

�
j yj i D

( �
L�1;L�1

�˛

�
N�2

�
L;L

˛

��1
N

for x ¤ y ;�
L�2;L

˛

�
N�2

�
L;L

˛

��1
N

for x D y :
2.41

Indeed, this follows from counting all fermion configurations in jN; ˛i with occupied
modes xi and yj , thereby reducing the number of fermions to be distributed to
N � 2 and the number of available modes accordingly. The additional PsBC in each
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row follows from the normalization N �1
L;N;˛. Note that for the inter-chain correlator,

one fixes a single fermion on each chain, reducing the number of free modes to
L � 1 per chain (and inverting the parity of the configurations to �˛ due to the
excluded fermion). The intra-chain correlator, by contrast, fixes two fermions in
one of the two chains, reducing its length to L � 2 without changing the parity
(removing two fermions does not change the parity).

Along the same lines, counting configurations with occupied modes yj and yjC1

and vacant modes xi and xiC1 yields similar expressions for the superfluid pair
correlations,

jhx
�
i x

�
iC1yjyjC1ij D

( �
L�2;L�2

˛

�
N�2

�
L;L

˛

��1
N

for x ¤ y ;�
L�4;L

˛

�
N�2

�
L;L

˛

��1
N

for x D y :
2.42

In the light of Eq. (2.41) and Eq. (2.42), it seems advisable to consider the general
expression  

L � l1; L � l2

˛

!
N�m

 
L;L

ˇ

!�1

N

2.43

in more detail.
Using the alternative form (2.34) and setting N D 2L�, one can derive the

expression  
L � l1; L � l2

˛

!
2L��m

 
L;L

ˇ

!�1

2L�

D

 
2L � l1 � l2

2L� �m

! 
2L

2L�

!�1

C ˛O
�
e��L

�
C ˇO

�
e��L

�
2.44

which shows that any distinction due to the subparities ˛; ˇ is suppressed exponen-
tially. Straightforward simplifications for L!1 lead to the final result 

L � l1; L � l2

˛

!
2L��m

 
L;L

ˇ

!�1

2L�

� �m.1 � �/l1Cl2�m
C ˛O

�
e��L

�
C ˇO

�
e��L

�
: 2.45

The correlators from above follow now as special cases,

hx
�
i xiy

�
j yj i D �

2 2.46a

and jhx
�
i x

�
iC1yjyjC1ij D �

2.1 � �/2 ; 2.46b
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Figure 2.8 • Green’s function—Derivation. Partition for the derivation of the intra-chain
Green’s function ha�i aj i of the zero-energy ground states jN; ˛i, used for counting states of
fixed subsector parities ˛1 and ˛2. The single-particle hopping from mode aj to the (vacant)
mode ai measures the parity ˛1 of the subsector between them (yellow).

up to exponential corrections depending on the subchain parity ˛ of the ground state
jN; ˛i. We stress that for both correlators, the pattern of fermions between55 modes
xi and yj can safely be ignored because either there is no hopping at all (as for
x
�
i xiy

�
j yj ), or hopping is restricted to that of bosonic pairs (as for x�i x

�
iC1yjyjC1).

In either case, the fermionic parity of the modes between xi and yj drops out.
In the remainder of this subsection, we focus on the intra-chain Green’s function.

Here, the derivation is more subtle since the parity of the single-chain segment
separating the two support regions of the operators must be taken into account. For
j > i one finds

ha
�
i aj i D

 
L;L

˛

!�1

N

ŒƒC1;�˛ �ƒ�1;˛� 2.47

where

ƒ˛1;˛2
D

 
j � i � 1;L � j C i � 1;L

˛1; ˛2

!
N�1

2.48

is a PsBC with g D 3 segments. This follows from simple counting arguments and
the convenient partition depicted in Figure 2.8:

a
�
i aj chooses all states of the equal-weight superposition in jN; ˛i with vacant

mode ai and occupied mode aj . These states are not annihilated and contribute
˙1 to the result as there is exactly one dual state in hN; ˛j for each number state
in a�i aj jN; ˛i. The sign of the contribution depends on the parity of the segment
between mode ai and aj due to the fermion ordering from left to right along the
chains (Figure 2.6). We therefore have to count all configurations of the N � 1
unaffected fermions (one is fixed by the hopping) on g D 3 segments:

55“Between” is meant with respect to the fermion ordering in Figure 2.6.
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1 The first segment has length ji � j j � 1 and parity ˛1 and is bounded by the
modes ai and aj .

2 The second segment comprises the rest of the upper chain of length L �
ji � j j � 1 (excluding the modes ai and aj ) with parity ˛2.

3 The third segment is the complete lower chain of length L with fixed parity
˛ D ˛.�1/N .

The total parity of the first two segments is fixed to ˛1˛2 D �˛ because a single
fermion is excluded and used for the hopping. Therefore we find exactly ƒC1;�˛

configurations which contribute C1 (i.e., the parity of the segment between ai
and aj isC1) and ƒ�1;˛ configurations which contribute �1. Divided by the total
number of configurations in jN; ˛i, this yields the result in (2.47).

A numerical evaluation of this expression is given in Figure 2.7 and reveals the
single-particle off-diagonal long-range order close to the boundaries of the ladder—a
consequence of the fixed subchain parity. Note that the vanishing of the Green’s
function in the bulk for 1� i � j � L is facilitated by the subtraction of ƒC1;�˛

and ƒ�1;˛ in (2.47) where both terms are (almost) identical.

2.3.2 Symmetry Protection

The degeneracy of the (mean field) Majorana chain is robust in the presence of
disorder that preserves the quadratic form of the Hamiltonian and is weak compared
to the spectral gap. In our number-conserving setting, the topological protection of
the ground state degeneracy is most conveniently characterized in terms of their local
indistinguishability [226,241]: Let O denote an arbitrary local (Hermitian) operator
and write j˛i D jN; ˛i. Then, the expectation values h˛jOj˛i and h�˛jOj�˛i are
identical up to an exponentially small correction—as follows from the above analysis
of the correlation functions:

jh˛jOj˛i � h�˛jOj�˛ij � e��1.�/L : 2.49

This is also evident because a local operator O cannot discriminate between two
states that differ only by a global property (the subchain parity ˛). The local
indistinguishability of j˙1i renders superpositions

j‰i D ‰CjC1i C‰�j�1i 2.50

resilient against dephasing due to local perturbations of the Hamiltonian; a necessary
condition to realize a topologically protected qubit in the ground state space ofH .
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Figure 2.9 • Ground state properties—Symmetry protection. Overlap of the ground states
j˙1i D jN;˙1i for time-reversal invariant (TRI) and time-reversal breaking (TRB) pertur-
bations Oj / h˙

j of H , in dependence of the position i; j of the subchain parity violating
single-particle hopping (blue: � D 0:5 TRI, red: � D 0:5 TRB, gray: � D 0:25 TRB). Note that
time-reversal invariant single-particle hopping does not create overlaps between the ground
states.

However, it is not sufficient because operators that violate the subchain parity
Px can give rise to depolarizing perturbations of j‰i. Thus, the overlap h�˛jOj˛i
must vanish,

jh�˛jOj˛ij � e��2.�/L ; 2.51

up to exponential corrections. Only if the states j˙1i are locally indistinguishable
and cannot be mapped into each other by local operations, the ground state manifold
span fj˙1ig is topologically degenerate and j‰i is protected from both dephasing
and depolarization.

The evaluation of h�˛jOj˛i is somewhat subtle. We illustrate this for the
simplest case of a single-particle inter-chain hopping (the statements can be
generalized to more complex Px-violating terms, though). Consider a site-dependent
perturbation O D Oj which is given as

Oj D e
i�ja

�
j bj C e

�i�j b
�
j aj 2.52

with complex hopping phase �j 2 Œ0; 2�/. If we split this perturbation into
time-reversal invariant (TRI) and time-reversal breaking (TRB) contributions,

Oj D cos.�j / .a
�
j bj C b

�
j aj /„ ƒ‚ …

�h
C

j
(TRI)

Ci sin.�j / .a
�
j bj � b

�
j aj /„ ƒ‚ …

�h�
j

(TRB)

; 2.53
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one finds by evaluating the corresponding PsBCs (see below)

TRI W h�˛jhC

ı
j˛i ! 0 2.54a

TRB W h�˛jh�
ı j˛i ! e��.�/ı 2.54b

for the distance ı � L from the edges of the ladder, when L!1 and � is fixed.
These site-dependent overlaps are illustrated in Figure 2.9. Surprisingly, single-
particle hopping between the chains does not lead to a lifting of the ground state
degeneracy in leading order, if the coupling is time-reversal invariant, Eq. (2.54a).
And even when the symmetry is broken, only hopping close to the edges creates
relevant overlaps between the two ground states, Eq. (2.54b).

The upshot is that the topological ground state degeneracy for the double-wire
setup can be protected either by time-reversal symmetry T or subchain parity Px,
and is only spoiled if both symmetries are broken at the same time. That the
degeneracy can be lifted by symmetry-breaking perturbations at the boundary is
not surprising as the two edge states on the upper and lower wire are not spatially
separated56. We will show in Subsection 2.5.1 that the Hamiltonian (2.12) can be
generalized to wire networks where the edge states are spatially separated. Then it
follows immediately that their topological degeneracy is protected against any local
operator O conserving the total number of particles.

Derivation of the Overlaps

Here we conclude the previous discussion with a derivation of the overlaps due to
subchain parity violating single-particle hopping between the chains. The reader
may skip this derivation on first reading and proceed with Subsection 2.3.3.

We are interested in h�˛jh˙
j j˛i as defined in (2.53). This reduces to the

computation of the inter-chain single-particle correlators

h�˛ja
�
i bj j˛i and h�˛jb

�
j ai j˛i ; 2.55

where we consider independent sites i and j to demonstrate the generality of the
following approach:

Splitting the double-chain into g D 4 segments, as sketched in Figure 2.10,
allows for an evaluation similar to the intra-chain Green’s function. Indeed, counting
fermion configurations with one of the sites i; j empty and the other occupied,
sorting them according to their subsegment parities ˛i (i D 1; 2; 3) yields the

56This situation is similar to that of two parallel Majorana chains, each in the topological phase
with winding number � D C1. Then, a time-reversal breaking coupling between the adjacent edge
modes lifts their degeneracy. In the non-interacting case, this is a manifestation of the difference
between symmetry class BDI with a Z topological index and unbroken time-reversal symmetry, and
class D with a Z2 invariant and broken time-reversal symmetry [22, 97].
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Figure 2.10 • Symmetry protection—Derivation. The partition used for the derivation of the
inter-chain single-particle overlap hN;�˛ja�i bj jN; ˛i. The single-particle hopping between
site j and the (vacant) site i measures the combined parity ˛2˛3 of two segments (yellow and
red) due to the fermion gauge in Figure 2.6. The results can be expressed in terms of PsBCs and
are described in the text.

expression

h�˛ja
�
i bj j˛i D

 
L;L

˛

!�1=2

N

 
L;L

�˛

!�1=2

N

�
�
ƒ˛;C1;C1 Cƒ�˛;�1;�1 �ƒ˛;C1;�1 �ƒ�˛;�1;C1

� 2.56

with the g D 4 split PsBCs

ƒ˛1;˛2;˛3
D

 
i � 1;L � i; j � 1;L � j

˛1; ˛2; ˛3

!
N�1

: 2.57

The special case i D j allows us to write

h�˛jh˙
j j˛i /

�
ƒ˛;C1;C1 Cƒ�˛;�1;�1 �ƒ˛;C1;�1 �ƒ�˛;�1;C1

�
˙
�
ƒ˛;�1;�1 Cƒ�˛;C1;C1 �ƒ�˛;C1;�1 �ƒ˛;�1;C1

� 2.58

for the overlaps due to time-reversal invariant/breaking perturbations h˙
j .
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Doing the math yields for the time-reversal invariant perturbation

h�˛jhC
j j˛i /

N�1X
n1;n2;n3D0

 
L � j

N � 1 � n1 � n2 � n3

!

�

 
j � 1

n1

! 
L � j

n2

! 
j � 1

n3

!
.�1/n2Cn3

2.59a

D
1 � .�1/N

2
.�1/

N �1
2

 
L � 1
N�1
2

!
: 2.59b

Incorporating the normalizing factors, we get as final result

h�˛jhC
j j˛i D

h
1 � .�1/N

i
.�1/

N �1
2

 
L � 1
N�1
2

! 
2L

N

!�1

2.60a

�

h
1 � .�1/N

i
.�1/

N �1
2 O

�
e��.�/L

�
2.60b

for N D 2�L and L!1; here we used Eq. (2.33) for the normalizing factors. As
result, we find that the overlap of the two ground states j˙1i due to subchain parity
violating but time-reversal invariant perturbations hC

j vanishes—identically for even
fillings, and up to exponential corrections for odd fillings.

Finally, an analogous calculation for the time-reversal breaking hopping yields

h�˛jh�
j j˛i / ˛

N�1X
n1;n2;n3D0

 
L � j

N � 1 � n1 � n2 � n3

!

�

 
j � 1

n1

! 
L � j

n2

! 
j � 1

n3

!
.�1/n1Cn3

2.61a

D ˛

N�1X
nD0

.�1/n

 
2j � 2

n

! 
2L � 2j

N � 1 � n

!
2.61b

which then gives rise to the lengthy expression

h�˛jh�
j j˛i D 2˛

24 2L
N

!2
�
1C .�1/N

2

 
L
N
2

!235�1=2

�

N�1X
nD0

.�1/n

 
2j � 2

n

! 
2L � 2j

N � 1 � n

!
:

2.62

In contrast to (2.59b), here the dependence on site j does not drop out.
A numerical evaluation of (2.62) is given in Figure 2.9. For fixed density �

and large L, one finds exponentially decaying overlaps in the bulk (the localization
length depends on � and vanishes at half-filling) but finite values for j close to the
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edges, i.e., for j � 1;L. This is derived easily in the odd filling sector where for
j D 1;L the term in (2.62) simplifies to

jh�˛jh�
1;Lj˛ij D 2

 
2L � 2

N � 1

! 
2L

N

!�1

2.63a

� 2 �.1 � �/ for L!1 ; 2.63b

which reaches its maximum 1
2
at half-filling � D 1

2
where the edge states and their

overlaps are perfectly localized on the boundary sites j D 1;L.
Note that jh�˛jh�

1;Lj˛ij < 1 tells us that the two ground states cannot be
mapped into each other by a unitary located at one of the boundary sites. This
is in stark contrast to the mean field Majorana chain where such a mapping is
realized by the Majorana operators 1 and 2L on the edges (the edge modes); see
Subsection 1.2.2 and ⁂ Section 2.D for more details.

2.3.3 Entanglement Spectrum and Entropy

Besides their local indistinguishability, another well-known signature of topological
states is a stable degeneracy of their entanglement spectrum (ES) [111, 242, 243].
The latter encodes information on the entanglement structure of a state (here, the
ground states jN; ˛i) with respect to a bipartition .SjS/ of the total system L into a
subsystem S and the “rest” S D L n S. In our case, we split the ladder into two
pieces of size S and L � S , respectively:

Let jn; ˛iX be the (normalized) equal-weight superposition on the system X for
X 2 fS;L n S;Lg; the states are clearly orthonormal, hn; ˛jm;ˇiX D ın;mı˛;ˇ . It
is then easy to see that the state of the complete chain jN; ˛i D jN; ˛iL can be
decomposed as follows:

jN; ˛iL D
X
n

X
ˇD˙1

�n;ˇ jn; ˇiSjN � n; ˛ˇiLnS : 2.64

This is called the Schmidt decomposition of jN; ˛i with Schmidt coefficients

�n;ˇ D

s
NS;n;ˇ �NL�S;N�n;˛ˇ

NL;N;˛

; 2.65
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Figure 2.11 • Ground state entanglement. (a) The two branches (ˇ D ˙1: red/blue) of the
entanglement spectrum f�n;ˇ g for a chain of length L D 20 and subsystem size S D 10 with
fillingsN D 10; 20; 30 (diamonds, circles, squares). The values for half-filling are highlighted
gray and the two branches ˇ D ˙1 are shifted by�0:25 in n-direction for reasons of clarity.
Physically, the index n describes the subsystem filling and ˇ the subsystem subchain parity.
Note the two-fold degeneracy of the entanglement spectrum. (b) The entanglement entropy
S ent D S entŒS� as a function of the subsystem size S for various densities �. It obeys an area
law S ent � lnS C const with logarithmic corrections for S � L (gray region). Note that
generic (e.g., random) states typically exhibit a volume law S ent � S C const instead—as
naïvely expected for an extensive quantity like entropy.
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which follows because the states j�; �iX on the right-hand side of Eq. (2.64)
must be “un-normalized” to make the sum equal-weight (before the total sum is
“re-normalized” again). Then, the entanglement spectrum f�n;ˇ g is defined as [242]

e��n;ˇ=2 D �n;ˇ , �n;ˇ D ln��2
n;ˇ 2.66

and can be written in terms of PsBCs [recall Eq. (2.35)]

�n;ˇ D � ln

" 
L � S;L � S

˛ˇ

!
N�n

 
S; S

ˇ

!
n

=

 
L;L

˛

!
N

#
2.67

where maxf0;N � 2L C 2Sg � n � minfN; 2Sg and ˇ D ˙1. Note that the
PsBCs all describe partitions into g D 2 segments of equal length and can therefore
be evaluated with Eq. (2.33).

The ˇ D ˙1-branches of the spectra for a half-split (S D L=2) system of
length L D 20 are plotted in Figure 2.11 (a) for different fillings N . They reveal a
two-fold degeneracy of the entanglement spectrum due to the subsystem subchain
parity ˇ, consistent with the topological degeneracy of the ground states. Note that
the minimum of the parabolic spectrum �n;ˇ corresponds to the largest Schmidt
coefficients �n;ˇ , Eq. (2.66). E.g, for a chain at half-filling with L D 20 and
N D 20, the Schmidt coefficients identify jn D 10;˙1iSj10;˙˛iLnS as the states
of highest weight (which makes sense because these comprise many possible fermion
configurations, as compared to, say, jn D 20;C1iSj0;C1iLnS which describes a
single fermion configuration only).

The structured information of the entanglement spectrum can be distilled into a
single quantity dubbed entanglement entropy S entŒS�. It is conventionally defined as

S entŒS� � �Tr Œ�S ln �S� ; 2.68

with the reduced density matrix �S D TrLnS Œ�� and � D jN; ˛ihN; ˛j. S entŒS�

quantifies the amount of entanglement shared between the subsystem S and the
rest of the system (in particular, it vanishes for unentangled product states), and its
scaling with the subsystem size S yields insight into the low-energy physics of the
theory. S entŒS� derives directly from the entanglement spectrum via

S entŒS� D
X
n;ˇ

e��n;ˇ�n;ˇ : 2.69

Figure 2.11 (b) shows the (filling dependent) variation of entanglement between a
subsystem S and its environmental system LnS as function of the subsystem size S :
The entanglement entropy obeys an area law with logarithmic corrections, S entŒS� �

lnSC const, as expected for a critical (gapless) one-dimensional system [244]. That
is, in contrast to the gapped Majorana chain (where S ent D const is independent of
S), here we face a low-energy theory of gapless Goldstone modes due to particle
number conservation. With this in mind, we have a closer look at the low-energy
excitations of H in Section 2.4.
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2.4 Low-Energy Excitations

Here we focus on the low-energy physics of the double-wire setup. In Subsec-
tion 2.4.1, we construct a class of exact eigenstates with arbitrary filling and subchain
parity; their quadratic spectrum proves the gaplessness of the complete spectrum.
In Subsection 2.4.2, we discuss the scaling of the gap in the thermodynamic limit
for open and closed boundary conditions in the two subchain-parity sectors. To this
end, we combine rigorous estimates on the gap with numerical results from density
matrix renormalization group simulations.

2.4.1 A Class of Exact Eigenstates

So far, the only exact eigenstates of the interacting many-body Hamiltonian
H D H a C H b C H ab in (2.12) are the zero-energy ground states jN; ˛i (for
open boundary conditions). In the following, we present a submanifold of excited
eigenstates with quadratic spectrum, the derivation of which is presented below.
The crucial observation that grants access to more than just the ground states is the
following:

The single-chain HamiltoniansH x (x D a; b) for a ladder with open boundaries
can be mapped to the ferromagnetic, isotropic Heisenberg model via Jordan-Wigner
transformation. The complete spectrum of H x is therefore accessible via the
Bethe ansatz [245], see also ⁂ Section 2.C. Exploiting this mapping, it is possible
to construct the analog of single-magnon states for the full Hamiltonian H (see
below). These exact low-energy eigenstates for the open double-chain take the
(unnormalized) form

jkIN; ˛i D P a1 .k/˚ P
b
1 .k/ jN; ˛i 2.70

with momentum k D m�
L
, 0 � m < L, and the operator

P x1 .k/ D

LX
jD1

cos
�
k

2
.2j � 1/

�
.�1/x

�

j
xj : 2.71

In particular, j0IN; ˛i / jN; ˛i is a zero-energy ground state. The eigenenergies
are given by a quadratic excitation spectrum

Ek D 4 sin
2

�
k

2

�
; 2.72

and the gap between ground and lowest excited states vanishes in the thermodynamic
limit: limL!1Ek1

D 0 for k1 D �
L
. The eigenstates (2.70) correspond to

the Goldstone mode of the single-chain Hamiltonians due to the broken SU.2/
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symmetry (see below) in sectors with fixed particle number57. Their presence is
in excellent agreement with the appearance of a true condensate and vanishing
compressibility58. An equivalent behavior is well known for non-interacting bosons
and the ferromagnetic Heisenberg model in one-dimension. We conclude that the
exactly solvable Hamiltonian H describes a critical system (on the brink of phase
separation, see Ref. [248]).

Derivation of the Eigenstates

The derivation of the results (2.70), (2.71) and (2.72) is presented in four steps:
First, we show that a Jordan-Wigner transformation maps the fermionic theory
with open boundaries to a local spin-1

2
model of two interacting Heisenberg chains.

Second, we focus on the spin-equivalent of H x and derive its single-magnon
excitations. In a third step, we show how the global SU.2/ symmetry of the
Heisenberg model allows us to “lift” these excited states into sectors of arbitrary
filling N . The final step combines these results to construct a chain-symmetric
analogue of these states on the double-chain; we prove that these are eigenstates of
H , despite the chain coupling H ab. The reader may skip this derivation on first
reading and proceed with Subsection 2.4.2.

Jordan-Wigner Transformation

The Jordan-Wigner transformation defines a representation � of the fermion algebra
generated by fai ; bi ; a

�
i ; b

�
i j i D 1; : : : ; Lg on the Hilbert space H D

N2L
i C2

i in
terms of the spin-1

2
representations of 2L spins �˛i and O�˛i for ˛ D x; y; ´ and

i D 1; : : : ; L. Here the spins � i ( O� i ) correspond to the fermions on the upper
(lower) chain a (b). The Jordan-Wigner transformation is then given by

� .ai/ D

"
i�1Y
kD1

�´
k

#
�C

i 2.73a

� .bi/ D

"
LY
kD1

�´
k

#
�

"
i�1Y
kD1

O�´
k

#
O�C

i 2.73b

where �˙
j D

1
2
.�xj ˙ i�

y
j /. The mapping for the lower-chain fermions bi takes the

fermion ordering in Figure 2.6 into account.

57Although for fixed particle number (=magnetization) two generators of SU.2/ are broken, there is
only one Goldstone mode due to the non-relativistic, quadratic dispersionEk / sin2.k=2/ [246, 247].

58Recall that for any fixed number of particles there are zero-energy ground states.
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The transformation (2.73) implies

�
�
nai
�
D
1

2

�
1 � �´i

�
2.74a

�
�
a
�
i aiC1 C a

�
iC1ai

�
D
1

2

�
�xi �

x
iC1 C �

y
i �

y
iC1

�
: 2.74b

An application of these transformations on the single-chain HamiltonianH a yields

� .H a/ D �

L�1X
iD1

�
��
i �

C

iC1 C �
C

i �
�
iC1 �

1

2

�
1 � �´i �

´
iC1

��
2.75a

D �2

L�1X
iD1

S iS iC1 C
L � 1

2
; 2.75b

which is just the ferromagnetic, isotropic Heisenberg model for an open chain of L
spins S i D

1
2
� i (with shifted energy). ForH b, we have the same expression with

� 7! O� for spins on the lower chain. We stress that this mapping becomes invalid59

for periodic boundaries in the even–subchain-parity sector ˛ D C1 due to the sign
for fermions traveling around the chain, see ⁂ Section 2.C.

The inter-chain interactionH ab translates into the intimidating Hamiltonian

�
�
H ab

�
D �

L�1X
iD1

8̂̂̂̂
<̂
ˆ̂̂:

��
i �

�
iC1 O�

C

i O�
C

iC1 C �
C

i �
C

iC1 O�
�
i O�

�
iC1

�
1 � �´i
2

1 � �´iC1

2

1C O�´i
2

1C O�´iC1

2

�
1 � O�´i
2

1 � O�´iC1

2

1C �´i
2

1C �´iC1

2

9>>>>=>>>>; 2.76

coupling both chains with four-spin interactions. Fortunately, we only need it in the
last step and can ignore it for the time being.

Before we proceed, let us note that �.nai / D
1
2
.1 � �´i / implies

� .N a/ D

LX
iD1

�.nai / D
L

2
�
1

2

LX
iD1

�´i D
L

2
� S´ ; 2.77

so that the fermion filling N a D
P
i n
a
i of chain a and the total magnetization S´

can be identified (similarly for N b and OS´). In the following, we omit the explicit
application of � and use spin and fermion representation interchangeably.

59Here we focus completely on open boundaries. For closed boundaries, the results presented in
the following apply only to double-chains with even fillingN and odd subchain parity ˛. Only then,
the mapping to the Heisenberg Hamiltonian remains valid on both chains. See also Subsection 2.4.2
for the low-energy properties of chains with periodic boundaries.
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Single-Particle Excitations

The isotropic Heisenberg model (2.75) is well known to be solvable by the Bethe
ansatz [245]. So let us focus on the single-chain HamiltonianH x for now (w.l.o.g.
x D a). The isotropic Heisenberg Hamiltonian features a global SU.2/ spin-
rotation symmetry. In particular, ŒH a; S´� D 0, such that the total magnetization is
conserved (this corresponds to the number conservation of the fermionic model).
Therefore, H a can be diagonalized in sectors HNa of H D

L
Na HNa with

well-defined magnetization/filling. The simplest, non-trivial sector H1 is spanned
by the L “single-particle” states

jni D j"; : : : ;#; : : : ;"i
�
 ! a�nj0i 2.78

of a single flipped spin at site n. A generic state j‰i 2 H1 reads

j‰i D

LX
nD1

 .n/ jni ; 2.79

and we are looking for eigenstates with eigenvalue E,

H a
j‰i D Ej‰i : 2.80

Plugging (2.79) and (2.75) in (2.80) yields

H a
j‰i D

L�1X
iD1

LX
nD1

 .n/H a
i jni 2.81a

D

L�1X
iD1

LX
nD1

 .n/

(
ıi;njni C ıi;n�1jni

�ıi;njnC 1i � ıi;n�1jn � 1i

)
2.81b

D

L�1X
iD1

(
 .i/jii C  .i C 1/ji C 1i

� .i/ji C 1i �  .i C 1/jii

)
2.81c

D Œ .1/ �  .2/� j1i C Œ .L/ �  .L � 1/� jLi

C

L�1X
nD2

Œ2 .n/ �  .nC 1/ �  .n � 1/� jni

2.81d

Š
D E

LX
nD1

 .n/jni ; 2.81e
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where we rearranged the sum in the fourth row to separate the edge terms from the
bulk terms (only the latter remain for periodic boundary conditions). Thus, for j‰i
to be an eigenstate, the following three equations must be satisfied (2 � n � L� 1):

E .n/ D 2 .n/ �  .n � 1/ �  .nC 1/ ; 2.82a

E .1/ D  .1/ �  .2/ ; 2.82b

E .L/ D  .L/ �  .L � 1/ : 2.82c

Eq. (2.82a) can easily be solved with the ansatz  .n/ D Aeikn if

E D 2 � e�ik
� eik D 2Œ1 � cos.k/� D 4 sin2

�
k

2

�
� Ek ; 2.83

which already determines the functional form of the spectrum (so far, k 2 R is
unrestricted). To satisfy the boundary conditions (2.82b) and (2.82c), we make the
ansatz

‰.n/ D eik
�
n� 1

2

�
C e�ik

�
n� 1

2

�
: 2.84

Here we use Ek D E�k so that (2.82a) is still satisfied. A straightforward
calculation shows that (2.82b) is automatically satisfied and does not constrain k.
Plugging (2.84) into (2.82c) yields

E D 2 �

�
e�i k

2 C ei
k
2

�
e�ik C

�
e�i k

2 C ei
k
2

�
e�2ikL eik

e�i k
2 C e�2ikLei

k
2

2.85a

Š
D 2 �

�
e�ik
C eik

�
D Ek ; 2.85b

which simplifies to Ek if an only if e�2ikL D 1, viz. k D �
L

Z. This determines
the L eigenvalues Ek with k D m�

L
for 0 � m < L, and we conclude that the

(unnormalized) single-particle eigenstates of f�.H a/;H ag are given by

jkI 1i �

LX
nD1

cos
�
k

2
.2n � 1/

�
„ ƒ‚ …

� k.n/

fjni; a�nj0ig 2.86

with momentum k D m�
L
(0 � m < L). In the context of the Heisenberg model,

jkI 1i describes single-magnon excitations of the spin chain.
The above procedure works similarly in the other sectors with N a > 1 where,

however, the analogue of Eq. (2.82) becomes much more complicated. Solutions
are given by the Bethe ansatz [245], which we apply in ⁂ Section 2.C to the
N D 2-particle sector of the double-chain.
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Lifting Excitations on a Single-Chain

Given the single-magnon excitations in the N D 1-sector60, we show next how
they can be “lifted” into sectors of arbitrary magnetization/filling N > 1. To
illustrate the generality of the following approach, we start with a genericN -magnon
eigenstate and return to the special case N D 1 later. For H x, the general
eigenvectors for fixed magnetization/particle number N can be written as

jf�igIN i D
X

n1<���<nN

 f�i g.n1; : : : ; nN / jn1; : : : ; nN i 2.87

with Bethe quantum numbers �i , i D 1; : : : ; N , and eigenenergy E.f�ig/ (this
includes both scattering and bound states). Here, jn1; : : : ; nN i denotes the product
state with N flipped spins j#i at sites n1 < n2 < � � � < nN . As H x is just the
isotropic Heisenberg Hamiltonian, there is a global U.2/ D ŒU.1/ � SU.2/�=Z2
symmetry61 which can be utilized to construct eigenstates in sectors with arbitrary
magnetization/filling by “lifting” eigenstates from lower ones.

To this end, assume that we found an exact eigenstate jf�igIN �i by solving the
Bethe equations (0 � N � � L arbitrary). We introduce the Hadamard gate

QH D
1
p
2

�
1 1

1 �1

�
2.88

and the phase gate

R' D

�
e�i'=2 0

0 ei'=2

�
; 2.89

both of which clearly belong to the fundamental representation of U.2/ on C2.
Obviously

R' QH j";#i D
1
p
2

h
e�i'=2

j"i ˙ ei'=2j#i
i
: 2.90

Let now OH �
NL

iD1
QH i and OR' �

NL
iD1R

i
' act globally on the chain. Then

OR' OH 2 U.2/ (now realized on
NL

iD1 C2
i as product representation) andh

OR' OH;H
x
i
D 0 2.91

characterizes a symmetry of the HamiltonianH x. Therefore

jf�igIN
�
i' � OR' OH jf�igIN

�
i 2.92

is still an eigenvector of H x with the same eigenvalue for any '.
60To tidy up our notation, we omit the superscript and writeN D N a.
61This is easy to see: Each term inHx has the isotropic Heisenberg form � i� iC1 D �

˛
i ˝ �

˛
iC1.

A global unitary U D u ˝ � � � ˝ u 2 U.2/ acts on each spin as u�˛i u
� D u˛ˇ�

ˇ
i where u˛ˇ is an

orthogonal matrix. Then, it follows UHxU � D Hx because for each term u�˛i u
� ˝ u�˛iC1u

� D

.u˛ˇu˛ / �
ˇ
i ˝ �


iC1 D �

ˇ
i ˝ �

ˇ
iC1 D � i� iC1.
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Let us have a closer look at the generic product state jn1; : : : ; nN�i with N �

flipped spins:

OR' OH jn1; : : : ; nN�i D
1

2L=2

O
n2fn1;:::;nN � g

h
e�i'=2

j"in � e
i'=2
j#in

i
˝

O
n…fn1;:::;nN � g

h
e�i'=2

j"in C e
i'=2
j#in

i 2.93

which can be written as

OR' OH jn1; : : : ; nN�i

D
1

2L=2

Y
n2fn1;:::;nN � g

�´n

O
m

h
e�i'=2

j"im C e
i'=2
j#im

i
: 2.94

Expanding the tensor product yields a sum over all possible combinations of up- and
down-spins, namely

OR' OH jn1; : : : ; nN�i D
1

2L=2

Y
n2fn1;:::;nN � g

�´n

X
m2f0;1gL

ei
'
2
.2jmj�L/

jmi ; 2.95

where 0 �" and 1 �#. Now multiply by ei
'
2
.L�2N/ with 0 � N � L arbitrary.

That is,
ei

'
2
.L�2N/ OR' OH jn1; : : : ; nN�i

D
1

2L=2

Y
n2fn1;:::;nN � g

�´n

X
m2f0;1gL

ei'.jmj�N/
jmi : 2.96

We can easily project this state onto the N -particle subspace via integration over ':Z 2�

0

d'
2�

ei
'
2
.L�2N/ OR' OH jn1; : : : ; nN�i

D
1

2L=2

Y
n2fn1;:::;nN � g

�´n

X
m2f0;1gL

Z 2�

0

d'
2�

ei'.jmj�N/
jmi 2.97a

D
1

2L=2

Y
n2fn1;:::;nN � g

�´n

X
m2f0;1gL

ıjmj;N jmi 2.97b

D
1

2L=2

Y
n2fn1;:::;nN � g

�´n jN i : 2.97c

Here, jN i denotes the (unnormalized) equal-weight superposition of states with N
flipped spins.
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We employ our findings to map the given N �-particle eigenstate of H x to
another eigenstate in the N -particle sector, i.e.,Z 2�

0

d'
2�

ei
'
2
.L�2N/ OR' OH jf�igIN

�
i

D
1

2L=2

X
n1<���<nN �

 f�i g.n1; : : : ; nN�/
Y

n2fn1;:::;nN � g

�´n jN i : 2.98

We conclude that

jf�igIN
�
iN �

N

24 X
n1<���<nN �

 f�i g.n1; : : : ; nN�/
Y

n2fn1;:::;nN � g

�´n

35
„ ƒ‚ …

�PN � .f�i g/

jN i 2.99

describes an N �-magnon excitation in the N -particle sector with eigenenergy
E D E.f�ig/; N denotes an appropriately chosen normalizing factor. The operator

PN�.f�ig/ D
X

n1<���<nN �

 f�i g.n1; : : : ; nN�/
Y

n2fn1;:::;nN � g

�´n 2.100

encodes the structure of the excited state (given by  f�i g) into a phase pattern on
the equal-weight superposition jN i. Notably, the energy E.f�ig/ is independent of
N (but not of N �!) and therefore

j‰I f�igi �
X
N

‰N jf�igIN
�
iN 2.101

is still an eigenstate of H x for arbitrary ‰N 2 C.

82



LOW-ENERGY EXCITATIONS

Lifting Excitations on the Double-Chain

Let us now return to the full Hamiltonian H D H a CH b CH ab that describes
two coupled Heisenberg chains after Jordan-Wigner transformation. We find the
following result:

Lemma 2.1: Lifted excitations on the double-chain

Let jf�igIN �i be an N �-magnon eigenstate of the single-chain HamiltonianH x with
eigenenergyE D E.f�ig/. Then, Eq. (2.100) determines operators P xN�.f�ig/ acting on
the chains x D a; b. Define the (unnormalized) double-chain state

jf�igIN
�
i

˚

N;˛ �

h
P aN� ˚ P

b
N�

i
.f�ig/

X
M W.�1/M D˛

jM iajN �M ib 2.102

for fixed but arbitrary total magnetization/fillingN and arbitrary subchain parity ˛. For
single-magnon excitations (N � D 1) this is an eigenstate of the full HamiltonianH with
energyE. In Eq. (2.102),˚ denotes the Kronecker sumA˚ B D A˝ 1C 1˝ B .

The proof is rather technical and its details are presented in ⁂ Subsection 2.C.4.
Here we provide only a sketch to convey the central ideas:

Proof. We first consider the single-chain components and show thath
H a
˚H b

i
jf�igIN

�
i

˚

N;˛ D E.f�ig/ jf�igIN
�
i

˚

N;˛ ; 2.103

where the H x (x D a; b) have to be considered single-chain Hamiltonians62. We
would like to show h

P aN� ˚ P
b
N�;H

ab
i
D 0 ; 2.104

so that the proposed symmetric states (2.102) are not affected by the chain coupling
at all. However, this is not true in general but only for single-magnon excitations
with N � D 1 and 0 � N � 2L arbitrary. In this case, we find

H jf�igIN
�
i

˚

N;˛ D E.f�ig/ jf�igIN
�
i

˚

N;˛ ; 2.105

which concludes the proof. �

In conclusion, combining the solvability of H in the single-particle sector with
the SU.2/ symmetry of the single-chain Hamiltonians H x for open boundary
conditions, yields the submanifold of excited states

jf�igIN
�
i

˚

N;˛

N�D1; �1/k
��������! jkIN; ˛i 2.106a

with P xN�.f�ig/
 f�i g.fni g/D k.n/

������������! P x1 .k/ 2.106b

62The originalH a in Eq. (2.12) corresponds toH a ˝ 1 in the current notation.
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Figure 2.12 • Ground states &Gap scaling. Structure of the spectrum in the low-energy sector
of symmetry subspaces HP

˛ classified by the total parityP D .�1/N and the subchain parity ˛.
Both open (OBC) and periodic (PBC) boundary conditions are shown, zero-energy states are
drawn bold and parities˙1 of subchains are colored red/blue. For OBC, there are zero-energy
ground states in all parity sectors and the gap closes with L�2. For PBC, only the sector HC1

�1

with odd subchain parity on both chains harbors zero-energy states, which are unique ground
states in sectors HN

C1 ˚HN
�1 with even particle numberN . All other sectors do not contain

zero-energy states and their lowest-energy eigenstates approach zero-energy with L�1.

and quadratic spectrum E.f�ig/ ! Ek D 4 sin2 .k=2/ in sectors with arbitrary
(non-trivial) filling 2 � N � 2L � 2. Note that the Jordan-Wigner transforma-
tion (2.73) implies �´i D .�1/a

�

i
ai such that (2.100) in combination with (2.86)

yields the result (2.71).

2.4.2 Scaling of the Spectral Gap

Here we study the ground state structure and the scaling of the gap to the first
excited state in more detail. We do this for both open (OBC) and periodic (PBC)
boundary conditions to highlight their differences; the results of this comparison
are illustrated in Figure 2.12. Note that in the previous sections, we focused
exclusively on chains with open boundaries due to their topological ground state
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degeneracy (with potential applications to quantum information processing, see also
the discussion of braiding in Section 2.5). We start with this case to summarize our
findings so far, and then explore periodic chains below.

Open Boundary Conditions

We showed in Subsection 2.2.2 that for OBC there is a unique zero-energy eigenstate
jN; ˛i 2 HN

˛ for arbitrary filling N and subchain parity ˛. That is, all four parity
sectors HP

˛ of the double-chain Fock space H—characterized by the subchain parity
˛ D .�1/N

a

D ˙1 and the total parity P D .�1/N D ˙1—host zero-energy
eigenstates of H :

H D
M

N;˛D˙1

HN
˛ D H C

C ˚H C
� ˚H �

C ˚H �
�„ ƒ‚ …

Zero-energy ground states

: 2.107

For fixed N , this implies a two-fold degeneracy of the ground state manifold (which
we identified as topological). For given N and ˛, we can ask about the eigenenergy
E1 of the first excited state of H restricted to the sector HN

˛ of states with the same
filling and subchain parity63. Via

HP
˛ D

M
N W .�1/N DP

HN
˛ ; 2.108

this conveys information about the scaling of the energy gap�E0.L/ D jE0�E1j D
jE1j within the four parity sectors HP

˛ .
As explained in Subsection 2.4.1, one can derive the single-particle excitations

in each sector HN
˛ rigorously. The single-particle excitation with lowest energy has

momentum k1 D
�
L
and energy

E1.L/ D 4 sin
2
� �
2L

�
�
�2

L2
2.109

which yields an upper bound for the energy gap:

�E0.L/ .
�2

L2
: 2.110

Note that we did not disprove the existence of eigenstates with lower energy
(e.g., bound states). This is, in general, a highly non-trivial task. For instance, it
has been shown rigorously that the gap above the ground state of the ferromagnetic,
isotropic Heisenberg model is given by 1 � cos.�=L/ D 2 sin2.�=2L/ [249], which
indeed agrees with the single-particle excitations for k1 D �

L
given above64. From a

63Recall thatN ,P and˛ are symmetries of the double-chainHamiltonianH ; therefore a restriction
to the subspaces HN

˛ or HP
˛ makes sense.

64The additional factor of 2 follows from the definition ofH in terms of spinless fermions.
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rigorous point of view, this statement can only be transferred to H a CH b which
describes two non-interacting isotropic Heisenberg chains. However, we conjecture
that the additional interactionH ab cannot decrease the first excited energy given by
the k1-magnons (due to the positivity of H ab, this would certainly be true for weak
perturbations "H ab, � � 1).

To substantiate this claim, we performed density matrix renormalization group
(DMRG) simulations with the ALPS framework [250, 251]. More precisely, we
computed the lowest three65 eigenenergies E0, E 0

0 and E1 for half-filling up to
chains of length L D 108. The results in Figure 2.13 (a) show that the energy gap
�E0 D jE0 � E1j reproduces the analytical result (2.109) to very high accuracy.
This suggests that the single-magnon excitations (2.70) are indeed responsible for
the scaling (and closing) of the gap.

In conclusion, there is ample evidence that for OBC the gap above the zero-
energy ground states jN; ˛i closes as

�E0.L/ �
�2

L2
2.111

in all sectors HN;P
˛ , see Figure 2.12.

Periodic Boundary Conditions

We proceed with the case of periodic boundary conditions. The Hamiltonian is
given by (2.12) where in (2.13) and (2.15) an additional term for i D L is added
(with index arithmetic modulo L). As already mentioned in Subsection 2.4.1
and Subsection 2.2.2, now there is a difference between the odd-odd66 sector
[P D .�1/N D C1 and ˛ D �1] with an exact zero-energy state, and the even-
even and even-odd/odd-even sectors without such states. In particular, there is
no longer a two-fold degenerate zero-energy ground state space within sectors
HN

C1˚HN
�1 of fixed particle number. This is analogous to the (mean field) Majorana

chain where the degeneracy of the ground state manifold vanishes together with the
edge modes for periodic chains.

In our case, the existence/absence of zero-energy ground states follows from the
procedure in Subsection 2.2.2 with the modifications

Aai .1C A
a
i /jn;mi D jn;mi � .�˛/

ıi;L j"ai .n;m/i 2.112a

Abi .1C A
b
i /jn;mi D jn;mi � .�˛/

ıi;L j"bi .n;m/i 2.112b

for ni ¤ niC1 in (2.112a) and mi ¤ miC1 in (2.112b) (all other terms vanish).

65For the simulations, we exploited the conserved particle numberN to restrict the Hilbert space
to HN D HN

C ˚HN
� without fixing the subchain parity ˛. Therefore the lowest two eigenstates are

the zero-energy states jN;˙1i (we verified thatE0 � 0 � E 0
0).

66We refer to the sectors HP
˛ by their two subchain parities ˛ and ˛ D .�1/N˛. E.g., the odd-odd

sector has an even number of particles (P D C1) with an odd upper subchain parity (˛ D �1).
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Figure 2.13 • DMRG results. (a) Log-log plot of the energy gap�E0 D �E0.L/ for double-
chains with open and closed boundaries in the even particle number sector (P D C1) within the
odd-odd subsector (˛ D �1) for � D 0:5. The comparison with the analytical result (2.109)
for single-magnon excitations with momentum k1 D �

L
(OBC) and k1 D 2�

L
(PBC) reveals

perfect agreement. The insets show the same data in linear scale. Note that for OBC the
results are also valid in the other subchain-parity sectors. (b) Log-log plot of the ground state
energy E0 D E0.L/ for a double-chain with periodic boundaries in the odd particle number
sector (P D �1) for fixed density � D 0:5; 0:25 and fixed particle number N D 5. The
ground state energy vanishes asymptotically with L�1 for fixed density, and with L�2 for fixed
particle number. Note that exact diagonalization (ED) up to L D 15 suggests a single-particle
gap—which is invalidated by DMRG up to L D 108. The fits are guides to the eye and not
based on theoretical results. All simulations were performed with the ALPS libraries [250,251].
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Similarly, for ni D niC1 ¤ mi D miC1 we have

Bi.1C Bi/jn;mi D jn;mi � .˛˛/
ıi;L j�i.n;m/i ; 2.113

where ˛˛ D P D .�1/N and the representations (2.112) and (2.113) are valid on
subspaces with well-defined subchain parity, i.e., HN;P

˛ . The parity-dependent signs
are a consequence of the fermion ordering in Figure 2.6 and the Jordan-Wigner
string in (2.73).

If we follow the procedure in Subsection 2.2.2, the energy expectation value of
an arbitrary state j‰i D

P
i ‰i jii 2 H takes the abstract form

h‰jH j‰i /
X
.ij /2G

ˇ̌
‰i � ˛ij‰j

ˇ̌2
; 2.114

where i � .n;m/ labels fermion configurations and the graph G encodes the
couplings i $ j D �.i/ (� 2 …) realized by H and described by (2.112)
and (2.113). The sign ˛ij D ˙1 associated to its edges is determined by the
additional sign of the second terms in (2.112) and (2.113). For OBC, we had
˛ij D C1 for all edges in G because the parity-dependence drops out; this led to
the zero-energy ground states in Subsection 2.2.2. For PBC, and depending on the
parity sector HP

˛ , there are edges with ˛ij D �1; this is true for all parity sectors
except H C

� , i.e., for ˛ D �1 D ˛. We can conclude immediately that the latter
still allows for zero-energy ground states given as equal-weight superposition67 of
all fermion configurations within a sector of fixed particle number N and subchain
parity ˛. These sectors are identified with the connected components of G since
both N and ˛ are symmetries ofH .

In all other parity sectors, there are some edges with ˛ij D �1 scattered
among the vast majority of edges with positive sign. The crucial observation is the
following: There are always cycles C in G that include a single68 edge .i�j �/ with
negative sign. This implies

h‰jH j‰i �
X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌2
2.115a

D
ˇ̌
‰i� C‰j�

ˇ̌2
C

X
.i�j�/¤.ij /2C

ˇ̌
‰i �‰j

ˇ̌2
: 2.115b

But this expression cannot vanish for any normalized state j‰i due to frustration.
We conclude that the sectors H C

C and H �
˙

(the ones with at least one subchain of
positive parity) cannot harbor zero-energy ground states of H (Figure 2.12). The
existence of suitable cycles C follows from the fact that the propagation of a single
fermion between two sites on a periodic chain always allows for two topologically
distinct paths: one traverses the edge between site 1 and L and the other does

67This zeros all terms in (2.114) irrespective of the coupling graphG.
68More precisely: An odd number of edges with negative sign is sufficient.
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not. The combination of both paths describes a cycle on the graph of fermion
configurations G with a negative weighted edge. More details on this approach can
be found in ⁂ Subsection 2.B.1.

With these results in mind, we can ask the question if and how the spectrum
approaches zero-energy in the thermodynamic limit. In the odd-odd sector, we
focus on the gap between zero-energy ground state and first excited state. In the
other sectors, we are interested in the scaling of the lowest (non-zero) eigenenergy.

Odd-odd sector — Consider the odd-odd sector first, i.e., P D C1 and ˛ D �1.
There the fermionic statistics has no effect and the zero-energy ground state is the
same as for open boundaries. Performing a Jordan-Wigner transformation yields
the ferromagnetic, isotropic Heisenberg model for each subchain with (untwisted)
periodic boundaries. Due to the survival of the global SU.2/ symmetry, all
statements about the ground state and the single-particle excitations carry over from
our discussion in Subsection 2.4.1; in particular the gap scaling, now with

�E0.L/ �
.2�/2

L2
2.116

as the magnon with lowest energy has momentum k1 D
2�
L

(cf. k1 D �
L
for OBC).

These statements can again be verified to high accuracy with DMRG simulations,
see Figure 2.13 (a). In the end, PBC and OBC are quite similar in the odd-odd
sector H C

� .
We proceed with the remaining three sectors where at least one subchain has

even parity (Figure 2.12). In contrast to all previous cases (OBC and PBC alike),
here we have neither access to exact ground nor excited states, which complicates
the analysis considerably. In the following, we only present the results and sketch
the central ideas; for details see ⁂ Section 2.B.

Even-even sector — We start with the even-even sector, i.e., P D C1 and ˛ D C1.
Here one can rigorously derive the following bounds on the lowest eigenenergy
E0 > 0:

C2

L3
� E0.L/ �

C1

L
: 2.117

The upper bound follows with the ansatz wave function (0 � K � L)

jG0i � exp

"
i
�

L

LX
sD1

s .a�sas C b
�
s bs/

#
j2K;C1i 2.118

which imprints a single-particle phase field onto the equal-weight superposition to
satisfy the twisted boundary conditions with vanishing energy in the thermodynamic
limit. It can be shown by straightforward calculation (⁂ Subsection 2.B.3) that
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hG0jH jG0i D 2 � 4�.1 � �/ � L � sin
2
� �
2L

�
2.119a

�
2�.1 � �/�2

L
2.119b

with density � D N=2L D K=L. The energy is due to intra-chain interactions
H x alone; the inter-chain contributionsH ab vanish. Since hG0jH jG0i � E0, this
provides a vanishing upper bound on the lowest eigenenergy.

The derivation of the lower bound (which establishes the algebraic decay) is
much more subtle as it makes statements about all possible states, in contrast to the
upper bound which follows from a specific ansatz wave function. The idea is to start
from Eq. (2.114) for a generic state in the even-even sector,

h‰jH j‰i /
X
.ij /2G

ˇ̌
‰i � ˛ij‰j

ˇ̌2
: 2.120

Then, one constructs a set L of cycles C in G so that (i) the length of each cycle
is at most

p
A1, (ii) every configuration i is visited by at least A2 > 0 cycles, (iii)

every cycle contains one edge .i�j �/ with negative sign, and (iv) every edge in G is
covered by at most A3 cycles in L. Physically, these cycles can be interpreted as
virtual tunneling of a single fermion around one leg of the ladder. Restricting the
sum (2.120) to edges covered by cycles in L yields

h‰jH j‰i �
1

A3

X
C2L

X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌2
: 2.121

An application of Hölder’s inequality followed by the triangle inequality yields

h‰jH j‰i �
1

A1A3

X
C2L

X
i2C

j‰i j
2
: 2.122

Here, i 2 C denotes configurations i visited by cycle C . For this step, the single
edge with negative sign is crucial. If one finally uses that each configuration is
visited by at least A2 cycles and that j‰i is normalized, i.e.,

P
i2G j‰i j

2 D 1, we
end up with the j‰i-independent lower bound

h‰jH j‰i �
A2

A1A3

X
i2G

j‰i j
2
D

A2

A1A3
: 2.123

Due to our construction of L—which is basically a collection of cycles in G that
describe the propagation of a single fermion once around the chain—we find

h‰jH j‰i �
1

L2N
�

1

L3
2.124
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for constant density � D N=2L. This establishes the algebraic lower bound. See
⁂ Subsection 2.B.1 for all the gory details of the derivation and the construction
of L.

However, numerical results based on DMRG (not shown) and analytical results
for the Heisenberg model with twisted boundary conditions [252–254] support
the stronger statement (which saturates the upper bound due to the ansatz wave
function)

E0.L/ /
1

L
; 2.125

as indicated in Figure 2.12. It is therefore reasonable to assume that our construction
of L can be optimized to make the lower bound strict.

Odd-even/even-odd sectors — Finally, we consider the odd-even/even-odd sectors,
i.e., P D �1 and ˛ D ˙1. The previous sketch providing the lower bound / L�3

relies on the existence of chains with even filling (required for the ˛ij D �1 edges
on the cycles). However, in ⁂ Subsection 2.B.1 we exploit that the inter-chain
coupling H ab is not needed for the construction of L (which gives rise to the
lower bound). This simplification is no longer valid in the odd-even/even-odd
sectors where H ab becomes an indispensable ingredient for the disappearance of
zero-energy ground states. Nevertheless, it seems reasonable that a more general
(and more complicated) construction of L is still applicable and restricts the decay
of the ground state energy to be at most algebraic (this is supported by DMRG
simulations, see below).

The former ansatz wave function (2.118) yields a finite energy expectation value
since only one of the two chains requires a single-particle phase to compensate the
even filling. The naïve ansatz

j QG0i D exp

"
i
�

L

LX
sD1

s a�sas

#
j2K C 1;C1i 2.126

(here for ˛ D C1) with a single-particle phase on the upper chain fails with an
extensively growing energy69 due to the “phase-locking” induced by the inter-chain
HamiltonianH ab.

69Let U aL � exp
h
i �
L

PL
sD1 s a

�
sas

i
; then it is easy to show that ŒH ab; U aL � ¤ 0 due to the

asymmetric phase pattern between upper and lower chain. A straightforward calculation yields

h QG0jH
ab
j QG0i D 4�

2.1 � �/2
LX
sD1

sin2
h �
2L
.2s C 1/

i
L!1
����! 2�2.1 � �/2L I 2.127

an extensive energy expectation value. Note that this is even worse than for the unmodified states
j2K C 1;C1i for which h2K C 1;C1jH j2K C 1;C1i D const > 0 for L!1.
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In this picture of single-particle phases70 one might come to the conclusion
that the ground state energy is finite: limL!1E0.L/ > 0. This would establish a
single-particle gap, i.e., a finite difference of ground state energies between even and
odd filling sectors. This conclusion is even supported by exact diagonalization (ED)
for � D 0:5 up to L D 15 where the ground state energy seems to approach a finite
value, Figure 2.13 (b). However, DMRG up to L D 108 proves this conclusion
wrong and suggests clearly

E0.L/ /
1

L
2.128

for arbitrary density �, Figure 2.12.
In ⁂ Subsection 2.B.2, we tackle this problem analytically with an improved

ansatz wave function jG0i that yields the asymptotic upper bound (for L � L" large
enough)

hG0jH jG0i �
1

L1�"
for arbitrary " > 0 ; 2.129

close to the numerically observed result. The wave function jG0i leverages the
vanishing compressibility of H to imprint smooth density fluctuations on the equal-
weight superposition. This “unlocks” the phases on upper and lower chain in
depleted regions and thereby avoids energy contributions fromH ab. The derivation
of Eq. (2.129) in ⁂ Subsection 2.B.2 is rigorous up to mild assumptions borrowed
from statistical mechanics.

The non-existence of a single-particle gap, suggested by (2.128) and (2.129), is
presumably owed to the “double criticality” of the very peculiar point described by
H in that it is not only a gapless phase but also on the brink of phase separation; see
Ref. [248] for more details.

2.5 Braiding

It is common knowledge that the edge modes of mean field Majorana chains
can be probed for their non-abelian statistics in wire networks [130]. In this
section, we demonstrate the same for the number-conserving setting of double-
wires. In particular, we introduce a generalization of the double-chain Hamiltonian
in Subsection 2.5.1 to contrive wire networks that host an arbitrary number of
Majorana-like edge states. Most importantly, the description of the ground state
manifold in terms of equal-weight superpositions carries over and grants access to
all relevant quantities. In Subsection 2.5.2 we exploit this to simulate the full time
evolution of a braiding protocol in the ground state space. Our findings demonstrate
that the many-body edge states obey the non-abelian statistics of Ising anyons71.

70This picture is distantly related to the bosonized version of the fermionic double-chain, described
by bosonic phase and density fields 'i .x/ and �i .x/ in the continuum limit [248,255, 256].

71Up to non-universal phases, see Footnote 41.
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2.5.1 Construction of Wire Networks

The braiding procedure described in the next Subsection 2.5.2 calls for a more
complicated setup than the “simple” two-leg ladder introduced in Subsection 2.2.1
and described byH . Here we lay the groundwork for this application. We will see
that a broad class of Hamiltonians, defined on “wire networks,” can be described in
analogy to the two-leg ladder, with degenerate zero-energy ground states given as
equal-weight superpositions. In consequence, the powerful evaluation scheme of
correlators and observables in terms of PsBCs is available.

Examples of possible network topologies accessible by these techniques are
shown in Figure 2.14. In (a) two wires attached to a common periodic “bath”
chain give rise to a two-dimensional ground state degeneracy, characterized by the
parities ˛i (i D 1; 2) of the two open subchains72. In (b) a more complex patch
from a stacked wire setup is shown; the boundaries of open subchains carry edge
states. The more intricate setup in (c) will be used in the following to illustrate the
construction of a generic network Hamiltonian as descendant of the two-leg version
considered so far.

In fact, for any network of g open and g0 closed (single) chains, sectionally
connected as double-wires, one can write down a generalized version of the
Hamiltonian H so that in any filling sector N , there are exactly 2g�1 (g � 1)
zero-energy ground states jN I˛1; : : : ; ˛g�1i given as equal-weight superpositions of
fermion configurations with the i th subchain parity fixed at ˛i D ˙1. In the special
case of g D 1, the ground state jN i for each filling N is uniquely determined. The
subchain parity of closed single-chains is fixed at ˛ D �1 to make the ground state
energy vanish identically (see Subsection 2.4.2); that is, only open chains contribute
to the ground state degeneracy.

For instance, consider the g D 2 (and g0 D 1) wire network in Figure 2.14 (a)
where the upper “bath” chain is closed and therefore has fixed parity ˛0 D �1.
Then the two open chain parities ˛1 and ˛2 are constrained by the total parity via
˛1˛2 D �.�1/

N . Thus the ground state space is two-fold degenerate for fixed filling
N , illustrated by the two possible subchain-parity sectors for even N . Although
the degeneracy is the same as for the straight ladder setup used before, here the
edge states are spatially separated and stable even in the presence of time-reversal
breaking perturbations, see Subsection 2.3.2.

To write down a local Hamiltonian featuring the properties sketched above, we
start with an arbitrary wire network L of fermionic sites [for instance, the setup
depicted in Figure 2.14 (c)]. Formally, L D .V ;C ;P / is defined on a (so far
unordered) set V of vertices s (fermionic sites) as a collection C of unoriented
chains C (open or closed) and a collection P of pairing sections P that describe the
attachment of two chains C1 and C2 to form a two-leg ladder on a finite segment.

72Recall (Subsection 2.4.2) that the periodic “bath” chain features zero-energy eigenstates only
with odd subchain parity.
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(a) (b)

(c)

Figure 2.14 • Wire networks. (a) Simple wire network with two open chains connected by a
common periodic “bath” chain with fixed subchain parity ˛0 D �1. For fixed particle number,
the zero-energy ground states are characterized by the subchain parities ˛1 and ˛2. (b) Patch
of a more complex network of stacked chains. The degeneracy grows with the number of open
chain ends (blue spheres). (c) Example of a more intricate wire setup with a periodic “bath”
chain (gray sites) fixed at ˛0 D �1 and two open chains (red and blue sites) with unrestricted
subchain parities ˛1 and ˛2. There are two exact zero-energy ground states in each particle
number sector characterized by �˛1˛2 D .�1/N . This system accompanies the introduction
of a generic network Hamiltonian in the text.
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Note that a single-chain C can be oriented in two different ways without
changing the neighborhood of sites. Let us choose an orientation for each chain
(which is arbitrary, completely unphysical, and therefore a gauge choice). In
Figure 2.14 (c), a possible choice is indicated by the black arrows for all three
chains. The only relevant manifestation of this orientation is defined on pairing
sections P 2 P as a binary function � W P ! f�1;C1g via �.P / D C1 (�1)
if the orientations of the two bonded chains are parallel (antiparallel). In the
following, wire networks L are always thought of being augmented by an orientation
function �.

After these formal preliminaries, we can write down the Hamiltonian that
governs the physics on the wire network L as follows:

HŒL� �
X
C2C

H 0ŒC �C
X
P2P

H 00ŒP � 2.130

whereH 0 describes the intra-chain physics,

H 0ŒC � �
X
e2C

Ae .1C Ae/ 2.131

with the single-particle hopping Ae D asa
�
p C apa

�
s on edge e D .s; p/ [cf.

Eq. (2.14)], andH 00 is responsible for the inter-chain interactions,

H 00ŒP � �
X
f 2P

Bf
�
�.P /C Bf

�
2.132

with the pair hopping between the two chains Bf D a
�
sa
�
paraq C a

�
ra
�
qasap [cf.

Eq. (2.16)]. Here, f D .s; pI q; r/ defines a “face” on the pairing section P with
corners s; p on the “upper” and q; r on the “lower” chain, Figure 2.14 (c). Note
that the choice of chain orientations � affects only the definition ofH 00. This follows
from the invariance of Ae with respect to orientation inversion on a single-chain
(s $ p) as compared to the sign Bf $ �Bf induced by orientation inversion on
one of the two chains of a pairing section (e.g., s $ p).

We point out that on the level of the fermion algebra fasgs2V , the gauge
transformation as 7! ias for s 2 C inverts all signs of �.P / for pairing sections
P including chain C . In this sense, the orientations of chains can be inverted by
the U.1/-rotation of the fermions on these chains. This explains why the choice of
orientations has no physical significance as the resulting Hamiltonians are related
by gauge transformations. But beware: Whereas the choice of orientations is
arbitrary, the relative orientations � are implicitly given by this choice and the topology
of the wire network. In other words, there are different gauge equivalence classes
of Hamiltonians for a given wire network L, and only the representatives HŒL�
defined in (2.130) give rise to degenerate zero-energy ground states (which singles
out a particular gauge equivalence class).
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For instance, there are network topologies where it is not possible to gauge all
relative orientations to �.P / D C1 (which would be the naïve generalization of our
original two-leg ladder to networks). One such example is given in Figure 2.14 (c)
where the colors of inter-chain pair interactions encode the sign of �.P / with
respect to the orientations given by the black arrows. Note that there is no choice of
orientations so that all pairing sections feature parallel orientations.

It remains to be shown that the ground state space of HŒL� is spanned by
zero-energy states given by equal-weight superpositions and characterized by the
parities of the open subchains in L. To this end, a representation of the fermion
algebra on the Hilbert space is required. This is achieved by defining a number state
basis fjnig of the Fock space based on a total ordering of the fermion modes. A
convenient choice for the construction of the ground states is to order fermions
along single-chains and parallel to the previously chosen orientations. The order
of the single-chains relative to each other is not important as long as only parity-
symmetric operations between the chains are concerned (which is certainly true
for HŒL�). Note that the order of chains becomes important for the evaluation
of subchain parity violating observables/correlators, such as inter-chain Green’s
functions and single-particle hopping. A possible ordering is drawn in Figure 2.14 (c)
with gray arrows.

The construction of the ground states follows the same procedure as for the
double-chain in Subsection 2.2.2, generalized to multiple connected chains. The
single-particle hopping within the chains can be described on the previously defined
Fock basis as

Ae.1C Ae/jni D jni � j"e.n/i 2.133

with
"e.: : : ; ni ; niC1; : : : / � .: : : ; niC1; ni ; : : : / 2.134

for e D .i; i C 1/; we no longer split the fermion configuration into two subchain
configurations n and m but consider the global configurations n 2 f0; 1gLtot with
the total (single-) chain length Ltot D

PgCg 0

iD1 Li of all g C g0 chains. For the
double-chain, it is g D 2, g0 D 0 and Ltot D LC L D 2L. Henceforth we assume
that closed chains are occupied by an odd number of fermions so that the additional
sign in (2.112) does not appear in (2.133).

For the inter-chain pair interaction one finds

Bf .�.P /C Bf /jni D jni � j�f .n/i 2.135

with
�f .: : : ; ni ; niC1; : : : ; nj ; njC1; : : : /

� .: : : ; nj ; njC1; : : : ; ni ; niC1; : : : /
2.136

if ni D niC1 and nj D njC1, and �f D Id otherwise; here, f D .i; i C 1I j C 1; j /
is the face of a pairing section. Equation (2.135) demonstrates that the sign �.P /
inH 00 compensates for the signs due to fermion pair hopping—these are different
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for hopping between chains of parallel and antiparallel order (the latter implies
an exchange of the pair fermions). The effect of HŒL� (depending on the chain
orientations through �) on the basis jni (depending on the chain orientations via
the chosen fermion ordering) is therefore invariant under the choice of chain
orientations and takes the same form as for the double-chain [Eq. (2.22)].

In particular, the energy expectation still has the generic form

h‰jHŒL�j‰i /
X

.n;n0/2G

ˇ̌
‰.n/ �‰.n0/

ˇ̌2
; 2.137

where .n;n0/ 2 G if it is possible to transform the fermion configurations n$ n0

into each other by an elementary process73 of HŒL�. Note that (2.137) is only valid
because of the restriction to sectors with odd subchain parity for closed chains.

The zero-energy ground states of the positive semi-definite HamiltonianHŒL�
are therefore given by states with constant weights on all connected components of
G, that is, by equal-weight superpositions of all fermion configurations with fixed
total particle number N and subchain parities ˛i D ˙1 for i D 1; : : : ; g � 1. This
gives rise to the claimed 2g�1-fold degeneracy of the ground state space in each
filling sector N , spanned by the exact zero-energy ground states jN I˛1; : : : ; ˛g�1i.
It is now evident that arbitrary correlators/observables can be expressed in terms of
PsBCs. However, their splitting degree is typically much larger than in Section 2.3
for the double-chain.

2.5.2 Non-Abelian Statistics

In the previous Subsection 2.5.1, we introduced the generalization HŒL� for
networks L of sectionally paired chains; it was shown that their ground state
degeneracy for fixed particle number is given by 2g�1 if the network hosts g open
chains. Put another way, the ground state degeneracy scales as 2E=2�1 with E � 2
the number of open subchain ends. This is in agreement with the interpretation of
the localized edge states as interacting equivalent of Majorana zero modes, that is,
Majorana-like edge states.

This brings up the question whether the braiding statistics of these edge states
coincides with the anyonic Ising statistics of Majorana zero modes [24, 130]. To
derive the full braiding statistics, we have to contrive a network L and a time-
dependent Hamiltonian H.t/ D HŒL�.t/ that drives the adiabatic braiding (i.e.,
double-exchange) of two edge states.

In contrast to the gapped phase of the Majorana chain, here the energy �E0
between the subspace of zero-energy ground states and the first excited states
vanishes algebraically, �E0 / L�2, see Figure 2.12 in Subsection 2.4.2. This is
not in accordance with the conventional notion of topological phases where the
low-energy physics is described by topological quantum field theories that endow

73That is, single-particle hopping within a chain or pair hopping between chains in a pairing section.
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(a)

(b)

Figure 2.15 • Braiding—Setup. (a) Setup of four open chains Li , i D 1; : : : ; 4, (black) with
controllable weak single-particle couplings between the inner four endpoints (gray square). The
partner chains (gray) are not involved in the braiding and can be disregarded for the evaluation
of the time evolution. (b) The dynamics takes place in the 8-dimensional Hilbert space spanned
by the zero-energy ground states with fixed total parity ˛ D ˛1˛2˛3˛3 D �1. The colors label
the subchain parities ˛i of the four black chains.

localized quasiparticles with anyonic statistics. Most importantly, the braiding of
excitations requires adiabaticity to be well-defined74. In gapped systems, there is
a size-independent timescale on which quasiparticles can be braided; a property
useful for applications such as topological quantum computation.

However, gapless theories (such as ours) often feature many of the characteristic
properties of gapped topological phases (e.g., robust ground state degeneracies that
depend on the spatial topology of the system). This motivates the broader notion
of quasi-topological phases [226]. In particular, braiding must be slow enough to
adiabatically decouple the ground state space from the excited sectors. This limits
the strength of the couplings used for braiding to values much smaller than the gap

74Braiding “too fast” excites a cloud of particle-antiparticle pairs that scramble any (non-abelian)
geometric phase of particles moving through that cloud.
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�E0; equivalently, the time needed for the braiding protocol grows for networks
of linear size L with L2 to guarantee adiabaticity. For applications, this may be a
problematic restriction—for the theoretical analysis, however, it is not.

In order to braid two localized edge states, we consider the wire network of four
open subchains coupled by a common “bath” chain depicted in Figure 2.15 (a) and
described by H0. Only the highlighted chains Li (i D 1; : : : ; 4) take part in the
braiding evolution. Thus the grayed out subchain can be neglected henceforth and
considered as a “bath,” the effect of which is fully incorporated into the exactly
known zero-energy ground states. The latter are labeled by the total fillingN and the
subchain parities ˛1; : : : ; ˛4 of the open chains, spanning a 24 D 16-dimensional
ground state space in each particle number sector (the subchain parity of the “bath”
chain is implicitly determined by the filling). As we consider only interactions
between the four subchains, the total subchain parity ˛ D ˛1˛2˛3˛4 is conserved
and can be fixed (here we set ˛ D �1); this reduces the number of relevant ground
states to 8, pictorially given in Figure 2.15 (b). Everything that follows takes place in
this 8-dimensional low-energy Hilbert space H0.

The braiding of two edges states is described by a Hamiltonian Hint.t/ and
achieved by adiabatically turning off the coupling between two edges and simultane-
ously turning on the coupling between the next two edges (without closing the gap
in H0); the full sequence of couplings for the winding of two edge states around
each other is shown below Figure 2.16 (a), where arrows indicate single-particle
couplings analogous to Ai.1C Ai/. At all times t , Hint.t/ hybridizes edge states
such that the 8-fold degeneracy of H0 on H0 is lifted on the scale of Hint.t/ and
only 4 degenerate ground states remain. The time dependence of this low-energy
spectrum is plotted in Figure 2.16 (a). Details on the construction of Hint.t/ are
presented below.

We study the braiding with a full numerical time evolution of the complete
Hamiltonian

H.t/ D H0 C
"

L2
Hint.t/ 2.138

restricted to the low-energy subspace H0. Here, "� 1 guarantees the (quasi-)adi-
abatic evolution and 0 � t � 8 derives from the 8 substeps needed for a double-
exchange. Let ˇ̌̌

˛1˛3
˛4˛2

E
� jN I˛1; ˛2; ˛3; ˛4i 2.139

label the basis of H0 (Figure 2.15). We start with the initial (unnormalized)
zero-energy state of Hint.t D 0/

j00I 0i �
ˇ̌̌
�C

��

E
C

ˇ̌̌
��

C�

E
�

ˇ̌̌
�

�

E
�

� ˇ̌̌
C

�

E
C

ˇ̌̌
�

C

E �
; 2.140

with ˛1 D �1 D ˛2 and ˛3˛4 D �1. Here, the notation with “�” is purely formal
and does not denote a tensor product; due to the fixed particle number, the state
does not factorize.
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Figure 2.16 • Braiding—Results. (a) Spectrum of the weak-coupling HamiltonianHint.t/ in
the 8-dimensional ground state space ofH0 during the braiding procedure depicted below the
plot. A black arrow indicates single-particle hopping connecting the endpoints of chains. Due
to the hybridization of edge states, 4 of the 8 states in the low-energy subspace are lifted to
finite energies (purple). For the 4 ground states (blue), the deviation from zero-energy (for
perfect adiabaticity) due to the finite time evolution is negligible (� 10�8), as shown in the
inset. (b) Time evolution for the initial zero-energy state j00I 0i. Shown are the (moduli of the)
overlaps with j00I 0i and j11I 0i, defined pictorially below the plot. Note that the Hamiltonian
returns to its initial configuration, whereas the state does not.
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If we apply the cyclic75 time evolution of Hint.t/, j00I 0i is mapped to the
orthogonal final state

j11I 0i �
ˇ̌̌
CC

�C

E
C

ˇ̌̌
C�

CC

E
�

ˇ̌̌
C

C

E
�

� ˇ̌̌
C

�

E
C

ˇ̌̌
�

C

E �
2.141a

D T exp
�
�i

Z 8

0

dt Hint.t/

�
„ ƒ‚ …

�U.tD8/

j00I 0i ; 2.141b

characterized by ˛1 D C1 D ˛2 and ˛3˛4 D �1. Here, T denotes the time-
ordering operator. The numerical results are shown in Figure 2.16 (b). We stress
that the unitary time evolution in (2.141b) is the manifestation of a non-abelian
Berry phase collected along the cyclic path Hint.0/ ! Hint.8/ D Hint.0/ in the
space of Hamiltonians.

Interpretation of the Results

What does the result in Eq. (2.141b) tell us about the braiding statistics of the edge
states? Before we can answer this question, a few comments on the braiding of edge
states are in order:

The abstract framework that captures the concept of anyonic statistics is agnostic
of the physical system that realizes the braiding. It is formulated in terms of category
theory [55,56] and makes use of a class of highly structured categories termed unitary
modular tensor categories (UMTC) [48], see Ref. [57] and [128] for an introduction.
The original motivation to study these objects in physics stems from their usefulness
in describing topological quantum field theories (TQFT) [14], but the conceptual
foundation of UMTCs is more general and applicable to a diverse class of physical
systems: UMTCs encode the content and structure of systems that host localized
entities (called particles or anyons) that can be combined (or fused) to new entities,
enriched with a compatible notion of moving these entities around each other (called
braiding). While the “fusion-part” is independent of the spatial dimension, the
“braiding-part” restricts the latter to 2 because only there the braid group does not
trivialize to the symmetric group of permutations.

As our world is three-dimensional, anyonic particles described by UMTCs play
no role in conventional high-energy physics, but enter the stage through condensed
matter physics where the study of two-dimensional systems is quite common both
in theory and experiment (e.g., graphene and quantum Hall fluids). In this context,
the most natural identification is that of localized excitations (quasiparticles) as
anyons of a UMTC, the movement (and braiding) of which is described by a

75It isHint.t/ D Hint.t mod 4/.
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low-energy modification of the Hamiltonian that describes the ground state76. If
such quasiparticles feature anyonic (that is, neither bosonic nor fermionic) statistics,
this indicates long-range entanglement in the ground state that gives rise to non-
trivial braid group representations on the Hilbert space. Such systems are intrinsic
topological phases and their low-energy physics is described by a TQFT; the most
prominent example being the toric code [45].

The braiding of edge states is conceptually different (both for the number-
conserving theory and the Majorana chain) in that the localized “particles” are not
intrinsic, localized excitations of a static Hamiltonian but point-like defects that are
moved by high-energy deformations of the Hamiltonian. In non-interacting theories,
these defects can host localized modes described by Majorana fermions, the algebra
of which allows for the construction of non-trivial Braid group representations,
see ⁂ Subsection 2.D.1. The localized edge modes can be identified as abstract
“particles” of a UMTC that can be braided and fused by deformation of the
Hamiltonian [130]. This is what we achieved above by addingHint to the network
HamiltonianH0. In contrast to the Majorana chain, there is no exact Clifford algebra
of Majorana modes associated to the edges of the chains (see ⁂ Subsection 2.D.2)
asH0 is an interacting theory where the very notion of modes no longer applies. We
can only talk about many-body quantum states of the whole system (the states in H0)
with the peculiar property that unitaries on H0 are generated by couplings between
the endpoints of chains (recall Subsection 2.3.2). This qualifies the endpoints as
special entities of the theory and renders their braiding and fusion meaningful in
the sense of UMTCs. So what did we find above by braiding two of these abstract
“particles”?

According to the coupling sequence illustrated in Figure 2.16 (and described
below), the non-trivial holonomy [257] Us1s2 � U.4/ on the four-fold degenerate
ground state space describes the exchange (Us1s2) and braiding (U 2

s1s2
) of the two

localized edge states associated with the endpoints s1 and s2. The ground state
space at t D 0 mod 4 is characterized by a coupling of chains L3 and L4 and
therefore spanned by the four states j˛1; ˛2ij˛3˛4iC with ˛1˛2˛3˛4 D �1 defined
as

j˛1; ˛2ij˛3˛4iC �
ˇ̌̌
˛1˛3
˛4˛2

E
C

ˇ̌̌
˛1 �˛3
�˛4 ˛2

E
2.142a

�

ˇ̌̌
˛1
˛2

E
�

� ˇ̌̌
˛3

˛4

E
C

ˇ̌̌
�˛3

�˛4

E �
2.142b

up to normalizations, recall (2.140) and (2.141). Again, the notation“j˛1; ˛2ij˛3˛4i”
is purely formal and emphasizes the different roles of the subparities—it does not
denote a tensor product.

76Formally, the concept of localized particles in condensed matter physics is based on the notion
of superselection sectors: States that can be mapped to each other by local operations belong to the same
superselection sector and describe the same configuration of quasiparticles.
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Repeating the analysis for the other ground states, the action of the braiding
U 2
s1s2

is found to be diagonal in the ˛3˛4 blocks and reads

U 2
s1s2
j˛1; ˛2ij˛3˛4iC D j�˛1;�˛2ij˛3˛4iC ; 2.143

up to global phases.
In order to understand this result more thoroughly, it is instructive to cast

these expressions into the language of the quadratic Majorana chain, keeping in
mind that due to the interactions there are neither fermion nor Majorana modes
describing the ground states. Remember that the delocalized, fermionic edge
mode of the Majorana chain is empty (occupied) if the total chain parity is odd
(even), Subsection 1.2.2. From this perspective, we may call the edge state of a
subchain in our interacting model empty (occupied) if its subchain parity is odd
(even). Formally, the occupation n1 of the “fermion mode” defined by the pair of
“Majorana modes” at p1 and s1 [Figure 2.18 (a)] translates into the subchain parity
˛1 via ˛1 D �.�1/n1; and the same for L2. This defines the new naming scheme

jn1; n2ijn34iC � j˛1; ˛2ij˛3˛4iC 2.144

with n1;2 D 0; 1 and ˛3˛4 D �.�1/n34 . Note that it also motivates the labels
used for the states in (2.140) and (2.141) with the compact notation jn1n2In34i D
jn1; n2ijn34iC. Then, the action of braiding the “Majoranas” s1 and s2 reads

U 2
s1s2
j0; 0ij0iC D j1; 1ij0iC : 2.145

In the quadratic mean field theory of the Majorana chain, this would be interpreted
as the creation of a fermion pair 1! ‰˝‰ out of the superconducting condensate
by braiding two Majorana modes; this is illustrated in Figure 2.17 and a hallmark
of non-abelian Ising anyons [24]; see Ref. [148] for an application of this signature
in the context of topological p-wave superfluids, realized with fermionic atoms in
optical lattices.

The fusion rule
� ˝ � D 1˚‰ 2.146

that renders Ising anyons � (associated to endpoints si and pi ) non-abelian, can be
read as the two possible outcomes for the subchain parity ˛i of chain Li : the fusion
channel is 1 (‰) for ˛i D �1 (C1). The “fusion” can be realized by a single-particle
coupling between si and pi . But this is just a fancy name for periodic boundary
conditions: We saw in Subsection 2.4.2 that this coupling results in zero-energy
(=fusion to the vacuum 1) only for ˛i D �1, whereas ˛i D C1 results in a state
with finite energy (=fusion to a fermion ‰). This is in complete analogy to the mean
field Majorana chain—except for the missing fermionic edge mode 1 C i2L, the
occupation of which determines the fusion outcome in the non-interacting case,
Subsection 1.2.2.
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Figure 2.17 • Braiding—Theory. Schematic illustration of the process simulated in Figure 2.16.
The system is initialized in the state j00I 0i and subsequently transformed into the orthogonal
state j11I 0i by the double-exchange/braiding unitary U 2s1s2 . This can be interpreted as the
braiding of two “Majoranas” � , each of which belongs to a pair initialized in the vacuum fusion
channel, 1! �˝� (bottom). After the braiding, the pairs fuse to fermions, �˝� ! ‰ (top).
Note that the complete system is still in the vacuum superselection sector since‰ ˝‰ D 1.
Details are discussed in the text.

Pairing the Majorana modes of two different Majorana chains into a fermion
mode, one finds that the symmetric/antisymmetric linear combination of the
two ground states that are compatible with a fixed total parity corresponds to an
empty/occupied mode. Translated into our case, this means that the occupation m
of the “fermion mode” created from “Majorana modes” at s1 and s2 is given by

jmijm0; n34i � Œ j˛1; ˛2i C .�1/
m
j�˛1;�˛2i � j˛3˛4iC 2.147

which, of course, is just a basis transformation in the four-dimensional ground
state space of Hint.0/. Here, ˛1˛2 D �.�1/m

0

describes the occupation m0 of the
“fermion mode” defined by the outer “Majoranas” p1 and p2, Figure 2.18 (a). In
this basis, the action of the braiding is particularly simple, namely diagonal

U 2
s1s2
jmijm0; n34i D .�1/

m
jmijm0; n34i ; 2.148

up to a phase independent of m. This is exactly the relative phase one would
expect from rotating a fermion mode with occupation m by 2� : It accounts
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for the topological spin77 � of both the vacuum 1 (�1 D 1) and the fermion ‰
(�‰ D �1) [128]. Note that this result is also in accordance with the spin-statistics
theorem, a relation that appears naturally in anyon models [57].

We conclude that a non-abelian representation of the braid group is acting on
the ground state space of wire networks that identifies their endpoints as Ising
anyons, the same anyon model (UMTC) that describes Majorana edge modes in
non-interacting theories. This justifies the term Majorana-like edge states for the
ground states of our model.

Construction of Hint

The reader may skip this construction on first reading and proceed with Section 2.6.
The Hamiltonian Hint.t/ in (2.138) couples the four chains Li , i D 1; : : : ; 4, via
single-particle hopping as follows:

QHint.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
.1 � �/H 34

int C � H
14
int for 0 � t < 1 and � D t � 0 ;

.1 � �/H 14
int C � H

12
int for 1 � t < 2 and � D t � 1 ;

.1 � �/H 12
int C � H

13
int for 2 � t < 3 and � D t � 2 ;

.1 � �/H 13
int C � H

14
int for 3 � t < 4 and � D t � 3 :

2.149

Then we set Hint.t/ � QHint.t mod 4/ to allow for a double-exchange (that is, full
braiding) of the two edge states associated with the inner endpoints s1 and s2 of
chains L1 and L2 for 0 � t � 8.

The coupling Hamiltonians are defined analogous to the intra-chain coupling
Ai.1C Ai/, namely

H 34
int D as3a

�
s4
C as4a

�
s3
C ns3.1 � ns4/C ns4.1 � ns3/ ; 2.150a

H 14
int D ias1a

�
s4
� ias4a

�
s1
C ns1.1 � ns4/C ns4.1 � ns1/ ; 2.150b

H 12
int D as1a

�
s2
C as2a

�
s1
C ns1.1 � ns2/C ns2.1 � ns1/ ; 2.150c

H 13
int D as1a

�
s3
C as3a

�
s1
C ns1.1 � ns3/C ns3.1 � ns1/ ; 2.150d

where si denotes the terminating fermion site on chain Li , see Figure 2.18. Note
that the single-particle hopping in H 14

int breaks time-reversal symmetry; this is
necessary to create a finite overlap between ground states for couplings between
chains with reversed fermion ordering [shown in Figure 2.18 (a)].

77The topological spin is a (possibly fractional) phase �x that occurs when an anyon x is rotated by
2� around its axis. For anyon models in condensed matter physics, it is a consequence of the finite
extent of quasiparticles. This implies that the “world lines” of anyons are not actual lines but ribbons;
explaining the occurrence of ribbon fusion categories in this context [48, 57].
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(a)

(b)

(c)

Figure 2.18 • Braiding—Derivation. (a) Braiding setup with four chains Li , i D 1; : : : ; 4.
The “bath” chain is omitted as it is not relevant for the low-energy physics. The chosen fermion
ordering that defines the Fock basis is drawn red. The ˛i denote the subchain parities constrained
by ˛1˛2˛3˛4 D �1. The endpoints of chains are labeled by si and pi . (b) The 8 basis states
that span the ground state space ofH0. The linear combinations j00I 0i and j11I 0i are mapped
to each other by the braiding holonomy. (c) The weak single-particle couplings used for the
construction ofHint.t/ that drives the braiding. Blue (red) edges denote time-reversal invariant
(breaking) single-particle hopping.

In the ground state basis (2.139), the matrix elements of the coupling Hamiltoni-
ans (2.150) read as follows (here exemplarily forH 34

int )D
ˇ1ˇ3
ˇ4ˇ2

ˇ̌̌
H 34

int

ˇ̌̌
˛1˛3
˛4˛2

E
D 2.151h

ı˛;ˇ N �1
˛ C ı˛1;ˇ1

ı˛2;ˇ2
ı˛3;�ˇ3

ı˛4;�ˇ4
N �1=2
˛ N

�1=2

ˇ
.�˛1˛2/

i
�

" 
L1; L2; L3 � 1;L4 � 1;L0

˛1; ˛2; ˛3;�˛4

!
N�1

C

 
L1; L2; L3 � 1;L4 � 1;L0

˛1; ˛2;�˛3; ˛4

!
N�1

#

with the shorthand notation ı˛;ˇ �
Q4
iD1 ı˛i ;ˇi

, the length of the “bath” chain L0,
and the normalization

N˛ D

 
L1; L2; L3; L4; L0

˛1; ˛2; ˛3; ˛4

!
N

: 2.152
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Using that  
L1; L2; L3; L4; L0

˛1; ˛2; ˛3; ˛4

!�1

N

 
L1; L2; L3 � 1;L4 � 1;L0

ˇ1; ˇ2; ˇ3; ˇ4

!
N�1

�! �.1 � �/ for Li ; N !1

2.153

up to exponentially small ˛- and ˇ-dependent terms, yields the expressionsD
ˇ1ˇ3
ˇ4ˇ2

ˇ̌̌
H 34

int

ˇ̌̌
˛1˛3
˛4˛2

E
� ı˛;ˇ � 1C ı˛1;ˇ1

ı˛2;ˇ2
ı˛3;�ˇ3

ı˛4;�ˇ4
� .�˛1˛2/ 2.154aD

ˇ1ˇ3
ˇ4ˇ2

ˇ̌̌
H 14

int

ˇ̌̌
˛1˛3
˛4˛2

E
� ı˛;ˇ � 1C ı˛1;�ˇ1

ı˛2;ˇ2
ı˛3;ˇ3

ı˛4;�ˇ4
� .�i˛1˛2/ 2.154bD

ˇ1ˇ3
ˇ4ˇ2

ˇ̌̌
H 12

int

ˇ̌̌
˛1˛3
˛4˛2

E
� ı˛;ˇ � 1C ı˛1;�ˇ1

ı˛2;�ˇ2
ı˛3;ˇ3

ı˛4;ˇ4
� .C˛1˛2/ 2.154cD

ˇ1ˇ3
ˇ4ˇ2

ˇ̌̌
H 13

int

ˇ̌̌
˛1˛3
˛4˛2

E
� ı˛;ˇ � 1C ı˛1;�ˇ1

ı˛2;ˇ2
ı˛3;�ˇ3

ı˛4;ˇ4
� .�1/ : 2.154d

We omit the global factor of 2�.1 � �/ as it is independent of the parities ˛i up
to exponentially small corrections. The matrix elements (2.154) define the repre-
sentation of Hint.t/ on H0 and can be used to integrate the time evolution (2.141b)
numerically. To this end, we make use of the approach described in Subsection 3.3.1
of Chapter 3 for the evaluation of the time-ordered exponential.

2.6 Conclusion & Outlook

This chapter was dedicated to the fate of topologically protected Majorana modes
when the particle number is conserved. To that end, we introduced a theory of
interacting spinless fermions, hopping on a double-chain with open boundaries, that
preserves both the total particle number and the fermion parity on subchains. The
interactions were chosen such that the local terms of the Hamiltonian are positive
semi-definite operators. As a consequence, we were able to construct its many-body
ground states from scratch: they are given by equal-weight superpositions of all
fermion configurations with fixed total particle number and well-defined subchain
parity. In particular, there are two degenerate zero-energy ground states in each
particle number sector, characterized by their subchain parity.

The evaluation of correlators simplified to purely combinatorial expressions,
which paved the way to many physical quantities of interest: The ground states
host a condensate of p-wave pairs with true long-range order (as indicated by
non-vanishing pair correlations). Most notably, the single-particle correlations
decay exponentially in the bulk but feature a revival at the boundaries of the chain;
a signature of many-body edge states. Correspondingly, overlaps of degenerate
ground states can only be established by single-particle hopping between endpoints
of subchains if time-reversal symmetry is broken. This qualifies the ground state
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degeneracy as topological, protected by either subchain parity or time-reversal
symmetry. The topological degeneracy also leaves its mark on the entanglement
spectrum of each ground state which we found to be two-fold degenerate. In this
context—and in contrast to the Majorana chain—we noticed a logarithmic growth
of the entanglement entropy; we read this as evidence for the vanishing gap of the
theory.

Fortunately, not only the ground states, but also a class of excited states is
accessible by analytical means. This allowed us to prove and characterize the
closing of the gap above the zero-energy ground states: We found a quadratic
spectrum of Goldstone modes, in line with the single-magnon excitations of the
ferromagnetic, isotropic Heisenberg chain. As for the Majorana chain, we argued
that for periodic boundaries the two-fold degeneracy is lost as zero-energy ground
states are restricted to sectors of odd subchain parity.

Finally, we made an attempt to tighten the relation between Majorana chain and
the number-conserving double-chain. To this end, we generalized the double-chain
setup to networks of single wires, sectionally interacting via parity-conserving pair
hopping. We pointed out that the characteristic ground state structure survives
this procedure and contrived a setup with 8-fold degeneracy to implement a
rudimentary braiding protocol. Realizing the latter with weak couplings allowed
for the numerical evaluation of the full time evolution in the low-energy subspace.
We found non-abelian unitary representations acting on the ground state manifold
which characterize the edge states as Ising anyons.

In conclusion, many of the intriguing features of the mean field theory can be
found in number-conserving settings as well. Most importantly, robust ground
state degeneracies and non-abelian statistics of edge states are realized in systems
with well-defined particle number. Nevertheless, there are notable differences:
First, particle number conservation entails a gapless spectrum which interferes
with the concept of braiding, and, second, symmetry protection becomes crucial as
degenerate ground states belong to the same parity superselection sector. Note that
these are not “disadvantages” of the number-conserving theory but consequences
of its honesty: On a fundamental level, the number of fermions is conserved and
only the presence of a large superconducting reservoir renders the quadratic mean
field approximation valid.

Open Questions and Related Results

There are some closely related results that complement the findings of this chapter:

→ More details on the symmetries of the double-chain setup—in particular the
“chain exchange symmetry” that we did not discuss here—can be found in
Ref. [237].
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→ An alternative parent Hamiltonian of the equal-weight superpositions jN; ˛i
was introduced in Ref. [258], inspired by dissipative schemes for the prepara-
tion of topological phases [259]. Several of the ground state properties that
we discussed in this chapter have been verified in Ref. [258].

→ The system is at a critical point and certain perturbations to the Hamiltonian
will drive the system into a phase-separated state (e.g., increasing the attractive
interactions), while we expect resilience of the topological properties against
other perturbations (e.g., increasing the hopping). But when the relative
strength of hopping and interactions is varied (for the intra- or inter-chain
couplings), the positivity of the Hamiltonian is lost and the derivation of exact
expressions for the ground states fails. Thus one has to resort to numerical
and field-theoretic methods, similar to previous approaches [230–234]. In
Ref. [248], extensive DMRG simulations and a bosonized description of
the low-energy physics are used to explore the vicinity of the critical point
that we studied in this chapter (for more details, see also [260]). Main
results are that the zero-energy ground states jN; ˛i are representatives of
an extended topological phase embedded in a rich phase diagram, and that
the critical point indeed lives on the verge of phase separation. Moreover,
the equivalence with a topological phase that has been studied previously in
Ref. [235] by means of DMRG is established.

Despite these additions to the overall picture, there are still some white spots that
deserve further study:

→ To set the stage for braiding, we generalized the double-wire setup in Subsec-
tion 2.5.1 to wire networks. We discussed the construction of Hamiltonians
that remain positive semi-definite and thereby retain the simple structure of
their ground states. However, we omitted the construction of low-energy
excited states. A detailed (numerical?) analysis of the low-energy physics and
the effects of inter-chain single-particle hopping might be a promising field for
future work. In particular, the efficient application of MPS78-based DMRG
to such graph-like structures of linked, one-dimensional systems would be
interesting.

→ In Subsection 2.4.1, we presented the construction of a class of exact
eigenstates that is clearly not exhaustive. In ⁂ Section 2.C, we invoke the
Bethe ansatz to derive the complete spectrum in the interacting sector of
N D 2 particles. It is not clear whether this ansatz succeeds for arbitrary
N > 2 (that is, whether the double-chain HamiltonianH is integrable), and
if so, whether it is feasible (i.e., whether physical properties can be extracted
efficiently79).

78Matrix product states, a special case of tensor network states, see⁂ Section 2.A.
79The applicability of the Bethe ansatz does not necessarily imply the efficient solvability of the

Bethe equations.
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→ In Subsection 2.4.2, we discussed the scaling of the gap for periodic boundary
conditions. Whereas the closing of the gap in the odd-odd sector with
zero-energy ground state follows from the known class of exact eigenstates,
the scaling of the lowest eigenenergy in the other sectors is much harder
to derive. In Subsection 2.4.2, we presented an ansatz wave function for
the even-even sector with provably vanishing energy in the thermodynamic
limit. For the even-odd/odd-even sectors, we also claimed that there
is an ansatz wave function that establishes a vanishing gap. The proof,
presented in ⁂ Subsection 2.B.2, is rigorous up to a (reasonable) assumption
from statistical mechanics. How can this assumption be proven and/or
circumvented? Are there more elegant routes to rigorous upper bounds on
the lowest eigenenergy?

→ The braiding in Subsection 2.5.2 established the notion of “Majorana-like”
edge states based on their non-abelian statistics. What about their algebraic
properties? Is there a (potentially approximate) realization of Majorana
operators and their Clifford algebra in sectors of fixed particle number? In
⁂ Subsection 2.D.2 we propose operators that are exponentially localized
on the edges; these operators map degenerate zero-energy states into each
other, just like the Majorana operators of the mean field theory. It would be
interesting to unveil their algebraic structure and draw possible connections
to “true” Majorana operators.
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Appendices for Chapter 2

2.A Matrix Product State
Representation

Matrix product states (MPS) are the one-dimensional special case of more general
tensor network states (TNS) [261]. The latter parametrize many-body quantum
states by means of tensor contractions. In one dimension, tensor networks simplify
to chain-like graphs such that contractions become matrix products; the quantum
state is then encoded by the matrix entries. As long as the amount of entanglement
between a subsystem of the chain and its complement grows at most logarithmically
with the subsystem size, the dimension of the matrices (the bond dimension D)
grows only polynomially with the system size. This implies that “weakly entangled”
states can be described by a polynomial number of parameters—quite unusual in an
exponentially large Hilbert space. Therefore, MPS representations are a powerful
and versatile tool for the description and numerical exploration of one-dimensional
strongly correlated quantum systems [262,263].

Here we derive the MPS representation of the exact zero-energy ground states
jN; ˛i. As their parent Hamiltonian H is gapless (and the entanglement entropy
grows logarithmically, Subsection 2.3.3), we find a polynomially growing bond
dimensionD. In the following, we proceed along the lines of Ref. [261].

We consider ground states of the form (0 � N � 2L and ˛ D ˙1)

jN; ˛i /
X

M; .�1/M D˛

jM iajN �M ib ; 2.155

i.e., equal-weight superpositions of fixed total particle number N and (upper)
subchain parity ˛. Here jM ix denotes the unnormalized equal-weight superposition
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ofM particles (j#i D j1i in spin representation)

jM ix D
X

m2f0;1gL; jmjDM

jmix 2.156

for chain x 2 fa; bg of length L. Recall that states of this form are zero-energy
ground states for all N and ˛ for open boundary conditions. With closed boundary
conditions, this is true only if N is even and ˛ D �1, that is, whenever both
subchains have odd parity, see Subsection 2.4.2 and ⁂ Section 2.B.

We aim at a representation of these ground states as MPS, namely

jN; ˛i D
X

n;m2f0;1gL

Tr
h
AŒ1�n1;m1

: : : AŒL�nL;mL

i
jniajmib 2.157

with matrices AŒi�ni ;mi
2 CDi �DiC1 and bond dimensions Di (DLC1 D D1). In

general, Di D Di.L/ grows with the system size L. If this growth is only
polynomial, expectation values of (local) observables may be evaluated efficiently in
terms of the matrices AŒi�ni ;mi

. To determine the latter, we expand the equal-weight
superpositions successively in terms of their Schmidt decomposition [264].

First, we observe that fixing the subchain parity is particularly simple in the
MPS formalism; indeed,

Tr
�
1

2
.�´/

1�˛
2 � .�´/

n1
� � � � � .�´/

nL

�
D

(
1 for .�1/jnj D ˛ ;

0 otherwise ;
2.158

is a matrix product of fixed bond dimension D D 2. If we define C Œi�ni
� .�´/ni

for 1 � i < L and C ŒL�nL
�

1
2
.�´/

1�˛
2 .�´/nL , we can drop the subchain parity

condition and henceforth focus on the equal-weight superposition with fixed particle
number only,

jN i D
X

jnjCjmjDN

jniajmib 2.159a

Š
D

X
n;m2f0;1gL

Tr
h
B Œ1�n1;m1

: : : B ŒL�nL;mL

i
jn;mi : 2.159b

Then we have AŒi�ni ;mi
D B

Œi�
ni ;mi

˝ C
Œi�
ni

as the sought-after MPS description of
jN; ˛i.

We start by splitting off the first pair of sites (indices n1 and m1) from the bulk
by Schmidt decomposition

jN i D

d1�1X
ˇ1D0

�
Œ1�

ˇ1
j�
Œ1�

ˇ1
i ˝ j�

Œ2:::L�

ˇ1
i 2.160
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where �Œ1�
ˇ1

denotes the first Schmidt coefficients and j� Œ1�
ˇ1
i, j� Œ2:::L�

ˇ1
i are the

orthonormal Schmidt vectors. The indices ˇ1 run from 0 to d1 � 1 where d1 � 4
denotes the Schmidt rank. Note that we dropped the normalization of jN i for the
sake of simplicity as it only rescales the Schmidt coefficients.

Here we find d1 D 3 (because the first two modes a1 and b1 can contain at most
d1 � 1 D 2 particles) and

j�
Œ1�

ˇ1
i D jˇ1i2 ; j�

Œ2:::L�

ˇ1
i D jN � ˇ1i2.L�1/ 2.161

where jM iK denotes the normalized equal-weight superposition of K (single!)
sites with M particles. The Schmidt coefficients are then given by the inverse
normalizing factors, namely

�
Œ1�

ˇ1
D

 
2

ˇ1

!1=2 
2L � 2

N � ˇ1

!1=2
: 2.162

Next, we expand the left Schmidt vector in the local standard basis ji 1 D .n1; m1/i,
which yields

jN i D

d1�1X
ˇ1D0

X
i 12f0;1g2

�
Œ1�i 1

ˇ1
�
Œ1�

ˇ1
ji 1i ˝ j�

Œ2:::L�

ˇ1
i 2.163

with the coefficients

�
Œ1�i 1

ˇ1
D ıji 1j;ˇ1

 
2

ˇ1

!�1=2

: 2.164

The right Schmidt vector j� Œ2:::L�
ˇ1

i can be written as

j�
Œ2:::L�

ˇ1
i D

X
i 22f0;1g2

ji 2i ˝ j!
Œ3:::L�

ˇ1i 2
i 2.165

with the unnormalized state

j!
Œ3:::L�

ˇ1i 2
i D

 
2L � 2

N � ˇ1

!�1=2 X
n;m2f0;1gL�2

jnjCjmjDN�ˇ1�ji 2j

jn0;m0
i : 2.166

This state can be easily expressed in terms of the right Schmidt vectors j� Œ3:::L�
ˇ2

i for
the partition .1; 2j3; : : : ; L/, namely

j!
Œ3:::L�

ˇ1i 2
i D

d2�1D4X
ˇ2D0

�
Œ2�i 2

ˇ1ˇ2
�
Œ2�

ˇ2
j�
Œ3:::L�

ˇ2
i 2.167
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where j� Œ3:::L�
ˇ2

i D jN � ˇ2i2.L�2/ is the (normalized) equal-weight superposition
and the Schmidt coefficients are given as

�
Œ2�

ˇ2
D

 
4

ˇ2

!1=2 
2L � 4

N � ˇ2

!1=2
2.168

with the basis coefficients

�
Œ2�i 2

ˇ1ˇ2
D ıˇ1Cji 2j;ˇ2

 
4

ˇ2

!�1=2 
2L � 2

N � ˇ1

!�1=2

: 2.169

Plugging (2.167) in (2.165) and the latter in (2.163) yields

jN i D
X

i 1;i 22f0;1g2

d1�1X
ˇ1D0

d2�1X
ˇ2D0

�
�
Œ1�i 1

ˇ1
�
Œ1�

ˇ1
�
Œ2�i 2

ˇ1ˇ2
�
Œ2�

ˇ2

�
ji 1i ˝ ji 2i ˝ j�

Œ3:::L�

ˇ2
i : 2.170

We can iterate this expansion once more, i.e., expand the right Schmidt vector

j�
Œ3:::L�

ˇ2
i D

X
i 32f0;1g2

ji 3i ˝ j!
Œ4:::L�

ˇ2i 3
i 2.171

with

j!
Œ4:::L�

ˇ2i 3
i D

d3�1D6X
ˇ3D0

�
Œ3�i 3

ˇ2ˇ3
�
Œ3�

ˇ3
j�
Œ4:::L�

ˇ3
i 2.172

and derive the coefficients

�
Œ3�

ˇ3
D

 
6

ˇ3

!1=2 
2L � 6

N � ˇ3

!1=2
2.173a

and �
Œ3�i 3

ˇ2ˇ3
D ıˇ2Cji 3j;ˇ3

 
6

ˇ3

!�1=2 
2L � 4

N � ˇ2

!�1=2

: 2.173b

The last Schmidt vector is special as there is no further Schmidt decomposition
pending:

j�
ŒL�

ˇL�1
i D

X
iL2f0;1g2

�
ŒL�iL

ˇL�1
jiLi : 2.174

This yields the last coefficient,

�
ŒL�iL

ˇL�1
D ıˇL�1CjiLj;N

 
2

N � ˇL�1

!�1=2

: 2.175
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Thus, iteration over the whole chain yields the MPS expansion

jN i D
X

i 1;:::;iL

d1;:::;dL�1�1X
ˇ1;:::;ˇL�1D0

�
�
Œ1�i 1

ˇ1
�
Œ1�

ˇ1
�
Œ2�i 2

ˇ1ˇ2
�
Œ2�

ˇ2
: : : �

ŒL�1�

ˇL�1
�
ŒL�iL

ˇL�1

�
� ji 1iji 2i : : : jiLi

2.176a

Š
D

X
i 1;:::;iL

Tr
h
B
Œ1�
i 1
B
Œ2�
i 2
: : : B

ŒL�
iL

i
ji 1iji 2i : : : jiLi 2.176b

with the tensors�
B
Œk�
i k

�
ˇk�1;ˇk

� �
Œk�i k

ˇk�1ˇk
�
Œk�

ˇk
2.177a

D ıˇk�1Cji k j;ˇk

 
2L � 2.k � 1/

N � ˇk�1

!�1=2 
2L � 2k

N � ˇk

!1=2
2.177b

for 1 < k < L and�
B
Œ1�

i 1

�
ˇ1

D �
Œ1�i 1

ˇ1
�
Œ1�

ˇ1
D ıji 1j;ˇ1

 
2L � 2

N � ˇ1

!1=2
2.178a

�
B
ŒL�

iL

�
ˇL�1

D �
ŒL�iL

ˇL�1
D ıˇL�1CjiLj;N

 
2

N � ˇL�1

!�1=2

2.178b

on the boundary.
This is certainly a valid MPS in canonical form; however, the gauge freedom

allows us to redistribute the binomial coefficients between adjacent tensors. One
immediately realizes that “shifting” the factors 

2L � 2k

N � ˇk

!1=2
2.179

one tensor to the right cancels all of them; we are left with the much simpler
expressions �

B
Œ1�

i 1

�
ˇ1

D ıji 1j;ˇ1
; 2.180a�

B
Œk�

i k

�
ˇk�1;ˇk

D ıˇk�1Cji k j;ˇk
; 2.180b�

B
ŒL�

iL

�
ˇL�1

D ıˇL�1CjiLj;N ; 2.180c

for 1 < k < L. If we define ˇ0 � 0 and ˇL � N , we can even write�
B
Œk�

i k

�
ˇk�1;ˇk

D ıˇk�1Cji k j;ˇk
for 1 � k � L : 2.181
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We observe the following:

→ It is obvious that the described MPS is an equal-weight superposition of
number states as there is a single non-vanishing component of the traced
tensor for each pattern .i 1; : : : ; iL/ with 0 � ji kj � 2.

→ For TrŒB Œ1�i 1
B
Œ2�

i 2
: : : B

ŒL�

iL
� not to vanish, the virtual bond indices must satisfy

0 � ˇ1 � 2 2.182a

and ˇk�1 � ˇk � ˇk�1 C 2 2.182b

and N � 2 � ˇL�1 � N I 2.182c

especially
0 � ˇ1 � ˇ2 � � � � � ˇL�1 � N � 2L : 2.183

Thus we can choose a uniform bond dimension Dk � D D N C 1 for
1 < k � L (and D1 D 1 D DLC1) which is bounded from above by 2L.
Note that D � Poly.L/ was to be expected for a critical one-dimensional
system such asH [262].

We point out that this simple tensor network ensures by its local constraints
ıˇk�1Cji k j;ˇk

that the virtual index sequence fˇkg counts the number of particles,
i.e.,

ˇk D

kX
lD1

ji l j D

kX
lD1

.nl Cml/ 2.184

and therefore ˇL D N .
To fix both particle numberN and subchain parity ˛, we conjunct the conditions

by tensoring the according tensor networks, Figure 2.19:

AŒi�ni ;mi
� B Œi�ni ;mi

˝ C Œi�ni
: 2.185

Recall that C Œi�ni
D .�´/ni for 1 � i < L, so�

C Œi�ni

�
ˇ i�1;ˇ i

D ıˇ i�1;ˇ i
.�1/

niıˇi ;2 for ˇi�1; ˇi 2 f1; 2g 2.186

in coordinate representation. The last tensor is special as it fixes the subchain-parity
sector: �

C ŒL�nL

�
ˇL�1;ˇL

D
1

2
ıˇL�1;ˇL

.�1/
Œ.1�˛/=2CnL�ıˇL;2 : 2.187
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Total particle number

Upper subchain parity

Figure 2.19 • Matrix product state representation. We show a schematic representation of
the twoMPS constructions described in the text. Physical bonds ni ; mi are drawn by thin vertical
lines, whereas the virtual bonds ˇi ; ˇi are given by thick horizontal lines. Black circles denote
physical sites (spins or fermion modes), colored squares the tensors A (red), B (green), and
C (yellow). The total particle numberN is fixed by B , the upper subchain parity ˛ by C . The
conjunction of both conditions is realized by their tensor product A.

Within this representation, one can easily check

Tr
h
C Œ1�n1

: : : C ŒL�nL

i
D

X
ˇ0;:::;ˇL

ı
ˇ0;ˇ1

.�1/
n1ıˇ1;2 : : :

1

2
ı
ˇL�1;ˇL

� .�1/
Œ.1�˛/=2CnL�ıˇL;2 ı

ˇ0;ˇL„ƒ‚…
Trace

2.188a

D
1

2

X
ˇ0D1;2

.�1/
ı

ˇ0;2

hPL
iD1 ni C.1�˛/=2/

i
2.188b

D
1

2
Œ1C ˛Pa.n/� D ı˛;Pa.n/ 2.188c

with the upper subchain parity Pa.n/.
For the tensor product, we introduce the pair indices ˇi � .ˇi ; ˇi/ with

0 � ˇi � N � 2L and ˇi D 1; 2. Thus, the final tensors’ AŒi�ni ;mi
virtual bond

dimension is bounded by 4L. We find�
AŒi�ni ;mi

�
ˇi�1;ˇi

D

�
B Œi�ni ;mi

�
ˇi�1;ˇi

�

�
C Œi�ni

�
ˇ i�1;ˇ i

2.189a

D ıˇi�1Cni Cmi ;ˇi
� ıˇ i�1;ˇ i

.�1/
niıˇi ;2 2.189b
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for 1 � i < L; the last tensor reads�
AŒL�nL;mL

.N; ˛/
�

ˇL�1;ˇL

D
1

2
ıˇL�1CnLCmL;N � ıˇL�1;ˇL

� .�1/
Œ.1�˛/=2CnL�ıˇL;2 ;

2.190

which allows us to fix the particle number 0 � N � 2L and the subchain parity
˛ D ˙1. We conclude that for an open chain, the ground states can be expressed
exactly by an MPS with linearly growing bond dimensionD � 4L,

jN; ˛i D
X

n;m2f0;1gL

Tr
h
AŒ1�n1;m1

: : : AŒL�nL;mL
.N; ˛/

i
jn;mi 2.191

with the tensors given by (2.189b) and (2.190) (up to normalization).

2.B Estimates on the Spectral Gap

Here we provide details on the derivation of the upper/lower bounds on the spectral
gap that we discussed in Subsection 2.4.2: In ⁂ Subsection 2.B.1 we show how to
construct a rigorous lower bound on the ground state energy in the even-even sector
(for periodic double-chains). In ⁂ Subsection 2.B.2 we discuss the construction of
an upper bound in sectors of odd total parity; the result suggests the vanishing of the
single-particle gap in the thermodynamic limit. We conclude in ⁂ Subsection 2.B.3
with the derivation of an upper bound in the even-even sector.

2.B.1 Lower Bound for Even Subchain Parity

Let H denote the double-chain Hamiltonian with periodic boundary conditions
(introduced in Subsection 2.4.2). In the following, we assume that at least one
subchain has even parity. We already know that there are no zero-energy ground
states with such parities; here we are interested in a lower bound on the smallest
eigenenergy in these sectors to prove its algebraic decay in the thermodynamic
limit. The construction of lower bounds is subtle as it makes statements about all
possible states—in contrast to upper bounds which follow from specific ansatz wave
functions [recall Eq. (2.118) and see ⁂ Subsection 2.B.2 and ⁂ Subsection 2.B.3
below].

The basic line of thought is to consider the energy expectation value of H for a
generic state j‰i [recall Eq. (2.114)],

h‰jH j‰i /
X
.ij /2G

ˇ̌
‰i � ˛ij‰j

ˇ̌2
; 2.192
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where ˛ij D ˙1 due to the fermionic statistics and i; j are indices labeling fermion
configurations .n;m/ on both chains. We stress that the only assumption necessary
for the following results is the structure of (2.192) which, for instance, is also
satisfied by the single-chain Hamiltonians H x on a chain of fixed particle number
(we will exploit this below).

G can be thought of as a graph that encodes possible local transformations
‰i 7! ‰j by the HamiltonianH , pictorially:

Each edge is assigned a sign ˛e D ˛ij D ˙1; negative edges are highlighted red.
On the double-chain H , there are two different types of local transformations:
intra-chain single-particle hopping denoted by " and solid lines, and inter-chain
pair hopping denoted by � and dashed lines [recall their definition in Eq. (2.23)
and (2.24) and the generalization for periodic chains in Eq. (2.112) and (2.113)].
The latter connect components of G with different upper-chain particle number
N a in˙2-intervals. Note that both "- and � -hopping can occur with negative edge
weight ˛e on double-chains with periodic boundary conditions. The local structure
of G is illustrated in Figure 2.20 in more detail.

Assume that C is a cycle (closed loop) in G. Then we can estimate

h‰jH j‰i �
X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌2
2.193

as C is just a subset of edges in G. Using Hölder’s inequality, one can find the
lower bound

X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌2
�

1

jC j

24 X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌352 ; 2.194

where jC j is the length of C .
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Intra-chain hopping
(to the left)

Cluster

Intra-chain hopping
(to the right)

Inter-chain hopping
(to the lower chain)

Inter-chain hopping
(to the upper chain)

Figure 2.20 • Local structure of G . Within eachN a-sector, the upper- (red) and lower-chain
(blue) single-particle hopping connects the vertices ofG. For each hopping to the right (outgoing
edges), there is a corresponding hopping to the left (incoming edges) as each cluster has two
boundaries. The total number of intra-chain edges is then 2Nc.i/ where Nc.i/ denotes the
numbers of clusters in configuration ‰i . Pair hopping between the subchains is indicated by
dashed gray edges which connect to differentN a-sectors inG.

If one applies the (inverse) triangle inequality to the sum (under the square),
and chooses the signs of the terms j‰i � ˛ij‰j j appropriately, it is easy to see that
the lower bound

1

jC j

24 X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌352 � 1

jC j
j‰i�j

2 2.195

follows for an arbitrary vertex i� 2 C whenever the number of negative edges on C
is odd, as for C2 in the figure below:
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This follows because the sum after the (inverse) triangle inequality is a telescoping
series with non-vanishing boundary term. For cycles with an even number of
negative edges (C1 and C3 above), the same procedure leads only to differences of
vertex fields ‰i on C as lower bounds (which vanish identically for equal-weight
superpositions).

Let C� denote the set of all cycles in G with an odd number of negative edges.
As the previous estimate holds for arbitrary i� 2 C 2 C�, it also holds for the mean
of vertex weights j‰i j2 over the whole cycle C :

1

jC j

24 X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌352 � 1

jC j2

X
i2C

j‰i j
2
: 2.196

Let us assume there is a subset L � C� of cycles C with length jC j �
p
A1 in

G D GL;N such that every admissible configuration i for filling N and system size
L is visited by at least A2 > 0 cycles in L and every edge in G is used by at most
A3 cycles in L (A1;2;3 are positive, possibly N - and/or L-dependent constants).
Physically, these cycles will be interpreted as virtual tunneling of a single fermion
around the periodic (double-)chain; we construct them explicitly below. But first,
let us apply the previous estimates to the cycles in L:

Since every edge in G is used by at most A3 cycles in L, we have

h‰jH j‰i �
1

A3

X
C2L

X
.ij /2C

ˇ̌
‰i � ˛ij‰j

ˇ̌2
: 2.197

Using the estimates (2.194) and (2.196) for a single “odd” cycle C 2 C� yields

h‰jH j‰i �
1

A1A3

X
C2L

X
i2C

j‰i j
2
; 2.198

where we used the bounded length jC j �
p
A1 of cycles in L. Due to the fact that

every configuration i is visited by at least A2 cycles in L, it follows immediately

Result 2.1: Lower bound on the ground state energy

h‰jH j‰i �
A2

A1A3

X
i2G

j‰i j
2
D

A2

A1A3
: 2.199

Here we used the normalization condition for the vertex field ‰i (the coefficients of
the wave function j‰i). Note that this last step is crucial for a non-trivial (that is,
non-zero) lower bound. Eq. (2.199) depends on the set of cycles L which, in turn,
depends on the coupling graph G. Since L is merely restricted but not uniquely
determined by G, it is the choice of L that decides on the strictness of this lower
bound.
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Construction of L

Let us construct a family of cycles L � C� and evaluate their parameters A1;2;3 to
find and explicit lower bound on the ground state energy. To do so, we need some
preliminary simplifications.

Consider a double-chain with periodic boundary conditions, length L and
non-trivial total filling 0 < N < 2L within a subchain-parity sector with at least
one subchain of even parity (i.e., there is no zero-energy ground state). In addition,
recall that due to the positivity of all local terms in the Hamiltonian, it is

h‰jH j‰i D h‰jH a
CH b

CH ab
j‰i 2.200a

� h‰jH a
j‰i C h‰jH b

j‰i ; 2.200b

which leaves us effectively with two decoupled chains of filling N a and N b D

N �N a. SinceH x trivially commutes with N x, we can restrict j‰i to the subspace
HNa;Nb with fixed upper- and lower-chain filling for 0 � N a � minfN;Lg and
N b D N �N a.

There are two cases to be considered separately:

→ N even: In the even-even subsector, there is always a non-empty subchain
with even filling; this follows from the Hilbert space decomposition

HN
˛DC1 D H0;N ˚H2;N�2 ˚ � � � ˚HN�2;2 ˚HN;0 : 2.201

Thus in all possible subsectors HNa;Nb eitherH a orH b (or both) can yield
a non-trivial lower bound for the energy due to the intra-chain interactions
alone (for 0 < N < L). Note that at half-filling (N D L) the subspaces H0;L

and HL;0 both host zero-energy states of H a CH b (which complicates the
analysis, see next case).

→ N odd: In the even-odd/odd-even subsectors, there is always a subsector
with empty “even”-parity and non-empty odd-parity subchain (for N � L),
namely

HN
˛DC1 D H0;N ˚H2;N�2 ˚ � � � ˚HN�3;3 ˚HN�1;1 2.202a

HN
˛D�1 D H1;N�1 ˚H3;N�3 ˚ � � � ˚HN�2;2 ˚HN;0 : 2.202b

This is a problem as the decomposition shows that there is a zero-energy
ground state for the HamiltonianH a CH b within the highlighted subsectors
(similar to the case of half-filling for even N ). This precludes the intended
reduction (2.200b) to a problem of decoupled single-chains.

In summary, for even filling 0 < N < L, the absence of a zero-energy ground
state and possible lower bounds on the ground state energy are already implied by
the intra-chain interactionsH x alone. However, for odd filling (or even half-filling),
the inter-chain couplingH ab is necessary to establish similar results, and the lower
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bound (2.200b) must be replaced by (2.200a). This complicates the construction
of L since both intra- and inter-chain hopping must be taken into account. Lest
technicalities get out of hand, we limit the following discussion to the simpler case
of even N (0 < N < L) and leave the other cases for future studies.

For j‰i 2 HN
˛DC1, we are interested in the lower bound

h‰jH j‰i � h‰jH a
j‰i C h‰jH b

j‰i 2.203a

D

N=2X
kD0

jc2kj
2
h
h‰2kjH

a
j‰2ki C h‰2kjH

b
j‰2ki

i
2.203b

�

N=2X
kD0

jc2kj
2max

n
h‰2kjH

a
j‰2ki; h‰2kjH

b
j‰2ki

o
; 2.203c

where j‰i D
P
k c2kj‰2ki with j‰ni 2 Hn;N�n and

P
k jc2kj

2 D 1, recall
Eq. (2.201). Equation (2.203c) allows us to replace the construction of L for
h‰jH j‰i by a simpler construction for h‰2kjH xj‰2ki. Note that the result (2.199)
is still valid since the single-chain Hamiltonians feature all properties needed for its
derivation [in particular, h‰2kjH xj‰2ki has the form (2.192)]. The simplification is
due to the new graph G which now only describes configurations of 2k (or N � 2k)
fermions on a single chain.

Hence we consider a single, periodic chain of length L filled with N x fermions
where N x(D 2k or N � 2k) is even and 0 < N x < L. We seek for a procedure
to define an appropriate family of cycles L constructively. To this end, we adopt
the notion of a finite transition system T D .S;!/ describing the transitions “!”
between a finite set of states S . If a system maps state s 2 S to s0 2 S , we write
s ! s0. A closed chain of states under “!,” such as

s0 ! s1 ! s2 ! � � � ! sm ! s0 ; 2.204

is called a cycle. The set of all cycles is denoted C.T /.

1 In our case, a state s D .n; e;h/ is given by (1) a configuration of N x

fermions n 2 f0; 1gL with jnj D N x, (2) a configuration of either one or two
“virtual charges” e 2 f0; 1gL with jej 2 f1; 2g, and (3) a configuration of at
most one “virtual hole” h 2 f0; 1gL with jhj 2 f0; 1g.

The complete set S of admissible states is then defined as follows: For any
given configuration n, one may place either a single charge eu D 1 on any
occupied site u (where nu D 1), or two charges on occupied sites with a single
hole in-between; the latter is then assigned a virtual hole hk D 1.

123



MAJORANA-LIKE EDGE STATES & NUMBER CONSERVATION

This construction can be illustrated pictorially:

or

The blue (red) boxes indicate virtual charges (holes), the black fields label
occupied sites in n (single sites as boxes, clusters as continuous rectangles),
the dotted lines denote arbitrary configurations of the environment without
virtual charges/holes.

2 To complete the definition of T , we have to provide the transition function
“!” that acts on these states. This is done best by picture:

A

B

C

D

The rules should be read in a if...else if...else if... fashion from
top to bottom:

One starts with A and checks whether the current state s matches the left-
hand side. If so, the transformation is applied and the loop starts over again
acting on the result. If a rule does not match, the algorithm proceeds to the
next row, and so forth. The given transitions encode the general rules “holes
before charges,”“holes move to the left,” and “charges move to the right.”
Whenever a hole hits a charge, the pair annihilates. When a charge hits a
cluster, a hole-charge pair is created on the opposite boundary so that the
emitted hole eventually annihilates the original charge. Note that this defines
a unique transition from every admissible state in S to another admissible
state in S .

In a nutshell: The transition rule “!” realizes the propagation of a fermion
to the right along the chain.

It is important that this transition is injective and total in that every state
s 2 S is assigned a unique successor s0 2 S and there is only one such state
that maps to s0. Hence the finiteness of S implies that it decomposes into
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closed cycles of states. This is just another way to put that ”!” W S ! S is
a bijection80 on a discrete set, i.e., a permutation; and it is well-known that
every permutation has a cycle representation.

Given the transition system T D .S;!/, we find the following:

→ There is a surjective map � W S � V.G/ mapping states to vertices in
G (configurations of fermions) via �.s D .n; e;h// � n D i . Due to the
definition of admissible states S , it follows that the preimage ��1.i/ of an
arbitrary fermion configuration i has at least N x elements (one can place N x

single charges and possibly additional charge-hole-charge complexes).

→ This induces a map � W C.T /! C.G/ of transition cycles in S to cycles in
the coupling graph G because the abstract transitions in T are realized by the
single-fermion hopping of H x. It is easy to see that all these image cycles
include exactly one edge with ˛ij D �1 [recall that the transition system
describes the propagation of a single fermion around the periodic chain, and
combine this with Eq. (2.112)]. Thus we have

� W C.T /! C� : 2.205

→ The length of all cycles in � .C.T // is L by construction.

→ Every configuration n D i is traversed by at least N x distinct cycles. (One
can label each of the N x fermions with a virtual charge; these N x states in S
generate distinct orbits in C.T /.)

→ A given transition i D n ! n0 D j of fermion configurations (an edge in
G) can have up to 1CN x CN x C .N x/2 � .N x/2 preimages as transitions
in S . This follows from the maximum number of preimages s with �.s/ D i
that lead to the hopping of the same fermion under “!“:

A

B

C

D

80Injectivity of endomorphisms on finite domains is equivalent to bijectivity.
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This is important as it tells us that edges in G may occur up to � .N x/2

times in the set of cycles � .C.T //. (Eventually we are interested in the limit
N x !1 so that we can drop the linear corrections.)

Definition 2.2: Family of odd cycles on a single chain

With this in mind, we define the set of odd cycles onG as

L � � .C.T // 2.206

where
p
A1 � L (the length of the cycles isL),A2 � N x (each configuration is visited by

at leastN x cycles), andA3 � .N x/2 (each transition is used by at most .N x/2 cycles).

With this definition of L, we can use (2.199) to derive an algebraic lower bound
for the ground state energy of H x on a single chain,

h‰2kjH
a
j‰2ki

k¤0

�
A2

A1A3
�

2k

L2.2k/2
D

1

L2.2k/
2.207a

h‰2kjH
b
j‰2ki

k¤ N
2

�
A2

A1A3
�

N � 2k

L2.N � 2k/2
D

1

L2.N � 2k/
: 2.207b

In particular,

h‰2kjH
x
j‰2ki �

1

L2N
2.208

for k ¤ 0 (k ¤ N
2
) and x D a (x D b). With this, (2.203c) yields

h‰jH j‰i �

N=2X
kD0

jc2kj
2max

n
h‰2kjH

a
j‰2ki; h‰2kjH

b
j‰2ki

o
2.209a

�

N=2X
kD0

jc2kj
2 1

L2N
D

1

L2N
: 2.209b

For fixed density with N D 2�L, we have the algebraic lower bound

h‰jH j‰i &
1

L3
: 2.210

Since numerical results (not shown) suggest that the actual decay is slower for
fixed density (namely L�1), it is an interesting question whether the construction
of L can be optimized to make the lower bound strict. The stronger statement
E0.L/ D h‰0jH j‰0i / L�1 for the ground state j‰0i is also supported by
analytical results for the Heisenberg model with twisted boundary conditions [252–
254].
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If the total filling N is odd (or even at half-filling), the restriction to a single
chain is no longer possible; the requirements on L remain the same, though. To
construct cycles of fermion configurations of length � L with an odd number
of negative edges, one has to combine pair hopping between and single-particle
hopping along the subchains [recall that pair hopping can also give rise to negative
edges, Eq. (2.113)]. Note that the DMRG results shown in Figure 2.13 (b) also
reveal a slower L�1-decay. Thus it seems reasonable that a similar approach as
above can be used to construct an appropriate family of odd cycles. However, the
generating transition system is expected to be more complicated so that we leave its
construction as an open problem for future studies or the amusement of the inclined
reader.

2.B.2 Upper Bound for Odd Total Parity

Here we study the mechanism that is responsible for the vanishing of the single-
particle gap in that it explains the existence of states with arbitrary low energy
in sectors of odd total parity. Since this mechanism equally applies to other
subchain-parity sectors and open boundary conditions, it sheds light on the
peculiar low-energy physics of our model as a result of criticality and vanishing
compressibility.

The Hamiltonian for periodic boundaries reads

H D H a
CH b

CH ab 2.211

with intra-chain interactions

H x
D

LX
iD1

"
�x

�
iC1xi � x

�
i xiC1

Cnxi .1 � n
x
iC1/C n

x
iC1.1 � n

x
i /

#
2.212

for x D a; b, and inter-chain couplings

H ab
D

LX
iD1

264�a
�
i a
�
iC1biC1bi � b

�
i b
�
iC1aiC1ai

Cnai n
a
iC1.1 � n

b
i /.1 � n

b
iC1/

Cnbi n
b
iC1.1 � n

a
i /.1 � n

a
iC1/

375 : 2.213

We seek for a sequence of states jGN;˛i so that for fixed filling � D N=2L

hGN;˛jH jGN;˛i ! 0 for L;N !1 2.214

in sectors of odd total particle number N (where we already know that no exact
zero-energy ground states exists). We assume that our ansatz wave functions are
of the form jGN;˛i / P jN; ˛i where the operator P is a function of nai C n

b
i ;

it therefore commutes with each term of the inter-chain Hamiltonian H ab and
conserves both N and ˛.
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To evaluate the energy expectation value, it is convenient to split the Hamilto-
nian into its OBC partHı containing terms from site 1 to L � 1, and the boundary
partH@ including the single term that couples sites L and 1:

H D Hı CH@ : 2.215

Then, the energy expectation value can be written as

hGN;˛jH jGN;˛i D
X
xDa;b

hN; ˛jP �H x
ı P jN; ˛i

hN; ˛jP �P jN; ˛i

C Ba;b.N; ˛/C Bab.N; ˛/

2.216

with the boundary contributions

Ba;b.N; ˛/ �
X
xDa;b

hN; ˛jP �H x
@

P jN; ˛i

hN; ˛jP �P jN; ˛i
2.217a

Bab.N; ˛/ �
hN; ˛jP �H ab

@
P jN; ˛i

hN; ˛jP �P jN; ˛i
: 2.217b

Note that one of the two intra-chain boundary terms vanishes identically, depending
on the subchain-parity sector ˛. To arrive at the above result, we used that
ŒP ;H ab

ı � D 0 andH ab
ı jN; ˛i D 0.

We stress that due to the chosen parity sector (N odd which allows for even-
odd/odd-even subchain parities), there are two non-vanishing boundary terms that
we have to deal with:

H x
@ jN; ˛i ¤ 0 and H ab

@ jN; ˛i ¤ 0 ; 2.218

where x D a; b depends on ˛.
Since both bulk energy and boundary contributions are non-negative (due to the

semi-positivity of all local terms), we have to make sure that they vanish separately
in the thermodynamic limit L!1 for � D const.

Bulk Energy

Let us postpone the problem of boundary energies for a moment and focus on the
bulk energy

E.N; ˛/ �
hN; ˛jP �.H a

ı ˚H
b
ı /P jN; ˛i

hN; ˛jP �P jN; ˛i
: 2.219

Recall [Eq. (2.20)] that the OBC zero-energy ground states can be written as

jN; ˛i D N
�1=2
L;N;˛

X
n;.�1/nD˛

jniajN � nib 2.220

128



ESTIMATES ON THE SPECTRAL GAP

with unnormalized equal-weight superpositions jnix for subchain x with filling n
and the property thatH x

ı jnix D 0.
We make the observation that due to the symmetry between the ˛ D ˙1-sectors

for odd total filling N , the normalizing factors are equal, NL;N;C1 D NL;N;�1, and
we get as symmetric superposition

jN i �
1
p
2
.jN;C1i C jN;�1i/ D

 
2L

N

!�1=2 X
jnjDN

jniab I 2.221

viz. the equal-weight superposition on the double-chain with fixed particle number
N without subchain parity constraint. Due to orthogonality, it follows that

E.N/ �
hN jP �.H a

ı ˚H
b
ı /P jN i

hN jP �P jN i
D
1

2
ŒE.N;C1/CE.N;�1/� 2.222

and we can show that E.N; ˛/ vanishes for both ˛ D ˙1 by proving that E.N/
vanishes for L!1. Using this trick, we also freed ourselves from the annoying
subsector parity constraint Pa D ˛ for the following discussion. Note that we used
the fact that hN; ˛jP �P jN; ˛i cannot depend on ˛ because P (by assumption)
only depends on the symmetric occupation numbers nai C n

b
i ; this explains the

prefactor 1
2
.

Definition 2.3: Ansatz wave function

Let us now introduce our ansatz for P , namely

P D Pˇ;� � exp

"
�ˇ

LX
iD1

�

�
i

L

�
.nai C n

b
i /

#
2.223

with non-negative inverse temperature ˇ � 0 and the smooth potential � 2 C1.Œ0; 1�;

Œ0; 1�/, w.l.o.g. normalized so that maxx �.x/ D 1 and scaling is controlled by ˇ.

The naming scheme, inspired by statistical mechanics, is purely formal and will
become clear below. Pˇ;� obviously satisfies all requirements used so far in the
derivations.

First, a glance at the normalizing factor

hN jP �P jN i D
X

jnjDN

e
�2ˇ

PL
iD1 �

�
i
L

�
.na

i
Cnb

i
/
D Z.ˇ;N / 2.224

reveals that this is nothing else than the (thermal) canonical partition function
Z.ˇ;N / of a non-interacting lattice gas with two-fold degenerate sites in the
potential landscape � with (inverse) temperature ˇ. Here and henceforth, we ignore
the normalizing factor of jN i as it cancels in E.N/ anyway.
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unfold

„Fermi sea“

Figure 2.21 • Schematic potential. Example of a smooth potential �.x/ to illustrate the
unfolding of the double-chain. The shown particle distribution corresponds to zero temperature
or ˇ ! 1 and is characterized by a filled “Fermi sea” F0 with “Fermi energy” �F . The
potential is discretized with lattice spacing 1=2L. The 1

2
-periodicity ensures vanishing energy

contributions of inter-chain interactionsHab
ı in that the symmetry of upper and lower subchain

remains unbroken.

Importantly, due to the missing interactions (not counting the on-site hard-core
repulsion as defining property of a lattice gas) one can equivalently think of an
extended potential �� on Œ0; 1� derived from two squeezed copies of � with 2L sites
and without local degeneracies81, Figure 2.21. In the following, we use this picture
and relabel the sites such that P reads

Pˇ;� D exp

"
�ˇ

2LX
iD1

�

�
i

2L

�
ni

#
; 2.225

where we renamed �� to � since we still allow for arbitrary potentials � (in particular,
the “doubled” ones).

The numerator of Eq. (2.222) translates similarly

hN jP �.H a
ı ˚H

b
ı /P jN i D hN jP

�HıP jN i 2.226

81We unfold the double-chain to a single-chain of length 2L.
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where

Hı D

X
1�i<L<i<2L

"
�c

�
iC1ci � c

�
i ciC1

Cni.1 � niC1/C niC1.1 � ni/

#
2.227

with fermions c�i on sites 1 � i � 2L. Note that the sum skips the two boundary
terms H a

@
and H b

@
due to the linearized index scheme. The excluded indices

i D L; 2L describe inter-chain cross tunneling (not present in the original theory).
Given this simplification82 of the double-chain, we proceed with the evaluation

of (2.222) with the shortcut
P0

i D
P
1�i<L<i<2L:

hN jP �HıP jN i D
X

jnj;jmjDN

X0

i

hmjP �Hı;iP jni 2.228a

D �

X
jnj;jmjDN

X0

i

hmjP �Œc
�
iC1ci C c

�
i ciC1�P jni

C

X
jnj;jmjDN

X0

i

hmjP �

"
ni .1 � niC1/

CniC1.1 � ni /

#
P jni :

2.228b

The second (density-density) term immediately yieldsX0

i

X
jnjDN

Œni .1 � niC1/C niC1.1 � ni /� e
�2ˇ

P2L
j D1 �

�
j

2L

�
nj ; 2.229

whereas the first one has to be treated a bit more carefully:

�

X0

i

X
jnjDN

"
ni .1 � niC1/ e

ˇŒ�.i=2L/��.iC1=2L/�

CniC1.1 � ni / e
ˇŒ�.iC1=2L/��.i=2L/�

#
e

�2ˇ
P2L

j D1 �
�

j
2L

�
nj : 2.230

The additional exponentials account for the changed weights due to the hopping
sandwiched between P and P �.

We can now put together Eq. (2.222): The division of these terms by the parti-
tion function Z.ˇ;N / results in “thermal” density-density correlators evaluated in
the canonical ensemble with fixed particle number,

E.N/ D
X0

i

h
1 � eˇŒ�.i=2L/��.iC1=2L/�

i
hni.1 � niC1/i

C

h
1 � eˇŒ�.iC1=2L/��.i=2L/�

i
hniC1.1 � ni/i :

2.231

In the following, we write E.N/ D E.ˇ;N / to highlight the ˇ-dependence of E.
As we are interested in the thermodynamic limit L!1, it is reasonable to expand
the square brackets in orders of L�1:

�.i=2L/ � �.i C 1=2L/ D �
� 0.i=2L/

2L
CO

�
1=L2

�
: 2.232

82The unfolding is only useful because of the missing subchain parity constraints—which are rather
unnatural in this picture.
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Thus h
1 � eˇŒ�.i=2L/��.iC1=2L/�

i
D

ˇ

2L
� 0.i=2L/CO

�
ˇ2=L2

�
; 2.233ah

1 � eˇŒ�.iC1=2L/��.i=2L/�
i
D �

ˇ

2L
� 0.i=2L/CO

�
ˇ2=L2

�
; 2.233b

which yields

E.ˇ;N / D
X0

i

�
ˇ

2L
� 0.i=2L/ hni � niC1i CO

�
ˇ2=L2

��
: 2.234

Here, the Landau symbols O. � / are defined for the limit L;ˇ ! 1 whenever
ˇ=L ! 0. Note that these conditions are important in that they allow us to
incorporate the term ˇO

�
1=L2

�
in O

�
ˇ2=L2

�
(which is not correct in the limit

ˇ ! 0).
To evaluate the last expression, we have to control the density gradient

hni � niC1i to some extent. One finds

hni � niC1i D Z
�1.ˇ;N /

X
jnjDN

.ni � niC1/ e
�2ˇ

P2L
j D1 �

�
j

2L

�
nj 2.235a

D Z�1.ˇ;N /
X

jnjDN
ni D1; niC1D0

n
1 � e2ˇŒ�.i=2L/��.iC1=2L/�

o
� e

�2ˇ
P2L

j D1 �
�

j
2L

�
nj

2.235b

D

n
1 � e2ˇŒ�.i=2L/��.iC1=2L/�

o Z�
i .ˇ;N /

Z.ˇ;N /
2.235c

D

�
ˇ

L
� 0.i=2L/CO

�
ˇ2=L2

�� Z�
i

Z
; 2.235d

where Z�
i .ˇ;N / is the restricted partition sum in (2.235b) and we point out that

0 � Z�
i =Z � 1 for all i . Combining this result with Eq. (2.234) yields

E.ˇ;N / D
X0

i

�
ˇ

2L
� 0.i=2L/

�
ˇ

L
� 0.i=2L/CO

�
ˇ2=L2

�� Z�
i

Z

CO
�
ˇ2=L2

�� 2.236a

�
ˇ2

L

X0

i

1

2L

ˇ̌
� 0.i=2L/

ˇ̌2
C ˇO

�
ˇ2=L2

�
CO

�
ˇ2=L

�
; 2.236b

where we lost an order of L�1 in the rightmost term due to the sum over 2L � 2
sites83; the upper bound follows from 0 � Z�

i =Z � 1.
83We stress that the functions formally written as their Landau classes O. � / are not independent

of i in general! Here, however, this is indeed the case since they originate from the derivative (2.232)
of the uniformly differentiable function � (recall that � is smooth and � 0 continuous on the compact
interval Œ0; 1�).
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Result 2.2: Bulk energy

For largeL, the result can be rewritten84as

E.ˇ;N / �
ˇ2

L

Z 1

0

dx
ˇ̌
� 0.x/

ˇ̌2
CO

�
ˇ2=L

�
D O

�
ˇ2=L

�
; 2.237

using the definition of the Riemann integral (which exists for � 2 C1.Œ0; 1�; Œ0; 1�/).

Let us discuss the results so far (see also Figure 2.22):

→ E.ˇ;N / is only the bulk contribution to the total energy expectation value.
We still have to deal with the two boundary terms. But if we consider a system
with OBC, then Result 2.2 describes the energy of the state Pˇ;� jN; ˛i

completely. We conclude that for arbitrary inverse temperature ˇ and
potential � , the considered family of many-body wave functions belongs to
the low-energy sector of the Hamiltonian H and their energy vanishes (at
least) with L�1. Note that this result tells us nothing new about the ground
states as we already know that there are zero-energy ground states for OBC.

→ In the high-temperature limit ˇ ! 0, the result tells us that E.ˇ;N /! 0 for
any finite L. This is easily understood if we consider the form of the ansatz
wave function:

Pˇ;N jN; ˛i D exp

"
�ˇ

LX
iD1

�

�
i

L

�
.nai C n

b
i /

#
jN; ˛i

ˇ!0
�! jN; ˛i

2.238

So the infinite-temperature fixed point (which is independent of the potential
�) corresponds to the original equal-weight zero-energy ground states.

→ To gain intuition about the low-temperature limit ˇ !1, we have to realize
that the states Pˇ;N jN; ˛i encode the Gibbs ensemble of N hard-core particles
in the potential � (discretized on 2L lattice sites) with an additional subchain
parity constraint (which we can get rid of as demonstrated above). For low
temperatures, the particles fill the potential up to some “Fermi energy”
�F and form a clustered or phase-separated state, Figure 2.22. The cluster
structure is determined by the density � and the potential � . It is easy to show
(using the OBC double-chain HamiltonianH ) that any chain-symmetrically
phase-separated state has non-vanishing energy. This manifests in the
diverging upper bound O

�
ˇ2=L

�
for ˇ !1.

84Use ˇO
�
ˇ2=L2

�
� ˇO.ˇ=L/ D O

�
ˇ2=L

�
to collect all remainders in O

�
ˇ2=L

�
.
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Figure 2.22 • Temperature dependence of the local density. Exemplary particle density dis-
tribution n.x/ of the ansatz wave function Pˇ;� jN; ˛i for the shown potential �.x/ and three
temperatures ˇ D T �1 ranging from T D 0 to T D 1. For zero temperature, the state is
phase-separated and acquires a finite energy in all cases; the particles form a “Fermi sea” F0
with “Fermi energy” �F . For T ! 1, the states approach the equal-weight superpositions
jN; ˛i, i.e., the zero-energy ground states.

The bottom line is the following: We showed that for OBC, there is a low-energy
sector without any phase-modulation [like Eq. (2.118)], spanned by chain-symmetric,
“smoothly” (ˇ <1) density-modulated states that are conveniently described as
Gibbs ensembles of particles in a given potential. It stands to reason that this is a
consequence of the vanishing compressibility at the critical point.

134



ESTIMATES ON THE SPECTRAL GAP

Boundary Energy

We now turn towards the ominous boundary terms. What makes them “ominous”
is a single, inverted relative sign between hopping and density-density interactions
that is responsible for a positive energy in sectors of odd particle number.

Intra-chain boundary — We start with the finite intra-chain boundary term, i.e., the
term of the even-parity chain (here again for the symmetric superposition to get rid
of the subchain parity constraint). It reads:

Ba.ˇ;N / �
1

2
.Ba.N;C1/„ ƒ‚ …

�0I !¤0

CBa.N;�1/„ ƒ‚ …
�0I !0

/ D
hN jP �Ha

@
P jN i

hN jP �P jN i
2.239a

D

h
hnL.1 � n1/iC hPa nL.1 � n1/i e

ˇŒ�.L=2L/��.1=2L/�
i

C

h
hn1.1 � nL/iC hPa n1.1 � nL/i e

ˇŒ�.1=2L/��.L=2L/�
i
:

2.239b

Here, Pa D .�1/N
a

denotes the a-chain parity85. This follows from the subchain-
parity–dependence of single-particle hopping across the (gauge dependent) boundary
1 $ L, recall the gauge string in Figure 2.6. As we are only interested in the
vanishing of Ba.ˇ;N /, and the first terms in the square brackets must vanish
anyway, we make use of the (admittedly blunt) estimate

jhPa nL.1 � n1/ij � hnL.1 � n1/i 2.240

to get rid of the subchain parity Pa,

Ba.ˇ;N / �
h
1C eˇŒ�.L=2L/��.1=2L/�

i
hnL.1 � n1/i

C

h
1C eˇŒ�.1=2L/��.L=2L/�

i
hn1.1 � nL/i :

2.241

Now recall that we can think of � as the same potential squeezed twice on the
interval Œ0; 1� to ensure that the potentials in upper and lower chain are equal for
each site i (this is implicit in the form of P and required to make the inter-chain
interactions vanish). Formally, this means �.x/ D �

�
x C 1

2

�
for 0 � x < 1

2
,

Figure 2.21. If we require that � is smooth on Œ0; 1�, this implies that � is 1
2
-periodic

and smooth at �.0/ D �
�
1
2

�
. Therefore

�.L=2L/ � �.1=2L/ D �
� 0.0/

2L
CO

�
1=L2

�
; 2.242

85Note that we need Pa as an operator only because jN i includes both subchain parities. If we
computed hN; ˛jP �H a

@
P jN; ˛i instead, we had Pa D C1.
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and we find with the same arguments as beforeh
1CeˇŒ�.L=2L/��.1=2L/�

i
D 2 �

ˇ

2L
� 0.0/CO

�
ˇ2=L2

�
2.243ah

1CeˇŒ�.1=2L/��.L=2L/�
i
D 2C

ˇ

2L
� 0.0/CO

�
ˇ2=L2

�
; 2.243b

where the 0th order no longer drops out. Thus there is an additional term in the
boundary contribution:

Ba.ˇ;N / �
ˇ

2L
� 0.0/ hn1 � nLi CO

�
ˇ2=L2

�
C2hn1 C nL � 2n1nLi :

2.244

If we use hn1 � nLi D O.1/ and ˇ=2L D O
�
ˇ2=L

�
for L;ˇ !1 and ˇ=L! 0,

this reads
Ba.ˇ;N / � 2hn1 C nL � 2n1nLi CO

�
ˇ2=L

�
: 2.245

The last term accounts for the density gradient contribution, as known from the bulk
energy, and vanishes accordingly (thus we may ignore it)—whereas the first term
is new and a direct consequence of the even–subchain-parity components in jN i.
This contribution is absent for jN;�1i (instead of jN i); then, the other boundary
term Bb.ˇ;N / takes the form of (2.245).

It is easy to see that for ˇ D 0, where P0;N jN; ˛i D jN; ˛i, the first term
equals 4�.1 � �/; it makes the energy of the equal-weight superpositions positive
except for the limiting cases of empty or completely filled systems. To get rid of this
contribution, we have two choices:

1 The ansatz wave function only incorporates configurations where n1 D nL,
so that single-particle hopping is prohibited.

2 The ansatz wave function is empty in the vicinity of the “boundary” sites 1
and L, i.e., n1 D 0 D nL.

The first choice is more general as it still allows particles at the boundary—but
only with perfect correlations. We are going for the second one as it is perfectly
compatible with our ansatz wave functions Pˇ;N jN; ˛i in that the local particle
density can be conveniently controlled via the potential � .

To this end, we point out that

hn1 C nL � 2n1nLi � hn1i C hnLi ; 2.246

so all we have to achieve is hnii ! 0 for L!1 and fixed density 0 < � < 1 with
i D 1;L. In conclusion, the total intra-chain boundary energy can be estimated as

Ba;b.ˇ;N / D Ba.ˇ;N /C Bb.ˇ;N / 2.247a

� 2hn1 C nL C nLC1 C n2Li CO
�
ˇ2=L

�
: 2.247b
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Inter-chain boundary — Analogous reasoning leads to the conclusion that the inter-
chain boundary contribution Bab.N; ˛/ vanishes together with the local particle
density at the double-chain boundary hn1 C nL C nLC1 C n2Li. We define

Bab.ˇ;N / �
1

2
.Bab.N;C1/C Bab.N;�1// D

hN jP �Hab
@

P jN i

hN jP �P jN i
: 2.248

If we now use that ŒH ab
@
;P � D 0 and .�1/N D �1 by assumption, the evaluation

of (2.248) yields the simple result

Bab.ˇ;N / D 2hn1nL.1 � nLC1/.1 � n2L/i

C2hnLC1n2L.1 � n1/.1 � nL/i :

2.249

Therefore we can upper bound the inter-chain boundary energy by

Bab.ˇ;N / � hn1 C nL C nLC1 C n2Li ; 2.250

the same condition as for the intra-chain boundary energy (2.247b). Here we used
the simple estimate hXY i � 1

2
.hXi C hY i/ for binary random variables X and Y .

As a final remark, we stress that ŒH ab
ı ;P � D 0 makes all inter-chain bulk

contributions vanish such that there is no bulk energy associated to pair hopping (as
explained previously). Due to the “chain exchange symmetry” of P , the imprinted
density gradient only increases the intra-chain energy density.

Local Density of a Lattice Gas

To make the energy of Pˇ;� jN; ˛i go to zero on a periodic double-chain with odd
total filling, the boundary density hniimust vanish for L!1 and fixed 0 < � < 1;
if possible as fast as O

�
ˇ2=L

�
for the upper bound to be as tight as possible. We

have to choose ˇ and � appropriately to achieve this. The idea is the following:

1 For L!1 and fixed �, hn1i describes the local particle density of a lattice
gas at inverse temperature ˇ at position x D 0 (actually x1 D 1=2L). The
same is true for hnLi which probes the density at xL D L=2L D 1=2.

2 The shape of � 2 C1.Œ0; 1�; Œ0; 1�/ (the “energy landscape”) and the density
0 < � < 1 determine the lowest-energy configuration n0 2 f0; 1g

2L of
H.n/ D

P2L
iD1 �.i=2L/ni with jn0j D N D 2L�. n0 takes the form of a

filled “Fermi sea” F0 � f i j .n0/i D 1g due to the hard-core constraint of
the particles, Figure 2.21.

In the thermodynamic limit, F0 can be considered a continuous subset of
Œ0; 1� so that

hn.x/i
ˇ!1

����!

(
0 for x … F0 ;

1 for x 2 F0 ;
2.251
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and Z 1

0

dx n.x/ D � D const : 2.252

3 Intuition tells us that the particle density outside the Fermi sea is exponentially
suppressed with ˇ, i.e., for x separated from F0, one expects for large L the
Fermi-Dirac distribution

hn.x/i D
1

1C eˇ.�.x/��F /
� e�ˇ.�.x/��F / ; 2.253

for ˇ !1 with the “Fermi energy” �F � maxx2F0
�.x/. Some remarks on

Eq. (2.253) follow below.

4 We conclude that if �.x/ is chosen so that the region around x D 0

(equivalently, x D 1=2) lies outside the Fermi sea F0, the boundary densities
hn.0/i D hn.1=2/i can be exponentially suppressed with ˇ. At the same time,
the upper bound of the bulk energy grows only polynomially with ˇ, namely
with ˇ2=L (Result 2.2).

As ˇ is a free parameter of the ansatz Pˇ;� , we are free to choose

ˇ D ˇ.L/ � ���1 logL 2.254a

) jGi D jG.L; �; ˛/i � Pˇ.L/;� j2L�; ˛i 2.254b

with the energy gap �� � �.0/ � �F .

Then, the energy of jGi can be bounded from above for L large enough:

hGjH jGi � C1
log2L
L„ ƒ‚ …

Bulk

C C2
1

L„ƒ‚…
Boundary

with C1; C2 > 0 : 2.255

Here we combined the results (2.216), (2.237), (2.247b), (2.250) and (2.253)
with the logarithmically diverging inverse temperature (2.254a).

5 As a last step, we point out that for all " > 0 there exists an L" > 0 such that
for all L � L"

log2L
L
�
L"

L
D

1

L1�"
; 2.256

so that

Result 2.3: Upper bound on the lowest eigenenergy

hGjH jGi �
C

L1�"
for all " > 0 and L � L" 2.257

with constant C > 0.
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This is as close to the observed scaling L�1 as we get [recall the DMRG
results in Figure 2.13 (b)].

Fermi-Dirac distribution — As promised, we conclude our discussion with some
remarks on the Fermi-Dirac distribution. Recall that Eq. (2.253) is crucial for the
line of argument that establishes the upper bound (2.257).

The derivation of
hn.x/i D

1

1C eˇ.�.x/��F /
2.258

is straightforward for the grand-canonical ensemble with the (classical) Hamiltonian
H.n/ D

PL
sD1 �.s=L/ns. There we have

Z.ˇ;�/ D
X

n2f0;1gL

exp

"
�ˇ

LX
sD1

�.xs/ns C ˇ �

LX
sD1

ns

#
2.259a

D

LY
sD1

X
nsD0;1

e�ˇ.�.xs/��/ns 2.259b

with xs � s=L. Consequently

hn.y/i D �
1

ˇ

@ lnZ.ˇ;�/
@�.y/

2.260a

D �
1

ˇ

@

@�.y/
ln
h
1C e�ˇ.�.y/��/

i
D

1

1C eˇ.�.y/��/
2.260b

and we are done. Note that the chemical potential � takes the place of the Fermi
energy �F since the particle number fluctuates.

In the canonical ensemble this becomes much more complicated to derive
rigorously86. For finite systems, there is no chemical potential in the canonical
ensemble but a N -dependent quantity �.ˇ;N / that takes its place and depends
non-trivially on both temperature and particle number:

hn.yr/i D Z.ˇ;N /
�1

X
jnjDN

nr e
�ˇH.n/

D
1

1C
P

nr D0 e
�ˇH.n/P

nr D1 e
�ˇH.n/

; 2.261

where the sums are all constrained by the particle number N . If we introduce the
primed system as given by � but with site r removed (thus of size L � 1), we can
write

hn.yr/i D
1

1C eˇ�.yr / Z0.ˇ;N/

Z0.ˇ;N�1/

; 2.262

where we extracted the prefactor eˇ�.yr / from the sum in the denominator (nr D 1).

86This is so because the form (2.258) is valid only in the thermodynamic limit where canonical and
grand-canonical ensemble become equivalent.
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If we define the chemical potential of the primed system as free energy difference
for adding a single particle,

�0.ˇ;N / � A0.ˇ;N / � A0.ˇ;N � 1/ 2.263a

D �
1

ˇ
logZ0.ˇ;N /C

1

ˇ
logZ0.ˇ;N � 1/ ; 2.263b

this yields the expression

hn.yr/i D
1

1C eˇ.�.yr /��0.ˇ;N//
: 2.264

Here we concealed all our problems in the unknown expression �0.ˇ;N /.
Due to the equivalence of ensembles, it is expected that for fixed filling � first

lim
L!1

�0.ˇ; �L/ D �.ˇ; �/ <1 ; 2.265

and second
lim
ˇ!1

�.ˇ; �/ D �F .�/ ; 2.266

where �F .�/ � limL!1 �F .N D �L;L/ is the Fermi energy in the thermodynamic
limit (which depends on the potential � and the density �). The function
�F D �F .N;L/ for finite L is well-defined by filling N particles in the discretized
potential �.xs/, illustrated in Figure 2.21 and Figure 2.22 as “Fermi sea” F0.

For a rigorous justification of Result 2.3, a likewise rigorous treatment of the
limits (2.265) and (2.266) is required. We leave this as a challenge for the future.

Low-Energy Physics with Phase Slips

The preceding discussion was based on double-chains with PBC in the odd-N
sectors. We found that by choosing a potential �.x/ with maximum at the critical
sites 1 and L, the ground state energy approaches zero in the thermodynamic
limit. Thus the even-odd/odd-even sectors are gapless for PBC and there is no
single-particle gap—in accordance with numerical results.

We can, however, apply these findings to systems with OBC and exact zero-
energy ground states as well. To this end, consider the generic single-particle phase
field

Definition 2.4: Single-particle phase field

…�a;�b
� exp

(
i

LX
sD1

h
�a

� s
L

�
nas C �b

� s
L

�
nbs

i )
2.267
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which imprints the single-particle phases �a; �b W Œ0; 1� ! Œ0; 2�/ on the upper
and lower chain, respectively:

j�a; �bIN; ˛i � …�a;�b
jN; ˛i : 2.268

In contrast to our previously considered family of density-modulated wave functions,

jˇ; � IN; ˛i �
1
p
Z

Pˇ;� jN; ˛i ; 2.269

the new phase-modulated family is automatically normalized as…�a;�b
is unitary.

In the following, we use the combined density- and phase-modulated wave
functions

j�; �i D jˇ; �; �a; �bIN; ˛i �
1
p
Z

Pˇ;�…�a;�b
jN; ˛i 2.270

to shed light on the low-energy bulk physics. Note that the order of … and P does
not matter as both depend on nxi only.

A first observation is that there is a non-trivial phase transformation, � D
.�a; �b/ D .�; 0/, which imprints a constant phase of � on one (here, the
upper) chain and none on the other. This phase does not affect the inter-
chain interaction H ab as the latter is subchain-parity-symmetric. Therefore
ŒH;…�;0� D 0, irrespective of the boundary conditions.

Let us now try to construct low-energy states that mix both phase and density
modulation:

1 We consider the phase field �ax1;x2
.x/ � .'x1;x2

.x/; 0/, where 'x1;x2
.x/ �

� � 1Œx1;x2�.x/. The field �ax1;x2
imprints a phase of � between positions x1

and x2 on the upper chain, Figure 2.23.

The state j� D 0; �ax1;x2
i has finite energy since both the intra-chain terms

H a of chain a at sites x1;2 and the corresponding inter-chain coupling terms
H ab yield finite energy expectation values. In between x1 and x2 there is no
contribution due to the uniformity of the phase and the fixed relative phase of
� between the chains.

2 Since the reason for the finite energy density at x1 and x2 is the same as
for PBC with odd total filling at the boundary (that is, a single-particle
“phase slip” of �), it can be avoided by the same means: Choose a potential
�x1;x2

.x/ with smooth peaks at x1 and x2 so that for given � both points
are well-separated from and above the “Fermi surface” F0. The inverse
temperature is again ˇ.L/ / logL so that the system is “cooled down” in
the thermodynamic limit.
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Figure 2.23 • Low-energy phase slip. Asymmetric low-energy phase slip in a double-chain
with open boundary conditions. The maxima of an appropriately chosen potential �x1;x2

.x/ are
used to suppress the particle density n.x/ smoothly at the two separate locations x1 and x2 on
the double-chain. The imprinted single-particle phase �ax1;x2

.x/ realizes a phase slip of � that
is pinned to the density minima without energy penalty. The intra-chain energy of the density
gradient vanishes in the thermodynamic limit.

3 The result of this construction is illustrated in Figure 2.23: The bulk energy
from the density gradient vanishes for L!1 while the slowly decreasing
temperature T ! 0 depletes the positions x1 and x2 where the phase slips
might cause energetic trouble. We end up with a family of low-energy states

jx1; x2i � j�x1;x2
; �x1;x2

i 2.271

that describe the propagation of a �-phase slip through the system. The
importance of this result is underpinned by the observation

j1;Li D …�a
1;L
jN; ˛i D ei�

P
s n

a
s jN; ˛i D ˛ jN; ˛i ; 2.272

i.e., “pulling” a �-phase slip through the whole upper chain yields access to
the non-local subchain parity ˛.
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For a concluding remark, we return to the original problem: Periodic boundary
conditions with odd total parity. Clearly, the Hamiltonian H is translationally
invariant whereas the constructed states jGi D j�0; � D 0i with vanishing energy
in the thermodynamic limit and depleted sites 1 and L are not. (Here, �y is
characterized by a single, smooth peak at y so that y is above the Fermi level for
given �.)

As a matter of fact, whether we deplete the chain smoothly at y D 0 or any
other position 0 � y � 1 should not make any difference—due to the translational
invariance of H any such state must belong to the low-energy sector. To understand
why this intuitive statement is indeed true, define the following family of states

jyi � j�y; �
a
0;yi ; 2.273

characterized by a density dip at y and a �-phase slip between 0 and y. By
construction, there is no energy to be payed at the phase slip boundary y as it is
depleted by �y (for L ! 1). If we derive this state from jN;C1i with N odd
subject to the PBC HamiltonianH , then, due to the fermion gauge and the positive
upper-chain parity, there is a statistics-induced phase difference of � between sites
1 and L [recall (2.112) and (2.113)]. In jyi, this difference is increased to a phase
jump of 2� by the artificially introduced phase slip of � at y D 0. So in this
subchain-parity sector (˛ D C1), we no longer pay energy at the origin but would
pay energy at y instead if we had not called for a density dip at this very position.

In a nutshell: By introducing �-phase slips, one can shift the “boundary” to
arbitrary positions on the PBC double-chain. Thus the “boundary” is not physically
distinct but emerges due to (partially) fixing the fermion gauge. Introducing the
upper-chain phase slip…�a

0;y
then corresponds to a gauge transformation.

2.B.3 Upper Bound in the Even-Even Sector

Here we show that the energy of the phase-modulated state

jG0i D exp

"
i
�

L

LX
sD1

s .a�sas C b
�
s bs/

#
„ ƒ‚ …

�Uab
L

j2K;C1i 2.274

reads
hG0jH jG0i D 2 � 4�.1 � �/ � L � sin

2
� �
2L

�
2.275

and vanishes with L�1 for L!1. The motivation for jG0i is to imprint a chain-
symmetric single-particle phase on the equal-weight superposition to compensate
for the twisted boundary conditions (2.112) in the thermodynamic limit.
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Obviously ŒH ab; U ab
L � D 0 so that

hG0jH jG0i D h2K;C1jU
ab�
L

�
H a
CH b

CH ab
�
U ab
L j2K;C1i

D 2 h2K;C1jU
a�
L H aU a

L j2K;C1i„ ƒ‚ …
DhG0jHajG0i

: 2.276

Here we used that H abj2K;C1i D 0—even for periodic boundary conditions,
recall Eq. (2.113) for ˛˛ D C1. Furthermore, we defined

U a
L D exp

"
i
�

L

LX
sD1

s a�sas

#
2.277

and used that upper and lower chain are completely symmetric in the even-even
sector. Thus it is sufficient to evaluate the expectation value for one of the two
subchains:

hG0jH
a
jG0i D N �1

L;2K;C1

X
n;mI

.�1/n;mDC1

hnjU
a�
L H aU a

L jmia

� h2K � nj2K �mib„ ƒ‚ …
. L

2K�n
/ ın;m

:

2.278

We find
hnjU

a�
L H aU a

L jnia

D

LX
sD1

hnj e�i �
L
Œsna

s C.sC1/na
sC1

�H a
s e

i �
L
Œsna

s C.sC1/na
sC1

�
jnia 2.279

with
H a
s D �a

�
sC1as � a

�
sasC1 C n

a
s .1 � n

a
sC1/C n

a
sC1.1 � n

a
s / : 2.280

It is easy to see that

e�i �
L
Œsna

s C.sC1/na
sC1

�H a
s e

i �
L
Œsna

s C.sC1/na
sC1

�

D

(
� e�i �

L a
�
sC1as � e

i �
L a�sasC1

C nas .1 � n
a
sC1/C n

a
sC1.1 � n

a
s /

)
2.281

for 1 � s < L, and for s D L

e�i �
L
ŒLna

LCna
1 �H a

L e
i �

L
ŒLna

LCna
1 �

D

(
� ei

�
L
.L�1/ a

�
1aL � e

�i �
L
.L�1/ a

�
La1

C naL.1 � n
a
1/C n

a
1.1 � n

a
L/

)
: 2.282
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If we apply the equal-weight superpositions jnia on both sides, we find

hnje�i �
L
Œsna

s C.sC1/na
sC1

�H a
s e

i �
L
Œsna

s C.sC1/na
sC1

�
jni

D

n
�e�i �

L � ei
�
L C 1C 1

o
�

 
L � 2

n � 1

!
2.283a

D 2
h
1 � cos

��
L

�i
�

 
L � 2

n � 1

!
2.283b

D 4 sin2
� �
2L

�
�

 
L � 2

n � 1

!
2.283c

in both cases, i.e., for 1 � s � L. This is only true because n is even so that the
hopping a�1aL across the chain yields an additional minus sign that cancels the
factors e˙i �

L
L D �1 in Eq. (2.282) (recall the fermion ordering in Figure 2.6).

As the last expression does not depend on s, it is

hnjU
a�
L H aU a

L jnia D 4L sin2
� �
2L

�
�

 
L � 2

n � 1

!
; 2.284

and finally

hG0jH
a
jG0i D 4L sin2

� �
2L

�
�N �1

L;2K;C1

X
nI .�1/nDC1

 
L

2K � n

! 
L � 2

n � 1

!
:

2.285

If we write X
n even

 
L

2K � n

! 
L � 2

n � 1

!
D

X
m odd

 
L

.2K � 1/ �m

! 
L � 2

m

!
; 2.286

the last terms can be cast into PsBCs:

N �1
L;2K;C1

X
nI .�1/nDC1

 
L

2K � n

! 
L � 2

n � 1

!
D

 
L;L

C1

!�1

2K

 
L � 2;L

�1

!
2K�1

: 2.287

Then we can use relation (2.45) for the asymptotic expression 
L;L

C1

!�1

2K

 
L � 2;L

�1

!
2K�1

� �.1 � �/ 2.288

at fixed density � for L!1. This yields the final result

hG0jH jG0i D 2 � 4�.1 � �/ � L � sin
2
� �
2L

�
: 2.289
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For L!1, we get the algebraic decay

hG0jH jG0i �
2�.1 � �/�2

L
: 2.290

The energy of jG0i vanishes due to the smoothly varying single-particle phase
that cancels the sign of fermions that propagate across the chain. Since the phase
field is the same for both subchains, the inter-chain interactionH ab is not affected
by this modification and only intra-chain contributions prevent jG0i from being a
zero-energy ground state in finite systems.

2.C Bethe Ansatz Solutions

In this section, we employ Bethe ansatz wave functions [245] to solve our model
completely in the N � 2-particle sectors (for periodic boundary conditions). The
most complex (and most interesting) sector is the even–subchain-parity sector for
filling N D 2, which is the simplest interacting many-particle sector. There we
find three fundamentally distinct classes of excitations: one describes two-fermion
bound states; the other two are scattering states with either finite or vanishing fermion
pairing, respectively.

We start in ⁂ Subsection 2.C.1 with a careful translation of our fermionic theory
into a spin model via Jordan-Wigner transformation; in particular, we show how
translational invariance can be restored by an appropriate choice of the fermion
gauge. In⁂ Subsection 2.C.2 we revisit the non-interacting single-particle sector for
the sake of completeness—and to prepare for ⁂ Subsection 2.C.3 where we study
the interacting two-particle sector in detail. We conclude in ⁂ Subsection 2.C.4
with a detailed proof of Lemma 2.1.

2.C.1 Jordan-Wigner Transformation

We start with the general form of our model in Jordan-Wigner representation with
periodic boundary conditions. First, remember that the Hamiltonian reads

H D

LX
iD1

�
H a
i CH

b
i CH

ab
i

�
2.291

where the indices are integers modulo L. Each subchain x D a; b is governed by
intra-chain interactions

H x
i D xix

�
iC1 C xiC1x

�
i C n

x
i .1 � n

x
iC1/C n

x
iC1.1 � n

x
i / : 2.292
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In addition, both subchains are coupled via pair hopping:

H ab
i D a

�
i a
�
iC1bibiC1 C b

�
i b
�
iC1aiaiC1

C nai n
a
iC1.1 � n

b
i /.1 � n

b
iC1/

C nbi n
b
iC1.1 � n

a
i /.1 � n

a
iC1/ :

2.293

Let us introduce the following pictorial representation of projectors acting on
the spin-1

2
Hilbert space HL D

NL
iD1.C

a
i /
2 ˝ .Cb

i /
2:ˇ̌̌ E D ˇ̌̌

i
� 1a1 : : : j#ih#j

a
i ˝ j"ih"j

a
iC1 : : :1

a
L

˝1b1 : : :1
b
L

2.294a

ˇ̌̌ E D ˇ̌̌
i
� 1a1 : : :1

a
L

˝1b1 : : : j"ih"j
b
i ˝ j#ih#j

b
iC1 : : :1

b
L ;

2.294b

and similarly for other configurations of sites i and i C 1 on the upper and lower
chain. In particular, we writeˇ̌̌ E D ˇ̌̌

i
� 1a1 : : : j#ih#j

a
i ˝ j#ih#j

a
iC1 : : :1

a
L

˝1b1 : : : j"ih"j
b
i ˝ j"ih"j

b
iC1 : : :1

b
L

2.295a

ˇ̌̌ E D ˇ̌̌
i
� 1a1 : : : j"ih"j

a
i ˝ j"ih"j

a
iC1 : : :1

a
L

˝1b1 : : : j#ih#j
b
i ˝ j#ih#j

b
iC1 : : :1

b
L :

2.295b

If we recall the chosen fermion gauge (the numbering of fermion sites in
Figure 2.6), it is easy to see that the Jordan-Wigner representations of the intra-
chain Hamiltonians read

H a
i D �.�˛/

ıi;L

hˇ̌̌ E D ˇ̌̌
i
C

ˇ̌̌ E D ˇ̌̌
i

i
C

hˇ̌̌ E D ˇ̌̌
i
C

ˇ̌̌ E D ˇ̌̌
i

i 2.296

and
H b
i D �.�˛/

ıi;L

hˇ̌̌ E D ˇ̌̌
i
C

ˇ̌̌ E D ˇ̌̌
i

i
C

hˇ̌̌ E D ˇ̌̌
i
C

ˇ̌̌ E D ˇ̌̌
i

i
;

2.297

where ˛ (˛) denotes the subchain parities for chain a (b). The subchain-
parity–dependent signs are associated with the hopping between sites 1 and L which
corresponds to an exchange of the hopping fermion with all other fermions of a
subchain. An equivalent representation is given in Eq. (2.112) of Subsection 2.4.2.
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An analogous reasoning leads to the representation of the inter-chain interaction

H ab
i D �.˛˛/

ıi;L

hˇ̌̌ E D ˇ̌̌
i
C

ˇ̌̌ E D ˇ̌̌
i

i
C

hˇ̌̌ E D ˇ̌̌
i
C

ˇ̌̌ E D ˇ̌̌
i

i
;

2.298

where ˛˛ D .�1/N with filling N . Again, an equivalent representation is given in
Eq. (2.113) of Subsection 2.4.2.

Depending on the subchain parities ˛ and ˛, the Hamiltonian (2.291) is in
general not translationally invariant in this representation. This leads to technical
difficulties in the context of the Bethe ansatz—which makes use of plane wave
solutions (with additional scattering phases) and thereby relies on translational
invariance.

Restoring Translational Invariance

We therefore are encouraged to find a translationally invariant representation of the
Hamiltonian. Since the original fermion Hamiltonian is translationally invariant by
construction, the observed breaking of translational invariance must be limited to
the gauge level. Thus, for a given subchain-parity sector .˛; ˛/, we can hope for
an appropriately chosen fermion gauge that restores translational invariance of the
representation.

A general U.1/ gauge transformation of the fermion algebra is given by

Qxj � e
�i�x

j xj for x D a; b and j D 1; : : : ; L 2.299

for arbitrary functions �x W f1; : : : ; Lg ! Œ0; 2�/. This unitary transformation
clearly preserves the fermion algebra, f Qxi ; Qx

�
j g D ıij , and induces a transformation

on the Fock basis via

jn;mi D
�
a
�
1

�n1

: : :
�
a
�
L

�nL
�
b
�
1

�m1

: : :
�
b
�
L

�mL

j0i 2.300a

D e�i
P

j .�
a
j
nj C�b

j
mj /

�
Qa
�
1

�n1

: : :
�
Qa
�
L

�nL
�
Qb
�
1

�m1

: : :
�
Qb
�
L

�mL

j0i 2.300b

� e�i
P

j .�
a
j
nj C�b

j
mj / jn;mi� 2.300c

with the fermion number operators nxj D x
�
j xj D Qx

�
j Qxj . If we define the unitary

T� � e
i
P

j .�
a
j
ni C�b

j
mi /, the gauge transformation simply reads

jn;mi� D T� jn;mi and Qxj D T�xjT
�

�
: 2.301
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We can express the fermionic Hamiltonian in this U.1/-rotated Fock basis and
subsequently apply the Jordan-Wigner transformation87. Then its local components
read

Ha
i D �.�˛/

ıi;L

8̂<̂
:

ei.�
a
i

��a
iC1

/
ˇ̌̌ E D ˇ̌̌�

i

Ce�i.�a
i

��a
iC1

/
ˇ̌̌ E D ˇ̌̌�

i

9>=>;C : : : ; 2.302a

H b
i D �.�˛/

ıi;L

8̂<̂
:

ei.�
b
i

��b
iC1

/
ˇ̌̌ E D ˇ̌̌�

i

Ce�i.�b
i

��b
iC1

/
ˇ̌̌ E D ˇ̌̌�

i

9>=>;C : : : ; 2.302b

and

Hab
i D �.˛˛/

ıi;L

8̂<̂
:
e�i.�a

i
C�a

iC1
��b

i
��b

iC1
/
ˇ̌̌ E D ˇ̌̌�

i

Cei.�
a
i

C�a
iC1

��b
i

��b
iC1

/
ˇ̌̌ E D ˇ̌̌�

i

9>=>;C : : : ; 2.303

where we suppressed the invariant density terms. Note that the indices i are
numbers modulo L, i.e., �xLC1 � �

x
1 (this is a definition and not a constraint on �x).

Given .˛; ˛/, we seek for a gauge transformation �x so that the coefficients
become translationally invariant, i.e., independent of i . Here we are particularly
interested in the N D 2-particle sector; thus we restrict our discussion to the
symmetric sectors with ˛ D ˛:

If ˛ D �1 D ˛, the Hamiltonian is already translationally invariant and we can
set �xj � 0 for all j D 1; : : : ; L and x D a; b. By contrast, for ˛ D C1 D ˛ the
naïve Jordan-Wigner representation is not translationally invariant due to the sign
between sites 1 and L. To restore translational invariance, we set �xj � j

�
L
for all

j D 1; : : : ; L and x D a; b.
Indeed,

.�˛/ıj;L e�i.�a
j

��a
j C1

/
D .�˛/ıj;L e�i.�b

j
��b

j C1
/ 2.304a

D

(
ei

�
L j ¤ L ;

.�1/ � e�i.�x
L��x

1 / D ei
�
L j D L ;

2.304b

and
.˛˛/ıj;L e�i.�a

j
C�a

j C1
��b

j
��b

j C1
/
D 1 : 2.305

Loosely speaking, we “distribute” the phase jump of � for a fermion going once
around a subchain uniformly on all hopping amplitudes along the chain.

With these preliminaries, we are now in the position to apply the Bethe ansatz:
Due to the restored translational invariance, we can expect the eigenvalue equations
to become particularly simple in momentum space, and the eigenstates to be related
to plane waves with well-defined momenta.

87Of course this can be done in one step with a modified Jordan-Wigner transformation that takes
the phases �xi into account. After all, this is about unitary equivalent representations of the same
physical model.
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2.C.2 The Non-Interacting Sectors

For the sake of completeness (and to prepare for ⁂ Subsection 2.C.3), we start with
the simplest sectors of the Hilbert space, namely both single-particle subsectors
(N D 1) and the odd-odd subsector with two particles (N D 2). As there are no
relevant interactions in these subsectors, the theory is trivially solvable by plane
waves.

The Free Sectors for N D 1

In the single-particle sector N D 1 there are two subchain-parity subsectors,
indexed by .˛; ˛/ D .C1;�1/ and .�1;C1/, depending on the location of the
single fermion. As both cases are symmetric, we consider w.l.o.g. the case where the
fermion is in chain a (upper chain) such that we can diagonalize the Hamiltonian
on the L-dimensional Hilbert space HN

˛ with N D 1 and ˛ D �1. Note that the
following calculation is almost identical to the one in Subsection 2.4.1—except for
the periodic boundary conditions (only the allowed momenta are different).

If we introduce

jni � j"1 : : : #n : : : "Li
a
˝ j"1 : : : "Li

b
$ a�nj0i 2.306

with one “fermion” at site n on the upper chain88, a generic state reads

j‰i D
X
n

a.n/jni ; a.n/ 2 C : 2.307

To solveH j‰i D Ej‰i, we applyH D
P
i.H

a
i CH

b
i CH

ab
i / on j‰i and exploit

that only the terms H a
i contribute. Since ˛ D �1, the resulting Hamiltonian is

88Note that in the single-particle sector, there is no difference between Fock states and the spin-1
2

states of the Jordan-Wigner representation.
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already translationally invariant and one derives easily

H j‰i D

LX
iD1

LX
nD1

a.n/H a
i jni 2.308a

D

LX
iD1

LX
nD1

a.n/

(
ıi;njni C ıi;n�1jni

�ıi;njnC 1i � ıi;n�1jn � 1i

)
2.308b

D

LX
nD1

a.n/ Œ2jni � jnC 1i � jn � 1i� 2.308c

D

LX
nD1

Œ2a.n/ � a.n � 1/ � a.nC 1/� jni 2.308d

Š
D E

LX
nD1

a.n/jni ; 2.308e

where we performed an index shift in the second-last row and used the boundary
condition a.nC L/ D a.n/.

This yields the equation

2a.n/ � a.n � 1/ � a.nC 1/ D E a.n/ 2.309

which is immediately solved by the plane wave ansatz a.n/ D Aeikn with momenta
k 2 R if and only if

E D 2

�
1 �

eik C e�ik

2

�
D 4 sin2

�
k

2

�
� E.k/ : 2.310

So far k is arbitrary. However, above we required the L-periodicity of a.n/ which
restricts the wavenumber to discrete values:

eik.nCL/ Š
D eikn , kL 2 2�Z , k 2

2�

L
Z : 2.311

Restricting k further to the first Brillouin zone, 0 � k < 2� , yields the orthogonal
eigenstates

jki � jkIN D 1; ˛ D �1i D
1
p
L

LX
nD1

eiknjni 2.312

with k 2 2�
L
f0; 1; : : : ; L � 1g. For k D 0, we recover the already known ground

state j0IN D 1; ˛ D �1i D jN; ˛i with energy E.0/ D 0, namely the equal-weight
superposition of all single-fermion states. The eigenstates jki are commonly termed
single-magnon states for the Heisenberg chain [265,266].
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The Free Sector for N D 2

In the subsector HN
˛ with N D 2 and ˛ D �1, there is one fermion in each

subchain and—due to the subchain-parity conservation of the Hamiltonian—we
expect them to propagate freely. To derive the spectrum rigorously, define the
Jordan-Wigner representation of a�nb

�
mj0i,

jn;mi � j"1 : : : #n : : : "Li
a
˝ j"1 : : : #m : : : "Li

b ; 2.313

with one “fermion” on site n in the upper and another one on site m in the lower
chain. A generic state reads then

j‰i D
X
n;m

c.n;m/jn;mi ; c.n;m/ 2 C : 2.314

Application of the Hamiltonian yields

H j‰i D

LX
iD1

LX
n;mD1

c.n;m/
h
Ha
i jn;mi CH

b
i jn;mi

i
2.315a

D

LX
n;mD1

c.n;m/

(
2jn;mi � jnC 1;mi � jn � 1;mi

C2jn;mi � jn;mC 1i � jn;m � 1i

)
2.315b

D

LX
n;mD1

(
4c.n;m/�c.n � 1;m/ � c.nC 1;m/

�c.n;m � 1/ � c.n;mC 1/

)
jn;mi 2.315c

Š
D E

LX
n;mD1

c.n;m/jn;mi ; 2.315d

where the inter-chain partH ab vanishes and the intra-chain terms are translationally
invariant due to ˛ D ˛ D �1.

Once again, periodicity translates into boundary conditions for the wave
function:

c.nC L;m/ D c.n;m/ D c.n;mC L/ : 2.316

The eigenvalue equation reads(
4c.n;m/�c.n � 1;m/ � c.nC 1;m/

�c.n;m � 1/ � c.n;mC 1/

)
D E c.n;m/ 2.317

and is solved by c.n;m/ D C eikanCikbm for ka; kb 2 R with a dispersion

E D 4 sin2
�
ka

2

�
C 4 sin2

�
kb

2

�
� E.ka; kb/ 2.318
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that is just the sum of the energies of two magnons with wavenumbers ka and kb,
respectively. The periodicity (2.316) leads to discrete wavenumbers ka; kb 2 2�

L
Z

and the eigenbasis is given by

jka; kbIN D 2; ˛ D �1i D
1

L

LX
n;mD1

eikanCikbmjn;mi 2.319

with ka; kb 2 2�
L
f0; 1; : : : ; L � 1g; the zero-energy ground state is again the

equal-weight superposition of two fermions with fixed subchain parity,

j0; 0IN D 2; ˛ D �1i D jN; ˛i : 2.320

Finally, note that (2.319) is nothing but the tensor product of two free magnon
states,

1

L

LX
n;mD1

eikanCikbmjn;mi D
1
p
L

LX
nD1

eikanjnia ˝
1
p
L

LX
mD1

eikbmjmib ; 2.321

as the system equals the sum of two non-interacting chains each within its single-
particle sector.

2.C.3 The Interacting Sector of Two Particles

The simplest sector where genuine fermion-fermion scattering takes place is the
even–subchain-parity subsector in the two-particle sector, that is, HND2

˛D1 . The latter
is L.L � 1/=2C L.L � 1/=2 D L.L � 1/-dimensional and its generic states have
the form

j‰i D
X

1�n<m�L

�
a.n;m/

ˇ̌̌̌
n;m

0

��

C b.n;m/

ˇ̌̌̌
0

n;m

���
; 2.322

where we introduced the states (n < m)ˇ̌̌̌
n;m

0

��

� j"1 : : : #n : : : #m : : : "Li
a
˝ j"1 : : : "Li

b 2.323aˇ̌̌̌
0

n;m

��

� j"1 : : : "Li
a
˝ j"1 : : : #n : : : #m : : : "Li

b 2.323b

that correspond to Qa�n Qa
�
mj0i and Qb

�
n
Qb
�
mj0i, respectively.
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Recall that, since ˛ D 1 D ˛, we need to re-gauge the fermions x ! Qx to obtain
a translationally invariant Hamiltonian in Jordan-Wigner representation. Then, the
Hamiltonian takes the form

H D

LX
jD1

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

ˇ̌̌ E D ˇ̌̌�
j
C

ˇ̌̌ E D ˇ̌̌�
j

�e�i �
L

ˇ̌̌ E D ˇ̌̌�
j
� ei

�
L

ˇ̌̌ E D ˇ̌̌�
j

C

ˇ̌̌ E D ˇ̌̌�
j
C

ˇ̌̌ E D ˇ̌̌�
j

�e�i �
L

ˇ̌̌ E D ˇ̌̌�
j
� ei

�
L

ˇ̌̌ E D ˇ̌̌�
j

C

ˇ̌̌ E D ˇ̌̌�
j
C

ˇ̌̌ E D ˇ̌̌�
j

�

ˇ̌̌ E D ˇ̌̌�
j
�

ˇ̌̌ E D ˇ̌̌�
j

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

2.324

with complex hopping amplitudes that are reminiscent of the fermionic statistics of
the original model89.

Derivation of the Bethe Equation

Expanding the eigenvalue equation in terms of the amplitudes a.n;m/ and b.n;m/
is here more involved since the inter-chain interactionH ab

i does not vanish anymore:

H j‰i D

LX
jD1

X
1�n<m�L

8̂̂̂<̂
ˆ̂:

a.n;m/ .Ha
j CH

ab
j /

ˇ̌̌̌
n;m

0

��

Cb.n;m/ .H b
j CH

ab
j /

ˇ̌̌̌
0

n;m

��

9>>>=>>>; 2.325a

Š
D E

X
1�n<m�L

�
a.n;m/

ˇ̌̌̌
n;m

0

��

C b.n;m/

ˇ̌̌̌
0

n;m

���
: 2.325b

A closer look at this equation yields a simple procedure to write down the eigenvalue
equations for a.n;m/ and b.n;m/ without any cumbersome calculations: Start, for
example, with the coefficient Ea.n;m/ on the right-hand side. Then we have to
find all possible original states (and their coefficients) on the left-hand side which
can be mapped by eitherH a

i orH ab
i onto this very state. We can write down their

coefficients on the right-hand side of the equation Ea.n;m/ D : : : immediately if
we consider two cases separately:

89From this perspective, the statistics of fermions arises due to the Aharonov-Bohm phase and
a magnetic flux in an equivalent bosonic theory. This relation between statistics and gauge fields is
ubiquitous in condensed matter physics, exemplified by Chern-Simons gauge theories that describe
the anyonic excitations of fractional quantum Hall fluids [40,42].
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1 The two particles are not adjacent, i.e., n < m � 1 and n ¤ 1 _m ¤ L.
Such configurations can only emerge from particles in the same chain (since
inter-chain pair hopping requires adjacent particles). Each particle could have
jumped from the left or right adjacent site to its current position. Hence
we find four contributions from shifted coefficients and, in addition, four
coefficients from particles that did not move at all:

E a.n;m/ D

(
4a.n;m/ � ei

�
La.nC 1;m/ � e�i �

La.n � 1;m/

� ei
�
La.n;mC 1/ � e�i �

La.n;m � 1/

)
; 2.326a

E b.n;m/ D

(
4b.n;m/ � ei

�
L b.nC 1;m/ � e�i �

L b.n � 1;m/

� ei
�
L b.n;mC 1/ � e�i �

L b.n;m � 1/

)
: 2.326b

We stress that each jump involves a complex phase e˙i �
L . Furthermore,

notice that in this case both subchains decouple due to the gap between the
particles. These equations hold for all 1 � n < m � L under the additional
constraints given above. This involves so far undefined expressions of the
form a.0;m/ and a.n;LC 1/ (see below).

2 The two particles are adjacent, i.e., n D m � 1 or n D 1 ^m D L.
We discuss the two subcases separately:

a Let n D m � 1.
In this case there are only two possible single-particle jumps: the left
particle could have jumped to the right or the right to the left. In
addition, the pair hopping contributes a coefficient from the other chain
which couples the upper- and lower-chain coefficients:

E a.n;m/ D

(
3a.n;m/ � ei

�
La.n;mC 1/

� e�i �
La.n � 1;m/ � b.n;m/

)
; 2.327a

E b.n;m/ D

(
3b.n;m/ � ei

�
L b.n;mC 1/

� e�i �
L b.n � 1;m/ � a.n;m/

)
: 2.327b

These equations hold for all n D 1; 2; : : : ; L � 1 and m D nC 1.

b Let n D 1 ^m D L.
As above, there are two possible single-particle jumps: the left particle
could have jumped to the left or the right to the right. In addition, the
pair hopping contributes a coefficient from the other chain:

E a.1;L/ D

(
3a.1; L/ � ei

�
La.1C 1;L/

� e�i �
La.1; L � 1/ � b.1; L/

)
; 2.328a

E b.1;L/ D

(
3b.1; L/ � ei

�
L b.1C 1;L/

� e�i �
L b.1; L � 1/ � a.1; L/

)
: 2.328b
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This special case is due to the shortcomings of our notation and of no
physical significance (recall that the system is translationally invariant,
see below).

To make sense of the above equations in the cases n D 1 or m D L, we require the
“twisted” boundary conditions

a.n;LC 1/ D a.1; n/

and a.1 � 1;m/ D a.m;L/ for all 1 < n < m < L ; 2.329

which is a consequence of the fixed ordering 1 � n < m � L in the sum (the same
holds for b).

In order to solve all three classes of equations, we make the ansatz

a.n;m/ D Aeip1nCip2m C A0 eip1mCip2n 2.330a

b.n;m/ D B eip1nCip2m C B 0 eip1mCip2n 2.330b

where p1; p2 2 C are so far arbitrary (in general, complex) momenta and the
coefficients A;A0; B; B 0 2 C are undetermined as well. We can solve the equa-
tions (2.326) for separated particles for arbitrary A;A0; B; B 0 2 C, p1; p2 2 C, and
n;m 2 N if the energy is of the form

E.p1; p2/ D

2

"
1 �

ei.p1C �
L
/
C e�i.p1C �

L
/

2

#
C 2

"
1 �

ei.p2C �
L
/
C e�i.p2C �

L
/

2

#
; 2.331

which can be easily checked by inserting the ansatz wave function into (2.326). This
can be rewritten as

E.p1; p2/ D 4 sin
2 p1 C �=L

2
C 4 sin2

p2 C �=L

2
; 2.332

which is the already known (shifted) spectrum of two magnons. Notice that the
allowed momenta p1 and p2 are not yet fixed—thus we cannot determine the
discrete spectrum at this stage.

If we insert this expression for E D E.p1; p2/ and the ansätze for a and
b (2.330) in Eq. (2.327), we find the two expressions

.AC A0/
h
1C ei.q1Cq2/

i
D .AC B/eiq2 C .A0

C B 0/eiq1 2.333a

.B C B 0/
h
1C ei.q1Cq2/

i
D .AC B/eiq2 C .A0

C B 0/eiq1 ; 2.333b

where we introduced the shifted momenta qi � pi C �
L
for i D 1; 2.
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For q1 C q2 … .2ZC 1/� , this is equivalent to

.AC A0/
h
1C ei.q1Cq2/

i
D .AC B/eiq2 C .A0

C B 0/eiq1 2.334a

and AC A0
D B C B 0 : 2.334b

Before we consider the special case (2.328), let us first derive the constraints
due to the twisted boundary conditions (2.329). To this end, we introduce the
scattering phases

ei�a �
A

A0
, ei�b �

B

B 0
and ei�ab �

r
AA0

BB 0
; 2.335

which can be in general complex numbers, �a; �b; �ab 2 C.
This allows us to rewrite the ansatz wave function as

a.n;m/ D eip1nCip2mCi.�aC�ab/=2 C eip1mCip2n�i.�a��ab/=2 2.336a

b.n;m/ D eip1nCip2mCi.�b��ab/=2 C eip1mCip2n�i.�bC�ab/=2 2.336b

(up to a global normalizing factor). If we insert this in (2.329), we find

eip1nCip2.LC1/Ci�x C eip1.LC1/Cip2n

D eip1Cip2nCi�x C eip1nCip2
2.337

for x D a; b and all 1 < n < L � 1. By comparison, this implies

eip1L D ei�x and eip2L D e�i�x ; 2.338

which can be recast in the form

p1 D
2�

L
�x1 C

�x

L
2.339a

and p2 D
2�

L
�x2 �

�x

L
for �x1 ; �

x
2 2 Z 2.339b

where �x1 and �x2 are called Bethe quantum numbers. Since the left-hand side of the
equations does not depend on x, we have the relations

2�.�a1 � �
b
1/ D �b � �a 2.340a

and 2�.�a2 � �
b
2/ D �a � �b : 2.340b

Due to the definition of �x, it is sufficient to restrict the real part Re �x to
Œ0; 2�/. In combination with the equations above, this results in a unique scattering
phase � � �a mod 2� D �b mod 2� and, consequently, unique Bethe quantum
numbers �i � �ai D �

b
i for i D 1; 2.

This leads to the quantized momenta

p1 D
2�

L
�1 C

�

L
and p2 D

2�

L
�2 �

�

L
2.341
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for 0 � �1; �2 < L, where we restricted the Bethe quantum numbers so that all
physically distinct momenta with Repi 2 Œ0; 2�/ can be uniquely defined [recall
the ansatz (2.336)].

We can rewrite the condition (2.334b) in terms of the scattering phases (2.335),

ei�ab cos
�a

2
D cos

�b

2
; 2.342

which yields ei�ab D 1 for � D �a D �b ¤ � , i.e., �ab D 0 for Re �ab 2 Œ0; 2�/.
This, however, holds not for the special case � D � (which will be discussed in
detail below).

The general solutions now have the form (up to a normalizing factor)

j‰�1;�2;�i D

X
1�n<m�L

h
ei.p1nCp2mC�=2/

C ei.p1mCp2n��=2/
i

�

�ˇ̌̌̌
0

n;m

��

C ei�ab

ˇ̌̌̌
n;m

0

���
; 2.343

where p1;2 depend on the Bethe quantum numbers �1;2 and the scattering phase �
via (2.341). Note that we still do not know which momenta (or scattering phases)
are allowed! So far we only derived that �ab D 0 whenever � ¤ � .

Let us now turn towards the remaining eigenvalue equations. Namely
Eq. (2.334a) and the special cases (2.328). The combination of (2.334b) and
�a D �b ) A=A0 D B=B 0 yields

A D B and A0
D B 0 for AC A0

¤ 0 , � ¤ � 2.344

(which corresponds to �ab D 0). Therefore we find from Eq. (2.334a) in this case

.AC A0/
h
1C ei.q1Cq2/

i
D 2A eiq2 C 2A0 eiq1 2.345a

, .1C ei�/
h
1C ei.q1Cq2/

i
D 2ei� eiq2 C 2 eiq1 2.345b

which is equivalent to the

Result 2.4: Bethe equation

ei� D �
ei.q1Cq2/ C 1 � 2 eiq1

ei.q1Cq2/ C 1 � 2 eiq2
2.346

with q1 D L�1.2��1 C � C �/ and q2 D L�1.2��2 C � � �/ and Bethe quantum
numbers 0 � �1; �2 < L ( for � ¤ �).
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For the special case � D � , it is A D �A0 and B D �B 0 which renders
Eq. (2.334b) trivial. In this case, Eq. (2.334a) reduces to

0 D .eiq2 � eiq1/ � .AC B/ 2.347a

, eiq2 D eiq1 _ .A D �B , �ab D �/ ; 2.347b

where eiq2 D eiq1 with � D � translates to

2�

L
�1 C

�

L
D
2�

L
�2 �

�

L
, �1 C 1 D �2 : 2.348

We conclude the evaluation of the eigenvalue equations with the special case (2.328).
Inserting (2.330) and (2.332) yields the two equations�

B 0 A

A0
C B

A0

A

�h
1C ei.q1Cq2/

i
D
A

A0
.A0
C B 0/eiq2 C

A0

A
.AC B/eiq1 2.349a�

A0 B

B 0
C A

B 0

B

�h
1C ei.q1Cq2/

i
D
B

B 0
.B 0
C A0/eiq2 C

B 0

B
.B C A/eiq1 2.349b

where we used the fact that �eiq1L D eip1L D ei� D A=A0 and �eiq2L D eip2L D

e�i� D A0=A. If we recall that A=A0 D B=B 0 (this holds regardless whether � D �
or not), this simplifies to�

B C B 0
� h
1C ei.q1Cq2/

i
D .AC B/eiq2 C .A0

C B 0/eiq1 2.350a�
AC A0

� h
1C ei.q1Cq2/

i
D .AC B/eiq2 C .A0

C B 0/eiq1 2.350b

which is equivalent the combination of Eq. (2.334a) and (2.334b). So there are no
additional constraints and we already covered this special case with our previous
discussion (which makes sense as the system is translational invariant and this
special case is a product of our labeling scheme without physical significance).

Solutions

In the following, we discuss all solutions of the eigenvalue equations systematically
to prove that they constitute a complete set of eigenvectors in the Hilbert space
sector HND2

˛D1 .

Solutions of Class A

Here we consider the solutions for � ¤ � . It is then convenient to restrict the
scattering phase to Re � 2 .��; �/ rather than Œ0; 2�/ n f�g. This class of solutions
turns out to be both the most complex and most interesting one.

So far we known that for � ¤ � and q1C q2 D p1Cp2C 2�
L
D

2�
L
.�1C�2C

1/ … .2ZC 1/� we have AC A0 D B C B 0 and A=A0 D B=B 0 which combines to
A D B and A0 D B 0. This is equivalent to �ab D 0 and a.n;m/ D b.n;m/ and
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hence a general eigenstate of this class reads

j‰i D
X

1�n<m�L

h
ei.q1nCq2mC�=2/

C ei.q1mCq2n��=2/
i

„ ƒ‚ …
 .n;m/

�

�ˇ̌̌̌
0

n;m

�
C

ˇ̌̌̌
n;m

0

��
2.351

where we re-gauged the basis j�i� D e
i�
L
.nCm/j�i to allow for the replacement pi !

qi . We discuss the special case q1 C q2 2 .2ZC 1/� below as Subclass A2-II.
The momenta are given by

q1 D
2�

L

�
�1 C

1

2

�
C
�

L

and q2 D
2�

L

�
�2 C

1

2

�
�
�

L
for 0 � �1; �2 < L 2.352

and the scattering phase must satisfy the Bethe equation

ei� �
h
ei.q1Cq2/ C 1 � 2 eiq2

i
D �

h
ei.q1Cq2/ C 1 � 2 eiq1

i
: 2.353

If we use the relations for the momenta, this gives for each combination of Bethe
quantum numbers 0 � �1; �2 < L an implicit equation for � 2 C,

ei� �
h
e

2�i
L
.�1C�2C1/

C 1 � 2 e
2�i

L
.�2C 1

2
/�i �

L

i
D �

h
e

2�i
L
.�1C�2C1/

C 1 � 2 e
2�i

L
.�1C 1

2
/Ci �

L

i
:

2.354

Before we start our hunt for solutions, we point out that for a given so-
lution .�1; �2; ��1;�2

/ with Bethe quantum numbers �1 < �2, the related pair
.�2; �1;���1;�2

/ also solves Eq. (2.354). This transformation swaps the momenta,
q1 $ q2, and in combination with � $ �� leaves the eigenstate (2.351) invariant.
Therefore we restrict without loss of generality the Bethe quantum numbers to the
lower triangle:

0 � �1 � �2 < L : 2.355

In the following, we discuss two subclasses of solutions (A1 and A2) in detail.
Figure 2.24 parallels this discussion for a chain of length L D 32: In Figure 2.24 (a)
we illustrate the two subclasses, in (b) we show the corresponding eigenenergies,
and in (c) we plot the localization of the bound states of subclass A2 (see below).

Subclass A1 — We start with the simplest class of solutions of Eq. (2.354), namely
the ones for which �1 C 1 < �2. If we go back to Eq. (2.346), a straightforward
calculation yields the equivalent form

2 cot
�

2
D cot

q1

2
� cot

q2

2
: 2.356
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Figure 2.24 • Characterization of class-A Bethe wave functions. The lower right triangle
shows the class-A Bethe wave functions with Bethe quantum numbers 0 � �1 � �2 < L for a
system of lengthL D 32. Squares (bullets) denote scattering states (bound states). The dashed
lines indicate quantum numbers that satisfy Eq. (2.368) and allow for limiting solutions of class
A2-II. (a) highlights the two subclasses A1 (gray) and A2 (blue) introduced and discussed in the
text. (b) illustrates the eigenenergies color-coded from low (blue) to high (black) values. The
two degenerate ground states with finite energy are highlighted (cyan). See also Figure 2.28.
(c) encodes the localization (/ j Im � j) of the bound states from loosely bound (black) to tightly
bound (yellow). The perfectly paired state discussed separately in the text (A2-II) is highlighted
red and located at �1 D 7; �2 D 8 such that �1C �2C 1 D 16 D 32=2, i.e., it coincides with
the lower dashed line.
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Figure 2.25 • Detailed analysis of type-A solutions for � ¤ �. The detailed analysis of the
complex solutions of Eq. (2.357) yields several subclasses of qualitatively distinct solutions.
(a) shows the lower triangle of Bethe quantum numbers 0 � �1 � �2 < L for a system of
length L D 32. Squares denote real solutions � 2 R (scattering states) and bullets indicate
solutions with finite imaginary part Im � > 0 (bound states); note that there is always a linearly
dependent complex conjugate solution. Õ
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Õ Grey markers denote the class-A1 solutions for which �1 C 1 < �2. The class-A2 solutions
are colored according to their characteristic features: Blue markers denote valid, finite solutions
for which �� < Re � � � and � ¤ �; they define subclass A2-I. The green quantum numbers
do not yield finite solutions. The limiting solution of class A2-II is not shown. Finally, the orange
markers represent additional real solutions with � D � . These do not correspond to normalizable
eigenvectors and can be neglected. Note that all class-A2 solutions are bound states except
the two at .�1; �2/ D .0; 1/ and .30; 31/. (b) To illustrate the solutions of Eq. (2.357), we
plot the function (2.358). The plots (1)-(3) indicate real solutions for � 2 .��; �/ by roots
of ��1;�2;L.�/. The closer the quantum numbers are to the region of class A2, the closer �
is to � . The special class A2 solution .30; 31/ corresponds to the root in (3) which is close
to the origin (and not the one at � D �). (c) illustrates the transition from class A1 to class
A2-I solutions. Whereas for �1 C 1 < �2 there is a single real solution, see (4), there emerge
additional complex solutions for �1 C 1 D �2 with Re � D � . For �1 D �2 the real solutions
are replaced by imaginary ones with Re � D 0.

Then we have to find solutions � for

Result 2.5: Bethe equation (alternative form)

2 cot
�

2
D cot

�
�

L

�
�1 C

1

2

�
C

�

2L

�
� cot

�
�

L

�
�2 C

1

2

�
�
�

2L

�
2.357

with the restriction �1 C 1 < �2.
There is, to the best of my knowledge, no general analytic solution to this

equation. Therefore we rely on numerical methods to count them and infer their
general structure:

One finds a single, real solution � 2 .��; �/ for every pair .�1; �2/ in the
triangle with �1 C 1 < �2. This is illustrated in Figure 2.25 (a) and (b) where we
plot the function

��1;�2;L.�/ D 2 cot
�

2
� cot

�
�

2L
C
�

L

�
�1 C

1

2

��
� cot

�
�

2L
�
�

L

�
�2 C

1

2

��
2.358

for the highlighted Bethe quantum numbers and L D 32 along the shown path
for real � . Roots of ��1;�2;L correspond to valid eigenvectors which are, due to
the reality of � , scattering states. We conclude that there are .L � 1/.L � 2/=2
linearly independent eigenvectors of class A1. A typical wave function is shown
in Figure 2.26 (a): the non-vanishing amplitude for separated fermions qualifies it as
scattering state.
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Figure 2.26 • Typical two-particle wave functions. In each panel, the lower right (upper left)
triangle shows the amplitude ja.n;m/j (phase arg a.n;m/) of the wave function a.n;m/ in
dependence of the left (right) particle position n (m) on the adjacent axes; the system length
is L D 32. (a) Scattering state of class A1 with Bethe quantum numbers �1 D 0 and �2 D 2.
Notice the oscillating amplitude for varying inter-particle distancem � n, characteristic for a
scattering state. The shown state features a finite probability to find the two electrons close to
each other. (b) Bound state of class A2-I with Bethe quantum numbers �1 D 2 D �2. The finite
value in the lower right corner is due to periodic boundary conditions. (c) Limiting bound state
of class A2-II with q1 C q2 D � and �I D1. The two electrons are perfectly paired and the
relative sign alternates with the position of the pairs. (d) Scattering state of class B with Bethe
quantum numbers �1 D 0 and �2 D 3 (�1 D 1; �2 D 3). The amplitude again oscillates with
m � n but here features a vanishing probability to find the two electrons close to each other.
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Subclass A2-I — We proceed with the more interesting states for which �1C 1 D �2
or �1 D �2. Subclass A2-I is defined by the latter restriction of Bethe quantum
numbers with the additional condition that j� j <1 is finite and � ¤ � .

Indeed, for �1 C 1 D �2 one finds q2 � q1 D 2
L
.� � �/ which yields q1 D q2

for � D � . In combination with cot �
2
D cot �

2
D 0, it seems that � D � is always a

solution on the first minor diagonal �1 C 1 D �2. However, these correspond to
wave functions of the formh

ei.q1nCq2mC�=2/
C ei.q1mCq2n��=2/

i
/

h
ei.q1nCq2m/ � ei.q1mCq2n/

i
D 0 ; 2.359

(where we used q1 D q2) which are no eigenstates so that we can ignore them.
These solutions are marked by orange squares in Figure 2.25 (a).

Further (numerical) inspection of the Bethe equation (2.357) yields the following
results (see Figure 2.25 for illustrations):

→ On the diagonal �1 D �2 there are two complex conjugate solutions with
vanishing real part �R D 0 for each pair .�1; �2/ whenever �i . 1=4L _

�i & 3=4L, see Figure 2.25 (c). The � accounts for the fact that L may not
be divisible by four; furthermore, there is an even-odd effect (see below). The
imaginary part j�I j > 0 grows for �i % 1=4L and �i & 3=4L and remains
small but finite for �i ! 0 and �i ! L � 1. These imaginary scattering
phases characterize bound states, indicated by blue bullets in Figure 2.25 (a); a
typical wave function is shown in Figure 2.26 (b).

→ On the minor diagonal �1 C 1 D �2 there are (in addition to � D � as
discussed above) also pairs of complex conjugate solutions � D �R C i�I for
0 < �1 . 1=4L _ 3=4L . �1 < L� 2, see Figure 2.25 (c). In this interval
one finds �R D � fixed and j�I j growing for �i % 1=4L and �i & 3=4L (as
above). Between these two subintervals there are no solutions but the trivial
ones (� D �). Special cases are found in the corners of the triangle, namely
for �1 D 0; �2 D 1 and �1 D L � 2; �2 D L � 1 with a single scattering
solution � D �R < � for each of the two pairs .�1; �2/. These are marked by
blue squares in Figure 2.25 (a) and one is shown in detail in Figure 2.25 (b).

→ As mentioned above, for each complex solution � the complex conjugate
�� is a solution of (2.357) as well. Such pairs .�; ��/ correspond to linearly
dependent eigenvectors and therefore it is sufficient to consider the solutions
for which Im � � 0. To see this, expand the coefficients a.n;m/ D b.n;m/
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in terms of � D �R C i�I and q1; q2:

exp
�
2�i

L

�
�1 C

1

2

�
nC

2�i

L

�
�2 C

1

2

�
m

�
� exp fCi�R f .n;m/g � exp f��I f .n;m/g

C exp
�
2�i

L

�
�1 C

1

2

�
mC

2�i

L

�
�2 C

1

2

�
n

�
� exp f�i�R f .n;m/g � exp fC�I f .n;m/g

2.360

with
f .n;m/ �

1

2
C
1

L
.n �m/ : 2.361

Complex solutions can be found only for �1 D �2 and �1 C 1 D �2. In the
former case, we argued that the solutions are purely imaginary: �R D 0. The
coefficients then read

exp
�
2�i

L

�
�1 C

1

2

�
nC

2�i

L

�
�2 C

1

2

�
m

�
� Œexp f��I f .n;m/g C exp f�I f .n;m/g�

2.362

and are obviously invariant under the transformation �I $ ��I , i.e., complex
conjugation of � . In the latter case, �1 C 1 D �2, we found �R D � . This
yields, after rearranging the coefficients,

exp
�
2�i

L
.�1 C 1/ nC

2�i

L
�2m

�
� i Œexp f��I f .n;m/g � exp f�I f .n;m/g� ;

2.363

which is again invariant under complex conjugation of � (here up to a global
minus sign). We conclude that the pairs of complex conjugate solutions
.�; ��/ correspond to a common eigenvector.

These results allow for an efficient numerical calculation of all class-A solutions
(except one special case labeled A2-II, see below). To this end, one first solves for
roots of (2.358) with the additional constraint �� < Re � � � and subsequently
throws away all solutions with � D � and Im � < 0.

As already mentioned, counting the class–A2-I solutions reveals an even-odd
effect: Recall that we are looking for L.L � 1/ eigenstates to diagonalize the
Hamiltonian in the sector HND2

˛D1 . As we will see below, half of them, L.L � 1/=2,
belong to the yet undefined class B. Thus we must come up with the same number
in class A. Class A1 gave .L � 2/.L � 1/=2 linearly independent solutions, all of
which were scattering states. Thus L pairs .�1; �2/ with �1 C 1 D �2 or �1 D �2
cannot yield solutions (at least not linearly independent ones). The candidates to
drop are certainly the green and orange squares in Figure 2.25 (a) which do not yield
normalizable solutions. But if one counts the number of these pairs, an even-odd
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Figure 2.27 • Even-Odd effect for class-A2 solutions. The lower triangle 0 � �1 � �2 < L
comprises L(L+1)/2 pairs .�1; �2/. Due to the number of class-B solutions, there must be
L.L � 1/=2 solutions of class A in total. Therefore one has to exclude L pairs in the lower
triangle which yield no eigenstates. As the orange (� D �) and green squares (no finite solution)
do not yield valid solutions, they should sum up to L. (a) For L D 19 there are 19 pairs which
do not yield a solution. Thus the special class A2-II is empty. (b) For L D 20 there are 21 pairs
which do not yield a solution. Thus one solution is missing and can be found as limiting case
in class A2-II (which is not shown here). (c) For L D 21 there are again 21 pairs which do not
yield a solution and class A2-II is empty. (d) For L D 22 there are 23 pairs which do not yield a
solution and there is an additional solution in class A2-II. We conclude that the limiting solution
in class A2-II occurs for chains of even length. Note that the global structure of the shown plots
features a�L D 4-periodicity.

167



MAJORANA-LIKE EDGE STATES & NUMBER CONSERVATION

effect becomes apparent (see Figure 2.27): For chains of odd length L, their number
equals L and one finds that there are L � 1 class–A2-I solutions which sum up with
the class-A1 solutions to the desired total of L.L � 1/=2 eigenstates in class A. So
we are done.

But for chains of even length L, there happen to be LC 1 such pairs which do
not yield valid solutions. That is, we are missing an eigenstate which does not show
up in numerical root finding algorithms.

Subclass A2-II — This missing eigenstate cannot be found numerically as it is
characterized by the limit Im � D �I !1. This is the defining property of class
A2-II and describes perfectly paired bound states, see Figure 2.26 (c) for an example
on a chain of L D 32.

The argument goes as follows: We already found all valid solutions within
the given bounds numerically. Thus we cannot expect the missing solution to be
detectable by numerics and we are left with the assumption that it might correspond
to a scattering phase � “at infinity.” To this end, we write � D �R C i�I with real
and imaginary parts �R; �I 2 R. Additionally, let AC A0 D B C B 0 and therefore
A D B and A0 D B 0. Note that this is so far an arbitrary constraint90. Then
solutions must satisfy the Bethe equation (2.346), namely

ei�
h
ei.q1Cq2/ C 1 � 2 eiq2

i
D �

h
ei.q1Cq2/ C 1 � 2 eiq1

i
2.364

with

q1 D
2�

L

�
�1 C

1

2

�
C
�R C i�I

L
2.365a

and q2 D
2�

L

�
�2 C

1

2

�
�
�R C i�I

L
2.365b

for 0 � �1; �2 < L. Clearly, the limit �R !˙1 is not well-defined for both sides
of equation (2.364). However, the limit to complex infinity, �I !˙1, exists and
one easily verifies that for L � 2 equation (2.364) reduces to

0 D ei.q1Cq2/ C 1 , q1 C q2 2 .2ZC 1/� : 2.366

For q1; q2 2 Œ0; 2�/ this is equivalent to

2�

L
.�1 C �2 C 1/ D � or

2�

L
.�1 C �2 C 1/ D 3� : 2.367

We conclude that Bethe quantum numbers for which a limiting solution can exist
must satisfy

�1 C �2 D
1

2
L � 1 or �1 C �2 D

3

2
L � 1 : 2.368

90This constraint follows rigorously for q1C q2 … .2ZC 1/� which, as we will see in a moment, is
not the case for A2-II. Nevertheless we are allowed to impose this constraint to simplify calculations—as
long as we find a valid solution in the end.
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This defines two straight lines in the lower triangle orthogonal to the diagonal
that cross the latter at � 1=4L and � 3=4L (see Figure 2.24). From (2.368) it
follows that L must be even for (integer) Bethe quantum numbers to satisfy these
conditions. This is consistent with our previous findings that there must be an
additional solution for even L.

Let us assume that L is even and Eq. (2.368) is satisfied. This leaves still
undetermined the values of the Bethe quantum numbers .�1; �2/ and the real
scattering phase �R. We will show in the following that the limiting eigenstate
nevertheless is unique and accounts exactly for the missing eigenbasis vector.

Under these restrictions, and before taking the limit �I ! ˙1, a general
eigenstate reads

j‰i D N
X

1�n<m�L

h
ei.q1nCq2mC�=2/

C ei.q1mCq2n��=2/
i

�

�ˇ̌̌̌
0

n;m

�
C

ˇ̌̌̌
n;m

0

��
;

2.369

where we explicitly introduced the normalizing factor N D N .�1; �2; �/. If we
insert the expressions for q1; q2 and � , the coefficients read

exp i
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which can be regrouped to

exp
�
2�i

L

�
�1 C

1

2

�
nC

2�i

L

�
�2 C

1

2

�
m

�
� exp fCi�R f .n;m/g � exp f��I f .n;m/g

C exp
�
2�i

L

�
�1 C

1

2

�
mC

2�i

L

�
�2 C

1

2

�
n

�
� exp f�i�R f .n;m/g � exp fC�I f .n;m/g

2.371

with
f .n;m/ �

1

2
C
1

L
.n �m/ : 2.372

The question is which coefficients remain finite in the limit �I !C1 (�I ! �1
yields the same result). Note that the normalizing factor N must vanish for
�I !C1 in such a way that the fastest growing coefficients of the form above yield
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finite results91. Hence we have to focus on the modulus and sign of f in dependence
of n and m (recall that n < m). Clearly, for m � n D L=2 we have f .n;m/ D 0

which describes the pairs of fermions that are farthest apart. For m � n < L=2 we
have f .n;m/ > 0 and for m � n > L=2 we find f .n;m/ < 0. In the first (second)
case, the second (first) summand of (2.371) dominates for �I ! 1. Due to the
normalizing factor N , only the fastest growing terms survive. They are characterized
by the largest absolute value of f .n;m/ (which occurs for adjacent particles), i.e.,

m D nC 1 ) f .n;m/ D
1

2
�
1

L
> 0 2.373a

or n D 1 ^ m D L ) f .n;m/ D
1

L
�
1

2
< 0 : 2.373b

Thus for �I ! C1 the only surviving components are states which describe
adjacent pairs of particles. Of course this is consistent with the interpretation of �I
as inverse binding length.

If we define

jn;mj˙i �

ˇ̌̌̌
0

n;m

�
˙

ˇ̌̌̌
n;m

0

�
; 2.374

the limiting eigenstates read (up to a normalizing factor)

j‰1
i D

L�1X
nD1

e
2�i

L

�
�1C 1

2

�
.nC1/C 2�i

L

�
�2C 1

2

�
n
� e�i�R

�
1
2

� 1
L

�
jn; nC 1jCi

C e
2�i

L

�
�1C 1

2

�
C 2�i

L

�
�2C 1

2

�
L
� eCi�R

�
1
L

� 1
2

�
j1;LjCi :

2.375

At this point it is evident that the so far undetermined real scattering phase �R
drops out as an irrelevant global phase factor; we can write

j‰1
i D

L�1X
nD1

e
2�i

L

�
�1C 1

2

�
.nC1/C 2�i

L

�
�2C 1

2

�
n
jn; nC 1jCi

C e
2�i

L

�
�1C 1

2

�
C 2�i

L

�
�2C 1

2

�
L
j1;LjCi :

2.376

Recall that the Bethe quantum numbers satisfy 2�
L
.�1C�2C 1/ 2 .2ZC 1/� . This

yields

j‰1
i D e

2�i
L

�
�2C 1

2

�
L
j1;LjCi C

L�1X
nD1

.�1/n jn; nC 1jCi 2.377

where we dropped the global phase e
2�i

L

�
�1C 1

2

�
. By simplification of the first term,

�2 drops out as well and we finally arrive at the unique limiting eigenstate

j‰1
i D

L�1X
nD1

.�1/n jn; nC 1jCi � j1;LjCi 2.378

91If it vanishes faster, the eigenstate vanishes completely; if it vanishes slower, the eigenstate is not
normalizable since at least one of its coefficients diverges.
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which describes perfectly paired fermions with staggered phases.
The careful reader will probably wonder whether the minus in front of j1;LjCi

is correct as it breaks the translational invariance of the state and (seemingly)
distinguishes the pair sitting on the splice of the chain. This, however, is a
consequence of the chosen gauge and reminiscent of the fermionic statistics of
the original model. Be aware that this state is written in the original basis where
the Hamiltonian itself features a minus for jumps across this bond [recall (2.296)
and (2.297)]. One can re-gauge the basis via jn;mjCi D e� i�

L
.nCm/jn;mjCi� to

make the state translationally invariant,

j‰1
i D

L�1X
nD1

�
�e� 2�i

L

�n
e� i�

L jn; nC 1jCi� C e� i�
L j1;LjCi� ; 2.379

so that it can be written more compactly as

j‰1
i D

LX
nD1

�
�e� 2�i

L

�n
jn; nC 1jCi� 2.380

[cf. (2.302a) and (2.302b)]; here, n is an index modulo L, jL; 1jCi� � j1;LjCi�,
and L is even.

To conclude this paragraph, we determine the eigenenergy E1 of j‰1i. Recall
that we found for the spectrum

E.q1; q2/ D 4 �
�
eiq1 C e�iq1 C eiq2 C e�iq2

�
2.381

which yields for q1 C q2 2 .2Z C 1/� immediately E D 4—and this is wrong!
Remember that we derived the expression for E from Eq. (2.326) by inserting
the ansatz for a.n;m/ and dividing by a.n;m/. This equation, however, holds
only for nC 1 < m, that is, for separated particles. But these coefficients vanish
altogether in the perfectly paired state j‰1i and we cannot derive the expression
for E via (2.326) as these equations are trivially satisfied. Instead we have to employ
the equations (2.327),

E a.n;m/ D 3a.n;m/ � ei
�
La.n;mC 1/

�e�i �
La.n � 1;m/ � b.n;m/ ;

2.382

as they hold for the non-vanishing nearest-neighbor coefficients a.n;m D nC 1/.
From the state (2.380) we read off

a.n; nC 1/ D b.n; nC 1/ D
�
�e� 2�i

L

�n
2.383a

and a.n;m/ D b.n;m/ D 0 otherwise 2.383b

which immediately yields E1 D 2. This result is indeed verified by exact
diagonalization. We point out that the eigenstate j‰1i (whenever it exists) features
the highest energy of all bound states (see Figure 2.28).
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Before we continue with the last class of eigenstates, let us summarize the
eigenstates that we found so far:

Result 2.6: Class-A eigenstates

For Bethe quantum numbers 0 � �1 � �2 < L, the family of class-A eigenstates

j�1; �2iA D
X
n<m

h
ei.q1nCq2mC�=2/

C ei.q1mCq2n��=2/
i
jn;mjCi 2.384

with momenta

q1 D
2�

L

�
�1 C

1

2

�
C
�

L
; q2 D

2�

L

�
�2 C

1

2

�
�
�

L
2.385

and scattering phase � D �.�1; �2/ 2 C that satisfies the Bethe equation

2 cot
�

2
D cot

q1

2
� cot

q2

2
.� ¤ �/ 2.386

make up for half the dimensions of the total subsector HND2
˛D1 whenever L is odd; their

eigenenergy isE.q1; q2/ D 4
P
iD1;2 sin2 qi

2
. For evenL, there is an additional, perfectly

paired eigenstate

j1iA D

L�1X
nD1

.�1/n jn; nC 1jCi � j1;LjCi 2.387

with eigenenergyE1 D 2.

Solutions of Class B

Here we consider the solutions for the special case � D � . We already showed that
all eigenvalue equations reduce to

0 D .eiq2 � eiq1/ � .AC B/ 2.388

which can be solved by A C B D 0 , A D �B . The other possibility,
eiq1 D eiq2 , �1 C 1 D �2 does not yield normalizable solutions, recall (2.347)
and (2.359).

So let A D �B and keep in mind that �1 C 1 ¤ �2 to obtain normalizable
eigenvectors. In combination with �1 D ei� D A=A0 D B=B 0, this leads to
A0 D �B 0 and therefore the eigenfunctions

j‰i D
X
n<m

h
ei.q1nCq2m/ � ei.q1mCq2n/

i �ˇ̌̌̌
n;m

0

�
�

ˇ̌̌̌
0

n;m

��
2.389
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Figure 2.28 • Spectrum of the even–subchain-parity two-particle sector. The plot shows
the eigenenergies in dependence of the total momentum q1 C q2 D

2�
L
.�1 C �2 C 1/ D

2�
L
.�1 C �2/ (modulo 2�) for an L D 32-chain with periodic boundaries. There are three

distinct classes of states: (1) The symmetric scattering states of class A1 (gray squares), (2)
the antisymmetric scattering states of class B (black squares), and (3) the symmetric bound
states of class A2 (bullets). The color-grading from black to yellow for the bound states encodes
their localization/ j Im � j (black: loosely bound, yellow: tightly bound). For comparison, we
show an exemplary branch of the free (� D 0) two-magnon spectrumE.q1; q2/ with �1 D 20,
�2 D 0; : : : ; 31 (blue circles) which does not fit the spectrum. The red circles describe an
exemplary branch of the interacting two-magnon spectrum with scattering angle � D � and
�1 D 23, �2 D 0; : : : ; 31; this describes the class-B scattering states (black squares). The
limiting eigenstate j1iA of class A2-II is marked red. Note that the three apparent holes in
the bound state branch close to zero momentum correspond to the three scattering states (gray
squares) at .�1 D 0; �2 D 1/, .L�2;L�1/, and .0; L�1/. The former two belong to class A2
while the latter belongs to class A1 and hasmomentum q1Cq2 D 2�

L
.0CL�1C1/ D 2� D 0,

recall Figure 2.24 (b).
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where we again re-gauged the Fock basis j�i� D e
i�
L
.nCm/j�i to shift the mo-

menta pi ! qi . The allowed momenta read

q1 D
2�

L
.�1 C 1/ 2.390a

and q2 D
2�

L
�2 for 0 � �1; �2 < L 2.390b

and the eigenenergies are given by

E.�1; �2/ D 4 sin
2
h�
L
.�1 C 1/

i
C 4 sin2

h�
L
�2

i
: 2.391

So far we restricted the Bethe quantum numbers to 0 � �1; �2 < L which cer-
tainly includes all possible linearly independent eigenvectors of this class. However,
there are also linearly dependent solutions in this family—and we should get rid of
them. To this end, define the shifted Bethe quantum numbers

�1 � �1 C 1 and �2 � �2 2.392

which again can be restricted to 0 � �1; �2 < L (we can shift the range of each
Bethe quantum number separately by any integer as long as the interval is of
length L). There are two crucial points: First, for �1 D �2 the eigenstate (2.389)
vanishes; thus we exclude the diagonal of the square 0 � �1; �2 < L. And second,
given a pair �1 < �2, the substitution �1 $ �2 corresponds to the substitution
q1 $ q2 of momenta which leads to j‰i $ �j‰i and therefore does not yield a
new eigenvector. Hence we can restrict the Bethe quantum numbers to the lower
triangle 0 � �1 < �2 < L which comprises L.L � 1/=2 linearly independent
eigenstates. We conclude:

Result 2.7: Class-B eigenstates

For Bethe quantum numbers 0 � �1 < �2 < L, the family of class-B eigenstates

j�1; �2iB D
X
n<m

h
ei.q1nCq2m/ � ei.q1mCq2n/

i
jn;mj�i 2.393

with momenta
q1 D

2�

L
�1 ; q2 D

2�

L
�2 2.394

and eigenenergy E.q1; q2/ D 4
P
iD1;2 sin2 qi

2
make up for half the dimensions of the

total subsector HND2
˛D1 .
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A typical wave function of class B is shown in Figure 2.26 (d) for L D 32. As a
final remark, we point out that the exclusion of the diagonal �1 D �2 prevents the
eigenenergy E.q1; q2/ from vanishing. This is consistent with our expectation that
there is no zero-energy ground state anymore. In the thermodynamic limit, where
2��i=L! 0, the ground state energy vanishes nevertheless.

The combination of the L.L � 1/=2 symmetric (jn;mjCi) class-A solutions
with theL.L�1/=2 antisymmetric (jn;mj�i) class-B solutions yields the eigenbasis
of H in the L.L� 1/-dimensional two-particle Hilbert space HND2

˛D1 . The complete
spectrum for L D 32 is shown in Figure 2.28 where eigenvectors are labeled by
their total momentum q1 C q2 D

2�
L
.�1 C �2 C 1/ D

2�
L
.�1 C �2/ (modulo 2�).

We cross-checked the validity of these results by exact diagonalization of chains
with lengths L D 2; 3; : : : ; 6: both eigenenergies and eigenstates were identical up
to machine precision.

Variable Inter-Chain Coupling

So far we considered the model at a critical point where the ratio of the inter-chain
couplingH ab and the intra-chain couplingsH a andH b is equal to  D 1. However,
for the applicability of the Bethe ansatz, this should not be crucial. Here we consider
the more general case where

H D

LX
iD1

h
H a
i CH

b
i C H

ab
i

i
2.395

with  2 R an arbitrary (positive or negative) coupling strength. We will show how
the Bethe equation generalizes accordingly (the evaluation of which we postpone
to the future). Along the way, we show how the separation into symmetric and
antisymmetric eigenstates appears quite naturally.

In the following, we drop the � for the gauge-transformed Fock states to clean
up the notation. The Hamiltonian reads then after Jordan-Wigner transformation

H D

LX
jD1

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

ˇ̌̌ E D ˇ̌̌
j
C

ˇ̌̌ E D ˇ̌̌
j

�e�i �
L

ˇ̌̌ E D ˇ̌̌
j
� ei

�
L

ˇ̌̌ E D ˇ̌̌
j

C

ˇ̌̌ E D ˇ̌̌
j
C

ˇ̌̌ E D ˇ̌̌
j

�e�i �
L

ˇ̌̌ E D ˇ̌̌
j
� ei

�
L

ˇ̌̌ E D ˇ̌̌
j

9>>>>>>>>>=>>>>>>>>>;
C

LX
jD1

�ˇ̌̌ E D ˇ̌̌
j
C

ˇ̌̌ E D ˇ̌̌
j
�

ˇ̌̌ E D ˇ̌̌
j
�

ˇ̌̌ E D ˇ̌̌
j

�
2.396

in the two-particle even–subchain-parity sector HND2
˛D1 .
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With the (slightly altered) definitions

jn;mj˙i �
1
p
2

�ˇ̌̌̌
n;m

0

�
˙

ˇ̌̌̌
0

n;m

��
2.397

and the fact that HND2
˛D1 Š L˝C2—where the first factor L D spanfjn;mi j 1 �

n < m � Lg describes a single chain occupied by two particles and the last factor
encodes the subchain—it is convenient to consider the isomorphism

jn;mj˙i Š jn;mi ˝ j˙i � jn;mij˙i 2.398

where j˙i denotes the usual eigenbasis of �x and jn;mi describes a state of L spins
with flipped spins at sites n and m. With the transformationˇ̌̌̌

n;m

0

�
Š

1
p
2
Œjn;mijCi C jn;mij�i� 2.399aˇ̌̌̌

0

n;m

�
Š

1
p
2
Œjn;mijCi � jn;mij�i� 2.399b

we can rewrite the Hamiltonian in the isomorphic Hilbert space L˝C2:

H Š

LX
jD1

(
j i h jj C j i h jj

�e�i �
L j i h jj � e

i �
L j i h jj

)
˝ jCihCj

C

LX
jD1

8̂<̂
:

j i h jj C j i h jj

�e�i �
L j i h jj � e

i �
L j i h jj

C2 j i h jj

9>=>;˝ j�ih�j :
2.400

This reveals the decoupling of the j˙i subspaces according to HND2
˛D1 D H C˚H �

where H ˙ Š L. Note that the Hamiltonian that acts on the symmetric jCi-sector
coincides with its antisymmetric counterpart for  D 0 (i.e., for decoupled chains).
Therefore the complete spectrum can be derived as

Double-Chain./ D Single-Chain.0/ ˚ Single-Chain./ 2.401

which allows us to restrict the following analysis to the reduced Hamiltonian

HL
 D

LX
jD1

8̂<̂
:

j i h jj C j i h jj

�e�i �
L j i h jj � e

i �
L j i h jj

C2 j i h jj

9>=>; 2.402

that acts on the L.L � 1/=2-dimensional Hilbert space L. With this definition, we
can write formallyH D H

L
0 ˚H

L
 .
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Bethe Ansatz Solution forHL


It is straightforward generalize our previous Bethe ansatz to solve the reduced
single-chain HamiltonianHL

 . The generic wave function in the single-chain Hilbert
space L with two particles (flipped spins) reads

j‰i D
X

1�n<m�L

a.n;m/jn;mi ; 2.403

where again we drop the �. Solving the eigenvalue equation HL
 j‰i D Ej‰i is

equivalent to the following equations for the wave function a.n;m/:

1 The two particles are not adjacent, i.e., n < m � 1 and n ¤ 1 _m ¤ L.

For such configurations, the pairing term 2 j i h jj drops out. Since
there are four possible single-particle jumps, the relation reads

E a.n;m/ D 4a.n;m/�ei
�
La.nC 1;m/ � e�i �

La.n � 1;m/

�ei
�
La.n;mC 1/ � e�i �

La.n;m � 1/ ;
2.404

which is the same as in the previous treatment, recall Eq. (2.326).

2 The two particles are adjacent, i.e., n D m � 1 or n D 1 ^m D L.

We discuss the two subcases separately:

a Let n D m � 1.
In this case there are only two possible single-particle jumps and the
pairing contributes an additional coefficient a.n;m/. This yields

E a.n;m/ D .2C 2/a.n;m/�ei
�
La.n;mC 1/

�e�i �
La.n � 1;m/

2.405

which holds for all n D 1; 2; : : : ; L � 1 and m D nC 1.

b Let n D 1 ^m D L.
In this case there are two possible “reversed” single-particle jumps such
that

E a.1;L/ D .2C 2/a.1; L/�ei
�
La.1C 1;L/

�e�i �
La.1; L � 1/ :

2.406

Again, this special case is a consequence of our index scheme and
periodic boundary conditions; it is of no particular physical significance.
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As before, we require the coefficients to satisfy the twisted boundary conditions

a.n;LC 1/ D a.1; n/ 2.407a

and a.1 � 1;m/ D a.m;L/ for all 1 < n < m < L 2.407b

to conform with the periodic boundary conditions and the ordering n < m in the
summation. With the plane wave ansatz

a.n;m/ D ei.p1nCp2mC�=2/
C ei.p1mCp2n��=2/ 2.408

and the scattering phase � 2 C, a completely analogous calculation yields the
known form of the energy

E.q1; q2/ D 4 sin
2 q1

2
C 4 sin2

q2

2
2.409

and the constraints on allowed momenta qi D pi C �=L

q1 D
2�

L

�
�1 C

1

2

�
C
�

L
2.410a

and q2 D
2�

L

�
�2 C

1

2

�
�
�

L
for 0 � �1; �2 < L : 2.410b

The crucial difference, as compared to our previous discussion, stems from
condition (2.405) which yields after straightforward calculations

Result 2.8: Bethe equation (generalized form)

ei� D �
ei.q1Cq2/ C 1 � 2.1 � / eiq1

ei.q1Cq2/ C 1 � 2.1 � / eiq2
2.411

for  2 R. The special relation (2.406) at the boundary is equivalent to (2.411) due
to the imposed boundary conditions (2.407)92.

We point out that for  D 0, equation (2.411) reduces to the original Bethe
equation (2.346) which described for � ¤ � the class-A solutions (recall that for
� D � the condition eiq1 D eiq2 does not yield normalizable solutions). However,
for  D 1 it follows immediately � D � which corresponds to the class-B solutions.
SinceH1 D H

L
0 ˚H

L
1 , this implies that the eigenstates occupy two subspaces of

equal dimension, characterized by symmetric and antisymmetric states, respectively.
Interestingly, for  ¤ 1 the relationH D H

L
0 ˚H

L
 implies that the spectrum

in the symmetric sector H C remains the same (i.e., the class-A wave functions
are still eigenstates), whereas the sector of antisymmetric states (the class-B wave
functions) can be affected by the inter-chain coupling. In particular, there can

92More precisely: Eq. (2.405) and (2.406) lead to (2.411) and the constraint p2 � p1 D 2�
L
k � 2�

L

for k 2 Z arbitrary. The latter is satisfied by the“twisted” boundary conditions (2.407).
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be additional bound states in the antisymmetric sector for  ¤ 1 (we postpone
a thorough analysis to the future). Note that the symmetric class-A solutions
completely decouple from the inter-chain interactions such that the occurrence of
bound states in this sector must be attributed to the intra-chain interactions alone.
The partition of the spectrum into (anti)symmetric eigenstates is a consequence of
the “chain exchange symmetry” of the Hamiltonian (see Ref. [237]).
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2.C.4 Lifted Excitations on the Double-Chain

In Subsection 2.4.1 we discussed single-particle excitations on a single chain with
open boundary conditions. We then showed that these single-magnon excitations can
be “lifted” to sectors of arbitrary filling N if one exploits the global U.2/ symmetry
of the single-chain Hamiltonians H x, x D a; b. Here we provide the technical
details of the proof for Lemma 2.1 which states that this procedure also yields valid
eigenstates

jf�igIN
�
i
˚

N;˛ �

h
P aN� ˚ P

b
N�

i
.f�ig/

X
M W.�1/M D˛

jM iajN �M ib 2.412

of the double-chain Hamiltonian H D H a CH b CH ab despite the inter-chain
interactionH ab if N � D 1. Here,

PN�.f�ig/ D
X

n1<���<nN �

 f�i g.n1; : : : ; nN�/
Y

n2fn1;:::;nN � g

�´n 2.413

encodes the structure of the excited state (given by  f�i g) into a phase pattern
on the equal-weight superposition jM i. N � denotes the number of excitations
(magnons) and �1; : : : ; �N� are the Bethe quantum numbers that label the excited
state.

Proof. First, consider the single-chain components, namelyh
Ha
˚H b

i
jf�igIN

�
i
˚

N;˛ 2.414a

D

(
HaP aN� ˚H

bP bN�

CHa
˝ P bN� C P

a
N� ˝H

b

) X
M W.�1/M D˛

jM iajN �M ib 2.414b

D

h
HaP aN� ˚H

bP bN�

i X
M W.�1/M D˛

jM iajN �M ib 2.414c

D

8̂̂̂<̂
ˆ̂:

X
M W.�1/M D˛

HaP aN� jM ia ˝ jN �M ib

C

X
M W.�1/M D˛

jM ia ˝H
bP bN� jN �M ib

9>>>=>>>; 2.414d

D

8̂̂̂<̂
ˆ̂:

E
X

M W.�1/M D˛

P aN� jM ia ˝ jN �M ib

CE
X

M W.�1/M D˛

jM ia ˝ P
b
N� jN �M ib

9>>>=>>>; 2.414e

D E.f�ig/ jf�igIN
�
i
˚

N;˛ ; 2.414f

where˚ denotes the Kronecker sum A˚B D A˝ 1C 1˝B and theH x have to
be read as single chain Hamiltonians. In the third line we used thatH xjM i D 0 for
x D a; b and arbitraryM .
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Next, we show that ŒP aN� ˚ P
b
N�;H

ab� D 0 for N � D 1 so that the proposed
symmetric states (2.412) are not affected by the chain coupling. To this end, let us
write

P aN� ˚ P
b
N� D

X
fni g

 .fnig/

0@ Y
n2fni g

�´n C
Y
n2fni g

O�´n

1A 2.415

to simplify expressions. We are interested in

h
P aN� ˚ P

b
N� ;H

ab
i
D

X
i

X
fnj g

 .fnj g/

24 Y
n2fnj g

�´n C
Y

n2fnj g

O�´n ;H
ab
i

35 2.416

with [recall (2.298)]

Hab
i D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�
�
��
i �

�
iC1 O�

C
i O�

C
iC1 C �

C
i �

C
iC1 O�

�
i O�

�
iC1

�
C
1 � �´i
2

1 � �´iC1

2

1C O�´i
2

1C O�´iC1

2

C
1 � O�´i
2

1 � O�´iC1

2

1C �´i
2

1C �´iC1

2

9>>>>>=>>>>>;
: 2.417

Summands of (2.416) clearly vanish for all i such that i ^ i C 1 … fn1; : : : ; nN�g.
Let i 2 fn1; : : : ; nN�g. It is easy to see that summands where i D nj for some
1 � j � N � and njC1 D nj C 1 also vanish since products of adjacent pairs
�´nj
�´nj C1 commute with all components ofHnj

. Therefore we restrict our further
inquiries on summands where either i or i C 1 are in fn1; : : : ; nN�g (but not both);
w.l.o.g. let i 2 fnj g (sinceH ab

i is symmetric with respect to i $ i C 1).
First, note that Œ�´i ; �

˙
i � D ˙2�

˙
i and therefore�

�´i ; �
�
i �

�
iC1 O�

C

i O�
C

iC1 C �
C

i �
C

iC1 O�
�
i O�

�
iC1

�
D� 2 ��

i �
�
iC1 O�

C

i O�
C

iC1 C 2 �
C

i �
C

iC1 O�
�
i O�

�
iC1

2.418a

�
O�´i ; �

�
i �

�
iC1 O�

C

i O�
C

iC1 C �
C

i �
C

iC1 O�
�
i O�

�
iC1

�
DC 2 ��

i �
�
iC1 O�

C

i O�
C

iC1 � 2 �
C

i �
C

iC1 O�
�
i O�

�
iC1 :

2.418b
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With this, it follows24 Y
n2fnj g

�´n C
Y

n2fnj g

O�´n ;H
ab
i

35
D �

24 Y
n2fnj g

�´n C
Y

n2fnj g

O�´n ; �
�
i �

�
iC1 O�

C
i O�

C
iC1 C �

C
i �

C
iC1 O�

�
i O�

�
iC1

35 2.419a

D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
�

0@ Y
i¤n2fnj g

�´n

1A � ��´i ; ��
i �

�
iC1 O�

C
i O�

C
iC1 C �

C
i �

C
iC1 O�

�
i O�

�
iC1

�
�

0@ Y
i¤n2fnj g

O�´n

1A � � O�´i ; ��
i �

�
iC1 O�

C
i O�

C
iC1 C �

C
i �

C
iC1 O�

�
i O�

�
iC1

�

9>>>>>>>=>>>>>>>;
2.419b

D 2

0@ Y
i¤n2fnj g

�´n �
Y

i¤n2fnj g

O�´n

1A���
i �

�
iC1 O�

C
i O�

C
iC1 � �

C
i �

C
iC1 O�

�
i O�

�
iC1

�
2.419c

which is a non-vanishing expression in general. Therefore

H jf�igIN
�
i
˚

N;˛

D

�
Ha
˚H b

CHab
�
jf�igIN

�
i
˚

N;˛ 2.420a

D E.f�ig/jf�igIN
�
i
˚

N;˛ 2.420b

C

h
Hab; P aN� ˚ P

b
N�

i X
M W.�1/M D˛

jM iajN �M ib 2.420c

C

h
P aN� ˚ P

b
N�

i
Hab

X
M W.�1/M D˛

jM iajN �M ib 2.420d

which simplifies to

E.f�ig/jf�igIN
�
i

˚

N;˛

C

h
H ab; P aN� ˚ P

b
N�

i X
M W.�1/M D˛

jM iajN �M ib :
2.421

There are two obvious cases for which the second term vanishes: (1) for N � D 1

and 0 � N � 2L arbitrary and (2) for N � D 2 and N D 2. In the first case,Q
i¤n2fnj g

�´n D 1 D
Q
i¤n2fnj g

O�´n such that Eq. (2.419c) vanishes identically. In
the second case there are only two particles in

P
M W.�1/M D˛ jM iajN �M ib such

that either the first or the second factor in Eq. (2.419c) annihilate this state. In any
case, we find that

H jf�igIN
�
i

˚

N;˛ D E.f�ig/jf�igIN
�
i

˚

N;˛ 2.422

which concludes the proof. �
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2.D Residue of the Majorana Algebra

In this section, we focus on the algebraic properties of the zero-energy subspace of
wire networks (as introduced in Subsection 2.5.1). We start in ⁂ Subsection 2.D.1
with a brief exposition of the Majorana algebra, its relation to non-abelian braid
group representations, and the action of Majorana edge modes on the zero-energy
ground states. In ⁂ Subsection 2.D.2, we introduce exponentially localized edge
operators for the number-conserving setting that map the degenerate ground states
into each other. We study their properties and discuss their relation to the Majorana
algebra.

2.D.1 Properties of Majorana Operators

We start this subsection with a brief exposition of the Majorana algebra, the braid
group, and the representation of the latter by the former. Afterwards, we revisit the
action of the Majorana edge modes on the zero-energy ground states and define a
subalgebra to bridge the gap between mean field theory and its number-conserving
analogue.

Braid Group Representations from the Majorana Algebra

Here we derive two possible braid group representations realized by the Majorana
algebra: an abelian and a non-abelian one. The latter describes the braiding statistics
of Ising anyons93, found in the low-energy sector of models that carry Majorana
modes either in vortices [83] or at the end of one-dimensional chains [82].

We start with a 2N -generator Majorana algebra M2N (isomorphic to a
N -fermion Dirac algebra), the generators of which are denoted 1; : : : ; 2N and
fulfill the relations of a (complex) Clifford algebra:

ij C ji D
˚
i ; j

	
D 2ıij 1 : 2.423

In particular, 2i D 1 which makes M2N finite-dimensional. Together with the
defining hermiticity condition �i D i ,M2N becomes an operator algebra acting
on a Hilbert space H ; henceforth we take H D H �

N to be the Fock space of N
fermions on whichM2N acts in the usual way (Subsection 1.2.2).

Next, we identify each generator i with a “strand” i of the braid group B2N ,
which is presented as

B2N D

*
�1; : : : ; �2N�1

ˇ̌̌̌
ˇ �i�iC1�i D �iC1�i�iC1 and
�i�j D �j�i for ji � j j > 1

+
: 2.424

93Up to non-universal phases, see Footnote 41.
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Since the generator �i describes the exchange of the i th with the i C 1th strand, we
introduce the more descriptive labeling �i;iC1 � �i . The interpretation of Majorana
generators i as strands originates from the physical picture of spatially localized
zero-energy modes associated to these operators. Thus they may be subject to
unitary evolutions that represent the braiding of these localized modes.

To find a representation � W B2N ! M2N , we have to define � on the
generators �i;iC1 and ensure that the defining relations of B2N are satisfied inM2N .
In the following, we restrict admissible representations by demanding locality, that
is, �.�i;iC1/ maps to the subalgebra generated by the corresponding strands i and
iC1. Furthermore, we require translational invariance, i.e., the coefficients of � do
not depend on the site i . This leads to the general form

�.�i;iC1/ D a 1C b i C c iC1 C d iiC1 2.425

with yet undetermined coefficients a; b; c; d 2 C.
It is straightforward to see that �.�i/�.�j / D �.�j /�.�i/ for non-adjacent sites

i and j (ji � j j > 1) requires all terms with an odd number of Majoranas to vanish
as they anticommute with each other. Hence we are left with

�.�i;iC1/ D a 1C d iiC1 2.426

which, plugged into the braiding relation,

�.�i;iC1/�.�iC1;iC2/�.�i;iC1/

Š
D �.�iC1;iC2/�.�i;iC1/�.�iC1;iC2/ ; 2.427

yields
.a 1C d iiC1/ .a 1C d iC1iC2/ .a 1C d iiC1/

D .a3 � ad 2/C 2a2d iiC1 C .a
2d C d 3/ iC1iC2 2.428

on the left-hand side and

.a 1C d iC1iC2/ .a 1C d iiC1/ .a 1C d iC1iC2/

D .a3 � ad 2/C 2a2d iC1iC2 C .a
2d C d 3/ iiC1 2.429

on the right-hand side. We conclude that the form a 1 C d iiC1 satisfies the
braiding relations if and only if

2a2d D a2d C d 3 , a2d D d 3 : 2.430

There are two possible solutions: For d D 0, there is no restriction on a and we
find the abelian representation

�abelian.�i;iC1/ D a 1 : 2.431

For d ¤ 0, we have a D ˙d and therefore the two non-abelian representations

�non-abelian.�i;iC1/ D a .1˙ iiC1/ : 2.432
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We can sharpen this result by demanding unitarity of the representation; this
is motivated by physics where the braid group representation is generated by the
unitary time evolution on a Hilbert space. So assume

�.�i;iC1/�.�i;iC1/
�
D 1 , �

�
��1
i;iC1

�
D �.�i;iC1/

� ; 2.433

which leads to

.a 1C d iiC1/.a
� 1 � d� iiC1/

D jaj2 1 � .ad�
� a�d/iiC1 C jd j

2 1
Š
D 1 : 2.434

Unitarity is therefore equivalent to

jaj2 C jd j2 D 1 and ad�
D da� ; 2.435

which leads in the abelian case to the final result

�abelian.�i;iC1/ D e
i' 1 2.436

and in the non-abelian case to

�non-abelian.�i;iC1/ D
ei'
p
2
.1˙ iiC1/ : 2.437

Using .iiC1/2n D .�1/n, we can rewrite this in terms of anti-Hermitian
generators:

1
p
2
.1˙ iiC1/ D 1 cos

�

4
˙ iiC1 sin

�

4
2.438a

D

1X
nD0

.iiC1 � �=4/
2n

.2n/Š
˙

1X
nD0

.iiC1 � �=4/
2nC1

.2nC 1/Š
2.438b

D exp
h
˙
�

4
iiC1

i
: 2.438c

Result 2.9: Non-abelian braid group representation

Thus we find the non-abelian braid group representation(s)

�non-abelian.�i;iC1/ D exp
h
i' ˙

�

4
iiC1

i
2.439

in terms of Majorana modes i and j with arbitrary phase ' 2 R. It is common to set
' D 0 since ' has no effect on the non-abelian structure of the representation94. The two
sign choices (˙) exchange the representations for �i;iC1 and its inverse ��1

i;iC1.

For a broader view on the relation between Majorana fermions and braid group
representations, we refer the reader to Ref. [267].

94This phase is fixed to ' D �=8 for “true” (i.e., non-projective) Ising anyons [24, 156].
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It is instructive to interpret the representation � as acting onM2N via conjuga-
tion [48]:

�.�i;iC1/.k/ � �.�i;iC1/k�.�i;iC1/
� : 2.440

This leads to the transformation rules

k 7! k for k ¤ i; i C 1 2.441a

i 7! �iC1 2.441b

iC1 7! i 2.441c

which is in line with the interpretation of i ,j as “strands” that are swapped by
�.�i;iC1/. Note that

Ui;iC1 � �.�i;iC1/�.�i;iC1/ D �
�
�2i;iC1

�
¤ 1 2.442

describes a double-exchange, i.e., braiding of one mode around another one. This
sets the braid group B2N apart from the symmetric group S2N (where permuting
twice yields the identity) and facilitates non-trivial state transformations by braiding.
In particular, for fermion modes

a D
1

2
.1 C i2/ and b D

1

2
.3 C i4/ 2.443

we have
U2;3 a U

�
2;3 D a

� and U2;3 b U
�
2;3 D �b

� ; 2.444

such that two empty modes a; b are populated by a pair of fermions by braiding
appropriate Majorana modes. This immediately suggests connections to supercon-
ductivity: Only a condensate of fermion pairs (viz. Cooper pairs) can provide the
two particles that are “created” by braiding. In Subsection 2.5.2 we discussed the
number-conserving analog of U2;3 and found a parity flip of both involved subchains;
this parallels the change in parity of the modes a and b in (2.444).

As a final remark, we point out that braiding two Majorana modes that make up
a common fermion mode yields

U1;2 a U
�
1;2 D �a D �‰ a : 2.445

This can be understood if we realize that in the Ising anyon model, a fermion
‰ � a is an extended object composed of two Majoranas � �  . Braiding these
two constituents around each other then describes a 2�-rotation of the fermion
around its axis. This gives rise to the topological spin �‰ D �1 of the fermion ‰—in
accordance with the known relation between fermionic statistics and half-integer
spin95.

95Although our fermions a and b are spinless (or spin-polarized), the half-integer nature of their
spin is intrinsic to the Ising anyon model (UMTC). Note that the fermions are confined in two
dimensions where the spin algebra is abelian (it has a single generator) with one-dimensional irreducible
representations. Such“2D-fermions” are spin-polarized“by default” and their spin manifests as a
minus sign when rotated by 2� in-plane.
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Action on the Ground States

To motivate the discussion in ⁂ Subsection 2.D.2, we recall (Subsection 1.2.2)
that at the “sweet spot” of the Majorana chain, the two degenerate zero-energy
many-body ground states for open boundary conditions are given by the equal-weight
superpositions of fixed (total) parity P D .�1/N ,

jCi D

X
nW jnj even

jni and j�i D

X
nW jnj odd

jni : 2.446

With the edge mode Majorana operators

L � a1 C a
�
1 and R � �i.aL � a

�
L/ 2.447

one can easily switch between the two ground states with unit overlap:

jCi D Lj�i and jCi D iRj�i : 2.448

It is a crucial point that this mapping is only possible at the edges (sites 1 and L).
Majorana operators located in the bulk still change the parity but create no overlap
with the other ground state; this is a smoking gun for edge states.

Despite its algebraic possibility, this is not a physically admissible operation as it
changes the total parity P : It cannot occur as the time evolution of a Hamiltonian
that respects a parity superselection rule (and thus can only include even products of
Majorana operators). The problem can be solved in a system of two separate open
chains which can be brought together so that their endpoints are close to each other.
Then, for a fixed total parity P D C1, it is reasonable to drive local transitions such
as

jCi1jCi2 / 
.1/
L 

.2/
L j�i1j�i2 2.449

where the relative phase now depends on the chosen gauge (fermion order). The
product of two Majorana operators  .1/L 

.2/
L is “physical” as it conserves the total

parity (but not the total particle number96).
The fact that only even products of Majorana operators can occur in any physi-

cally legitimate scenario motivates the definition of the even Majorana subalgebra:

MC

2N � h ij j i; j 2 f1; : : : ; 2N g i � M2N : 2.450

Note that a set of independent generators is given by any spanning tree of the
complete graph on 2N vertices, for example f1i j 1 < i � 2N g, and therefore
2N � 1 generators are sufficient. Compared to the 2N generators ofM2N , only a
single generator is missing (which corresponds to a “basepoint“). If we define

�lm � ilm 2M
C

2N ; 2.451

96This is not necessary, as can be seen from the mean field description of superconductivity.
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it is easy to confirm that

�
�

lm
D �lm 2.452a

�2lm D 1 2.452b

�lm D ��ml 2.452c

Œ�lm; �no� D 0 for fl; mg \ fn; og D ; 2.452d

and additionally
�lm�mn D i�ln : 2.453

It is clear that any quadratic (and therefore parity-conserving) fermionic Hamiltonian
can be written as

H D
X
e

he �e 2.454

with he 2 R and edges e D .lm/. Thus all the relevant physics is actually described
by MC

2N and we can forget about the substructure of �e in terms of Majorana
operators and the rest ofM2N .

For instance, the elementary adiabatic deformation used for braiding reads97

Hijk.�/ D .1 � �/ �ij C � �jk .0 � � � 1/ ; 2.455

and the non-abelian braid group representation becomes

�.�j / D e
�i �

4
�j D

1
p
2
.1� i�j / 2.456

if we define �i � �i;iC1.
Note that �2

lm
D 1 and ��

lm
D �lm leads to eigenvalues ˙1. Their physical

interpretation becomes clear if we recall the fermionic origin:

�lm D ilm D .a � a
�/.aC a�/ D 1 � 2a�a D .�1/a

�a ; 2.457

where we defined the fermion mode as a D .m C il/=2. So the eigenvalue of
�lm is the parity of the fermion mode that results from the fusion of the Majorana
modes at sites l and m.

2.D.2 Edge Modes in the Number-Conserving Setting

In this subsection, we introduce a class of number-conserving operators as replace-
ment for the even products of Majorana operators in MC

2N . We discuss some of
their properties, especially the possibility to map ground states of wire networks into
each other—a feature that supports their role as number-conserving “edge modes.”

97This Hamiltonian starts off with a localized Majorana zero mode k and ends up with a zero
mode at i . The spectrum remains gapped with an exact zero-energy mode throughout the evolution.
Thus it describes the adiabatic transfer of a Majorana mode from k to i via j .
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Number-Conserving Edge Operators

Let us consider a system of K single (open) chains Li that are all connected by
parity-conserving couplings to a common (open) bath chain, so that the complete
system is characterized by the total filling N and the subchain parities ˛i D ˙1
for i D 1; : : : ; K. If we choose a gauge along the chains, this still leaves open the
direction and relative order of the chains. A possible setup looks like this:

We omit the bath chain for the sake of simplicity. The chosen gauge is drawn as
dashed blue line. The direction of the gauge string determines the orientation of the
chain segments as indicated by the arrows; the relative order of the chains is induced
by the gauge string as well. Due to the global ordering (including the invisible
bath chain, of course), there is a common index � for all fermion sites running
from 1 to

P
i Li C Lbath, the total number of sites; � runs along the gauge string.

We can assign a Hamiltonian H0 to this system so that the zero-energy ground
state space H0 is 2K degenerate and the ground states are given by equal-weight
superpositions j˛1; : : : ; ˛Ki (we omit the filling N in the labeling of the states),
recall Subsection 2.5.1.

For what follows, it is convenient to introduce distinct labels for the sites at the
chain endpoints. As depicted above, si (ei ) denotes the index of the first (last) site
of chain i ; again, “first” and “last” is defined relative to the orientation of the chain.
If we introduce the handy notation

si ˚ n � si C n 2.458a

ei ˚ n � ei � n 2.458b

for a shift 0 � n < Li (and the �-modifier: e�
i � si and s

�
i � ei , see below), this

allows us to parametrize the chain relative to its edges:
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Let in the following x; y 2 fs; eg label generic boundary sites of chains. Then
we can define for 1 � ı < minfLl ; Lmg and two chains l and m the projector

�ı.xl ; ym/ �

ı�1Y
iD0

�
nxl ˚i � nym˚i C .1 � nxl ˚i/ � .1 � nym˚i/

�
2.459

with the fermionic number operators n� D a
�
�a�; for ı D 0, let �0.xl ; ym/ � 1.

Definition 2.5: Number-conserving edge operators

With these preliminaries, we can define the edge operators

�ı.xl ; ym/ �

ı�1X
kD0

�k.xl ; ym/

�

8<:.�1/
ıx;e � .a

�

xl ˚k
aym˚k C a

�

ym˚k
axl ˚k/ for x ¤ y

i � .a
�

xl ˚k
aym˚k � a

�

ym˚k
axl ˚k/ for x D y

2.460

that are Hermitian and number-conserving as they tunnel single fermions between the
boundaries xl and ym of chains l andm.

Their action is best explained with an illustration in the number basis:

The ı summands in �ı.xl ; xm/, indexed by k, are given by a projector �k.xl ; ym/
that compares the first k sites on chains l and m (counting from the boundary
sites x and y) and projects onto states that are symmetrically occupied, as depicted
above for the first 4 sites on either chain. This prevents single-particle hopping
between chains from site xl ˚ i to ym ˚ i (and vice versa) for 0 � i < k. The
projection is combined with a Hermitian single-particle hopping between the sites
xl ˚ k and ym˚ k (the kC 1th sites counted from the edges). For the number state
depicted above, the k D 4 summand in �ı.xl ; ym/ acts non-trivially by tunneling
the blue fermion from chain l to chain m; all other summands vanish. It is clear by
construction that �ı.xl ; ym/ flips the subchain parities ˛l;m ! �˛l;m and thereby
fulfills a necessary condition for an operator that acts as a non-trivial automorphism
on the ground state space H0 of the wire network.

Two questions arise immediately: First, is H0 invariant under the action of �ı
(possibly in some approximate sense), and second, what are the algebraic properties
of �ı when restricted to H0? We will not give conclusive answers here but sketch
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possible directions for future studies. However, we conjecture that the �ı give rise
to an approximate (in ı) representation of MC

2K on H0, i.e., they play the role of
pairs of Majorana edge modes in the number-conserving setting.

Some Properties of �ı

To reveal the similarities of �ı.xl ; ym/ and �lm, we have a look at the square

Œ�ı.xl ; ym/�
2
D ˙

ı�1X
kD0

�2k.xl ; ym/
�
a
�

xl ˚k
aym˚k ˙ a

�

ym˚k
axl ˚k

�2
; 2.461

where we used the orthogonality of different terms to obtain the diagonal form of
the sum. It can be simplified to

Œ�ı.xl ; ym/�
2
D

ı�1X
kD0

�k.xl ; ym/ �

"
nxl ˚k.1 � nym˚k/

Cnym˚k.1 � nxl ˚k/

#
2.462a

�

ı�1X
kD0

�k.xl ; ym/ ; 2.462b

a sum of projectors �k.xl ; ym/ onto number states characterized by symmetric
configurations for sites 1 � i � k and an asymmetric occupation of the k C 1th pair
of modes. It is easy to see that they are orthogonal for different indices k D a; b,
i.e.,

�a.xl ; ym/�b.xl ; xm/ D ıa;b �a.xl ; xm/ : 2.463

Equation (2.462b) suggests the decomposition

�2ı D 1CRı ; 2.464

where the residual operator Rı is expected to vanish98 rapidly with growing ı as
more and more orthogonal projectors contribute to the square.

We do not provide a proof of Eq. (2.464) but the following intuition: The
basis j˛1; : : : ; ˛Ki of H0 is given by equal-weight superpositions of all fermion
configurations under conditions on particle number and subchain parity that are
clearly not altered by �2

ı
. We can now ask about the probability that a random

(admissible) configuration is annihilated by the sum of orthogonal projectors
in (2.462b) (these are states that contribute to the operator norm kRık). Such
states feature a completely symmetric occupation pattern on chains l and m starting
from their edges xl and ym inwards for (at least) ı sites. For a given density
0 < � < 1, this probability vanishes exponentially with ı. Since j˛1; : : : ; ˛Ki are

98We have to specify what we mean by “vanish”: As we are interested in the action on ground
states, all statements about �ı must hold only within H0. Therefore “vanish” here means that the
operator norm kRık0 on H0 vanishes.
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equal-weight superpositions, this translates into an exponentially vanishing loss of
norm due to the application of �2

ı
; thus we have kRık0 D O.e�ı/. Note that this

is not true on the total Hilbert space H which includes states with a completely
symmetric configuration on both chains. These are annihilated by �ı for all ı since
no symmetric single-particle hopping is possible; thus kRık � 1 on H .

A similar counting argument can be applied to �ı itself. Again, up to losses
that are exponentially suppressed in ı, �ı.xl ; ym/ maps .˛l ; ˛m/-configurations
to .�˛l ;�˛m/-configurations via single-particle hopping. Most importantly, due
to the symmetric occupations between the boundaries and the site to/from which
the fermion hops, the collected sign is the same for all k-terms in (2.460). In
particular, an equal-weight superposition j˛l ; ˛mi is mapped to another equal-weight
superposition j�˛l ;�˛mi up to losses in norm of the order O.e�ı/.

Due to their (obvious) Hermiticity, we conclude that the operators �ı.xl ; ym/
are “unitary up to exponential corrections” on H0 and exponentially localized on
the boundaries:

�2ı D 1CO.e�ı/ ) �
�

ı
D ��1

ı CO.e�ı/ : 2.465

This and the fact that �ı.xl ; ym/j˛l ; ˛mi has definite subchain parities �˛l and
�˛m (and the only subspace with these parities in H0 is generated by j�˛l ;�˛mi)
leads us to the following conjecture:

Conjecture 2.1: Unitary (quasi-)automorphism on H0

�ı.xl ; ym/ acts as unitary automorphism on H0 up to exponential corrections. Its action is
given on the subchain parity basis j˛1; : : : ; ˛Ki D j˛l ; ˛mi as

�ı.xl ; ym/j˛l ; ˛mi D c j�˛l ;�˛mi CO.e�ı/ : 2.466

Here, c 2 C is a phase, jcj D 1.

From now on, we neglect the exponential corrections (and the cutoff subscript ı)
in all equations. To derive the algebra generated by the �.xl ; ym/ on H0, the precise
form of the phase c and its dependence on the quantum numbers ˛i is required. To
this end, we need additional notation. Recall that the gauge string defines an order
on the chains, and let ˛i � Pi denote the parity (operator) on the i th chain. Then
we define (l < m)

�.xl ; ym/ � .˛l/
ıx;s �

 Y
l<i<m

˛i

!
� .˛m/

ıy;e 2.467

as the subsystem parity of chains between l and m. To indicate the evaluation of �
on a given parity configuration ˛ D .˛1; : : : ; ˛K/, we write �˛.xl ; ym/.
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A careful evaluation of signs collected during the hopping from one boundary xl
to another ym reveals that in order to yield finite overlaps in the thermodynamic
limit, time-reversal invariant couplings are necessary whenever the orientations
of the two chains are parallel (x ¤ y), and conversely, time-reversal breaking
couplings must be applied between chains of antiparallel orientation99 (x D y); this
explains our choice in the definition (2.460) of �.xl ; ym/. Note that the global sign
.�1/ıx;e for x ¤ y is only necessary to make �.xl ; ym/ antisymmetric,

�.xl ; ym/ D ��.ym; xl/ ; 2.468

irrespective of x and y; compare with the mean field versions in Eq. (2.452).
Let us start with the first case of parallel orientations coupled via time-

reversal invariant hopping. There are two distinct gauge string topologies for such
orientations, pictorially:

As all statements that follow are invariant under an inversion of orientation (up
to a global sign), we omit arrows on the chains and consequently label boundary
sites neutrally as x; y 2 fs; eg; due to the chosen topology it is implicit that x ¤ y.
Remember that an arbitrary collection of chains (not shown above) may lie
“between” the coupled boundary sites. Those are not affected by the hopping
process, but their parity has to be taken into account nevertheless (due to the chosen
gauge). This parity is encoded in � , as suggested by the figure above.

For the two cases depicted above, one finds the action (˛ � �˛)

�.xl ; ym/j˛l ; ˛mi D .�1/
ıx;e�˛.xl ; ym/ j˛l ; ˛mi 2.469a

�.xl ; ym/j˛l ; ˛mi D .�1/
ıx;e.�˛l˛m/ �˛.x

�
l ; y

�
m/ j˛l ; ˛mi

D .�1/ıx;s�˛.xl ; ym/ j˛l ; ˛mi : 2.469b

The crucial difference between the two cases is whether the particle traverses its
own chain or not. If so (shown in the right-hand panel above), an additional minus
sign occurs because the particle has to be subtracted from the effective parity of its
chain.

99This is in line with the well-known fact that time-reversal symmetry must be broken to gap out
twoMajorana chains of parallel orientation (topological index 1C1 D 2); this breaks the Z topological
index of symmetry class BDI down to the Z2 index of class D. For chains of antiparallel orientation
(topological index 1C .�1/ D 0), no time-reversal symmetry must be broken as this corresponds to a
Majorana chain with periodic boundaries.
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Similarly, there are two distinct configurations for antiparallel orientations where
time-reversal breaking hopping is the appropriate choice to couple states:

Carefully counting fermion parities yields the action

�.xl ; ym/j˛l ; ˛mi D i.C˛l/ �˛.x
�
l ; ym/ j˛l ; ˛mi

D i�˛.xl ; ym/ j˛l ; ˛mi 2.470a

�.xl ; ym/j˛l ; ˛mi D i.�˛m/ �˛.xl ; y
�
m/ j˛l ; ˛mi

D �i�˛.xl ; ym/ j˛l ; ˛mi ; 2.470b

where again both cases differ in a minus sign only and x D y follows implicitly from
the gauge string topology.

Using (2.469) and (2.470), the matrix algebra of

f�.xl ; ym/ j l; m 2 f1; : : : ; KgI x; y 2 fe; sg g on H0 2.471

can be derived in principle. We leave this calculation to the motivated reader but
conjecture that they realize an approximation of the even Majorana subalgebraMC

2K .
Furthermore, it would be interesting to elucidate how �.xl ; ym/ relates to the
concept of weak zero modes that has been introduced in the context of interacting
parafermion chains [268,269].
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3
Topological Networks for
Quantum Communication
Between Distant Qubits

“Reality is that which,
when you stop believing in it,
doesn’t go away.”

— Philip K. Dick

Efficient communication between qubits relies on robust networks which allow for
fast and coherent transfer of quantum information. It seems natural to harvest the
remarkable properties of systems characterized by topological invariants to perform
this task. In this chapter, we show that a linear network of coupled bosonic degrees
of freedom, characterized by topological bands, can be employed for the efficient
exchange of quantum information. Features of the proposed setup, published in
Ref. [2], are that it is robust against quenched disorder, all relevant operations
can be performed by global variations of parameters, and the time required for
communication between qubits approaches linear scaling with their distance. We
show how the proposed concept can be extended to an ensemble of qubits embedded
in a two-dimensional network to allow for communication between all of them.
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IN A NUTSHELL

In modern computers, the central processing unit (CPU) applies instructions to
a massive amount of data every fraction of a second. These instructions are so
fast that the speed of information processing is often not limited by the operations
themselves but the time needed to transfer data from, to and between random access
memory (RAM) and the various temporary memories (caches) of the CPU. While
this “data management” is a formidable task of modern chip design, the physical
mechanism for information transfer is not that elaborate: Lithographically fabricated
“wires” allow for the transmission of voltage pulses—encoding the bits—at (almost)
the speed of light. This is how most of the data is shuffled around in classical
computers, and there are no fundamental difficulties that bar the way.

Unfortunately, quantum computers are picky in almost every respect. Not even
the transmission of a qubit from one register to another (on the same chip!) is as
easy as it sounds. This is because qubits are fragile and any interaction with an
uncontrolled environment degrades their coherence. But just as the performance
and scalability of classical information processing rests on efficient methods for
information transfer, the coherent transfer of quantum information is crucial for
the construction of scalable quantum processors. In this chapter, we discuss a
scheme—realized in topological materials—as promising quantum analogue for the
“wires” of classical CPUs: Our main mission is to transfer a qubit, stored in a
two-level system C, coherently to another two-level system T which is too far away
for direct coupling.

To complete this mission, we borrow findings from condensed matter physics.
More precisely, we focus on symmetry-protected topological phases in one dimension,
such as the famous Su–Schrieffer–Heeger (SSH) model

OHSSH D

LX
iD1

wi ci
�ci C

L�1X
iD1

ti ci
�ciC1 C h.c. ; 3.1

which describes an open chain of 2L fermions (two per site: c.�/i and c.�/
i

) with
alternating hopping amplitudes wi and ti ; see Subsection 1.2.1 for a review. We
are going to use this fermionic model as a blueprint to construct a bosonic network
(think of coupled cavities) that inherits its most intriguing feature: For uniform
couplings wi � Nw D 0 and ti � Nt > 0, the leftmost and rightmost modes c1 and cL
do not show up in OHSSH and become degenerate zero-energy modes located at the
boundaries of the chain. For 0 < Nw < Nt , these edge modes are still localized at the
edges but leak further into the bulk when Nw approaches Nt . In finite chains, this leads
to hybridization of the two edge modes with an energy splitting �Eedge. The edge
modes vanish for Nw D Nt where the chain undergoes a topological phase transition into
a trivial phase for Nw > Nt where no edge modes are present.

A network of bosonic modes with the same properties might be the solution for
our posed task: We connect the qubits C and T by a “SSH-like” chain of bosonic
modes of appropriate length L deep in the topological phase ( Nw D 0) so that the
edge modes (call them QbC and QbT) are tightly localized at the ends of the chain. The
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Figure 3.1 • Setup. Linear bosonic network OHbSSH for topological state transfer. The model
consists of locally coupled bosonic modes bi and bi with qubits C andT coupled (dashed edges)
to the edge modes QbC and QbT (gray discs). The only (globally) tunable parameter is the on-site
coupling Nw.t/ (red edges). Inter-site couplings Nt (black edges) and mode frequencies ı are
uniform and static. The network derives from the fermionic SSH chain.

state of the two-level system C can then be mapped into its adjacent edge mode QbC

as bosonic excitation. If the mode coupling Nw D Nw.t/ is slowly switched on, both
edge modes hybridize and allow for a Rabi pulse that transfers an excitation from
one edge to the other. Turning Nw off again relocalizes the edge modes and with
them potential excitations. Finally, a transferred excitation can be mapped back
from the edge mode QbT to the two-level system T, which completes the transfer.

To translate the fermionic Hamiltonian into a bosonic one (without spoiling the
topological features), it is instructive to write

OHSSH D ˆ�HSSH ˆ 3.2

with the pseudo-spinor ˆ D
�
c1; c1; : : : ; cL; cL

�T . Here, HSSH is a Hermitian
.2L � 2L/-matrix encoding the non-interacting many-body Hamiltonian OHSSH. But
the matrix HSSH does not know anything about the fermionic nature of OHSSH (nor
anything about quantum mechanics, for that matter). The edge modes of OHSSH,
however, are single-particle features and therefore already encoded in HSSH. If we
add a constant energy shift, HbSSH � HSSH C ı1, this clearly does not change the
eigenstates (most importantly: the edge states) and makesHbSSH positive for ı > 0
large enough.

Now we can simply define the bosonic Hamiltonian100

OHbSSH � „�HbSSH „ 3.3

100The positivity of HbSSH is necessary for the existence of a stable ground state of OHbSSH in the
bosonic Fock space. For the fermionic theory OHSSH, this was not necessary due to the Pauli exclusion
principle.
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with „ D
�
b1; b1; : : : ; bL; bL

�T and the 2L bosons bi and bi replacing the fermions
ci and ci . The bosonic network described by OHbSSH is illustrated in Figure 3.1,
together with the conceived coupling of the qubits C and T with their respective
edge modes QbC and QbT. Note that the shift ı is identified with the (uniform) mode
frequencies !i and !i .

A considerable part of this chapter is dedicated to an assessment of the
performance of this scheme for a particular choice of the “transfer protocol,”
namely the time dependence of the uniform on-site coupling

Nw.t/ D Nwmax F .t/ ; 3.4

where F .t/ D sin2 .� t=�/ for 0 � t � � . Here, Nwmax < Nt and � are parameters
specifying the protocol. Our choice of the pulse shape accounts for the intuition
that a smooth time evolution is necessary, lest undesired scattering into bulk modes
obstructs the transfer. Indeed, we find that for appropriately chosen Nwmax and � ,
near to perfect transfer is possible, see Figure 3.2 (a) for an example.

To quantify these results, we write j1; 0; 0i � j1i1˝j0; : : : ; 0iBulk˝j0iL D Qb
�
C j0i

for an excitation in the edge mode QbC (and similar for QbT), and introduce the three
figures of merit O, ', and E as

h0; 0; 1jU Nwmax.�/j1; 0; 0i �
p

O ei' 3.5

and
E � O C jh1; 0; 0jU Nwmax.�/j1; 0; 0ij

2 ; 3.6

where U Nwmax.�/ describes the unitary time evolution by OHbSSH.t/. O and ' measure
the transfer fidelity and phase, whereas E quantifies the adiabatic decoupling of the
two edge modes from the bulk modes.

The time � needed for this decoupling, indicated by E � 1, is determined by the
gap between edge and bulk modes �Ebulk, see Figure 3.2 (b). An additional (lower)
bound on � follows from the requirement of high transfer fidelity (indicated by
O � 1), namely � � �E�1

edge for the hybridization energy�Eedge. A central message
of this chapter is that a scaling �Eedge � L

�1 and �Ebulk � L
�1 is achievable if

the critical coupling is approached as Nwmax D Nt � const=L. Using analytic upper
bounds on the non-adiabatic losses, we show that this allows for transfer times
� � L1C 1

2 close to the ideal (linear) scaling � � L. It is even possible to approach
linear transfer times for optimized pulse shapes.

Another major part of this chapter deals with the effects of quenched disorder on
the performance of the transfer protocol. In this context, the symmetry protection
of the original SSH chain becomes important, where combinations of the three
“generic” symmetries T (time-reversal), C (particle-hole), and S (sublattice) are
known to be responsible for the robustness of the edge modes. For the derived
bosonic network, this boils down to the uniformity of the mode frequencies

8i;i W !i D ı D !i ; 3.7
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Figure 3.2 • Results. (a) shows the squared amplitude j‰I j2 of a single-particle wave function
evolved by OHbSSH.t/ for an excitation that is initially localized in the edgemode QbC and transferred
to the edge mode QbT. The protocol parameter Nwmax and the timescale � are tuned to optimize
the transfer fidelity and the adiabatic decoupling. (b) parallels the time evolution in (a) with the
single-particle spectrum of OHbSSH.t/. The spectrum is symmetric to the mode frequency ı due to
particle-hole symmetry. The inset highlights the splitting�Eedge of the edge modes and their
separation �Ebulk from the bulk modes. (c) shows the spatial amplitudes j‰I j of both edge
modes at three times during the protocol Nw.t/ for (1) no disorder, (2) particle-hole symmetric
disorder, and (3) particle-hole breaking disorder. Note the delocalization of the edge modes for
particle-hole symmetric disorder in (2) and their localization for particle-hole breaking disorder
in (3) (red panels).

together with the reality of the couplings wi and ti (the values of which may be
subject to site-dependent disorder!). Most importantly, we show that for disorder
that respects the particle-hole symmetry C , the transfer phase ' is fixed at˙�

2
and

the fidelity O is only marginally affected. We argue that the edge modes do not
localize for particle-hole symmetric disorder, which explains their hybridization and
the robust state transfer despite disordered couplings, see Figure 3.2 (c). To gauge
these results, we compare the SSH-based scheme to a simple, “non-topological”
tunneling setup and highlight the benefits of the topological approach.

In the last part of this chapter, we discuss a possible application of the topological
transfer scheme: The implementation of a controlled-phase (CP) gate on the two
remote qubits C and T described by

UCP D …T ı TC$T ı…
2
C ı TC$T ı…T : 3.8
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Here, TC$T denotes the topological state transfer and …C/…T are local �-pulses
that describe the mapping between the physical qubits C/T and their adjacent edge
modes QbC/ QbT. We demonstrate numerically that this sequence of unitaries indeed
realizes a controlled-phase gate UCPjxiCjyiT D .�1/

xy jxiCjyiT with x; y 2 f0; 1g
for the conditional phase � D � .

Finally, we discuss possible generalizations of the one-dimensional setup in two
dimensions that allow for the controlled communication between arbitrary pairs of
N > 2 qubits. In this context, we highlight the role of the various symmetries and
conclude with possible directions for future studies.
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INTRODUCTION

3.1 Introduction

Systems characterized by topological invariants are well known to exhibit unique
properties—such as robust edge modes, stable ground state degeneracies, and
anyonic excitations—with potential applications in quantum information processing
and engineering [47]. Ever since the first experimental observation of the integer
quantum Hall effect [69, 270, 271], many other condensed matter systems have
been identified and experimentally characterized, such as fractional quantum Hall
fluids [27–29] and topological insulators and superconductors [21, 22, 75, 78, 95,
97, 102, 103, 272]. The latter belong to a particularly well-understood family
of topological systems described by non-interacting fermions, where topological
invariants can be defined on classes of random matrices [90–93]. This concept can
be straightforwardly generalized to bosonic setups as well as classical systems [202,
204, 213], where the topological features still give rise to intriguing properties
such as localized and chiral edge modes. Here we are interested in such systems:
We demonstrate that their topological properties can be harvested for robust and
efficient transfer of quantum information.

Several different platforms for the realization of topological systems of artificial
matter with bosonic degrees of freedom (d.o.f.) are currently explored: The
construction of topological band structures and the observation of edge states has
been achieved with photonic circuits in the optical [212, 213, 273] and the radio-
frequency [214] regime, as well as with classical coupled harmonic oscillators [202,
204, 205], and with cold atomic gases [196–198, 274–277]. These experimental
advances have been prepared and are supported by many theoretical proposals,
e.g. [194, 195, 200,203,209,278–283]. Several of the above platforms are suitable to
carry a single quantized excitation with low losses and almost vanishing dissipation
along protected edge channels, which opens the opportunity to harvest topological
phenomena for guiding and transmitting quantum information reliably. First
approaches in this direction have been proposed [191, 192] and primarily focus on
the transmission of excitations along protected edge modes on the boundary of a
two-dimensional, topologically non-trivial medium.

In this chapter, we show that a linear network of coupled bosonic d.o.f.—
characterized by topological bands—can be employed for the efficient transfer of
quantum information over mesoscopic distances (e.g., on a chip). We demonstrate
that this setup outperforms its topologically trivial counterparts and exemplify
its application with the implementation of a robust quantum phase gate. The
concept under study is based on (quasi) one-dimensional setups, characterized by
a Z topological invariant [94], and derived from Kitaev’s paradigmatic Majorana
chain [82] and the Su–Schrieffer–Heeger (SSH) model [126]. The basic mechanism
for topological state transfer is simple: We employ symmetry-protected, localized
edge modes, the extend and overlap of which can be tuned via global coupling
parameters, to facilitate controllable communication between them. Prominent
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features of this approach are that all relevant operations can be performed by global
tuning of parameters, its robustness with respect to the pulse shapes used for the
transfer protocol, and that the time needed for transfer scales favorably (that is,
almost linearly) with the separation of the qubits. Its outstanding performance is paid
by quite complex preparation schemes as the coupling parameters have to respect
certain symmetries needed to define the topological invariants [204,205,213, 214].
Finally, we demonstrate that this concept can be extended to an ensemble of
qubits embedded in a two-dimensional network of local bosonic d.o.f. to establish
communication between all of them.

To present these results consistently and in a self-contained fashion, this
chapter subdivides into three main parts: In Section 3.2, the topological setup
is introduced (Subsection 3.2.1) and the applied protocol for state transfer is
explained (Subsection 3.2.2). Subsequently, in Section 3.3 the performance of
the topological transfer mechanism is studied in detail (Subsection 3.3.1) and its
scalability is analyzed analytically (Subsection 3.3.3). The topological approach
is compared with “non-topological” competitors in Subsection 3.3.4; effects of
disorder and the required symmetry protection are discussed in Subsection 3.3.5.
Finally, in Section 3.4 we employ topological state transfer for the mediation of a
controlled-phase gate between a single pair of distant qubits (Subsection 3.4.1). We
extend this to an arbitrary number of spatially distributed qubits and briefly sketch a
generalization to quasi–two-dimensional setups (Subsection 3.4.2). We conclude in
Section 3.5 and point the reader to some open ends that deserve further study. In
the remainder of this section, we outline the idea of topological state transfer in one
dimension and sketch possible applications thereof.

Basic Setup

We consider mesoscopically101 separated qubits that are coupled by a linear quantum
network of bosonic modes, see Figure 3.3 (a) for an example. The quantum network
itself is constructed from bosonic d.o.f. with only local couplings between them, and
generically described by the Hamiltonian

OHN D

X
i;j

b
�
i Hij bj : 3.9

Here, b�i (bi ) are bosonic creation (annihilation) operators accounting for the mode
at site i with Hij the coupling amplitudes. The network is designed such (see
Subsection 3.2.1 below) that at the end p of each branch, a localized bosonic edge
mode Qbp emerges with a controllable coupling between this mode and a local qubit.
The conceptually simplest setup is an optical network coupled to a single atom with
the level structure shown in Figure 3.3 (b). There, the coupling Hamiltonian for

101Imagine two atoms confined in distinct microtraps on a single chip and connected by a network
of optical cavities.
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Figure 3.3 • Basic setup. (a)One-dimensional chain of bosonicmodes bi with globally tunable,
time-dependent on-site couplings Nw.t/ (orange); derived from the SSH chain. It features a
topological band structure with localized edge modes QbT and QbC (perfectly localized for Nw D 0)
which can be coupled to local qubits T and C. (b) The local qubits are realized as three-level
systems with logical states j0ip , j1ip and the auxiliary state jaip. The state jaiC (j1iT) can decay
into j1iC (jaiT) via an off-resonant transition and thereby emits an excitation into the localized
edge mode QbC ( QbT). Tunneling excitations between the two edges is facilitated by temporarily
tuning the chain close to the phase transition via Nw.t/ and adiabatically decoupling bulk from
edge modes. The latter requires the protocol timescale � to be large compared to the (inverse)
gap between edge and bulk modes �E�1

bulk („ D 1). By contrast, a lower bound on the time
required for a transfer is given by the (inverse) edge mode splitting�E�1

edge.

the target qubit T, located at one end of a one-dimensional network, takes the form
(within the rotating wave approximation)

OHT.t/ D gT.t/
h
Qb�T jaih1jT C

QbT j1ihajT

i
: 3.10

The coupling gT.t/ is controlled by external laser fields and allows for the application
of �-pulses between the qubit state j1iT and the edge mode QbT, i.e., the emission of
a photon into the edge mode QbT from state j1iT is accompanied by a transition into
the auxiliary state jaiT; in the following, we denote such a �-pulse at edge p 2 fT; Cg
by the unitary operation…p. Note that the Hamiltonian OHC.t/ for the control qubit
C is similar, with the role of j1iC and jaiC exchanged.

Several fundamental tasks of quantum information processing between the
qubits T and C reduce to the transfer of edge excitations within the linear network; we
denote the corresponding unitary operation that describes the transfer of excitations
between edge modes bp and bq as Tp$q.

205



QUANTUM COMMUNICATION BETWEEN QUBITS

As an example, the protocol for a controlled-phase (CP) gate between a control
qubit C and a target qubit T reads

UCP D …T ı TC$T ı…
2
C ı TC$T ı…T 3.11

where the 2�-pulse…2
C imprints a phase of �1 if and only if the control qubit is in

state j1iC. Another example, the transport of a control qubit C to a target position T,
is simply described by the protocol

USWAP D AC ı…T ı…C ı TC$T ı…C ı…T ıAC : 3.12

Here, Ap denotes the exchange of the two states j1ip and jaip. Note that this
operation even performs the full exchange of the two qubits due to the linearity of the
network; a detailed discussion of these operations can be found in Subsection 3.4.1.

Motivated by these observations, we are in the following interested in the
efficient transfer (TC$T) of edge excitations within the linear network. The basic
idea is most conveniently illustrated for two qubits coupled by a one-dimensional
network, as illustrated in Figure 3.3 (a): If the coupling structure of the network
gives rise to topological bands with a gapped dispersion relation, the bulk-boundary
correspondence entails the existence of degenerate and localized edge modes within
the bulk gap. As the existence of edge modes is topologically protected, it is
robust against disorder. In a finite system, the degeneracy of the topological edge
states is only lifted exponentially in the edge separation. However, globally tuning
the quantum network closer to the topological phase transition into the trivial
phase increases overlap and finite-size splitting of the edge states, which eventually
allows for a �-pulse TC$T between the two edges. This simple idea is the core of
topological state transfer in one dimension and the subject of this chapter; compared
to topologically trivial systems, it features several neat properties regarding the
speed of state transfer and its robustness against disorder. Because the coupling of
edge modes is controlled by the phase of the network (more precisely: how close it
is to criticality), individual addressing of parts is not required.

To conclude this introduction, we stress that the envisioned scheme is generic
and various experimental platforms lend themselves for its implementation. In
addition to the discussed optical network [213], alternative setups are coupled optical
cavities and circuit QED systems [284,285] as well as trapped polar molecules or
Rydberg atoms with a coupling mediated by dipolar exchange interactions [283],
while the local qubits can be artificial atoms [286], nitrogen-vacancy centers in
diamond [287], or trapped ions [288].
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3.2 Setup

In this section, we introduce the subject of scrutiny: A linear network of bosonic
modes with localized edge modes, the controlled hybridization of which allows for
state transfer between them. The procedure to construct the network is described
in Subsection 3.2.1, augmented by three alternative setups for comparison (one
topological, two trivial) . In Subsection 3.2.2, we introduce a protocol that can be
applied to the previously defined network(s) to initiate the transfer of excitations
between the edge modes. This sets the stage for the results presented in the
subsequent Section 3.3.

3.2.1 Construction of Topological Networks

Let us start with the derivation of a quantum network OHN that exhibits topologically
protected edge modes in a one-dimensional chain with two edges, as illustrated in
Figure 3.3 (a); a generalization to two-dimensional networks is discussed briefly in
Subsection 3.4.2.

One of the most prominent (and most studied) models of symmetry-protected
topological phases in one dimension is the Majorana chain, originally formulated
for spinless fermions with a mean field p-wave pairing term [82]. This model is
closely related to the Su–Schrieffer–Heeger (SSH) model [126] in the single-particle
picture. It turns out that both models are useful blueprints for the task at hand (i.e.,
topological state transfer), but the necessary steps to translate these models into a
bosonic quantum network language are more conveniently performed for the SSH
model; an analogous discussion for the Majorana chain and its relation to the SSH
chain is presented in ⁂ Section 3.A.

The SSH model on a chain with L sites and open boundaries is defined by the
Hamiltonian (Subsection 1.2.1)

OHSSH D

LX
iD1

wi ci
�ci C

L�1X
iD1

ti ci
�ciC1 C h.c. 3.13

with the two fermion operators ci and ci on each site. Note that the indices i
label the “upper” fermionic modes whereas bar-ed indices i denote the “lower”
ones, see Figure 3.4 (a); in the following, we use upper-case indices I if we refer to
both indifferently. In (3.13), wi and ti are the hopping amplitudes. For a uniform
system with wi � Nw and ti D Nt , one finds a gapless spectrum for Nw D Nt , separating
a topological phase for Nw < Nt from the trivial phase for Nw > Nt . The former
features topologically protected edge modes which are fermionic in nature102. The

102This is in contrast to the Majorana chain where pairs of edge modes carry a single fermionic d.o.f.
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Figure 3.4 • Setups. Possible setups for state transfer via global control parameters. The
left panel depicts networks with topological bands. The models in the right panel are used for
comparison and feature only trivial bands. Each model consists of locally coupled bosonic modes
with qubits coupled to the edge modes QbC and QbT. (a) The SSH chain inspired setup described
by OHbSSH.t/; globally tunable are only the on-site couplings Nw.t/. (b)Network inspired by the
Majorana chain (unitarily equivalent to the SSH setup) and described by OHbMC.t/; the uniform
eigenfrequency differences ı N!.t/ � N!�.t/� N!C.t/ are tunable. For details we refer the reader
to⁂ Section 3.A. Õ

second-quantized Hamiltonian (3.13) can be encoded by a matrixHSSH via

OHSSH D ˆ�HSSHˆ 3.14

with the pseudo-spinor ˆ D
�
c1; c1; : : : ; cL; cL

�T . The matrixHSSH takes a simple
off-diagonal form

HSSH D

0 w1 0 0

w1 0 t1 0

0 t1

0 0

377775
266664 ; 3.15

the diagonalization of which is numerically straightforward but analytically challeng-
ing, see ⁂ Section 3.D.

For real hopping amplitudes wi and ti (which we will assume henceforth), the
Hamiltonian exhibits time-reversal symmetry T D K where K denotes complex
conjugation. Furthermore, time-reversal T in combination with the sublattice
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c

d

“Barrier”

“Propagation”

(c)

(d)

Õ (c)Model with two artificial edge modes separated by a simple tunneling barrier of tunable
eigenfrequencies !barrier.t/; described by the Hamiltonian OHbB.t/. (d) The simplest model,
based on free propagation of excitations and described by OHbP.t/; all couplings Nt .t/ are tuned
simultaneously. A comparison of the two non-topological models with the topological SSH setup
is presented in Subsection 3.3.4.

symmetry S D U SSH
C , represented by the unitary

U SSH
C D 1L�L„ƒ‚…

L sites

˝

�
1 0

0 �1

�
„ ƒ‚ …
2 modes per site

; 3.16

yields the particle-hole (PH) symmetry C D KU SSH
C with C 2 D C1 and the

transformation
CHSSHC

�1
D U SSH

C H �
SSH

�
U SSH
C

��
D �HSSH : 3.17

Hence, the SSH chain is in symmetry class BDI of the Altland-Zirnbauer clas-
sification103 [90–93]. In one dimension, this allows for the definition of a Z

topological invariant [21, 22, 95, 97], which is responsible for the emergence of the
disorder-resilient edge modes bound to the open ends of the chain in the topological
phase.

103The Altland-Zirnbauer classification [90] extends Dyson’s classification [93] of random matrices
by four additional ensembles. Each of its 10 ensembles of random matrices—distinguished by the
presence/absence of time-reversal (T ), sublattice (S), and particle-hole (C ) symmetry—allows for the
definition of different topological invariants in different spatial dimensions. This leads to the “tenfold
way” [97], a complete classification of topological insulators/superconductors of non-interacting
fermions with the generic symmetries T ,S , and C .
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Let us now use the SSH model as a blueprint to construct a network of coupled
bosonic modes that inherits the topological features on the single-particle level.
Since the latter are properties of the matrix HSSH (which is unaware of the fermionic
nature of OHSSH), the implementation of an analogue system with bosonic d.o.f. is
straightforward: We replace the fermionic operators by bosonic ones, i.e.,

c
.�/
i ! b

.�/
i 3.18a

c
.�/

i
! b

.�/

i
; 3.18b

see Figure 3.4 (a). The bosonic Hamiltonian takes the form

OHbSSH � „� ŒHSSH C ı1�„ D „�HbSSH„ 3.19

with „ D
�
b1; b1; : : : ; bL; bL

�T and HbSSH � HSSH C ı1. The constant positive
energy shift ı > 0 is required to enforce positivity on the matrixHbSSH and accounts
for the energy !I of each bosonic mode bI . Due to its construction, the bosonic
Hamiltonian OHbSSH features the same single-particle band structure as the original
fermionic chain and inherits its topological properties. Thus it gives rise to the same
edge modes. Note that these are statements about single-particle physics where the
statistics of particles is not relevant.

To satisfy the PH symmetry C (necessary for the definition of a discrete
topological invariant), one must respect the sublattice symmetry S . Using Eq. (3.16)
and (3.17), this is equivalent to the simple constraints

!i D ı D !i 3.20

for all sites i and i , i.e., all bosonic modes must have the same energy. Note that
there are no constraints on the couplings wi and ti except for their reality (this is
not a requirement of the sublattice symmetry S but of time-reversal T , and thereby
indirectly of the PH symmetry C ; see also ⁂ Section 3.B). To sum it up, the
linear bosonic network described by Hamiltonian (3.19) features stably degenerate104

topological edge modes for couplings Nw < Nt , as long as condition (3.20) is satisfied.

Alternative Setups

Let us mention three additional setups, all of which feature localized edge modes
for specific choices of parameters and allow for a controlled transfer of excitations
between them. Their network topology is illustrated in the remainder of Figure 3.4.
We comment briefly on their operating principles:

104Up to a small splitting for Nw > 0 due to hybridization; this splitting is exponentially suppressed
with the chain length L.
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→ At the beginning of this section, we mentioned that the Majorana chain, a
fermionic p-wave superconductor, can also be used to construct a bosonic
network with topological edge modes. Here we briefly sketch the procedure
to obtain the network shown in Figure 3.4 (b). For details we refer the reader
to ⁂ Section 3.A.

The Majorana chain Hamiltonian [82] for spinless fermions c.�/i on an open
chain of length L reads (Subsection 1.2.2)

OHMC D

L�1X
iD1

�
wi c

�
i ciC1 ��i ciciC1 C h.c.

�
C

LX
iD1

�i

�
c
�
i ci �

1

2

�
;

3.21

where wi is the tunneling amplitude, �i the superconducting gap, and
�i denotes the chemical potential. For uniform parameters �i � N� and
wi � Nw D N� � �i , one finds two gapped phases for j N�j 7 2j Nwj connected
by a topological phase transition at j N�j D 2j Nwj. The topological phase
(j N�j < 2j Nwj) exhibits two degenerate edge modes that give rise to a two-fold
ground state degeneracy.

In contrast to the SSH chain (3.13), the Majorana chain (3.21) describes a
superconductor with pairing terms. To encode OHMC into a matrix, one has to
introduce the 2L-dimensional Nambu spinors

‰ D
�
c
�
1; c1; : : : ; c

�
L; cL

�T
3.22

with an artificial mode doubling105 to account for the pairing of fermions.
Then one can write

OHMC D
1

2
‰�HMC‰ : 3.23

with the symmetric matrix

HMC D

��1 0 �w1 ��1

0 C�1 �1 w1

�w1 �1

��1 w1

37777775

26666664 : 3.24

105Note that there are only L fermionic modes involved. By contrast, the SSH chain Hamiltonian
OHSSH operates on 2L fermionic modes.

211



QUANTUM COMMUNICATION BETWEEN QUBITS

The derivation of the bosonic network follows a similar procedure as before.
However, each fermionic site of the original Majorana chain is replaced by
two bosonic modes:

ci ! b
.�/
i 3.25a

c
�
i ! b

.�/

i
3.25b

Compare this with the substitution (3.18) for the SSH setup. By this
construction, the Majorana chain translates into a linear chain of length L
with two quantum harmonic oscillators per site. The bosonic Hamiltonian
takes the form

OHbMC � „� ŒHMC C ı 1�„ D „�HbMC„ 3.26

with the same 2L-dimensional bosonic mode vectors „ as for the SSH setup.
If one relabels the parameters in HbMC to a naming scheme appropriate for
bosonic networks106, one finds that the role of the chemical potential 2�i is
now played by the difference ı!i D !i � !i of the local mode frequencies at
each site, while the hopping amplitudes ti;iC1 and ti ;iC1 connecting adjacent
modes of the same sublattice are identified with the fermion tunneling rate
wi ; the amplitudes ti;iC1 and ti ;iC1 stem from the superconducting order
parameter �i .

For robust edge modes, the Majorana chain requires also time-reversal T D
K and particle-hole symmetry107 C DKU MC

C ; the latter being represented by
another unitary U MC

C . Translating the particle-hole symmetry CHMCC
�1 D

�HMC to the bosonic setting yields the constraints

!i C !i D 2ı 3.27a

ti;iC1 D �ti ;iC1 3.27b

ti;iC1 D �ti ;iC1 : 3.27c

Again, all of them can be fulfilled by pairwise, local fine-tuning of the modes
and their couplings to nearest neighbors.

To complete the picture, we point out that the bosonic realization of the
Majorana chain HbMC is unitarily equivalent to that of the SSH chain HbSSH;
this is shown in ⁂ Subsection 3.A.2. Despite their unitary equivalence,
in terms of elementary building blocks the two networks impose different
symmetry constraints on the coupling Hamiltonians, cf. (3.20) and (3.27).
Depending on the experimental framework, it may be advantageous in practice
to implement one or the other of the unitary equivalent models. From a

106That is, !I for mode frequencies and tI;J for couplings between modes I and J .
107Note that the particle-hole symmetry of the Majorana chain is intrinsic to any (fermionic)

Bogoliubov-de Gennes Hamiltonian due to the mode doubling in Nambu space. Here, however,
it translates to a non-trivial real symmetry of the new bosonic theory.
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theoretical stance, there is no difference in performance to be expected if
their symmetries are kept intact, which explains our focus on the conceptually
simpler SSH model in the following.

→ Given the setup of bosonic modes used for the topological transfer with either
the SSH or the Majorana setup (note that these differ only in their couplings
and tunable parameters but not their layout of modes), one can contrive
various “non-topological” schemes that also feature localized edge modes
and are potential candidates for state transfer. The most trivial one, depicted
in Figure 3.4 (d), simply tunes all couplings of a linear chain uniformly.
If all couplings are switched off, all modes are independent; in particular,
the left- and rightmost modes decouple and serve as trivial “edge modes.”
Since switching on all couplings uniformly leads to a free propagation of an
excitation that was initially stored in one of the edge modes, we call this the
“Propagation setup” and denote its network Hamiltonian by OHbP. Its time-
dependent parameters are the uniform couplings Nt .t/. See Subsection 3.3.4
for a comparison with the SSH model.

→ A more sophisticated (non-topological) wiring of the given modes is shown in
Figure 3.4 (c). All modes are connected by static couplings Nt . Edge modes are
created by raising the eigenfrequencies !barrier of all modes except for the left-
and rightmost one. If !barrier � !edge, the tunneling between the two artificial
edge modes is exponentially suppressed due to the energy barrier of oscillators
in between. Lowering the barrier then allows for the controlled coupling of
the edge modes. We call this the “Barrier setup” and denote its Hamiltonian
by OHbB. Here, the time-dependent parameters are the frequencies !barrier.t/

of the barrier modes. See Subsection 3.3.4 for a comparison with the SSH
model.

3.2.2 Protocol for State Transfer

Now that the setups and their parameters are given, we discuss the protocol for
state transfer exemplarily for the SSH setup. One of its key features is that it
requires only global (translational invariant), time-dependent tuning of the on-site
hopping amplitudes wi D Nw; in particular, single-site addressability and control is
not required. The goal is to coherently transfer a single quantized excitation from
one of the localized edge modes to the other by means of an adiabatic variation of
the couplings Nw in OHbSSH.

The crucial property to exploit for state transfer is that for finite systems and
in the topological phase (for 0 < Nw < Nt), there is a finite overlap between the
edge modes due to their exponential extension into the bulk108. While deep in the

108In the context of theMajorana chain, edgemode hybridization can be a serious issue as it dephases
the delocalized topological qubit; for our purpose, and in the bosonic setting, it is a central feature.
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topological phase ( Nw � 0) this overlap is exponentially suppressed in the edge
mode separation L, it can be strongly enhanced by tuning Nw closer to Nt from
below, allowing for tunneling between the macroscopically separated edge modes.
In order to prevent scattering into bulk modes, edge and bulk physics have to be
adiabatically decoupled. This can be achieved by tuning Nw smoothly (and slowly, see
Subsection 3.3.3) towards the topological phase transition and return to the “sweet
spot” Nw D 0 afterwards to relocalize (and thereby decouple) the edge modes.

To put this scheme into action, we introduce a time-dependent hopping rate

Nw.t/ D Nwmax F .t/ 3.28

giving rise to the time-dependent network Hamiltonian OHbSSH.t/ with perfectly
localized edge modes at t D 0 and t D � . For simplicity, we choose for the adiabatic
process the smooth pulse shape

F .t/ D sin2
�
�t

�

�
for 0 � t � � : 3.29

Here, � denotes the characteristic timescale of the pulse. The exact pulse
shape does have influence on the performance of the protocol, and setup-specific
optimizations may yield quantitatively better results than (3.29), see Subsection 3.3.3
and ⁂ Section 3.E. The adjustable protocol parameters for the SSH setup are
therefore the pulse time � and the peak coupling strength Nwmax.

A similar protocol (using the same pulse F but a different parameter) can be
contrived for the alternative Majorana chain setup, see ⁂ Subsection 3.A.1. The
protocols used for the non-topological setups are again based on the pulse F and
explained briefly in Subsection 3.3.4 where we compare their performance to the
topological SSH setup.

Figures of Merit

The stage is now set. In the next Section 3.3, we study the properties of this
protocol (and setup) for state transfer. As a first step, we would like to quantify the
transfer efficiency and its dependence on the parameters � and Nwmax by numerically
evaluating the full unitary time evolution of the protocol. To this end, we define
three figures of merit:

We start with an excitation in the left edge mode QbC,

j‰0i D j1i1 ˝ j0; : : : ; 0ibulk ˝ j0iL � j1; 0; 0i ; 3.30

and are interested in the transfer to the right edge mode QbT, i.e., the state j0; 0; 1i.
This transfer is characterized by the overlap

h0; 0; 1jU Nwmax.�/j1; 0; 0i �
p

O ei' ; 3.31
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where O � 0 denotes the transfer fidelity (or just transfer), while ' is the relative
phase (or transfer phase) accumulated during the adiabatic process.

U Nwmax.t/ � T exp
�
�i

Z t

0

ds OHbSSH.s/

�
3.32

is the time-ordered (T ) unitary time evolution operator at time t which depends
parametrically on Nwmax. O and ' quantify the transfer; to quantify the degree of
adiabaticity, we introduce another characteristic quantity that describes the total
edge mode population (or edge weight),

E D O C jh1; 0; 0jU Nwmax.�/j1; 0; 0ij
2 : 3.33

Deviations of E from 1 indicate undesired losses into bulk modes. Note that
0 � O � E � 1 and we aim at parameter settings for which O D E D 1, i.e., an
excitation deposited in one edge mode is completely transferred to the other one
without exciting bulk modes. The three figures of merit fE;O; 'g also apply to the
three alternative setups, then with OHbMC, OHbB, and OHbP in Eq. (3.32), respectively.

3.3 Results

In this section we study the SSH setup in detail, using both numerical and analytical
tools. We start in Subsection 3.3.1 with a numerical evaluation of the figures of
merit in dependence of the protocol parameters. As an unexpected but potentially
useful feature, we find that the transfer phase is fixed—independent of the achieved
transfer fidelity; this effect is studied in Subsection 3.3.2 using a minimal model. In
Subsection 3.3.3 we use rigorous upper bounds on non-adiabatic losses to quantify
the undesired scattering into bulk modes. This allows us to derive the necessary
scaling of the transfer time in dependence of the edge mode separation. We
also comment on optimizations of the pulse shape to speed up the protocol. In
Subsection 3.3.4 we discuss numerical results for the performance of the non-
topological competitors, namely the barrier and propagation setups. We compare
them with the topological SSH setup and discuss the advantages of the latter.
Finally, in Subsection 3.3.5 we study the effects of disorder in the networks for both
the SSH setup and the barrier setup. We demonstrate that the topological setup
outperforms the trivial setup clearly for particle-hole symmetric disorder.
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Figure 3.5 • State transfer (qualitative results). For the four setups depicted in Figure 3.4
and the corresponding protocols described in the text, we show the full time evolution of a single
excitation that is initially localized in the left edge mode QbC and transferred to the right edge
mode QbT. The protocol parameters Nwmax (a), ı N!max (b), !min

barrier (c), Ntmax (d) and the time scale
� are tuned to optimize transfer O and edge weight E. In each panel, the upper row shows the
squared amplitude of the single-particle wave function under the time evolution prescribed by
OH�.t/. The lower row parallels the time evolution by the single-particle spectrum of OH�.t/, i.e.,
the spectrum ofH�.t/. In the course of this chapter, we focus on the topological setup derived
from the SSH chain (a) and compare it with the trivial setup of a simple tunneling barrier (c).
The Majorana chain setup in (b) is described in⁂ Section 3.A in detail. The evaluation of the
trivial setups in (c) and (d) is presented in Subsection 3.3.4.

216



RESULTS

3.3.1 Optimizing Transfer

We evaluate the propagator (3.32) numerically in the 2L-dimensional single-particle
Hilbert space by expanding the time-ordered matrix exponential [289,290]:

U Nwmax.t/ D T exp
�
�i

Z t

0

ds HbSSH.s/

�
def
D lim

m!1

mY
kD0

exp
�
�i

t

m
HbSSH

�
kt

m

��
3.34a

�

MY
kD0

exp
�
�i

t

M
HbSSH

�
kt

M

��
� QU Nwmax.t/ : 3.34b

Note that the products here are ordered, with the factor for k D 0 to the right. For
large but finite M , this yields practically useful approximations QU Nwmax.t/ for the
time evolution operator. For all numerical results that follow, we increased the
number of slicesM until the time evolution became stable. Once QU Nwmax.t/ is known,
arbitrary overlaps (as used, e.g., for the definition of fE;O; 'g) can be computed
straightforwardly.

We start with qualitative results for the transfer with the SSH setup, shown
in Figure 3.5 (a) for an optimized set of parameters � and Nwmax. To this end, we
plot the time evolution of the excitation density for an excitation that starts initially
in the left edge mode QbC. From visual inspection, we find perfect transfer and
decoupling of edge and bulk modes. We also plot the time-dependent single-particle
spectrum of OHbSSH.t/, which is mirror-symmetric with respect to zero energy
(we set ı D 0 for simplicity) due to particle-hole symmetry. The edge mode
hybridization—responsible for the transfer—is clearly visible in the spectrum as
temporary splitting of the otherwise degenerate edge mode eigenenergies. For the
sake of completeness, we present the analogous results for the Majorana chain setup
in Figure 3.5 (b). Due to its unitary equivalence (⁂ Subsection 3.A.2), its spectrum
is identical to (a). The results for the non-topological setups are discussed below in
Subsection 3.3.4.

The overall performance is quantified by O, ' and E, and depends on how
close the protocol parameter Nwmax is to the critical value Nt , the size of the system L,
and the global timescale � ; see Figure 3.6 (a) and (b) for a chain of length L D 5

where we plot fE;O; 'g as function of � and � Nwmin � Nt � Nwmax. The edge weight
E (gray background tiles) equals 1 almost everywhere, except for very fast protocols
and tiny bulk-edge gaps. We observe quite generally that for a smooth pulse shape
like F , the adiabatic bulk-edge decoupling is rather generically established in the
topological setup. In Figure 3.6, the size of colored squares denotes the transfer
O, while the color accounts for the value of the phase ' accumulated during the
transfer (measured in the rotating frame of the localized edge modes). We find
several disjoint branches with O � 1 corresponding to an increasing number of
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Transfer Edge weightPhase

Protocol

(a)(b)

Figure 3.6 • State transfer (quantitative results). In (a) and (c) we plot the figures of merit
for transfers driven by OHbSSH.t/ and OHbB.t/ in dependence of the protocol timescale � and the
distance from criticality, namely� Nwmin D Nt � Nwmax for OHbSSH and�!min

barrier D !
min
barrier � !edge

for OHbB. The diameter of the gray background squares encodes the edge weight E; a thinning
of the gray background tiling therefore indicates a loss of adiabaticity. In the shown parameter
regimes, however, the edge weight is almost everywhere close to unity as there is barely any loss
to bulk excitations (except for regions of fast protocols close to criticality). Õ

round trips of the excitation; see Figure 3.6 (b). The outermost branch allows
for the fastest and most robust transfer, and is therefore the desired parameter
regime to perform quantum operations. However, the most striking property of
this setup is a fixed phase ' accumulated during a transfer, i.e., ' D ˙�

2
. The

sign depends on the number of round trips and on the parity of the chain length
L, see ⁂ Section 3.C, ⁂ Subsection 3.D.1 and particularly Subsection 3.3.2 below.
This remarkable feature is a peculiarity of the PH symmetric topological setup
and in general violated for other setups (see comparison in Subsection 3.3.4). In
Subsection 3.3.2 below, we demonstrate that for the limiting case of a length-L D 1
chain, PH symmetry is responsible for fixing the transfer phase at˙�

2
.

As a concluding remark, note that there may be residual couplings Nwres � Nwmax

that cannot be switched off for t < 0 and t > � such that the qubits cannot be
completely decoupled before and after the pulse—with possibly detrimental effects
on the overall quantum protocol. However, weak residual couplings Nwres (weak
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Transfer Edge weightPhase

Protocol

(d)(c)

Õ The diameter (color) of the colored squares encodes the transfer O (phase ') after the
protocol reached its final state (' is measured in the rotating frame of the localized edge modes).
(a) shows results for a topological SSH setup of size L D 5. (c) shows the corresponding data
for a trivial tunneling barrier setup of the same size. In (b) and (d) we plot O, ', and E along the
dashed slices in (a) and (c), respectively. Note that the phase is fixed for the topological setup:
' D ˙�

2
. The results for the trivial setup in (c) and (d) are discussed in Subsection 3.3.4.

compared to Nt) can be tolerable on the relevant timescales as they are exponentially
suppressed with the qubit distance L in the topological phase, whereas controlled
coupling is always possible for Nwmax ! Nt .

3.3.2 Symmetry Protection of the Transfer Phase

To understand why the particle-hole symmetry is responsible for the fixed transfer
phase ' D ˙�

2
, it is instructive to consider as a minimal model a chain of length

L D 1, i.e., the local coupling of two adjacent modes bl and br described by the
time-reversal invariant Rabi Hamiltonian

QHRabi D

�
0 A

A !

�
D A . jlihr j C jrihl j /C ! jrihr j 3.35
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Figure 3.7 • Time evolution of a minimal model. (a) Population transfer QOl D
jhl j QURabi.t/jlij

2 (blue) and QOr D jhr j QURabi.t/jlij
2 (red) of a simple Rabi model without de-

tuning ! D 0 (dashed) and with detuning ! D 0:3 (solid), starting in the “left” mode jli for
coupling A D 1 as a function of time t . The first optimal transfer is slightly reduced and shifted
in time for the PH breaking system with ! ¤ 0 (see circle). (b) The corresponding phases Q'l
(blue) and Q'r (red) of the overlaps. Note that for PH symmetric setups, Q'r D 3

2
� is fixed for the

time of first optimal transfer (dashed line in circle). When PH symmetry is broken (here ! > 0),
the dynamical phase e�i !

2
t induces a t- and !-dependent phase shift, Q'r D 3

2
� C ı Q'r.!; t/

(solid line in circle). The inset indicates that these results hold for both tunable (dashed) and
fixed (solid) links of a network (see Figure 3.8).

where A 2 f Nw; Ntg 2 R and the local mode frequency (“detuning”) ! ¤ 0 breaks
the PH symmetry U SSH

C explicitly. The time evolution of (3.35) reads

QURabi.t/ D T exp
�
�i t QHRabi

�
D

�
QUl l QUlr
QUrl QUrr

�
3.36

with matrix elements109

QUl l D hl j QURabi.t/jli D e
�i !

2 t

�
cos

�
�

2
t

�
C
i!

�
sin
�
�

2
t

��
�

q
QOl e

i Q'l 3.37a

QUrl D hr j QURabi.t/jli D e
�i !

2 t

�
�
2iA

�
sin
�
�

2
t

��
�

q
QOr e

i Q'r 3.37b

and Rabi frequency � D
p
4A2 C !2. The overlaps QO˛ and phases Q'˛ for ˛ D l

(blue) and ˛ D r (red) are plotted in Figure 3.7 for a PH symmetric (dashed)
and PH breaking (solid) system. For a PH symmetric setup (! D 0), the phases
are discrete, Q'l D ˙� and Q'r D ˙�

2
, and robust against (weak) variations of the

coupling strength A. Note that for an excitation initially in bl , Q'r D ' denotes the
transfer phase.

109It is QUlr D QUrl and QUrr equals QUl l up to the sign in the sum.
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Figure 3.8 • Accumulation of transfer phases. Macroscopic transfers from one edge mode to
the other can be thought of as concatenated single transfers, accumulating a total of 2L � 1
transfer phases Q'r . If all Q'r are kept fixed by PH symmetry, the total transfer phase ' D L�C �

2

is also fixed and only shifts in steps of � with L.

We conclude that PH symmetry entails perfect Rabi oscillations,

U SSH
C
QH �
Rabi

�
U SSH
C

��
D � QHRabi

) QURabi.t/ D

�
cos .At/ �i sin .At/
�i sin .At/ cos .At/

�
: 3.38

By contrast, PH symmetry breaking (! ¤ 0) renders Q'r;l time- and !-dependent
due to the dynamical phase e�i !

2
t and, in addition, varies the relative phase Q'r � Q'l

between both edge modes with ! and t , see Eq. (3.37a).
To make the transition to non-trivial chains of length L > 1, it is illustrative to

think of the macroscopic transfer from the left to the right edge mode as a sequence
of elementary transfers between adjacent bosonic modes bI , see Figure 3.8. The
accumulated phase for PH symmetric chains is then (modulo 2�)

' D 2 Q'r.L � 1/C Q'r D .2L � 1/ Q'r D
3

2
.2L � 1/� D L� C

�

2
3.39

which matches the numerical results of Subsection 3.3.1 and the findings of
⁂ Subsection 3.D.1 [see Eq. (3.99)]. Breaking PH symmetry invalidates the
conclusion of Eq. (3.39) because Q'r 2 Œ0; 2�/ becomes unrestricted.

Remark

The detuning ! used above breaks the sublattice symmetry S and thereby the PH
symmetry C D TS . However, there is another possibility to break C , namely by
a violation of the time-reversal symmetry T . In this case, the hopping amplitudes
A 2 C become complex. But any non-trivial phase of A is added to the overall
transfer phase ', so that the latter again becomes variable (now depending on
the unspecified phases of couplings A 2 f Nw; Ntg and not the unspecified mode
frequencies ! 2 f!i ; !ig). We conclude that breaking the PH symmetry always
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entails a random transfer phase '. Conversely, if the PH symmetry is preserved,
the transfer phase becomes discrete. We demonstrated this in Subsection 3.3.1
for the case when additionally time-reversal symmetry is present (class BDI). But
PH symmetry can survive the breaking of time-reversal symmetry T if this is
countered by an appropriate breaking of the sublattice symmetry S so that the
product C D TS is still a symmetry. This characterizes class D and we argue in
Subsection 3.4.2 that even in this case (where purely imaginary hopping amplitudes
are admissible) the transfer phase ' is discrete.

3.3.3 Scaling and Adiabaticity

An important aspect for quantum information processing is the scalability of
the setup with growing separation L between the qubits. We identify the two
relevant timescales of the transfer protocol: The inverse edge mode splitting �E�1

edge
determines the time for a state transfer between the two edge states, and second,
the inverse of the bulk-edge separation �E�1

bulk gives a lower bound on the protocol
timescale due to the required adiabatic bulk-edge decoupling, recall Figure 3.3.

Scaling of Characteristic Energies

We start by considering the scaling of these energies when the topological phase
transition Nw D Nt is approached from the topological phase Nw < Nt . To this end, we
derive an analytic expression for the characteristic polynomial det.HbSSH � �1/. Its
roots determine the spectrum f�ig of HbSSH via the equation

1C � Nw.�/ � � Nw.�/

1C � Nw.�/C � Nw.�/
D

�
1 � � Nw.�/ � � Nw.�/

1 � � Nw.�/C � Nw.�/

�L
3.40

with � Nw.�/ D �
2 � Nw2 and

� Nw.�/ D
p
Œ1 � .�2 � Nw2/�2 � 4 Nw2 : 3.41

Here we set Nt D 1 so that energies like � and Nw are measured in Nt . We refer the
reader to ⁂ Subsections 3.D.2 and 3.D.7 for details of the derivation110.

Here, we are interested in the L-scaling of the two lowest positive eigenenergies
�0 and �1, which determine �Eedge D 2�0 and �Ebulk D j�1 � �0j. To this end,
we define rescaled quantities (labeled by primes):

�0
� L� and � Nw0

� L� Nw D L.1 � Nw/ 3.42

for Nt D 1.
110Note that the diagonalization ofHbSSH (and for that matter,HSSH andHMC) is complicated by the

open boundary conditions. For periodic boundaries, diagonalization is straightforward by a discrete
Fourier transform.
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Figure 3.9 • Universal scaling. (a) Rescaled lowest eigenvalues �0
i D L�i (i D 0; 1) of

HbSSH as function of the rescaled coupling� Nw0 D L.1 � Nw/. Solid lines denote solutions of
equation (3.43), exact for L ! 1; bullets denote finite-size results for L D 5; 10 (black)
and L D 200 (red/blue). (b) Energy scales L�Eedge D 2�

0
0 (solid yellow) and L�Ebulk D

j�0
1 � �

0
0j (solid black) for L ! 1, calculated from the results in (a). Fixing the ratio R D

�Ebulk=�Eedge (hereR D 10) determines� Nw0 via the intersection marked with a circle (here
� Nw0 � 3:3).

Rewriting Eq. (3.40) in terms of the primed quantities �0 and � Nw0, and taking
the limit L!1 on both sides, yields the transcendental equation

� Nw0 �
p
� Nw02 � �02

� Nw0 C
p
� Nw02 � �02

D e�2
p
� Nw 02��02

: 3.43

The lowest two positive solutions �0
0 and �

0
1 of (3.43) determine the asymptotics of

the relevant energies �Eedge and �Ebulk, namely

�Eedge �
2�0

0

L
and �Ebulk �

j�0
1 � �

0
0j

L
for � Nw D

� Nw0

L
; 3.44

see Figure 3.9 (a) for a comparison with numerical finite-size results. Notably, both
energies scale as L�1 if the critical point � Nw D 0 is approached with L�1 for
L!1; in particular, their ratio R D �Ebulk=�Eedge saturates for large L. The
gist of this calculation is that to keep a fixed ratio R of the two energy scales, it is
necessary to approach the critical point as � Nw D Nt � Nw � 1=L. E.g., for R D 10
and Nt D 1 one finds 1 � Nw � 3:3=L, see Figure 3.9 (b).

This result demonstrates that if one requires an adiabatic protocol Nw.t/ with
a fixed minimum ratio Rmin D �Emin

bulk=�E
max
edge at the minimum distance � Nwmin D

Nt � Nwmax from the critical coupling, then the time � for the protocol scales
as � � �E�1

edge � L if the protocol parameter scales as � Nwmin � L�1; see
Figure 3.10 (a) and (b) for simulations. This corresponds to the optimal scaling
achievable since the Lieb-Robinson bound predicts a finite propagation speed for
information in systems with local interactions [291].
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Adiabatic Bulk-Edge Decoupling

However, we still need to adiabatically decouple bulk from edge modes since losses
to the bulk cannot be refocused in edge modes via global tuning of parameters. A
common (and conservative) estimate for adiabaticity then reads

� &
�
�Emin

bulk

��2
� L2 3.45

due to the vanishing of the bulk-edge separation with L�1 when � Nwmin � L�1.
This condition is far from the (optimal) linear scaling that followed for the edge
mode splitting above. We demonstrate in the following that a much better scaling is
achievable by a rigorous estimate on the non-adiabatic losses.

To this end, we parametrize the time with s D t=� , s 2 Œ0; 1�, and make the
ansatz111

Nw.s/ D Nwmax �P .s/ D

�
1 �

� Nw0
min

L

�
�P .s/ 3.46

for the time dependency of the on-site coupling strength. Here, the generic pulse
P W Œ0; 1� ! Œ0; 1� and its first derivative P 0 vanish for s 2 f0; 1g, and we fix
P .1=2/ D 1. The single-particle Hamiltonian of the SSH setup can be written in
the form

HbSSH.s/ D Htop C Nw.s/Htriv 3.47

whereHtop (Htriv) describes the topological (trivial) dimerization of the chain with
all couplings set to 1. In ⁂ Section 3.E, we argue (based on results derived
in ⁂ Section 3.D) that the bulk-edge separation of Hamiltonian (3.47) can be
lower-bounded by � Nw,

j�1 � �0j D �Ebulk � � Nw D 1 � Nw : 3.48

Given these preliminary facts, we employ results of Ref. [292] where a rigorous
upper bound

1 � E � C 2 3.49

on the non-adiabatic losses 1 � E is derived.
The upper bound C depends on the time of the evolution � and the (generic)

time-dependent HamiltonianH.s/ via

C D
2

�

�
kH 0.0/k

g2.0/
C
kH 0.1/k

g2.1/

�
C
2

�

Z 1

0

ds
�
kH 00.s/k

g2.s/
C 7
p
2
kH 0.s/k2

g3.s/

�
3.50

where k � k is the operator norm,H 0 (H 00) denotes the first (second) derivative with
respect to s, and g.s/ is (half ) the gap separating a submanifold of the spectrum
from the rest. In the present case, it isH.s/ D HbSSH.s/, the submanifold of interest
is given by the two edge modes, and the “rest” encompasses the bulk modes;
therefore 2g.s/ D j�1.s/ � �0.s/j D �Ebulk.s/.

111By a slight abuse of notation, we write Nw.s/ D Nw.t/ for s D t=� , i.e., we label functions of real
and dimensionless time with the same symbol as their argument specifies them unambiguously.
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Figure 3.10 • Scaling of the transfer time (numerics). (a) Simulations of transfer fidelity
O (solid red) and edge weight E (dashed black) for system size L D 5, protocol timescale
� D 50 and pulse Nw.t/ D .1 � � Nwmin/ � F .t/ as function of � Nwmin. Optimal transfer for
fixedL and � is found numerically for� Nwmin � 0:26 with bulk loss 1� E � 1 � 10�4. (b) The
same for doubled size L D 10 and timescale � D 100. Now, optimal transfer is achieved
for � Nwmin � 0:26=2 D 0:13 with bulk loss 1 � E � 2 � 10�5. (c) Rigorous upper bounds
��1CLŒP � for P .s/ D F .s/ D sin2.�s/ and � D �0 �L1C˛ with ˛ D 0; 1

2
; 1 and �0 D 100,

� Nw0
min D 3:3. A scaling � � L1C 1

2 yields constant bulk losses for L!1. (d) Simulations
of the bulk losses 0 � 1 � E � 1 for the parameters in (c) without tuning for optimal transfer.
We find that the scaling follows the analytic upper bounds. Note that the loss was chosen large
(� 50% forL D 10) for illustrative purposes and can be controlled via �0 (here �0 D 1; 0:3; 0:1
for ˛ D 0; 1

2
; 1).

Merging Eq. (3.50) with the structure of our Hamiltonian (3.47), its time
dependence (3.46), and the bulk-edge separation (3.48), yields the upper bound on
the non-adiabatic bulk losses

1 � E �

�
CLŒP �

�

�2
; 3.51

where

CLŒP � �

Z 1

0

ds
C1 jI

00j

."L C I/2
C

Z 1

0

ds
C2 jI

0j2

."L C I/3
3.52
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with I � 1 � P , C1;2 numerical constants, and "L D � Nw0
min=.L �� Nw

0
min/. Note

that I.1=2/ D 0 and "L � L�1 such that CLŒP � diverges for L!1 in general. In
order to bound the bulk losses in Eq. (3.51), the scaling of � has to match the scaling
of CLŒP � for L!1. A more detailed derivation of (3.52) and the following results
is presented in ⁂ Section 3.E.

For the pulse P .s/ D F .s/ D sin2.�s/ used in this chapter, we find CLŒF � �
L1C 1

2 so that a scaling of � � L1C 1
2 is necessary for adiabatic bulk-edge decoupling

in the limit of long chains, see Figure 3.10 (c). This beats the quadratic scaling
expected from the minimal gap �Emin

bulk. Unfortunately, the optimal scaling � � L
allowed by the Lieb-Robinson bound cannot be reached by the unoptimized112

pulse F . Note that prima facie this result applies to an upper bound of the bulk losses
and not the bulk losses themselves—the true losses could still be bounded with
only linear scaling � � L. However, numerical simulations for various scalings of �
reveal that they indeed follow the prescribed scaling of the rigorous upper bounds,
see Figure 3.10 (d).

One can do better, though: In ⁂ Section 3.E we prove that there is a sequence
of polynomial pulses Pn, characterized by

dm

dsm

ˇ̌̌̌
sD1=2

Œ1 �Pn.s/� D 0 for all m < n ; 3.53

such that CLŒPn� � L1C 1
n for n � 2 even integers. Thus the scaling can be

drastically improved by pulse optimization so that linear scaling can be approached
to an arbitrary degree. However, the coefficients in CLŒPn� grow with n such that
there is a payoff between scaling and offset. In practice, one may even benefit from
pulses with poor scaling (like F ) if only chains of a specific length are relevant. The
problem of topological state transfer then becomes a playground for quantum optimal
control [293, 294], a field of active research which we will not dwell on here.

3.3.4 Benchmarking Against Trivial Setups

To unveil the characteristic features of the topological setup, we contrast it with
two similar but topologically trivial networks; recall Figure 3.4 (c) and (d) and their
description in Subsection 3.2.1.

Arguably the simplest approach to transfer excitations between a distinct pair of
modes is based on a chain of initially decoupled modes at fixed frequency !I � N!
and a uniform tuning of all couplings

wi.t/ D ti.t/ D Nt .t/ � Ntmax F .t/ for all i . 3.54

112We chose the pulse F .s/ D sin2.�s/ because it performs reasonably well and is easy to imple-
ment numerically; no rigorous optimization procedure was used.
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This scheme employs free bulk propagation of the initially localized edge modes
and is described by OHbP.t/ [Figure 3.4 (d)]. As demonstrated in Figure 3.5 (d), this
approach fails to relocalize and capture the excitation at the opposite edge due to the
dispersive propagation via bulk modes; to succeed, such a protocol would require
either fine-tuning of the pulse shape via optimal control and/or local addressability
of all couplings within the network. In this light, OHbP.t/ is not competitive against
the topological setup and we exclude it from our discussions henceforth.

A more sophisticated approach mimics the presence of localized edge modes
by a large tunnel barrier: The two modes at the edge have fixed frequency
!1 D !L D !edge D const, and are separated from each other by a “potential
barrier” of modes with tunable frequencies !barrier.t/ and fixed couplings Nt D Nw in
between. We introduced this Hamiltonian previously as OHbB.t/ and sketched the
corresponding network in Figure 3.4 (c). In analogy to the topological setup, this
network exhibits exponentially localized edge modes. Again, transfer is achieved by
lowering the excitation gap to the bulk modes, which allows for tunneling between
the edges. The protocol of this scheme reads

!barrier.t/ D !
max
barrier C .!

min
barrier � !

max
barrier/ � F .t/ 3.55

where !max
barrier � !edge will be kept fixed and !min

barrier > !edge is a tunable protocol
parameter (in addition to the pulse length �); this defines OHbB.t/.

As shown in Figure 3.5 (c), this tunneling approach still allows for almost
perfect transfer, given optimal parameters and long times. However, the qualitative
comparison in Figure 3.6 (c) shows that the trivial tunneling approach requires
longer timescales for the protocol to succeed, and is more sensitive to bulk losses
[compare the gray tiles measuring E in (a) and (b) for � . 100]. In general, the
adiabatic decoupling is much harder to achieve with OHbB.t/ than with OHbSSH.t/, as
the plots of E along the dashed cuts in Figure 3.6 (b) and (d) reveal.

The most striking difference, however, is the phase accumulated during the
transfer: for the trivial setup, it is highly sensitive to both parameters !min

barrier and � .
This is expected for a generic adiabatic protocol and is in stark contrast to the
topological setup (recall Subsection 3.3.1). The reason for this qualitative difference
is rooted in the PH symmetry of the SSH setup (as discussed in Subsection 3.3.2)
which gives rise to the symmetric band structure depicted in Figure 3.5 (a), as
opposed to the asymmetric band structure of the barrier setup in Figure 3.5 (c). In
consequence, we find that even for the ideal, topologically trivial setup, adiabatic
protocols are handicapped as the sensitivity of the transfer phase increases for
longer chains: a transfer preserving quantum coherence requires fine-tuning of the
shape of the control pulse. This effect becomes even more drastic in the presence of
disorder (see Subsection 3.3.5 and ⁂ Section 3.C).
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Figure 3.11 • Edge mode localization. We show the spatial amplitudes j‰I j of the two edge
modes (blue & red) at three different times during the protocols of the SSH setup OHbSSH.t/ (left)
and the barrier setup OHbB.t/ (right) for (a) no disorder, (b) PH symmetric disorder, and (c) PH
breaking disorder. Note the (de-)localization of the edge modes for PH symmetric disorder
in (b). For the disordered setups, a random but typical realization of the network was selected.

3.3.5 Effects of Disorder and Symmetry Protection

The unique features of the topological setup stand out even more in the presence of
disorder and/or imperfections in the preparation of the network. Here we focus on
quenched disorder on the timescales of the transfer. To this end, disorder on modes
and couplings is described as Gaussian noise with dimensionless standard deviation
p detuning the parameters in the Hamiltonian from site to site, e.g., for the on-site
hopping we have

hhwiii D Nw and hhw2i � Nw
2
ii D p2 Nw2 3.56

with hh�ii the disorder average and typically p � 1. In the following, two classes of
disorder will be of interest:

→ PH symmetric disorder affects only mode couplings (wi and ti ), but assumes
perfectly uniform mode frequencies (!I � ı); recall condition (3.20).
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(a) (b)

Figure 3.12 • Effects of disorder (numerics). We show the average transfer hhOii (bullets)
and edge weight hhEii (circles) for PH breaking (black) and symmetric (red) disorder in the
(a) topological and (b) trivial setup, respectively. The averages are computed fromN D 1000
realizations for a chain of length L D 5 with an adjustment of � for every single disorder
realization to optimize transfer. The error bars denote one standard deviation of the sample.
Note that the markers for hhOii and hhEii coincide for PH symmetric disorder in (a).

→ By contrast, PH breaking disorder affects both mode couplings and frequencies,
that is, !I becomes randomly distributed just like wi and ti . For simplicity,
we use the same dimensionless standard deviation p for both mode couplings
and frequencies.

For the topological trivial setup described by OHbB.t/, both types of disorder give
rise to Anderson localization [96] of the“artificial” edge modes, see Figure 3.11 (a-c).
But the transfer protocol relies on the hybridization of the edge modes, which is
thwarted by Anderson localization. As a consequence, disorder leads to a significant
reduction of transfer fidelity and increased bulk losses, Figure 3.12 (b). In addition,
the phase ' accumulated during the transfer strongly varies for each disorder
realization; more details on this aspect are given in ⁂ Section 3.C.

By contrast, for the topological SSH setup OHbSSH.t/, PH symmetric disorder
respects the protecting symmetry (3.20). Then, Anderson localization of the
edge modes is forbidden by a topological obstruction [21, 95, 97] and the required
overlap between the two edge modes can be established, see Figure 3.11 (b). As
a consequence, the transfer can still be performed perfectly with a fixed phase.
Whereas transfer phase ' D ˙�

2
and edge weight E � 1 are unaffected by (weak)

PH symmetric disorder, optimizing the transfer fidelity O � 1 makes it necessary
that for each disorder realization the transfer time � of the protocol is adjusted. In
an experimental setup this corresponds, for example, to imperfections in sample
preparation which can be overcome by calibrating the transfer protocol beforehand.
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Finally, and similar to the trivial setup above, PH breaking disorder results in
Anderson localization of the edge modes [Figure 3.11 (c)] and thereby a significant
reduction of transfer fidelity, see Figure 3.12 (a). It is remarkable, however, that
despite the breaking of PH symmetry, the adiabatic bulk-edge decoupling is still
much better than for the trivial setup [certified by E � 1 in Figure 3.12 (a)].

3.4 Application & Generalization

After the introduction of the SSH-based topological state transfer in Section 3.2 and
the study of its features in Section 3.3, here we will contrive a minimal setup for the
application of a controlled-phase gate on two remote qubits, see Subsection 3.4.1.
Furthermore, we comment on the possibility to couple more than two qubits in a
two-dimensional grid of dimerized modes, see Subsection 3.4.2.

3.4.1 Controlled-Phase Gate

As an application, we demonstrate how the proposed topological state transfer—protected
by PH symmetry—can be employed for a controlled-phase (CP) gate between two
remote qubits that are coupled to the local edge modes of the SSH network.

The protocol for a CP gate between a target qubit T and a control qubit C is
based on a well-known scheme that makes use of auxiliary levels [295]. We focus
on the setup shown in Figure 3.3 of Section 3.1: Each qubit T/C is coupled to its
dedicated edge mode QbT/C of the SSH setup (a) and realized by a three-level system
(b) with auxiliary level jaiT/C. The coupling Hamiltonian between the qubits and
their adjacent edge modes is given by Eq. (3.10), namely

OHT.t/ D gT.t/
h
Qb�T jaih1jT C

QbT j1ihajT

i
3.57a

OHC.t/ D gC.t/
h
Qb�C j1ihajC C

QbC jaih1jC

i
: 3.57b

Note that the qubit operators in OHC and OHT differ, qualifying T as the target and
C as the control qubit113. Together with the network Hamiltonian OHbSSH.t/ that
governs the mode couplings, this describes the setup completely. Then, the full
protocol for the CP gate follows the procedure in Eq. (3.11), that is,

UCP D …T ı TC$T ı…
2
C ı TC$T ı…T : 3.58

113This is actually an artifact of our implementation since the abstract CP gate is symmetric under
qubit exchange, see Eq. (3.67).
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Figure 3.13 • CP gate—Pulse sequence & Results. (a) Schematic illustration of the five steps
needed to perform the CP gateUCP (3.58) on two remote qubits, see setup in Figure 3.3. (b)The
complete pulse sequence consisting of two �-pulses…T to map the target qubit to and from
edgemode QbT, a 2�-pulse…2C to perform the actual CP gate, and two state transfer pulses TC$T.
(c)Numerical single-particle evolution for the two-qubit basis state j1iCj1iT for a chain of length
L D 10. The density plot encodes the squared single-particle amplitude where the upper and
lower two rows correspond to the states jCi/j QbCi and j QbTi/jTi, respectively; see the description
in the text. (d) Square of the absolute value of the overlaps with jTi (solid black), j QbTi (solid
red), j QbCi (solid blue), and jCi (dashed black). The relative phases with respect to the target
qubit are shown as insets. Note that the scales for the Rabi pulses and the topological state
transfer differ by a factor of � .
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To extend our motivation in Section 3.1, here we provide explicit implementations of
the unitaries in (3.58). In particular,

TC$T D T exp
�
�i

Z �

0

dt OHbSSH.t/

�
3.59

describes the topological state transfer with appropriate choices for Nwmax and � .
This is the crucial part as it utilizes our findings of this chapter. The �-pulses…C

and…T are described by

…˛ D T exp

"
�i

Z T˛

0

dt OH˛.t/

#
3.60

for ˛ 2 fT;Cg and
R T˛

0
g˛.t/ dt D �

2
. The protocol (3.58), realized by (3.59)

and (3.60), is described below; see Figure 3.13 for an illustration of the pulse
sequence and numerical results. For the sake of simplicity, we introduce the
following notation used in the text and the description of Figure 3.13:

jxiCjyiT �

Qubits‚ …„ ƒ
jxiCjyiT ˝

Network‚ …„ ƒ
j0; 0; 0i ; 3.61a

j QbCi � j1iCjaiT ˝ j1; 0; 0i ; 3.61b

j QbTi � j1iCjaiT ˝ j0; 0; 1i ; 3.61c

jTi � j1iCj1iT ˝ j0; 0; 0i ; 3.61d

jCi � jaiCjaiT ˝ j0; 0; 0i : 3.61e

Here, j1; 0; 0i � Qb�C j0i and j0; 0; 1i � Qb
�
T j0i denotes states of the network occupied

by a single excitation in an edge mode. x; y 2 f0; 1g encode the states of the qubits.
We begin our discussion with the observation that the full sequence UCP leaves

the states j0iCj0iT and j1iCj0iT invariant because there are no excitations in the
network [here the difference of Eq. (3.57a) and Eq. (3.57b) is crucial]. On the other
hand, for j0iCj1iT and j1iCj1iT the first �-pulse …T on the target qubit maps the
state j1iT to a bosonic excitation in the right edge mode QbT with the phase ��

2
:

jxiCj1iT ˝ j0; 0; 0i
…T
��! �i jxiCjaiT ˝ j0; 0; 1i : 3.62

It is important that this operation is performed slowly compared to the energy gap
to bulk excitations in the SSH chain: Then, energy conservation allows one to only
address the coupling to the edge states and suppress admixture of bulk excitations114.

The subsequent transfer of the excitation to the left edge mode,

jxiCjaiT ˝ j0; 0; 1i
TC$T
���! i.�1/L jxiCjaiT ˝ j1; 0; 0i ; 3.63

114This is why we introduce g˛.t/ and do not just apply a static Hamiltonian for time T˛ . However,
in the simplified setting presented here, we omit residual couplings to bulk modes and there is no
restriction on g˛.t/ except

R T˛

0
g˛.t/ dt D �

2
.
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implies an additional phase �
2
C L� . The full Rabi cycle…2

C provides a phase � if
and only if the control qubit is in state j1iC (recall that the logical qubit states j0iT/C

decouple completely from the dynamics):

jxiCjaiT ˝ j1; 0; 0i
…2

C
��! .�1/x jxiCjaiT ˝ j1; 0; 0i 3.64

for x 2 f0; 1g. The subsequent transfer back TC$T and the �-pulse …T provide
additional phases �

2
C L� ,

jxiCjaiT ˝ j1; 0; 0i
TC$T
���! i.�1/L jxiCjaiT ˝ j0; 0; 1i ; 3.65

and ��
2
,

jxiCjaiT ˝ j0; 0; 1i
…T
��! �i jxiCj1iT ˝ j0; 0; 0i : 3.66

Therefore, the full protocol implements the mapping j1iCj1iT ! �j1iCj1iT while
all orthogonal states remain invariant. Given quantum coherence during the
protocol, this realizes a controlled-phase gate with phase � :

UCPjxiCjyiT D .�1/
xy
jxiCjyiT : 3.67

A full numerical time evolution for the state j1iCj1iT is shown in Figure 3.13 (c)
and (d), confirming the above argumentation.

Finally, we point out that the linearity of the network115 implies that the transfer
takes place for each excitation of edge modes independently. I.e., if jnC; nTi

denotes the state with nC excitations in the left edge mode QbC and nT excitations
in the right edge mode QbT, the transfer operation TC$T implements the mapping
jnC; nTi ! .˙i/nCCnT jnT; nCi (for even/odd L). This observation immediately
implies that the unitary operation USWAP in Eq. (3.12) of Section 3.1 swaps the qubits.

3.4.2 Extension to 2D Networks of Coupled Qubits

An important aspect of the one-dimensional SSH setup considered so far is its
symmetry class BDI116 which gives rise to a Z topological invariant. This allows
us to extend the scheme to two-dimensional setups by placing several SSH chains
parallel to each other and adding symmetry-conserving couplings between them,
see Figure 3.14 (a) for a possible realization on a honeycomb lattice. As long as
these couplings are real and respect the sublattice symmetry, the setup is still
topologically protected and each chain endpoint carries an edge mode (in this case,
the topological invariant counts the pairs of such edge modes).

115The bosonic excitations in our network do not interact.
116With time-reversal symmetry T 2 D C1 due to the real hopping amplitudeswi/ti , the sublattice

symmetry S due to the bipartite network, and consequently the PH symmetry C D TS with C 2 D
C1.
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Figure 3.14 • Coupling many qubits. (a) Possible 2D generalization of the network on a
dimerized honeycomb lattice. Scattering-free transport is guaranteed by topological protection
which requires a sublattice symmetry. The latter is realized by directly coupling only “even”
(filled circles) with “odd” modes (filled squares). Direct state transfer between qubits (empty
circles) of different/same parities is possible/impossible, illustrated by the bold yellow/gray
path. Weak stray couplings in the bulk (shown for the upper path) are not detrimental to the
transfer fidelity. (b) Instead of locating the edge modes (filled colored circles and squares) with
their qubits at the boundary, emanating SSH chains can be used to separate the qubits from
each other and the 2D bulk. There is no need to trace out a specific path as in (a), only a weak
addressability of the individual chains is sufficient so that the couplings of the bulk can be tuned
globally.

Due to the representation of the sublattice symmetry

U SSH
C D 1L�L ˝

�
1 0

0 �1

�
; 3.68

there are two types (or parities) of modes—“even” and “odd” ones—depending
on whether they transform with C1 or �1 under S D U SSH

C . In ⁂ Section 3.B
we prove that edge mode pairs of different parities can be hybridized if paths of
symmetry-conserving couplings Nw > 0 connect them. This allows for efficient
state transfer between arbitrary pairs of edge modes (of different parity) by tuning
the couplings along a path that resembles the one-dimensional SSH setup; this
is illustrated in Figure 3.14 (a). Because of the bulk gap (due to the complete
dimerization), this procedure is very robust and couplings that deviate from the
desired path (“stray couplings”) have no detrimental effect on the state transfer,
as long as they are weak, respect the symmetries, and do not couple to other edge
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modes. The last requirement can be guaranteed by a modification of the setup so
that qubits and edge modes are relocated at the end of one-dimensional chains that
emanate from the 2D bulk, see Figure 3.14 (b). Remarkably, this setup allows for
an enhancement of the edge mode overlap by tuning the couplings of the 2D bulk
globally instead of tracing out a particular path that connects the qubits. In this
setup, the minimal experimental requirement is the individual addressability of each
branch that connects an edge mode to the 2D bulk. Since the edge modes can now
be separated from each other, this constraint is very weak, and in general already
satisfied by the requirement of local gate operations on the qubit.

There is a hitch: Coupling edge modes of the same parity is obstructed by
the sublattice symmetry, as indicated by the lower path in Figure 3.14 (a). The
reason is that any network Hamiltonian QH that satisfies the sublattice symmetry
S QHS�1 D � QH has (at least) jnC�n�j exact zero-energy modes, where n˙ denotes
the number of even (+) and odd (-) modes; this is proven in ⁂ Section 3.B. If two
modes of the same parity are coupled, the relevant part of the network consists of
dimerized pairs of opposite parity and two “excess” modes of the same parity (the
edge modes). Therefore jnC � n�j D 2 guarantees the existence of two zero modes
at any time [even if the two modes are coupled as in Figure 3.14 (a)]; this precludes
the hybridization of the edge modes and makes state transfer impossible.

However, the implementation of an exchange of qubits via USWAP [recall
Eq. (3.12)] facilitates the application of, e.g., the controlled-phase gate UCP between
any pair of qubits: If the two qubits couple to edge modes of different parities, one
can directly perform the CP gate between them. Conversely, if the qubits couple
to edge modes of the same parity, one first performs an exchange USWAP with an
arbitrary qubit of the opposite parity, applies the CP gate, and maps the qubit back
by another exchange.

To conclude this part, let us briefly comment on the symmetries and their
ramifications for general linear networks of bosonic modes (including the one-
dimensional SSH setup as a special case): In this section (and throughout this
chapter, actually) we worked with networks compliant with the strict symmetry
requirements of BDI: Real couplings lead to time-reversal symmetry T and the
bipartite coupling structure to the sublattice symmetry S . Combined these yield the
PH symmetry C D TS . Since T 2 D C1 D C 2, we end up in the symmetry class
BDI with Z topological invariant in one dimension. This setting features an arbitrary
number of protected edge modes and a fixed transfer phase ˙�

2
, which renders it

suitable for quantum state transfer and allows for extensions in two dimensions. Let
us start from this setting and break the symmetries systematically:

1 Breaking the sublattice symmetry S with real couplings connecting modes of
the same parity/sublattice, automatically breaks PH symmetry C D TS , but
leaves time-reversal symmetry T intact. We end up with a network in class AI
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which does not feature non-trivial topological phases in one dimension and
therefore no protected, zero-dimensional edge modes. Such setups are clearly
useless for state transfer.

2 Breaking time-reversal symmetry T—by adding random phases to couplings—
automatically breaks PH symmetry C D TS , but leaves the sublattice
symmetry S intact. We are left with a network in class AIII which features
a Z topological index in one dimension such that there are still protected
edge modes, and even the extension to multiple adjacent edge modes in two
dimensions is possible. However, the unrestricted coupling phases entail
random transfer phases, which renders the network unsuited for quantum117

state transfer.

3 Breaking PH symmetry C D TS implies the breaking of either time-reversal
T or sublattice symmetry S (or both). If only one of them is broken and the
other is preserved, this is already covered by the previous two cases. If both
are broken, the network does not feature any symmetries and belongs to class
A without a topological invariant in one dimension. Again, this is useless for
state transfer due to the lack of localized edge modes.

4 Breaking time-reversal symmetry T and sublattice symmetry S simultaneously is
compatible with a preservation of the PH symmetry C D TS if both T and
S are broken such that their product is conserved. This can be achieved if
couplings between modes of the same (different) parities are purely imaginary
(real); in particular, random phases are not allowed. This describes a network
in class D which features a Z2 topological index. For the networks considered
here, this is a rather unnatural (or artificial) setting as there are rigid but
non-uniform phase constraints on the couplings; it nevertheless allows for
a single pair of protected edge modes and features (perhaps surprisingly) a
fixed transfer phase118.

More details on general networks and the symmetry constraints are presented in
⁂ Section 3.B.

117This setting can still be useful for the controlled transfer of classical, incoherent information
and/or energy.

118This statement is suggested by simulations and the fact that random coupling phases are forbidden
in this scenario.
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3.5 Conclusion & Outlook

Can the peculiar features of symmetry-protected topological phases in one dimen-
sion be harvested for the efficient transfer of quantum information? This chapter
answered this question in the affirmative.

We started off by setting the scene: Qubits coupled to localized modes of a
(yet to be determined) linear bosonic network should interact by tuning globally
the parameters of the network, sidestepping the need for single-site addressability.
To achieve this, we chose the fermionic Su–Schrieffer–Heeger (SSH) chain as
a template to derive a bosonic network featuring topological bands that come
with disorder-resilient, localized edge modes in one dimension. We discussed the
required constraints on the mode frequencies and couplings that were inherited from
the SSH chain, namely time-reversal and particle-hole symmetry. The protocol to
transfer an excitation from one edge mode to the other is simple: Starting from
deep within the topological phase (where the edge modes are decoupled perfectly),
the relevant parameter Nw is tuned slowly to a value Nwmax close the topological
phase transition. Thereby the edge modes temporarily extend into the bulk and
hybridize, which allows for controlled state transfer between them. We identified
non-adiabatic losses to bulk modes as potentially harmful and introduced figures of
merit to quantify the performance of the protocol.

In a first step, we presented numerical results for these figures of merit in
dependence of the transfer time � and the parameter Nwmax: For appropriately chosen
� and Nwmax, non-adiabatic losses are negligible and the transfer is close to perfect.
Strikingly, the accumulated transfer phase is fixed at ˙�

2
; a useful property for

quantum state transfer. A minimal model revealed the relation between particle-hole
symmetry and the fixed phase: Breaking the former results in arbitrary transfer
phases. We then switched focus to the crucial question of scalability and identified
the energy splitting of the edge modes �Eedge and their separation from the bulk
spectrum �Ebulk as decisive for the transfer time � . In particular, we proved
by analytical means that a scaling of �Eedge � L

�1 is achievable if the protocol
parameter Nwmax approaches the critical value. Since �E�1

edge provides a lower bound
on the transfer time, we found that an (optimal) linear scaling of � is possible in
principle. However, the vanishing of the bulk-edge separation �Ebulk � L

�1 gives
rise to suboptimal lower bounds on � by sufficient conditions for adiabaticity. We
showed that � � L1C 1

2 follows for our particular protocol and sketched possible
optimizations of the pulse shape to approach linear scaling. Subsequently, we
compared the performance of the topological setup with a “non-topological,” trivial
setup which realizes artificial edge modes with a separating “barrier” of high-energy
modes. We found that both the topological and the trivial setup allow for controlled
transfer of excitations. As disadvantages of the trivial setup, we identified higher
losses to bulk modes and, most importantly, a transfer phase that depends on the
microscopic parameters of the network. We concluded that the topological setup
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outperforms its trivial competitor clearly. This superiority became even more
drastic in the presence of quenched disorder: If the latter preservers particle-hole
symmetry, the transfer fidelity of the topological setup remains close to optimal if
the protocol is calibrated accordingly. By contrast, the trivial setup suffers from
dramatic losses due to Anderson localization of its artificial edge modes.

In the last chapter, we discussed as a possible application the implementation
of a controlled-phase gate on two remote qubits. To this end, we coupled the two
qubits (described by two logical states and an additional auxiliary state) to the edge
modes of the topological network. The topological state transfer then allows for
robust qubit shuttling to apply the two-qubit gate on the spatially separated qubits.
Finally, we commented on possible generalizations to couple more than two qubits
in a (quasi) 2D geometry of dimerized pairs of modes on a honeycomb lattice. We
also highlighted the role of symmetries in this generic setting and pointed to possible
alternative setups.

In summary, we have shown that the unique properties of (quasi) one-
dimensional topological systems can be harvested for efficient quantum communica-
tion between qubits. These benefits come with the price of higher complexity in
realization and preparation as the network parameters have to respect protecting
symmetries. Nevertheless, the introduced scheme adds to the toolbox for manipu-
lating quantum information reliably and may be of use in the context of (classical)
metamaterials.

Open Questions

There are a few interesting questions that deserve further study:

→ Throughout this chapter, we focused on the single-excitation subspace of the
bosonic networks: Since its dimension scales linearly in the network size L,
time evolutions can be computed quite efficiently. In reality, it may be hard to
cool the network into the ground state with zero excitations and/or dissipative
couplings during the protocol may inject excitations into the network at
random sites. To study the (presumably detrimental) effects on state transfer
numerically, time evolutions in the much larger N -particle sectors of the
Hilbert space must be computed and evaluated. While the time evolution
itself is straightforwardly described by evolving the bosonic modes b.�/I in time
(the network is populated by non-interacting bosons after all), the evaluation
of correlators can be prohibitively complex for large excitation numbers N
due to combinatorial intricacies known from boson sampling [296–299], see
⁂ Section 3.F.

→ During our discussion of the scaling of the transfer time needed for adiabatic
decoupling in Subsection 3.3.3, we concluded that optimizing the pulse shape
may be of interest not only to achieve better scaling for L ! 1 (which is
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certainly interesting from a theoretical point of view, but is of less relevance
for specific implementations), but also to optimize the adiabatic bulk-edge
decoupling and speed of the transfer for a given chain length L. This requires
methods from quantum optimal control theory [293, 294] which studies
the design of Hamiltonian time evolutions for the efficient preparation of
prescribed quantum states. It would be interesting to compare our intuitively
chosen pulse F .t/ to more sophisticated time dependencies of Nw.t/.

→ In our concluding discussion of the role played by the symmetries in
Subsection 3.4.2 (see also ⁂ Section 3.B), it became clear that the conditions
for quantum state transfer—topologically protected, localized edge modes
and a fixed transfer phase—are not only satisfied by the “most symmetric”
class BDI (considered throughout this chapter), but also in the Bogoliubov-de
Gennes class D. The latter poses rather artificial conditions on the allowed
couplings, which renders the implementation of the network more demanding.
However, the Z2 topological invariant is potentially useful in 2D setups:
Whereas a setup like Figure 3.14 (a) is not suitable in this case (adjacent
edge modes of the same parity can accidentally hybridize by imaginary stray
couplings), a setup like Figure 3.14 (b) is not susceptible to this problem due
to the edge mode separation. Such a setting might even outperform the
sublattice symmetric one presented in Subsection 3.4.2 because all qubits
can communicate directly: Edge modes of different parities hybridize via real
couplings, whereas edge modes of the same parity hybridize via imaginary
couplings. Note that this scheme requires a rather evolved control over the
coupling phases.

→ In Subsection 3.3.4 (and Subsection 3.3.5) we compared the topological state
transfer with the SSH setup to the “non-topological” state transfer with
trivial setups. The purpose of this discussion was to highlight the features of
the topological setup, or, simply put, to tell the reader why the topological
setup is better than the trivial one. In science, contriving solutions to problems
that are—often in some very nebulous sense—better than other solutions, is
a very common modus operandi to pave the way for publication. In science,
experience tells us that few things are for free. In the present case, we pay
with symmetry (time-reversal and sublattice) to keep Anderson localization
in check. On this reading, the topological network is better than the trivial
one because the former converts the symmetries into something useful
(scattering-free transport) while the latter does not. But this comparison is
only meaningful because both setups use the same building blocks (bosonic
modes and their couplings). This motivates the question how solutions to a
given task (here: quantum state transfer) can be compared quantitatively in a
formal framework, including a notion of value or cost for each building block.
In Section 5.3 we let our thoughts ramble and sketch a possible framework to
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tackle the problem of quantifying the costs of solutions for a given task. It
would be intriguing to work this out more properly and apply it to the task of
state transfer quantitatively.
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Appendices for Chapter 3

3.A The Majorana Chain Model

Here we introduce an alternative solution to the state transfer problem, derived from
the famous Majorana chain Hamiltonian. In ⁂ Subsection 3.A.1 we demonstrate
parallel to our discussion of the SSH setup, how the bosonic network Hamiltonian
and the protecting symmetries can be obtained from the fermionic parent theory. In
⁂ Subsection 3.A.2 we show that the Majorana and SSH chain setups are related
by a unitary transformation on the mode space. This explains our focus on the SSH
setup in the main text.

3.A.1 Definition and Properties

The original Majorana chain Hamiltonian [82] for spinless fermions on an open
chain of length L reads (Subsection 1.2.2)

OHMC D

L�1X
iD1

�
wi c

�
i ciC1 ��i ciciC1 C h.c.

�
C

LX
iD1

�i

�
c
�
i ci �

1

2

�
; 3.69

where c�i (ci ) denote fermionic creation (annihilation) operators, wi is the tunneling
amplitude, �i the superconducting gap (which can always be gauged real), and �i
denotes the chemical potential, all of which can be, in principle, site-dependent. For
uniform parameters �i � N� and wi � Nw D N� � �i , one finds two gapped phases
for j N�j 7 2j Nwj connected by a gapless spectrum at j N�j D 2j Nwj indicating a phase
transition. The latter is of topological nature as the symmetries of both phases are
the same. For the topological phase, j N�j < 2j Nwj, one finds two degenerate edge
modes that give rise to a two-fold ground state degeneracy; hence the modes are
identified as Majorana bound states. In the trivial phase, j N�j > 2j Nwj, the ground
state is unique and no localized edge modes are present.
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In the 2L-dimensional space of Nambu spinors

‰ D
�
c
�
1; c1; : : : ; c

�
L; cL

�T
3.70

the Hamiltonian can be encoded by a Hermitian matrixHMC via

OHMC D
1

2
‰�HMC‰ : 3.71

This matrix features an intrinsic (antilinear) particle-hole (PH) symmetryCHMCC
�1 D

�HMC with C DKU MC
C and C 2 D C1. Here, K denotes complex conjugation and

the unitary U MC
C takes the form

U MC
C D 1L�L ˝

�
0 1

1 0

�
; 3.72

i.e., the PH symmetry acts as c�i $ ci on Nambu space. Hence the Majorana
chain is in symmetry class D of the Altland-Zirnbauer classification [90–93]. In one
dimension, this allows for the definition of a Z2 topological invariant � [21,22,95,97]
which is responsible for the emergence of the disorder-resilient edge modes bound
to the open ends of the chain whenever � ¤ 0 mod 2 , j N�j < 2j Nwj, i.e., in the
topological phase. If all tunneling amplitudes wi and superconducting pairings �i
are real, the Hamiltonian features additionally the time-reversal symmetry T DK

with T 2 D C1. Then, the model can be considered as an element of the symmetry
class BDI with a Z topological index [21, 22, 95, 97].

The implementation of an analogue system with bosonic d.o.f. follows a
straightforward procedure: First, each fermionic site in the original Majorana chain
is replaced by two bosonic modes. The two bosonic modes at site i are denoted by
the bosonic operators b.�/i and b.�/

i
,

ci ! b
.�/
i and c

�
i ! b

.�/

i
: 3.73

Note that the original indices i D 1; : : : ; L label now the “upper” sites whereas
bar-ed indices i D 1; : : : ; L denote the “lower” sites, see Figure 3.15. By this
construction, the Majorana chain translates to a linear chain of length L with two
quantum harmonic oscillators per site. The bosonic Hamiltonian takes the form

OHbMC � „� ŒHMC C ı 1�„ � „�HbMC„ 3.74

with
„ D

�
b1; b1; : : : ; bi ; bi ; : : : ; bL; bL

�T
3.75

and HbMC D HMC C ı1 the matrix appearing in Eq. (3.74). The constant positive
energy shift ı > 0 is required to enforce positivity on the matrix HbMC; its value
can be chosen arbitrarily (as long asHbMC > 0) and does not change the topological
properties (e.g., the existence of edge modes).

242



THE MAJORANA CHAIN MODEL

To make the new interpretation in terms of bosonic modes explicit, we substitute
the parameters inHbMC, inherited from the Majorana chain (3.69), as follows:

HbMC D

ı � �1 0 �w1 ��1

0 ı C �1 �1 w1

�w1 �1

��1 w1

377777775

266666664

�!

!1 0 t1;2 t1;2

0 !1 t1;2 t1;2

t1;2 t1;2

t1;2 t1;2

377777775

266666664
D HbMC : 3.76

The diagonal elements of HbMC describe the eigenfrequencies !I (I D i; i) of
the local modes bI , whereas the off-diagonal elements capture the real hopping
amplitudes tI;J connecting modes bI and bJ . E.g., !1 denotes the eigenfrequency
of the lower mode b1 and t1;2 the coupling between the upper mode b1 and the
lower mode b2, see Figure 3.15.

Using the identifications in Eq. (3.76), one finds that the role of the chemical
potential 2�i is now played by the difference ı!i D !i � !i of the local mode
frequencies at each site, while the horizontal hopping amplitudes ti;iC1 and ti ;iC1
are identified with the fermion tunneling rate wi , and the diagonal amplitudes ti;iC1
and ti ;iC1 stem from the superconducting order parameter �i .

The bosonic Hamiltonian OHbMC features the same single-particle band structure
as the original Majorana chain, and exhibits the same topological properties and
topological quantum numbers. Therefore it gives rise to the same edge modes. Note
that these are statements about single-particle physics where statistics is not relevant.
Furthermore, it is crucial to stress a conceptual difference between the fermionic
Hamiltonian OHMC and its bosonic descendant OHbMC: The former is described by
L fermionic modes and only in Nambu space an artificial mode doubling occurs,
giving rise to the intrinsic particle-hole symmetry C . The bosonic setup is truly
described by 2L independent bosonic modes, as the mode doubling at each lattice
site is required for the implementation. This has immediate consequences for the
interpretation of the topology-protecting PH symmetry: The latter—inherent to any
(fermionic) Bogoliubov-de Gennes Hamiltonian in Nambu space—is converted to a
non-trivial real symmetry of the new bosonic theory. Either the identifications in
equation (3.76), or the symmetry relation CHbMCC

�1 D �HbMC C 2ı 1, give rise to
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Figure 3.15 • The Majorana chain model. The model consists of locally coupled bosonic
modes with qubits (gray) coupled to the edge modes QbC and QbT which, in contrast to the SSH
setup, are not localized on a single physical mode (blue and red pairs). The linear network is
described by the time-dependent Hamiltonian OHbMC.t/; the uniform eigenfrequency differences
ı N!.t/ � N!�.t/ � N!C.t/ are tunable. In contrast to the SSH setup, no tunable couplings are
required. Details are given in the text.

the local constraints

!i C !i D 2ı 3.77a

ti;iC1 D �ti ;iC1 3.77b

ti;iC1 D �ti ;iC1 : 3.77c

Note that the value of ı merely determines the global energy scale whereas its
site-independence is crucial for PH symmetry. All these constraints can be fulfilled
by pairwise, local fine-tuning of the modes and their couplings to nearest neighbors.

For the purpose of state transfer, we choose uniform frequencies N!� � !i and
N!C � !i , the difference of which is (globally) tunable: ı N!.t/ D N!�.t/ � N!C.t/.
In contrast to the SSH setup discussed in the main text, here the mode couplings
are fixed at ti;iC1 � Nt � ti;iC1 and ti ;iC1 � �Nt � ti ;iC1. Note that the spatial
uniformity assumed for couplings and mode frequencies is not essential (due to the
topological protection) as long as the local symmetries (3.77) are respected. For
ı N! D 0, one finds the flat-band “sweet spot” of perfectly localized (and degenerate)
edge modes QbC / b1 C b1 and QbT / bL � bL. At the critical point ı N!crit D 4Nt ,
the spectrum becomes gapless and the topological phase transition occurs. For
ı N! > ı N!crit the chain becomes gapped again but features no edge modes anymore.
Therefore the protocol for state transfer reads

ı N!.t/ D ı N!max � F .t/ 3.78

with the protocol parameter ı N!max < ı N!crit and the smooth pulse

F .t/ D sin2
�
�t

�

�
for 0 � t � � ; 3.79
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as already defined in (3.29) of the main text. Together with the previously given fixed
values of mode couplings, this defines the time-dependent network Hamiltonian
OHbMC.t/ with perfectly localized edge modes at t D 0 and t D � .

Due to the unitary equivalence of OHbMC and OHbSSH (see ⁂ Subsection 3.A.2
below), their characteristics regarding state transfer are the same. This explains
why we focused solely on the SSH setup in the main text. However, their practical
requirements differ as OHbMC ( OHbSSH) relies on tunable (fixed) mode frequencies
and fixed (tunable) mode couplings. Their local symmetry constraints [compare
Eq. (3.77) and Eq. (3.20)] are also different and may (or may not) be suited for
specific implementations.

3.A.2 Relation to the SSHModel

The single-particle theories for the Majorana chain OHMC (described in Subsec-
tion 3.A.1 above) and the SSH setup OHSSH (described in Subsection 3.2.1 of the main
text),

HMC D

��1 0 �w1 ��1

0 C�1 �1 w1

�w1 �1

��1 w1

377777775

266666664
3.80

and

HSSH D

0 w1 0 0

w1 0 t1 0

0 t1

0 0

377777775

266666664
; 3.81

can be related by the unitary transformationML D 1L�L ˝M1, where

M1 D
1
p
2

�
1 1

�1 1

�
; 3.82

via

MLHMCM
�
L D

0 �1 0 w1 ��1

�1 0 w1 C�1 0

0 w1 C�1

w1 ��1 0

377777775

266666664
: 3.83
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For the special case �i D wi , one has HSSH D MLHMCM
�
L with the identi-

fications �i $ wi and 2�i $ ti . In this case, the bosonic many-body theories
OHbSSH and OHbMC are unitarily equivalent—which is why we focus on the conceptually
simpler OHbSSH in this chapter. By contrast, this unitary equivalence holds only for
the single-particle spectrum of the fermionic versions OHSSH and OHMC but not for
the many-body theories since the former acts on 2L and the latter on L fermionic
modes.

Remark

As a final remark, we note that in the context of the fermionic Majorana chain,
another unitary transformation is commonly used, namely

M 0
1 D

1
p
2

�
1 1

�i i

�
D

�
1 0

0 i

�
�M1 3.84

which transforms the fermion algebra fci ; c
�
j g D ıij via

2j�1 D
cj C c

�
j

p
2

and 2j D i
cj � c

�
j

p
2

3.85

into the eponymous Majorana algebra fi ; j g D ıij with self-adjoint (Majorana)
fermions �j D j . Then (�i D wi )

M 0
LHMCM

0�
L D

0 �i �1 0 0

i �1 0 i 2�1 0

0 �i 2�1

0 0

377777775

266666664
3.86

encodes the Majorana chain in terms of “Majorana dimers” jjC1 which parallels
the SSH chain.
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3.B Symmetry Protection of Generic
Networks

In Subsection 3.4.2, we argued that the envisioned networks, such as the one shown
in Figure 3.14 (a), require two types (parities) of edge modes (dubbed “even” and
“odd”) and that direct transfer is only possible between pairs of different parities.
Here we show the reason for this constraint for a generic class of networks that
allows for topologically protected, localized (zero-dimensional) edge modes.

To this end, we consider systems/protocols of the form

QH.t/ D Nt QH0 C Nw.t/ QH1 3.87

with Nw.t/ D Nwmax � P .t/ where the generic pulse P .t/ is only required to obey
P .0/ D 0 D P .�/. The parameter Nwmax is unconstrained for the following
discussion. Here, QH0 encodes an arbitrary, completely dimerized setup of 2N
(bulk) modes where the tunneling amplitudes are required to be of order O.1/ to
account for a bulk gap of order O.Nt /; apart from this, they may be disordered and/or
complex-valued. Now add M additional modes which remain uncoupled by QH0

(these are the localized zero-energy edge modes). The Hamiltonian QH1 can now
couple all 2N CM modes, again with possibly disordered/complex amplitudes of
order O.1/.

The only generic symmetry we demand is the sublattice symmetry US QHU
�
S D

� QH with representation

US D 1N�N ˝

�
1 0

0 �1

�
˚ diag .s1; : : : ; sM / ; 3.88

because time-reversal T D K is broken due to the (possibly) complex couplings.
The transformations si D ˙1 of the M edge modes are determined by their
coupling to the bulk via QH1. This places QH.t/ in symmetry class AIII of the Altland-
Zirnbauer classification [90–93] and allows for a Z topological index [21, 22, 95, 97]
in one dimension.

The representation (3.88) partitions the 2N C M modes into two classes:
The modes multiplied by C1 (�1) when acted upon by US will be called “even”
(“odd”). The sublattice symmetry suggests the illustrative interpretation of QH as
adjacency matrix of a graph with modes as vertices and (complex) weighted edges,
see Figure 3.16. Then, US QHU

�
S D �

QH is equivalent to the statement that this
coupling graph has to be bipartite, i.e., only edges between the two classes of “even”
and “odd” vertices are allowed.
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Odd modesEven modes

Figure 3.16 •Generic network. TheHamiltonian QH.t/ defines a coupling graphwithmodes as
vertices and (complex) weighted edges. The sublattice symmetry corresponds to the bipartiteness
of this graph, grouping its vertices into “even” (circles) and “odd” (squares) with only edges
between the classes. The couplings of QH0 ( QH1) are indicated as solid black (dashed gray) edges.
TheM DMC CM� zero-energy edge states do not belong to the dimerized bulk of QH0 and
are shown as colored vertices.

If we sort the mode basis/vertices into these classes, the single-particle Hamilto-
nian/adjacency matrix has the generic form

QH D

�
0 A

A� 0

�
3.89

with complex .nC � n�/-matrix A where n˙ 2 N. Then it follows that QH has at
least jnC � n�j exact zero eigenvalues. Indeed, squaring QH yields

QH 2
D

�
AA� 0

0 A�A

�
: 3.90

Let n� � nC without loss of generality. Then, the .nC � nC)-matrix AA� has
rank

�
AA�

�
� nC (which is a trivial bound since n� � nC). However, the

.n� � n�)-matrix A�A yields the non-trivial bound rank
�
A�A

�
� nC � n� due to

its composite structure. Therefore rank
�
QH 2
�
� 2nC and for the corank we find

corank
�
QH 2
�
� nC C n� � 2nC D jn� � nCj which concludes the proof.

Coming back to our setup of 2N dimerized bulk modes coupled withM edge
modes via QH1, we realize that n˙ D N CM˙ with M D MC CM�, where
the sublattice symmetric couplings QH1 determine the class of each edge mode
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(i.e., si D ˙1) and therebyM˙. Then we just showed that QH.t/ has (at least)

jnC
� n�
j D jMC

�M�
j 3.91

exact zero-energy modes at any time. We discuss three special cases:

→ If QH1 connects two edge modes of opposite parity, we have jMC �M�j D

j1 � 1j D 0 exact zero modes. These modes will generically gap out during
0 < t < � and allow for state transfer between them. The considered SSH
chain setup is a minimal example of this case.

→ If QH1 connects two edge modes of the same parity, we have jMC �M�j D

j2 � 0j D 2 exact zero modes. Assuming adiabatically decoupled bulk
modes, initial edge excitations are bound to this two-dimensional zero-energy
subspace for all times. The only possible unitary acting on this subspace
stems from the non-abelian Berry connection A Nw

kl
D ih‰k. Nw/j@ Nw j‰l. Nw/i

with ‰l. Nw/ the two zero-energy states (l D 1; 2) for coupling Nw. The
geometric unitary is then given by (the exponential of ) the integral of the
Berry connection along the path traced by Nw.t/ in parameter space. In our
case, the latter is simply connected and one-dimensional so that all loop
integrals vanish identically, i.e., there is no holonomic transformation of edge
modes possible. We conclude that, despite their delocalization for 0 < t < � ,
all excitations end up in their initial edge mode and there is no transfer.

→ If QH1 connects three edge modes, two “even” and one “odd,” we have
jMC �M�j D j2 � 1j D 1 exact zero mode. For 0 < t < � , the three-
dimensional edge manifold gaps out and allows for transfer between the two
“even” modes via the “odd” mode. We point out that this allows for a
“transistor-like” setup where two modes talk to each other only if a third
“gate”-mode is coupled to the system.

It is important to note that the presence/absence of time-reversal symmetry has
no effect on the existence of protected edge modes as both symmetry classes BDI and
AIII allow for Z topological invariants in one dimension. The locked transfer phase
' D ˙�

2
, however, requires time-reversal symmetry because disordered coupling

phases obviously randomize ' in the absence of additional symmetries (such as the
PH symmetry of class D, recall Subsection 3.4.2).

As a final remark, note that one could alternatively require QH to be PH
symmetric, i.e., US QH �U

�
S D �

QH , instead of imposing the sublattice symmetry
US QHU

�
S D �

QH . Then, its generic form were

QHPH D

�
iAC B

BT iA�

�
3.92

with the antisymmetric real matrices A˙ and the arbitrary real matrix B, cf.
Eq. (3.89). Then, couplings between modes of different (the same) parities must be
real (imaginary). We stress two important differences:
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1 With broken time-reversal symmetry, QHPH belongs to the symmetry class
D, which only allows for Z2 topological invariants in one dimension. Thus
there is at most one pair of protected, localized edge modes, and setups with
adjacent qubits [recall Figure 3.14 (a)] are no longer stable.

2 The coupling structure (3.89) is much more natural than the PH symmetric
version (3.92): In the first case, one has only to guarantee that no modes of
the same parity couple while arbitrary couplings between modes of different
parities are allowed. By contrast, the PH symmetry allows for couplings
between arbitrary modes which, however, must satisfy non-uniform reality
conditions.

Note that the three symmetry classes BDI, D, and AIII exhaust all possibilities to
construct topologically protected edge modes in one-dimensional systems with
representations of PH and time-reversal that square to unity, i.e., C 2 D C1 and
T 2 D C1.

3.C Influence of Disorder

In this section, we focus on the effects of disorder on the transfer. We present
additional numerical results for particle-hole (PH) symmetric/breaking disorder,
and discuss its effect on the transfer phase.

In Figure 3.11 of the main text we show the spatial amplitudes of the edge modes
for the topological and the trivial setup for (a) clean setups, (b) PH symmetric
disorder, and (c) PH breaking disorder. Depending on Nw.t/, the delocalization of
eigenmodes varies between perfectly localized and delocalized. The edge modes
reveal a striking difference for PH symmetric disorder: While any kind of disorder
localizes the “artificial” edge modes of the trivial setup, there is no localization in
the topological setup for PH symmetric disorder. This is a distinctive feature of
topologically protected edge states in general: Anderson localization is forbidden
for the latter as long as the protective symmetries are kept intact (here the PH
symmetry). Due to this feature, the topological setups (SSH and Majorana) are
outperforming the trivial barrier setup as tunneling between the edges directly relies
on their overlap close to criticality.

To substantiate this claim, we sampled both setups for PH symmetric and
breaking disorder and computed their average figures of merit hhOii and hhEii,
see Subsection 3.2.2 and Subsection 3.3.5 for the definition. The results for fixed
protocols are shown in Figure 3.17 (a) as a function of the disorder strength p. Fixed
means that for a given system size L and timescale � , the protocol parameter is
tuned such that—in the clean system—the transfer is maximized. This procedure
captures effects of slow, uncorrelated drift in the constituent’s parameters on the
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Disorder Disorder

DisorderDisorder

topological trivial

a

b

PH sym.PH break. PH break. PH sym.

(a)

(b)

Figure 3.17 • Effects of disorder—Transfer. (a) Comparison of the transfer hhOii (bullets)
and edge weight hhEii (circles) for PH breaking (black) and symmetric (red) disorder. Both,
topological and trivial protocol parameters are optimized for clean systems of length L D 5

with � D 400; the latter being fixed for all disorder realizations. The averages are computed
from N D 5000 samples; the error bars denote one standard deviation of the sample. The
left column shows results for the topological SSH chain setup, the right column for the trivial
tunneling approach. (b) The same data overN D 1000 samples with a retuning of � for every
single disorder realization to optimize transfer O.

transfer performance if no fine-tuning of the protocol is performed on a regular basis.
The results reveal almost perfect bulk-edge decoupling for the topological setup,
irrespective of disorder type and strength. By contrast, the trivial setup shows
scattering into the bulk for p & 0:06, with only quantitative differences between PH
symmetric and breaking disorder. The differences in transfer hhOii are much more
pronounced for the topological than for the trivial setup: For modest PH symmetric
disorder (p . 0:04) the former still transfers almost the complete population into
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the right-hand edge mode; in the trivial setup, the transfer drops considerably even
for weak disorder. Moreover, there is no qualitative difference between PH breaking
and symmetric disorder for the trivial setup.

However, the fundamental difference between the topological and the trivial
setup becomes apparent if we allow for the protocol to adapt to each disorder
realizations by tuning the timescale � in order to maximize the transfer fidelity.
The results are shown in Figure 3.17 (b) [reproduced from Figure 3.12 in the main
text for convenience] and reveal a fundamental difference between topological and
trivial setup: The already modest losses of transfer for PH symmetric disorder
can be canceled completely by adapting the pulse length � . This is not possible
for PH breaking disorder where the edge mode localization suppresses tunneling
exponentially. Again, the trivial setup does not reveal qualitative differences
between PH symmetric and breaking disorder with only minor improvements from
the protocol adaption.

To discuss the last figure of merit, the relative transfer phase ', it is illustrative
to plot a sample (without protocol adaption) for fixed disorder strength p in a 2D
scatter plot (Figure 3.18) where points encode pairs .'r ; 'l/ with 'r D ' the phase
of the right-hand edge mode and 'l its left-hand counterpart [cf. Eq. (3.31)],

h1; 0; 0jU�. Nwmax/j1; 0; 0i D
p

E �O ei'l : 3.93

As expected, the trivial setup shows random, uncorrelated phases even for weak
disorder, irrespective of whether the PH symmetry is preserved or not. For PH
breaking disorder, the topological setup cannot sustain locked phases either, as
shown in the lower left panel of Figure 3.18 for very weak disorder p D 0:005.
However, even for strong PH symmetric disorder (p D 0:1 in the upper left panel
of Figure 3.18) the phases are locked for the SSH-based transfer at four discrete
points: Most of the population is located at .'r ; 'l/ D .��

2
; 0/ and .��

2
; �/; the

number of samples that accumulates at .�
2
; �/ and .�

2
; 0/ is considerably lower,

see the exemplary ratios in Figure 3.18. Note that both 'r and 'l are ill-defined
whenever their corresponding overlap vanishes; however, due to numerics and the
disorder, in practice this never happens.

It is easily checked that a single transfer accumulates a phase of ��
2

if the
length L of the chain is odd and C�

2
if it is even (see also Subsection 3.3.2 and

⁂ Subsection 3.D.1 below); in the following, we discuss the results for the odd-L
(L D 5) setup used for Figure 3.17 and Figure 3.18: As a consequence of the still
perfect bulk-edge decoupling in the presence of disorder, we can express its effect
by simply shifting the protocol parameter Nwmax C ı Nwmax of the clean system by a
realization-dependent value ı Nwmax. If a single, clean, and perfectly tuned transfer
leaves 'l undefined due to the vanishing left-hand population, sampling in the
vicinity of this parameter yields 'l D 0 and � with about the same probability
whereas 'r D ��2 is fixed and stable due to the plateau of O � 1. This explains the
two dominant phase combinations in Figure 3.18. The rarely sampled combination
.�
2
; �/ is due to samples with strong disorder where a complete Rabi cycle returns
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Figure 3.18 • Effects of disorder—Phases. Samples forN D 500 disorder realizations of the
right-hand edge mode phase 'r D ' and its left-hand counterpart 'l for PH symmetric (upper
row) and breaking (lower row) disorder for the topological setup (left column) and the trivial
setup (right column). The phases are measured in the rotating frame of the left-hand edge mode
at t D 0. Note that the disorder rate was chosen large (p D 0:10) for PH symmetric and small
(p D 0:005) for PH breaking disorder for illustrative purposes. Details are given in the text.

the population to the left edge mode such that 'r jumps by � . In extremely rare
cases, an additional half cycle transfers the population back to the right edge mode
which leads to the last phase combination .�

2
; 0/. For chains of even length, all

statements remain true but for the sign flip 'r ! �'r .
In conclusion, detrimental effects of disorder on the transfer phase ' are

negligible for the topological setup—if the PH symmetry is preserved—due to the
rareness of double transfers for weak disorder and the irrelevance of the left-hand
phase for a reasonably well tuned complete transfer to the right-hand edge mode.
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3.D Diagonalization

In this section, we tackle the diagonalization of HbSSH analytically and use the
results to derive scaling properties of the relevant energies for state transfer. In
⁂ Subsection 3.D.1, we start with a simple effective description of the edge
modes for long chains. In ⁂ Subsection 3.D.2, we derive the spectrum of
HbSSH as solutions of a non-trivial equation which constitutes the foundation for
all subsequent subsections. In ⁂ Subsection 3.D.3, we study the asymptotic
splitting of the edges modes for L ! 1. In ⁂ Subsection 3.D.4, we massage
the equation of ⁂ Subsection 3.D.2 into a transcendental form that allows us
to unveil the emergence of edge modes at the topological phase transition. In
⁂ Subsection 3.D.5, we discuss the asymptotics of both edge mode splitting and
bulk gap at the critical point; in ⁂ Subsection 3.D.6 we extend this discussion to
couplings away from criticality. Finally, ⁂ Subsection 3.D.7 presents the derivation
of the universal scaling of eigenenergies for L!1.

3.D.1 Edge Modes in the Thermodynamic Limit

In order to derive the exact edge modes for L ! 1, it is convenient to recast
the Hamiltonian OHbSSH in the single-particle subspace spanned by jI i � b�I j0i. Let
wi � Nw and set the remaining couplings ti � Nt to 1. If we shift the edge mode
energies to zero (by setting the local mode frequencies !I � 0), the single-particle
Hamiltonian reads

HbSSH D Nw

LX
iD1

jiihi j C

L�1X
iD1

jiihi C 1j C h.c. : 3.94

Looking sharply at this Hamiltonian (and possibly some numerical results ,)
suggests the following form of the left and right edge modes:

j�li D N

LX
iD1

.� Nw/i�1 jii 3.95a

j�ri D N

LX
iD1

.� Nw/i�1 jL � i C 1i 3.95b

Here, N D
p
.1 � Nw2/=.1 � Nw2L/ is the normalizing factor. These states are

motivated by the observation that (1) the mode weight decays exponentially with
the distance form the corresponding edge, (2) the local modes contribute with an
alternating sign, and (3) only every other local mode carries relevant weight.
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All we have to do is to show that j�l;ri become degenerate zero-energy
eigenstates of HbSSH for L!1. This follows by straightforward calculations,

HbSSHj�li D NwN

LX
iD1

.� Nw/i�1jii CN

L�1X
iD1

.� Nw/i jii 3.96a

D �N

L�1X
iD1

.� Nw/i jii CN

L�1X
iD1

.� Nw/i jii C NwN .� Nw/L�1
jLi 3.96b

D �.� Nw/L

s
1 � Nw2

1 � Nw2L
jLi

L!1
����! 0 ; 3.96c

in the topological phase for 0 � Nw < 1. The same holds for the right edge mode
j�ri. Obviously h�l j�ri D 0 for all L, but as long as L < 1, HbSSH couples both
states with an overlap exponentially small in L,

h�r jHbSSHj�li D �.� Nw/
L 1 � Nw

2

1 � Nw2L
3.97a

h�˛jHbSSHj�˛i D 0 for ˛ 2 fr; lg ; 3.97b

so that in the fj�li; j�rig-subspace the Hamiltonian takes the form

QHbSSH D �.� Nw/
L 1 � Nw2

1 � Nw2L

�
0 1

1 0

�
3.98

and the degeneracy is lifted by �Eedge � Nw
L.1 � Nw2/=.1 � Nw2L/ in this naïve

approximation. In the following subsections, we derive a much more rigorous result
for the edge mode splitting in finite systems.

As a final remark, we point out that Eq. (3.98) explains the observed even-odd
effect of the relative transfer phases (recall ⁂ Section 3.C and Subsection 3.3.2):
For even chain length L, the couplings in QHbSSH are negative, which gives rise to a
dynamical phase of C�

2
after a complete Rabi cycle,

QU D T exp
�
�i

Z �

0

dt F .t/ QHbSSH

�
D .�1/L

�
0 i

i 0

�
3.99

for NwL.1 � Nw2/=.1 � Nw2L/
R �
0

dt F .t/ D �
2
. Compare this result with Eq. (3.39)

in Subsection 3.3.2.

3.D.2 Exact Diagonalization

Remark 3.1:

To streamline mathematical expressions, we set ı D 0 (, !I � 0) and Nt D 1, and
rename Nw to t in ⁂ Subsection 3.D.2,⁂ Subsection 3.D.3 and ⁂ Subsection 3.D.4 (there
is no time t involved until ⁂ Section 3.E).
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Here we derive a closed expression for the characteristic polynomial of HbSSH.
The characteristic polynomial P ŒHbSSH�.�/ D det.HbSSH C �1/ can be calculated
recursively by Laplace expansion119. To this end, we introduce the class of “even”
2L� 2L matrices

HC

L �

� t

t � 1

1 � t

t �

3777775
2666664 3.100

describing an SSH chain of length L, and its “odd” .2L� 1/� .2L� 1/ descendant

H�
L �

� 1

1 � t

1 � t

t �

3777775
2666664 3.101

which describes the bosonic SSH network of length L where the left mode b1 has
been deleted120.

The Laplace expansion yields the recursion

detHC

L D � detH�
L � t

2 detHC

L�1 3.102a

detH�
L D � detHC

L�1 � detH�
L�1 : 3.102b

If we insert the second equation into the first, we find

detHC

L D .�
2
� t2/ detHC

L�1 � � detH�
L�1 3.103a

detH�
L D � detHC

L�1 � detH�
L�1 3.103b

which is the recursive definition of two coupled polynomial sequences that can be
compactly written in vectorial form as�

detHC

L

detH�
L

�
D

�
�2 � t2 ��

� �1

� �
detHC

L�1

detH�
L�1

�
: 3.104

To find an explicit expression for detHC

L and detH�
L , we diagonalize the matrix

with the transformation�
�C

L

��
L

�
�

24� �
�t .�/

1
2

�
1C 1C�2�t2

�t .�/

�
C

�
�t .�/

1
2

�
1 � 1C�2�t2

�t .�/

�35�detHC

L

detH�
L

�
; 3.105

119Recall thatwehave open boundary conditions and cannot simply diagonalize byFourier transform.
120Note that in our bosonic setup this is even physically realizable, though not necessary for the

following discussion; this is in contrast to the fermionic parent theory.
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defining new sequences �C

L and ��
L, where

�t.�/ �
p
Œ1 � .�2 � t2/�2 � 4t2 : 3.106

This yields the decoupled recursion�
�C

L

��
L

�
D

�
PC 0

0 P �

� �
�C

L�1

��
L�1

�
; 3.107

with eigenvalues P˙ D �
1
2

�
1 � .�2 � t2/˙ �t.�/

�
, the solutions of which read

�˙
L D

�
P˙

�L�1
�˙
1 : 3.108

To determine the initial values �˙
1 , we calculate

detHC
1 D det

�
� t

t �

�
D �2 � t2 3.109a

detH�
1 D det

�
�
�
D � ; 3.109b

and apply the transformation (3.105). This yields

�˙
1 D �

�

�t.�/
.�2 � t2/C

�

2

�
1˙

1C �2 � t2

�t.�/

�
: 3.110

Finally, the inverse transformation�
detHC

L

detH�
L

�
D

�
1C�2�t2��t .�/

2�

1C�2�t2C�t .�/

2�

1 1

� �
�C

L

��
L

�
3.111

yields the closed expression

P ŒHbSSH� D detHC

L D
1C �2 � t2 � �t .�/

2�
� �C

L

C
1C �2 � t2 C �t .�/

2�
� ��
L

3.112

which can be massaged into the form

P ŒHbSSH� D
1C �2 � t2 � �t .�/

�t .�/

�
1 � .�2 � t2/C �t .�/

�L
�
1C �2 � t2 C �t .�/

�t .�/

�
1 � .�2 � t2/ � �t .�/

�L
:

3.113

Note that this indeed is a polynomial in �, despite the square root in �t.�/ (see
⁂ Subsection 3.D.3 below). We conclude with the following result:
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Result 3.1: Spectrum ofHbSSH,HSSH,HbMC,HMC

The single-particle spectrum of the SSH (and Majorana) chain with open boundary
conditions and chain lengthL is determined by the roots of Eq. (3.113), i.e., the solutions of

1C .�2 � t2/ � �t.�/

1C .�2 � t2/C �t.�/
D

�
1 � .�2 � t2/ � �t.�/

1 � .�2 � t2/C �t.�/

�L
: 3.114

3.D.3 Asymptotic Edge Mode Splitting

Here we derive an asymptotic expression for the edge mode splitting �Eedge as a
function of the coupling strength t in the topological phase, i.e., for 0 � t < 1.
An application of the binomial theorem allows us to rewrite the characteristic
polynomial of HbSSH in Eq. (3.113) as the sum

P ŒHbSSH� D

bL=2cX
nD0

�
1C .�2 � t2/

1 � .�2 � t2/
�
L � 2n

2nC 1
� 1

�
�

 
L

2n

! �
1 � .�2 � t2/

�L�2n

�

n�
1 � .�2 � t2/

�2
� 4t2

on
; 3.115

so that the polynomial nature of P ŒHbSSH� in � is now evident121. Finding the roots
of this polynomial, or, equivalently, solving Eq. (3.114), is a non-trivial task as it can
be recast as a transcendental equation (see ⁂ Subsection 3.D.4).

As we are interested in the edge mode energies which are, at least for L large
and/or t not to close to unity, nearly zero-energy eigenstates, we might assume
that these nearly vanishing roots are determined by quadratic terms of P ŒHbSSH� up
to minor corrections due to a polynomial of degree four. Collecting summands in
Eq. (3.115) of degree zero and two, and evaluating the sums yields

P ŒHbSSH� D �2
L�1

�
t2 C t2L

�
C 2L�1 t

2 C Lt2L � 1 � L

t2 � 1
� �2 CO.�4/ : 3.116

Alternatively, this follows by Taylor expanding Eq. (3.113) up to second order at
� D 0. Solving P ŒHbSSH� D 0 in this approximation yields the solutions

�˙ D ˙
tL.t2 � 1/p

1 � .1C L/t2L C Lt2C2L
3.117

121Note that L � 2n D 0 for n D L=2.
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Figure 3.19 • Asymptotic vs. numerical results. (a) Comparison of numerical results (circles)
for the edge mode splitting�Eedge and the analytically derived asymptotically exact expression
(black bold lines) Eq. (3.118a) in the topological phase for Nw.D t / D 0:8; 0:9; 0:99. Close to
the phase transition (large edge mode splitting), small deviations between (exact) numerical and
(approximate) analytical results are visible. Note that the observed deviations from the expected
exponential decay for small systems (L � 5) are captured well by our analytic expression.
(b) Numerical values for �Eedge (small circles), �Ebulk (large circles) and the asymptotic
expressions derived in⁂ Subsection 3.D.5 (both yellow) at the phase transition Nw.D t / D 1 D Nt .
Note that the spectrum becomes linear for L!1 close to the band crossing and therefore
�Eedge D �Ebulk for the asymptotic expressions. In addition, we plot numerical values for
j�1j (black bullets) and compare it with the asymptotic expression (red). For L & 10 finite-size
effects are negligible. Compare the (critical) algebraic decay with the (gapped) exponential
decay in (a).

so that the edge mode splitting can be approximated as

�Eedge D �C � �� D
2tL.1 � t2/p

1 � .1C L/t2L C Lt2C2L
3.118a

� 2.1 � t2/ e�L=� 3.118b

with � D �1= log t . As expected, for L ! 1 and/or t ! 0, the edge mode
splitting vanishes exponentially in L: �Eedge � t

L. Equation (3.118) also tells us
that the gap closes again for t ! 1 where the topological phase transition occurs122.
Interestingly, Eq. (3.118a) also predicts deviations of the exponential decay for small
systems that are not too close to the topological transition. These can indeed be
verified by numerically diagonalizingHbSSH, as shown in Figure 3.19 (a).

122In this case the exponential decay is replaced by an algebraic one.
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3.D.4 Analytic Spectrum

Here we derive transcendental equations from Eq. (3.114) that implicitly determine
the exact spectrum of H(b)SSH and H(b)MC (for open boundary conditions). We use
them below to find asymptotically exact expressions for the scaling of �Eedge and
�Ebulk close to and at the phase transition. It will become graphically transparent
how the edge modes emerge or vanish for t crossing the critical value 1.

The discriminating quantity appearing in Eq. (3.114) is

�t.�/ D
p
Œ1 � .�2 � t2/�2 � 4t2 : 3.119

There are two qualitatively different ranges for �: The one for which �t is purely
imaginary and the one for which it is real. �t is purely imaginary if (t � 0)

Œ1 � .�2 � t2/�2 � 4t2 � 0 ,
ˇ̌
1C t2 � �2

ˇ̌
� 2t : 3.120

In the first case, we have 1C t2 � �2 � 0 , j�j �
p
1C t2 and

1C t2 � �2 � 2t , j�j �
p
.1 � t /2 D j1 � t j ; 3.121

and in the second case we have 1C t2 � �2 < 0 , j�j >
p
1C t2 and

� 1 � t2 C �2 � 2t , j�j �
p
.1C t /2 D j1C t j : 3.122

Combining both results yields

j1 � t j � j�j � j1C t j 3.123

with �t � iy and y �
p
4t2 � Œ1 � .�2 � t2/�2 2 R.

In the complementary region,

j�j < j1 � t j or j�j > j1C t j ; 3.124

we have �t 2 R. Let us have a look at Eq. (3.114) for the two cases separately:

→ For j1 � t j � j�j � j1C t j, Eq. (3.114) takes the form

x1 � iy

x1 C iy
D

�
x2 � iy

x2 C iy

�L
,

´�
1

´1
D

�
´�
2

´2

�L
3.125

where we introduced x1 � 1 � t2 C �2 and x2 � 1 C t2 � �2. With
´k � xk C iy � j´kje

i'k , this reads

e�2i'1 D e�2Li'2 , '1 D L'2 C � Z : 3.126

If we define the angular arctangent function atan.y=x/ as

arg .x C iy/ D atan.y=x/ �

(
arctan

�y
x

�
for x > 0 ;

arctan
�y
x

�
C � for x < 0 ;

3.127
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Eq. (3.114) becomes

A.�/ � atan

"p
4t2 � Œ1 � .�2 � t2/�2

1 � t2 C �2

#
Š
D L atan

"p
4t2 � Œ1 � .�2 � t2/�2

1C t2 � �2

#
C � Z � B.�/ 3.128

which is valid for j1 � t j � j�j � j1C t j and implicitly determines (almost,
see below) the complete spectrum ofHbSSH.

→ For j�j < j1 � t j or j�j > j1C t j, both sides of Eq. (3.114) are real which
motivates the definition

Rk �
xk � �t

xk C �t
3.129

so that Eq. (3.114) takes the simple form

R1 D R
L
2 : 3.130

The solvability of this equation (for some L) is determined by the modulus of
Rk:

jRkj 7 1 , jxk � �t j 7 jxk C �t j ( xk ? 0 3.131

Here we used that �t � 0 for all allowed �. This boils down to the conditions

jR1j 7 1 , 1 � t2 C �2 ? 0 , �2 ? t2 � 1 3.132a

jR2j 7 1 , 1C t2 � �2 ? 0 , j�j 7
p
1C t2 : 3.132b

These ranges must be combined with the allowed intervals for �.

First, let j�j > j1C t j. Clearly j1C t j �
p
1C t2, so we have j�j >

p
1C t2

and therefore jR2j > 1. Furthermore �2 > .1 C t /2 � t2 � 1 and we
find jR1j < 1. Combined, this reads for j�j > j1C t j:

jR1j < 1 < jR2j � jR2j
L
) 8L W R1 ¤ R

L
2 3.133

We conclude that there are no additional solutions for j�j > j1C t j, indepen-
dent of t .

Second, let j�j < j1� t j. This is more interesting: Clearly
p
1C t2 � j1� t j,

so we have j�j < j1 � t j �
p
1C t2 which leads to jR2j < 1. Now comes

the crucial step: In the trivial phase we have t > 1 which allows us to estimate
.1 � t /2 D t2 � 1 C 2.1 � t / � t2 � 1 and thereby �2 < t2 � 1 which
yields jR1j > 1. Following the same argument as above, it follows that there
are no additional solutions in the range j�j < j1 � t j. Then all solutions are
determined by Eq. (3.128) and we identify the intervals j1� t j � j�j � j1C t j
with the PH symmetric energy bands gapped by 2j1 � t j. As we just proved,
there exist no states in this gap.
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Figure 3.20 • Analytic spectrum—Bulk modes. Illustration of the analytic quantities defined
in the text (⁂ Subsection 3.D.4) for couplings (a) t D 0:6 (topological phase), (b) t D 1:0

(phase transition), and (c) t D 1:4 (trivial phase). In the upper row, the quantities Im �t .�/,
Re �t .�/, x1.�/, x2.�/, R1.�/, and R2.�/ are plotted. Note that R2 > 1 and R1 < 1

above and below the bands (j�j > j1C t j) whereas (a) R1 < 1 and R2 < 1 in the band gap
(j�j < j1� t j) in the topological phase for t < 1 but (c)R1 > 1 andR2 < 1 in the trivial phase
for t > 1. In the lower row the quantities A.�/ and B.�/ are shown. Each intersection of A.�/
with one of the branches of B.�/ corresponds to an eigenenergy of a bulk mode.

In the topological phase for t < 1, it follows trivially �2 � 0 > t2 � 1
and therefore jR1j < 1. Note that the statement jR2j < 1 remains valid
since it does not depend on t . This opens the possibility for non-trivial
solutions of Eq. (3.130). It is easy to see that at the lower band edge,
j�j D j1 � t j, one has �t.�/ D 0, hence R1 D 1 D R2. Furthermore
R1.� D 0/ / 1� t

2 � .1� t2/ D 0 but R2.� D 0/ / 1C t2 � .1� t2/ ¤ 0.
Together with R1; R2 � 0, this guarantees at least one pair˙�0 of additional
solutions for L large enough since limL!1RL2 .�/ D 0 for j�j < j1 � t j.
These solutions, of course, are taken from Eq. (3.128) to make up for the fixed
dimension of the Hilbert space. Monotonicity arguments show that there is
indeed just a single pair of additional solutions˙�0 for t < 1—these are the
edge states. Their energy is determined by the equation

X.�/ �
�
1C �2 � t2 � �t .�/

� �
1 � �2 C t2 C �t .�/

�L
Š
D
�
1C �2 � t2 C �t .�/

� �
1 � �2 C t2 � �t .�/

�L
� Y.�/ 3.134
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Figure 3.21 • Analytic spectrum—Edge modes. We plot A.�/, B.�/, X.�/, and Y.�/ for
three topological couplings t D 0:7; 0:8; 0:9 and two chain lengths L D 3; 5. Intersections
of A.�/ and B.�/ (black bullets) represent bulk eigenmodes. Intersections ofX.�/ and Y.�/
(red bullets) correspond to edge modes. All intersections are projected onto the energy axis to
illustrate the spectrum. Note that at t D 0:8 there are only bulk modes for the L D 3 setup
while the L D 5 setup already “relabeled” two of the bulk modes as edge modes.

which is solvable for j�j < j1 � t j with 0 � t < 1 by the above arguments for
L large enough.

Interestingly, the critical coupling t� for which the edge mode solutions
appear depends on the chain length L and one finds t�.L/ < tcrit D 1 with
limL!1 t�.L/ D tcrit, see Figure 3.21.

We illustrate the relevant quantities of this discussion in Figure 3.20 for three
parameters t below, at, and above the critical value. In Figure 3.21 we show the
size-dependent emergence of the edge mode solutions in the topological phase for
three different couplings and two system sizes.
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3.D.5 Scaling at the Critical Point

Remark 3.2:

To simplify calculations, we set ı D 0 (, !I � 0) and Nt D 1 as before. However,
we revert the notation from the technical previous parts, t ! Nw, in ⁂ Subsection 3.D.5,
⁂ Subsection 3.D.6 and ⁂ Subsection 3.D.7.

Let � Nw D Nt � Nw. Here we consider a chain at criticality, � Nw D 0, and set
Nt D 1. Then Eq. (3.128) reads

atan

"p
4 � Œ2 � �2�2

�2

#
Š
D L atan

"p
4 � Œ2 � �2�2

2 � �2

#
C n� ; n 2 Z 3.135

which is valid for all 0 < j�j < 2 since j Nw � 1j D 0 and j1C Nwj D 2. Inspection
shows [see Figure 3.20 (b)] that the solutions˙�0 of minimum absolute value (the
ones which eventually become edge states for � Nw > 0) can be found for n D 0,
whereas the next pair of eigenvalues ˙�1 (evolving into the lower band edge for
� Nw > 0) is specified by n D �1; there are only solutions for �L < n � 0.

To evaluate�Eedge � 2j�0j and�Ebulk � j�1��0j, we have to solve Eq. (3.135)
for n D 0;�1. As we already know that the gap closes, we can expect �0; �1 ! 0

for L ! 1. Thus we may expand Eq. (3.135) into linear order of � to find
asymptotically exact expressions for both eigenenergies:

�

2
�
�

2
CO.�3/ D L�CO.�3/C n� for n 2 Z : 3.136

Thus we have

�0 �
�

2LC 1
�

�

2L
3.137a

�1 �
3�

2LC 1
�
3�

2L
3.137b

asymptotically for L!1.

Result 3.2:

We find for the timescales

�E�1
edge �

2LC 1

2�
�
L

�
and �E�1

bulk �
2LC 1

2�
�
L

�
: 3.138

We compare these expressions with numerical results in Figure 3.19 (b). There we
find that “L!1” can roughly be read as L & 10 in practice.
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3.D.6 Scaling Away from the Critical Point

Here we consider the case j� Nwj > 0. Recall that the lower band edge is j� Nwj
which motivates the new energy variable ı D � � j� Nwj to measure the distance of
bulk modes (� > j� Nwj) from the lower band edge.

If we define the LHS argument

˛L �

p
ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

2� Nw C ı.ı C 2j� Nwj/
3.139

and the RHS argument

˛R �

p
ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

2.1 �� Nw/ � ı.ı C 2j� Nwj/
; 3.140

Eq. (3.128) takes the form

atan˛L D L atan˛R C �Z : 3.141

There is a singularity for � Nw !˙0 and ı ! 0 in the sense that the left-hand
side is discontinuous

lim
ı!0

atan˛L D

8̂<̂
:
0 for � Nw > 0 (topological) ;
�
2

for � Nw D 0 (critical) ;
� for � Nw < 0 (trivial) ;

3.142

induced by the true singularity of the argument

lim
ı!0

p
ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

2� Nw C ı.ı C 2j� Nwj/

D

8̂<̂
:
C0 for � Nw > 0 (topological) ;
1 for � Nw D 0 (critical) ;
�0 for � Nw < 0 (trivial) :

3.143

By contrast, the right-hand side is non-singular,

lim
ı!0

atan˛R D 0 for all � Nw : 3.144

Here we used the definition in Eq. (3.127). See Figure 3.20 [A.�/, red curves in the
lower panels] for an illustration of these statements. This behavior is responsible
for both the emergence of edge modes for � Nw > 0 and the replacement of the
asymptotic 1=L decay of the bulk modes at � Nw D 0 by an 1=L2 decay towards the
lower band edge j� Nwj for � Nw ¤ 0.

266



DIAGONALIZATION

The discontinuity of the LHS in Eq. (3.128) forbids a consistent expansion for
ı ! 0 and � Nw ! 0 at the same time. Therefore we consider two cases to simplify
Eq. (3.141) separately:

1 ˛L � 1, ˛R � 1, which allows us to solve ˛L .C�/ D ˛R C �Z instead of
Eq. (3.141).

2 ˛L � 1, ˛R � 1, which allows us to solve �
2
D ˛R C �Z instead of

Eq. (3.141).

In addition, we always assume that ı � 1 and j� Nwj � 1, i.e., we consider bulk
modes close to the lower band edge and close to criticality. For the simplified
equations, we used that the arctangent function can be linearized if we take into
account definition (3.127) as

atan.y=x/ � y=x .C�/ for x > 0 .x < 0/ : 3.145

First Regime: ˛L � 1

We start with the first case, ˛L � 1, ˛R � 1, which allows to simplify Eq. (3.141)
as

˛L .C�/ D ˛R C �Z 3.146

where the optionalC� follows in the trivial phase for � Nw < 0. We are interested in
the bulk modes with lowest energy, i.e., closest to the lower band edge. This yields
the two equations (upper: � Nw > 0; lower: � Nw < 0)p

ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

2� Nw C ı.ı C 2j� Nwj/
C

�
0

�

�
DL

p
ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

2.1 �� Nw/ � ı.ı C 2j� Nwj/
C

�
��

0

� 3.147

which are valid for ı � minfC ı˛LD1.� Nw/; C
ı
˛RD1.� Nw/g with yet to be determined

functions C ı˛LD1 and C
ı
˛RD1 that determine the range of validity for the linearization

of the LHS and RHS arctangent functions. Note that the scaling of the bulk modes
is the same for � Nw ? 0. For the choice of the correct value of �Z in Eq. (3.146),
see Figure 3.20.

We have to solve the equation
�p

ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

D
L

2.1 �� Nw/ � ı.ı C 2j� Nwj/
�

1

2� Nw C ı.ı C 2j� Nwj/

3.148

which reduces to

�
p
1 �� Nw� Nw D

p
ı �
p
2j� Nwj.L� Nw C� Nw � 1/ 3.149
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in lowest order of ı. Note that this expansion requires the additional condition
ı � 1 so that our total range of validity reads now

ı � minf1; C ı˛LD1.� Nw/; C
ı
˛RD1.� Nw/g : 3.150

Solving for ı yields

ıL!1
bulk �

�2

2

.1 �� Nw/j� Nwj

.L� Nw C� Nw � 1/2
3.151a

L!1
�

�2.1 �� Nw/

2j� Nwj

1

L2
� QıL!1

bulk 3.151b

valid for 0 < j� Nwj < 1.

Result 3.3:

To sum it up, in the gapped phases (j� Nwj ¤ 0), the bulk modes closest to the band edge
have the asymptotic energy

EL!1
bulk D j� Nwj C ıL!1

bulk

D j� Nwj

"
1C

�2=2

� Nw2

1�� Nw
L2 � 2� NwLC .1 �� Nw/

#
3.152a

� j� Nwj C
�2.1 �� Nw/

2j� Nwj

1

L2
.L!1/ : 3.152b

Note that due to the exponential decay of the edge mode energy �Eedge, one has
EL!1

bulk D j�1j � j�1 � �0j D �Ebulk in the topological phase.
We are left with the determination of C ı˛R=LD1.� Nw/, i.e., the range of ı for

which these relations are valid. We define C ı˛R=LD1.� Nw/ as the smallest positive
solutions for ı where ˛R and ˛L are equal to one:

→ The condition ˛L
Š
D 1 reduces to

ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

D Œ2� Nw C ı.ı C 2j� Nwj/�
2

3.153

which yields the smallest positive solution

C ı˛LD1.� Nw/

D

h
.� Nw � 1/2 �

p
2� Nw2 � 4� Nw C 1

i1=2
� j� Nwj 3.154a

� .
p
2 � 1/� Nw 3.154b

� 0:4� Nw 3.154c
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Figure 3.22 • Scaling away from the critical point—Lower band edge. We plot the left-hand
(right-hand) arguments ˛L (˛R) defined in Eq. (3.139) and Eq. (3.140) as functions of the
energy ı D � � j� Nwj for couplings � Nw ! 0 in the topological phase close to the phase
transition (0 < � Nw � 1). Note that ˛L diverges close to the lower band edge j� Nwj (ı D 0)
for� Nw ! 0 whereas ˛R remains finite. C ı˛R=LD1 denote values of ı for which ˛R=L are of
order O.1/; see text for details.

where the linear terms follow for 0 < � Nw � 1, i.e., close to the topological
phase transition but within the topological phase. If we take into account
the behavior of ˛L for ı ! 0, see Figure 3.22, we conclude that for
0 � ı < C ı˛LD1.� Nw/ it is ˛L � 1 and the linearization of the LHS
arctangent is valid. Contrary, for C ı˛LD1.� Nw/ < ı � 1 we conclude that
˛L � 1 for � Nw � 1.

→ The condition ˛R
Š
D 1 reduces to

ı.ı C 2j� Nwj/Œ4.1 �� Nw/ � ı.ı C 2j� Nwj/�

D Œ2.� Nw � 2/C ı.ı C 2j� Nwj/�
2

3.155

which yields the smallest positive solution

C ı˛RD1.� Nw/ D
h
� Nw2 C .2 �

p
2/.1 �� Nw/

i1=2
� j� Nwj 3.156a

�

q
2 �
p
2 �

�
1C

1

2

q
2 �
p
2

�
� Nw 3.156b

� 0:8 � 1:4� Nw 3.156c
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Figure 3.23 • Scaling away from the critical point—System size. (a) Lowest bulk energy
ıbulk D �1 � j� Nwj in the topological phase for � Nw D 0:1 vs. chain length L. We compare
numerical results (circles) with the asymptotic analytical ones (solid lines) derived in the text.
The latter are valid in their respective L-intervals (vertical lines). In the left (yellow) interval,
the 1=L decay dominates whereas in the right (red) interval the faster 1=L2 decay takes over.
(b)The same for� Nw D 0:02, closer to the critical point. Note how the 1=L decay dominates for
a larger L-range. Marked by the arrow, finite-size deviations from the approximate expression
ıL!1
bulk become visible; as expected for L . CL!1

min .

where the linear terms again follow for 0 < � Nw � 1. If we take into account
the smooth behavior of ˛R for ı ! 0, see Figure 3.22, we conclude that
for 0 � ı � C ı˛RD1.� Nw/ it is ˛R � 1 and the linearization of the RHS
arctangent is valid.

To be self-consistent, we have to plug in our solution (3.151a) into the upper
bounds on ı, namely Eq. (3.154c) and Eq. (3.156c), and the additional constraint
ı � 1,

�2

2

.1 �� Nw/j� Nwj

.L� Nw C� Nw � 1/2
� min f0:4� Nw; 0:8 � 1:4� Nw; 1g

D 0:4� Nw 3.157

for � Nw !C0. We see that the decisive bound is given by the constraint ˛L � 1

for small � Nw. Solving [recall Eq. (3.154)]

�2

2

.1 �� Nw/� Nw

.L� Nw C� Nw � 1/2
D .
p
2 � 1/� Nw 3.158
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leads to the condition on the system size

L�
�
q
1
2
C

1p
2
C 1

� Nw
�
1

8

s
1

2
C

1
p
2
�� Nw �

1

4

q
2
p
2C 2� � 1 3.159a

�

�
q
1
2
C

1p
2
C 1

� Nw
�
4:5

� Nw
� CL!1

min .� Nw/ 3.159b

valid for � Nw ! C0. See the red data in Figure 3.23 (a) and (b) for an illustration
of this range. We immediately see that the quadratic decay of bulk modes towards
the band edge is a unique feature of the gapped phases (trivial and topological123)
that sets in for larger system sizes the closer the system is to criticality. At � Nw D 0,
there is no quadratic decay anymore and we end up with the 1=L decay already
derived in ⁂ Subsection 3.D.5.

The scaling derived here is asymptotically correct (L!1) for small deviations
from criticality, 0 < � Nw � 1. As we are anyway interested in chains driven close
to � Nw � 0 from within the topological phase, the latter is not restrictive. However,
it would be interesting to know the scaling that dominates for small chains, L � 1.

Second Regime: ˛L � 1

To this end, we assume that C ı˛LD1.� Nw/ < ı � minf1; C ı˛RD1.� Nw/g and again
0 < � Nw � 1. This implies that ˛L � 1 and ˛R � 1. This allows us to
approximate Eq. (3.141) with �

2
D ˛R � � for the lowest bulk modes. Additionally,

we use ı � 1 to expand the RHS in second order of ı, and finally, we expand in
linear order of � Nw.

This yields the quadratic equation

9� NwLı2 C 4L.2C� Nw/ ı C 4.2L� Nw � 3�/ D 0 3.160

with relevant (positive) solution

ıL!1
bulk D

1

9� Nw

"
�4 � 2� Nw C 2

s
4 � 17� Nw2 C� Nw

�
4C

27�

L

�#
3.161a

�
3�

2L
�� Nw

�
1C

3�

4L
C
81�2

32L2

�
for � Nw � 1 3.161b

�
3�

2L
� QıL!1

bulk for � Nw D 0 : 3.161c

123Herewe showed this only for the topological phase aswe assumed� Nw > 0 to simplify calculations.
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To be consistent, we expand the solution (3.161a) once more into linear order of
� Nw and find for 0 < � Nw � 1 the

Result 3.4:

EL!1
bulk D j� Nwj C ı

L!1
bulk D

3�

2L
�� Nw

�
3�

4L
C
81�2

32L2

�
: 3.162

Compare this with the result (3.137b) for �1 in the limit � Nw ! 0. Note that this
limit works because we “defused” the singularity by setting the LHS to �

2
. The

yellow data in Figure 3.23 (a) and (b) illustrates this approximation and its relation
to the asymptotic expression derived above.

Self-consistency demands that

0:4� Nw <
3�

2L
�� Nw

�
1C

3�

4L
C
81�2

32L2

�
3.163a

� min f0:8 � 1:4� Nw; 1g 3.163b

D 0:8 � 1:4� Nw 3.163c

where we used Eq. (3.156c) and Eq. (3.154c). The left-hand inequality can be solved
via the solution of [recall Eq. (3.154)]

3�

2L
�� Nw

�
1C

3�

4L
C
81�2

32L2

�
D .
p
2 � 1/� Nw 3.164

which reads

L <
27

16
�� Nw C

3�

2
p
2� Nw

�
3�

4
p
2

3.165a

�
3�

2
p
2� Nw

�
3:3

� Nw
� CL!1

max .� Nw/ : 3.165b

The right-hand inequality can be solved via the solution of [recall Eq. (3.156)]

3�

2L
�� Nw

�
1C

3�

4L
C
81�2

32L2

�
D

q
2 �
p
2 �

�
1C

1

2

q
2 �
p
2

�
� Nw 3.166

which reads

L�
3�

4
p
2 �
p
2

24s9
p
2 �
p
2� Nw C� Nw � 2

� Nw � 2
C 1

35 3.167a

�
3�

2
p
2 �
p
2
�
27�� Nw

16
� 6:2 � 5:3� Nw � CL!1

min .� Nw/ : 3.167b
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In Figure 3.23 (a) and (b) we illustrate the interval bounded from below by
Eq. (3.167b) and from above by Eq. (3.165b). Note that the upper bound diverges
for � Nw ! 0 as the 1=L decay towards j� Nwj takes over from the 1=L2 decay. In
the limit � Nw ! 0, we find the already known result

lim
� Nw!0

EL!1
bulk D

QıL!1
bulk D

3�

2L
3.168

with a validity range of 6 . L. Indeed, for small chains of length L . 6 one
finds finite-size deviations from the exact 1=L decay, indicated by the arrow in
Figure 3.23 (b); this is not even captured by our more sophisticated expression in
Eq. (3.162).

3.D.7 Universal Scaling

Here we derive the universal scaling of the eigenenergies in the thermodynamic
limit exactly. Recall that for the purpose of state transfer (see Subsection 3.3.3), we
have to tune the system closer to the critical point (� Nw ! 0) for L!1 to allow
for optimal scaling of the transfer time (� � L) which requires �Eedge � 1=L for
the edge mode splitting. In the following, we make these statements rigorous.

To this end, we introduce the rescaled variables �0 � L� for energies and
� Nw0 � L� Nw for couplings; we are interested in the � Nw0-dependence of �E 0

bulk D

j�0
1 � �

0
0j and �E

0
edge D 2�0

0 in the thermodynamic limit L ! 1. We start by
rewriting Eq. (3.114) in terms of the new variables,

x0
1 � �

0
t

x0
1 C �

0
t

D

�
x0
2 � �

0
t

x0
2 C �

0
t

�L
3.169

where
x0
1=2 D 1˙

1

L2

�
�02
� .L �� Nw0/2

�
3.170

and
�0
t D

1

L2

p
Œ� Nw02 � �02� Œ.� Nw0 � 2L/2 � �02� : 3.171

We did not introduce the relative energies ı0 D �0 � j� Nw0j (cf. ⁂ Subsection 3.D.6)
because we are also interested in the edge mode which lives in the band gap. We can
now take the limit L!1 of both sides in Eq. (3.169) to find the transcendental
equation

Result 3.5:

� Nw0 �
p
� Nw02 � �02

� Nw0 C
p
� Nw02 � �02

D e�2
p
� Nw 02��02

: 3.172
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Here we used that limL!1Lx0
1 D 2� Nw

0 and

lim
L!1

L�0
t D 2

p
� Nw02 � �02 3.173

which leads to

lim
L!1

x0
1 � �

0
t

x0
1 C �

0
t

D
� Nw0 �

p
� Nw02 � �02

� Nw0 C
p
� Nw02 � �02

: 3.174

For the right-hand side of Eq. (3.169) we used the well-known relation limL!1.1C

x=L/L D exp.x/ to derive

lim
L!1

�
x0
2 ˙ �

0
t

2

�L
D e˙

p
� Nw 02��02�� Nw 0

3.175

and therefore

lim
L!1

�
x0
2 � �

0
t

x0
2 C �

0
t

�L
D e�2

p
� Nw 02��02

: 3.176

As already mentioned in ⁂ Subsection 3.D.4, there are two types of solutions for
Eq. (3.172): For j�0j < j� Nw0j, the above equation defines solutions within the gap
(which is bounded by j� Nw0j) in the thermodynamic limit and is well-defined in the
field of real numbers; this implies the exponential decay of the edge mode splitting.
By contrast, for j�0j > j� Nw0j (in-band), the equation becomes complex-valued

� Nw0 � i
p
�02 �� Nw02

� Nw0 C i
p
�02 �� Nw02

D e�2i
p
�02�� Nw 02

3.177

which can be recast as the transcendental equation over R

Result 3.6:

atan

"p
�02 �� Nw02

� Nw0

#
D
p
�02 �� Nw02 C �Z 3.178

encoding an algebraic decay of bulk modes towards the band edge j� Nwj.
Inspection shows that the transmutation of “complex” bulk solutions to “real”

edge solutions occurs at � Nw0 D 1, see Figure 3.24 (a). Formally, the energy �0
0 of

the edge mode is determined by

� Nw0 �

q
� Nw02 � �02

0;e

� Nw0 C

q
� Nw02 � �02

0;e

D e
�2
q
� Nw 02��02

0;e for � Nw0 > 1 3.179

and

atan

264
q
�02
0;b
�� Nw02

� Nw0

375 Dq�02
0;b
�� Nw02 for 0 � � Nw0

� 1 : 3.180
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Figure 3.24 • Universal scaling. (a) Numerical (bullets) and analytical (lines) data for the
rescaled lowest (edge mode) energy �0

0 D L�0 and the lowest band (bulk mode) energy
�0
1 D L�1 as a function of the rescaled coupling � Nw0 D L� Nw. Bold colored bullets mark

numerical data for a quasi-infinite system of length L D 200 whereas finite-size effects are
evident for smaller systems (small black bullets) starting at L D 5. Note that the solutions
for �0

0 split into the two types �
0
0;b

for �0
0 > � Nw

0 (in-band) and �0
0;e for �

0
0 < � Nw

0 (in-gap).
(b) Analytical results for the rescaled bulk-edge separation �E 0

bulk D j�
0
1 � �

0
0j and the

rescaled edge mode splitting �E 0
edge D 2�0

0. Additionally, we show the scaled edge mode
energy 10 ��E 0

edge; the intersection of the latter with�E
0
bulk determines parameters of fixed

bulk-edge energy ratio. We find � Nw0 � 3:3 and �E 0
bulk � 5:0 (black bullet). Note that

�E 0
bulk D � D �E 0

edge for� Nw
0 D 0, i.e., at the critical point where the spectrum becomes

linear.

By contrast, the energy of the lowest bulk mode is determined by

atan

264
q
�02
1 �� Nw

02

� Nw0

375 Dq�02
1 �� Nw

02 � � for all � Nw0
� 0 : 3.181

These results are illustrated in Figure 3.24 (a) and compared to finite-size numerical
results.

The bottom line of this analysis is that we can fix the ratio R of the two
relevant energy scales for a transfer, namely �Eedge and �Ebulk if we approach the
topological phase transition from within the topological phase as � Nw D � Nw0=L for
L!1:

�Ebulk D R�Eedge

, �0
1 � �

0
0 D �E

0
bulk D R�E

0
edge D 2R �

0
0 3.182a

, �0
1 D .2RC 1/ �

0
0 : 3.182b
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In conjunction with Eq. (3.172), this constraint implicitly determines � Nw0. E.g., for
R D 10 we find

� Nw0
� 3:3 3.183a

�0
1 D 21 �

0
0 � 5:2 3.183b

�E 0
bulk D 20�0

0 � 5:0 3.183c

�E 0
edge D 2�0

0 � 0:5 3.183d

which is illustrated in Figure 3.24 (b). Therefore we have

� Nw �
3:3

L
and � & 2:0 � L D �E�1

edge 3.184

for the given energy ratio R D 10. Note that the condition � & �E�1
edge is merely

necessary to facilitate at least one Rabi cycle between the edges; in particular, it
allows for optimal scaling � � L. However, adiabatically decoupling bulk modes
from the edge subspace is determined by �Ebulk which vanishes also with L�1.
This motivates the analysis of ⁂ Section 3.E below.

3.E Adiabaticity
Remark 3.3:

To streamline mathematical expressions, we replace the calligraphic symbols P and F used
for pulses in Subsection 3.3.3 by lower-case letters p and f .

Here we use rigorous bounds on non-adiabatic losses [292] in conjunction with
the previously (⁂ Subsection 3.D.7) derived scaling of the edge mode splitting and
bulk gap to study the adiabatic bulk-edge decoupling quantitatively. In the following,
we write the SSH chain Hamiltonian in the form

H.s/ D H0 C Nw.s/H1 3.185

where H0 (H1) describes the topological (trivial) dimerization of the chain (all
couplings set to 1), 0 � Nw.s/ � 1 encodes the coupling, and s D aC .b � a/ t=�
is a dimensionless time with s 2 Œa; b�, whereas t 2 Œ0; ��. Let g D �Ebulk=2 be
half the gap separating bulk from edge modes. With our previous results [see also
Figure 3.25 (a)], we can estimate

2g. Nw/ D �Ebulk � � Nw D 1 � Nw 3.186

which becomes asymptotically an equality for L!1.
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Figure 3.25 • Adiabatic bulk-edge decoupling—Pulses. (a) Finite-size bulk gap �Ebulk D

2g. Nw.s// for Nw.s/ D 0:8 � sin2.�s/ as a function of the parametric time s 2 Œ0; 1� for two
systems of size L D 5 (blue bullets) and L D 20 (red bullets). For comparison, the exact bulk
gap� Nw.s/ D 1� Nw.s/ in the thermodynamic limit (L!1) is drawn as shaded region. Clearly
2g. Nw.s// � � Nw.s/ for systems of finite size; this lower bound on g is used in the text for the
estimation of the bulk losses. (b) The three polynomial pulses (black lines) pn.s/ for n D 2; 4; 6
as derived in the text, see Eq. (3.215). For comparison, we show the shifted and rescaled pulse
f .s/ D sin2

�
�
2
.x � 1/

�
(red) which was used in the main text (e.g, Subsection 3.3.3). All four

pulses are compactly supported on I D Œ�1; 1� and continuously differentiable on R.

In [292], the following rigorous upper bound on the non-adiabatic losses was
derived:

1 � E D h‰0jU
�
� Q0 U� j‰0i � C

2 3.187

with

C D
2

�

"
k PH.a/k

g2.a/
C
k PH.b/k

g2.b/

#
C
2

�

Z b

a

ds

 
k RH.s/k

g2.s/
C 7
p
2
k PH.s/k2

g3.s/

!
3.188

where Q0 D 1 � j1; 0; 0ih1; 0; 0j � j0; 0; 1ih0; 0; 1j is the projector onto the bulk
sector at the beginning (s D a) and at the end (s D b) and k�k is the operator norm.
We have kH0k D 1 D kH1k

124 and will consider pulses Nw.s/ 2 C k.R; Œ0; 1�/125

with k � 1 which are compactly supported on an interval I D Œa; b� so that126

C D
2

�

Z b

a

ds

 
j RNw.s/j

g2.s/
C 7
p
2
j PNw.s/j2

g3.s/

!
: 3.189

124Both describe decoupled dimers with maximum absolute eigenvalue 1.
125Mappings from R to Œ0; 1� the kth derivative of which is continuous.
126 PNw and RNw denote derivatives with respect to s (to avoid confusion with� Nw0 and similar rescaled

quantities).
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Eq. (3.186) allows us to estimate

C �
2

�

Z b

a

ds

"
22

j RNw.s/j

.1 � Nw.s//2
C 7
p
2 23

j PNw.s/j2

.1 � Nw.s//3

#
: 3.190

To allow for a complete state transfer, we showed in ⁂ Subsection 3.D.7
that the critical coupling has to be approached as Nwmax � 1 � � Nw0

min=L, where
Nwmax D maxs2I Nw.s/, in combination with an (at least) linearly growing protocol
timescale � & L. Therefore we assume the form

Nw.s/ D
�
1 �� Nw0

min=L
�
� p.s/ 3.191

for L > � Nw0
min with p.a/ D 0 D p.b/, p.c/ D 1, and p monotonically increasing

(decreasing) on Œa; c� (Œc; b�), where c D .aC b/=2. For the following analysis, it
is more convenient to introduce Np.s/ D 1 � p.s/ which vanishes during the pulse:
Np.c/ D 0.

Result 3.7: Upper bound on bulk losses

Then we have127

C �
C1

�

Z b

a

ds
j Np00.s/j

."L C Np.s//
2„ ƒ‚ …

��1

C
C2

�

Z b

a

ds
j Np0.s/j2

."L C Np.s//
3„ ƒ‚ …

��2

�
CLŒ Np�

�
3.192

with

C1 D
23

1 �� Nw0
min=L

� const ; C2 D
7
p
2 24

1 �� Nw0
min=L

� const 3.193

and

"L D
� Nw0

min

L �� Nw0
min

�
1

L
: 3.194

For L ! 1, CLŒ Np� will diverge due to the vanishing of Np.s/ at s D c and
limL!1 "L D 0. To keep the bulk losses 1 � E constant for L!1, we have to
scale the protocol timescale as � � L1C˛ Np with ˛ Np � 0 such that the asymptotic
order of CLŒ Np� is matched and limL!1 CLŒ Np�=L

1C˛ Np D const.
We stress that an often used criterion requires � & 1=g2min � L

2 for adiabaticity
(since gmin � "L � 1=L), i.e., ˛ Np D 1. By contrast, the Lieb-Robinson bound [291]
(and �Eedge � 1=L) in principle allows for linear scaling, i.e., ˛ Np D 0.

127For generic functions p; f; : : : , we switch back to the conventional notation for derivatives:
p0; p00; : : : .
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Scaling for Specific Pulses

In the following, we apply Result 3.7 to specific pulses: First, we demonstrate that
the pulse Np.s/ D cos2.�s/ D 1� sin2.�s/, introduced in Subsection 3.2.2, yields a
scaling of ˛ Np D

1
2
and thereby already surpasses the naïve estimates for adiabaticity.

Finally, we discuss a sequence of pulses Npn.s/ for which provably ˛ Npn
D

1
n
, so that

the optimal scaling ˛ Np D 0 can be approached systematically. The question whether
there is an optimal pulse p.s/ with ˛ Np D 0 remains unanswered. We compare
all estimates (which are, after all, only sufficient conditions for adiabaticity) with
numerical simulations of the bulk losses and find that the actual scaling saturates the
upper bounds (up to L-independent prefactors).

1 We start with Np.s/ D Nf .s/ D cos2.�s/ D 1 � sin2.�s/ for s 2 Œ0; 1�, as
used in Subsection 3.2.2 and Subsection 3.3.3. We have to evaluate

CLŒ Nf � D

Z 1

0

ds

"
C1

2�2j cos.2�s/j

."L C cos2.�s//2
C C2

�2 sin2.2�s/

."L C cos2.�s//3

#
3.195

where we set � Nw0
min D 3:3 for demonstrative purposes (recall Subsec-

tion 3.D.7). We evaluate the integrals numerically and plot CLŒ Nf �=� as a
function of L for � D �0 � L

1C˛ with ˛ D 0; 1
2
; 1 in Figure 3.26 (a). To

compare the scaling of the rigorous upper bounds on the bulk losses with
the real system, we simulate the time evolution for f .s/ D sin2.�s/ with
� D �0 �L

1C˛ (˛ D 0; 1
2
; 1) and Nwmax D 1� 3:3=L and calculate the bulk loss

1 � E at t D � . Note that we do not tune Nwmax or � in any way to optimize
the transfer O as we are only interested in the adiabatic decoupling of bulk
and edge at this point. The numerical losses are shown in Figure 3.26 (b):
Up to finite-size effects and L-independent prefactors, the rigorous upper
bounds capture the scaling of the actual system correctly. In particular, the
result ˛ Nf D

1
2
is verified. The latter surpasses the conservative estimate

� & 1=g2min � L
2 but does not reach optimal (linear) scaling ˛ Nf D 0.

2 Let us now follow a more systematic approach and consider pulses of the
form

Npn.s/ D s
n
� q.s/ for s 2 I D Œ�1; 1� ; n � 2 even 3.196

with s�n � q.s/ > 0 on I and q.˙1/ D 1. We impose the continuity
conditions

Np0
n.˙1/ D ˙n q.˙1/C q

0.˙1/ D 0

) q0.˙1/ D �n
3.197

so that the boundary terms in Eq. (3.188) vanish and Npn.s/ becomes a
C 1-function if set to 1 outside I (which corresponds to the stable situation of
statically decoupled edge modes). One could smoothen the function further
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by requiring

Np00
n.˙1/ D n.n � 1/ q.˙1/˙ 2n q

0.˙1/C q00.˙1/ D 0

) q00.˙1/ D n.nC 1/ � n2
3.198

so that Npn 2 C 2 if extended with 1 to R. This, however, will not change
the gist of the statements that follow. The upshot of these considerations
is that getting rid of higher derivatives at the critical time s D 0 (when the
gap is of order 1=L) has to be balanced by growing derivatives of q.s/ at the
boundaries of I to smoothen the transition into the stationary, decoupled
state before and after the pulse.

Note that for the mth derivative one has

Np.m/n D

mX
kD0

 
m

k

!
nŠ

.n � k/Š
sn�kq.m�k/.s/ 3.199

so that Np.m/n .0/ D 0 for m < n. The motivation is that flattening the pulse
close to the critical region at s D 0 (where g � gmin � 1=L) may be beneficial
for the scaling of � with L.

In particular,

Np.s/ D snq.s/ 3.200a

Np0.s/ D n sn�1q.s/C snq0.s/ 3.200b

Np00.s/ D n.n � 1/ sn�2q.s/C 2n sn�1q0.s/C snq00.s/ : 3.200c

In Eq. (3.192), this yields

�1 � n.n � 1/

Z
I

ds
jsn�2q.s/j

."L C snq.s//
2„ ƒ‚ …

�1;1

C 2n

Z
I

ds
jsn�1q0.s/j

."L C snq.s//
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�1;2

C

Z
I

ds
jsnq00.s/j

."L C snq.s//
2„ ƒ‚ …

�1;3

3.201

and

�2 � n
2

Z
I

ds
js2n�2q2.s/j

."L C snq.s//
3„ ƒ‚ …

�2;1

C 2n

Z
I

ds
js2n�1q.s/q0.s/j

."L C snq.s//
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�2;2

C

Z
I

ds
js2n.q0.s//2j

."L C snq.s//
3„ ƒ‚ …

�3;3

3.202

where we made use of the triangle inequality.
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If we introduce the minimum 0 < q � mins2I jq.s/j and the maximum
Q � maxs2I jq.s/j (similarly for derivatives: Q0 andQ00), the integrals can
be estimated straightforwardly:

→ The first term of �1 reads

�1;1 D

Z 1
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ds
jsn�2q.s/j

."L C snq.s//
2

3.203a
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n2 sin �
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q
3.203f

where we used that sn � 0 for even n. In the second row we substituted
u D .q="L/

1
n s. Note that the last estimate becomes an equality for

L!1 since "L ! 0.
→ The second term reads

�1;2 D
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→ The third term reads
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→ The first term of �2 reads
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→ The second term reads
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→ The third term reads
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Combining these results in Eq. (3.201) and (3.202) with Eq. (3.192) yields the
final upper bound for bulk losses
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where the last line describes the dominant term for L!1.

Result 3.8: Upper bound for polynomial pulses

In conclusion, we have
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With "L �
1
L

it follows that � � L1C 1
n is sufficient to keep the bulk

losses constant for L ! 1 if a pulse of the form Npn is used instead of
Nf .s/ D cos2.�s/.

There are a few comments in order:

1 If we expand Nf .s/ D cos2.�s/ around its minimum at s D 1
2
,

cos2.�s/ D
�
s �
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2

�2
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�2 �

�4

3

�
s �
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2

�2
C : : :

#
„ ƒ‚ …

>0 for s2Œ0;1�

; 3.211

we immediately conclude that ˛ Nf D
1
2
since Nf .s/ is of the form Np2.s/ for

appropriately chosen q.s/ (and shifted/rescaled s).

2 It is important to stress that the coefficient

CnŒq� D
3� .n � 1/ q

1
n

n sin �
n

"
2C1

Q

q
C C2

�
Q

q

�2#
3.212

is independent of L but does depend on the pulse shape via n andQ=q: First,
for n!1, we have

� .n � 1/

n sin �
n

! n : 3.213

The better scaling comes at the price of larger upper bounds, i.e., longer
timescales � to begin with. Second, Q tends to diverge with n ! 1 as
well. We already showed that continuous differentiability at the beginning and
end of the pulse implies (at least) jq0.˙1/j D n and therefore Q0 � n, and
jq00.˙1/j � n2) Q00 � n2 if Npn 2 C 2 is required. Note that this blows up
the coefficients of the sub-leading terms in Eq. (3.209a).

The interplay of CnŒq� and the L1C 1
n -scaling can lead to the situation depicted

in Figure 3.26 (c) where it is beneficial for small L to choose n smaller despite
the inferior L-scaling, simply because the prefactors can be prohibitively large
when L is not yet large enough.

3 Constructing possible q.s/ for given n so that pn.s/ D 1� Npn.s/ is compactly
supported on Œ�1; 1� and k times continuously differentiable on R is easily
accomplished with the polynomial ansatz

1 � pn.s/ D

DX
jDn

�j s
j 3.214

for large enoughD � n.
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Figure 3.26 • Adiabatic bulk-edge decoupling—Numerics. (a)Numerical evaluations of the
upper bounds CLŒ Nf �=� for f .s/ D sin2.�s/ with � D �0 � L1C˛ for ˛ D 0; 1

2
; 1 (�0 D 103).

Obviously � � L1C 1
2 leads to a finite upper boundC forL!1, i.e., ˛ Nf

D
1
2
. (b)Numerical

simulations of the bulk losses 1�E withf .s/ D sin2.�s/, Nwmax D 1�3:3=L and � D �0�L1C˛

for ˛ D 0; 1
2
; 1 (�0 is normalized so that � D 10 for L D 10). Note that for � � L the bulk

losses increase with L whereas for � � L1C 1
2 they converge towards a constant value which

can be made arbitrarily small by increasing the prefactor �0. (c)Numerical evaluations of the
upper bounds CLŒ Np�=� for polynomials pn.s/ with n D 2; 4; 6 as plotted in Figure 3.25 (b).
� D �0 � L

1C 1
4 (�0 D 500) is fixed for all three such that CLŒ Np4�=� converges to a finite value.

The inset illustrates the dependence of the prefactorsCnŒq� on the pulse shape (that is, n): With
n, the prefactors grow such that the upper bounds intersect when plotted over L. Thus it may
be beneficial to choose pulse shapes with poor scaling in L for small systems. (d)Numerical
simulations of 1�E with the polynomial pulsep4.s/, Nwmax D 1�3:3=L and � D �0 �L1C˛ for
˛ D 0; 1

4
; 1
2
. For � � L the bulk losses increase with L, whereas for � � L1C 1

4 they converge

to a finite, non-trivial value; for � � L1C 1
2 the losses vanish with L ! 1. Compare these

results with (b).
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Solving for f�j g yields possible solutions (k D 1, i.e., pn 2 C 1)

p2.s/ D 1 � x
2.2 � 1x2/ 3.215a

p4.s/ D 1 � x
4.3 � 2x2/ 3.215b

p6.s/ D 1 � x
6.4 � 3x2/ 3.215c

:::

which are plotted in Figure 3.25 (b) and compared with f .s/ D sin2.�s/. In
Figure 3.26 (d) we show numerical results for the bulk loss 1 � E for the
polynomial pulse p4.s/.

3.F Remarks on Linear Bosonic
Networks

This is a brief excursion and discussion of known results on the complexity of
linear bosonic networks with multiple excitations. Although we focus on the
single-excitation sector throughout this chapter (which allows for the efficient
simulation and evaluation of arbitrary quantities), it seems natural to watch for
possible complications if N > 1 excitations occupy our networks at the same time.

Recall that the (trivial and topological) networks introduced in Subsection 3.2.1
and ⁂ Subsection 3.A.1 are all described by quadratic theories of L bosonic modes:

OH D
X
i;j

b
�
i Hij bj : 3.216

Here, H D .Hij / 2 RL�L is a positive and symmetric matrix. The second-
quantized Hamiltonian requires positivity as any negative eigenvalue precludes
the existence of a finite-energy ground state. The reality of all couplings Hij is
not required per se; complex hopping amplitudes are conceivable. For the sake of
simplicity, we assume the couplings to be real in the following (this applies also to
the particular networks studied in this chapter).

Here we want to comment on the solvability of linear bosonic networks if more
than one excitation is present. To this end, we introduce the vector notation

OH D b�Hb : 3.217

As there is no pairing of bosonic creation- and annihilation operators, any unitary S
that diagonalizesH defines a canonical transformation

SHS� D diag .f"ig/ ; a � Sb ) OH D
X
i

"i a
�
i ai 3.218
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with eigenmodes ai and positive eigenenergies "i > 0. In this sense, any linear
quantum oscillator network (3.216) is exactly solvable. However, “solvability“ is a
subtle statement as the following discussion demonstrates:

For fermionic quadratic theories it is usually taken for granted that “solving” the
theory by diagonalizing the corresponding (single-particle) Hamiltonian matrixH
allows for the efficient128 evaluation of N -particle propagators

hm1; : : : ; mLjUT jn1; : : : ; nLi 3.219

where mi ; ni denotes the occupation of mode 1 � i � L,
P
i mi D

P
i ni D N is

the total particle number, and UT D exp.�i OH T / is the time evolution operator
(„ D 1). Experimentally, this describes the probability (amplitude) to find fmig
fermions in the elementary modes fbig at time t D T if one inserts fnig fermions at
time t D 0.

Asking the same question for one of our networks of L coupled quantum
oscillators (where one is interested in the probability of fnig initial excitations
evolving into another configuration fmig) leads directly into the realm of boson
sampling [296–299]: Despite the “solvability” of the theory, the evaluation of
arbitrary propagators proves computationally hard in the number N of excitations.
This can be seen as follows:

In the Heisenberg picture, the time evolution of eigenmodes is

aj .t/ D U
�
t ajUt D e

�i"j t aj : 3.220

For the local (physical) oscillators bi this reads

bi.t/ D S
�
ij aj .t/ D S

�
ij e

�i"j t aj D S
�
ij e

�i"j tSjk bk � ƒ
�

ik
.t/ bk 3.221

where ƒ�.t/ƒ.t/ D 1 describes the unitary time evolution of the elementary
modes bi . Consequently, the time evolution of a Fock state is given by

Ut jn1; : : : ; nLi D
b1.t/

�n1

p
n1Š

: : :
bL.t/

�nL

p
nLŠ

j0i 3.222a

D

LY
iD1

1
p
ni Š

24X
ki

ƒki ;i.t/ b
�

ki

35ni

j0i : 3.222b

It is a well-known fact [297] that evaluating an overlap with another Fock state
hm1; : : : ; mLj can be massaged into the form

hfmigjUt jfnigi D

 Y
i

ni Š

!� 1
2
 Y

i

mi Š

!� 1
2

per
�
ƒ.t/Œ�0

j��
�

3.223

128Here, efficient means polynomial in the system’s extensive parameters such as mode number L
and particle numberN .
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where

per .M/ �
X
�2SN

NY
iD1

Mi;�.i/ 3.224

is called the permanent of the .N � N/-matrix M and can be thought of as
determinant without the signum of the permutation � (bosons!). The matrix
ƒ.t/Œ�0j�� is a specific .N �N/-matrix (N is the number of bosons) depending on
both fnig and fmig which can be constructed efficiently from the .L � L/-matrix
ƒ.t/ (L is the number of modes), see Ref. [297] for details.

The crucial observation is that the evaluation of the permanent of a generic
matrix is #P-complete and the best known algorithm scales exponentially in N [296].
It is generally assumed that there exists no efficient algorithm to evaluate this
function [298]—as such would imply P=NP which, in turn, is thought to be highly
unlikely. Note that the additional signum in the definition of the determinant

det .M/ �
X
�2SN

NY
iD1

sign.�/Mi;�.i/ 3.225

makes all the difference: The determinant can be evaluated in polynomial time by
Gaussian elimination.

It is important to stress that the hardness for evaluating N -boson propagators
does stem from their statistics alone. The “solvability” of the theory allows for an
efficient calculation of ƒ.t/ independent of the particle number N . Only trying
to use this matrix to compute N -boson propagators turns out to be exponentially
hard. The bottom line is that when physicists talk of “solvable” systems, this does
not necessarily imply that all quantities of interest are accessible. For our networks
of interest, this means that an evaluation of their dynamics for large numbers of
excitations N is computationally expensive, despite their quadratic description.
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4
Topological Quantum Error
Correction with Symmetry

Constrained Cellular Automata

“These are men who are trying to work out how
the world fits together, not by magic, not by religion,
but just by inserting their brains in whatever crack
they can find and trying to lever it apart.”

—Terry Pratchett
in Pyramids

Active quantum error correction on topological codes is one of the most promising
routes to long-term qubit storage. In view of future applications, the scalability of
the used decoding algorithms in physical implementations is crucial. In this chapter,
we focus once again on the one-dimensional Majorana chain and construct a strictly
local decoder based on a self-dual cellular automaton. We study numerically and
analytically its performance and exploit these results to contrive a scalable decoder
with exponentially growing decoherence times in the presence of noise. These
results, published in Ref. [3], pave the way for scalable and modular designs of
actively corrected one-dimensional topological quantum memories.
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IN A NUTSHELL

Storing data on a personal computer is nothing special. We do it all the time and
expect the zeros and ones on the platter of our hard drive to remain unaltered over
time. Our expectations are met because the data is imprinted on a ferromagnetic
coating that retains its magnetization almost indefinitely at room temperature.
Physically speaking, we exploit that ferromagnets below their Curie temperature are
in a symmetry-broken phase and therefore non-ergodic, i.e., they remember their
initial state on all relevant timescales. From a more abstract point of view, each of
our precious bits is copied to billions of atomic magnetic moments pointing all in
the same direction due to their ferromagnetic interaction. This physically realized
“repetition code” makes storing classical bits easy.

If we want to build a quantum computer, storing qubits for long times becomes
a major obstacle. This is so, because the coherence of qubits is easily lost due to
inevitable interactions with our classical world. What gets things completely into
a mess is that we cannot just copy qubits to build a “quantum hard drive.” This
follows immediately from the linearity of quantum mechanics and is therefore hard
to sweep under the rug. Fortunately, there are more sophisticated methods to
protect qubits from decoherence by storing them in cleverly designed corners of
the Hilbert space. Such “quantum (error correction) codes” (which is just a fancy
name for a linear subspace with some useful properties) allow for the detection
and correction of errors without perturbing the stored qubit. The price one has to
pay is that many physical qubits are necessary to distill a single logical qubit that
can be protected from environmental perturbations. The need for an abundance of
controllable, physical qubits is still a major hurdle that has to be overcome one way
or the other before robust logical qubits can be realized in laboratories.

In this chapter, we boldly assume that the “how to control an arbitrary number
of qubits”-problem has been solved by means that already loom on the horizon
at the time of writing. Instead, we are interested in possible issues that may arise
if one implements a quantum code and its error correction algorithm in hardware
(e.g., on a chip). To this end, we focus on a simple scalable quantum code and ask
the question of how the classical computations required for error correction can
be implemented efficiently, taking alleged subtleties such as finite communication
speed and the size of logic gates into account.

Our quantum code of choice is given by the two-fold degenerate ground state
space of the Majorana chain (Subsection 1.2.2) and is aptly referred to as Majorana
chain quantum code (MCQC) henceforth. Its elementary building blocks are fermions
described by cj and c�j . These can be (formally) split into two Majorana modes
each, 2j � i.c

�
j � cj / and 2j�1 � c

�
j C cj , see Figure 4.1 (a). Then, the operators

Sj � �i2j2jC1, pairing two modes of adjacent sites, are easily seen to commute,
ŒSi ; Sj � D 0, and obey S�j D Sj and S2j D 1. This makes the ground state manifold
C of the Hamiltonian

HMC D �

L�1X
jD1

Sj 4.1
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?

odd site even site

(a)

(b)

Figure 4.1 • The Majorana chain quantum code. (a) The Majorana chain quantum code is
defined as two-fold degenerate ground state manifold of a chain of fermions cj . Each fermion is
composed of two Majorana modes 2j�1 and 2j . The Hamiltonian fixes the parity of inter-
site modes defined by connected pairs of Majorana modes Si . Errors Ei act on fermionic
sites (dashed circle) and anticommute with the adjacent terms of the Hamiltonian. Odd/even
fermionic sites are labeled by squares/circles (to be used later). (b) A clean system is affected
by a cluster of three errors (red cells). Measuring the stabilizers Si yields the syndromes (red
crosses) that indicate boundaries of error strings. There are two possible corrective operations
(green cells) which are compatible with the syndrome. Here, the shorter one is the correct choice;
interpreted as a classical repetition code, this corresponds to majority voting.

on an open chain of L fermions particularly simple as it is characterized by states
that are S -invariant, i.e., C � f j‰i j 8j W Sj j‰i D j‰i g. This linear subspace
is easily shown to be two-dimensional and is identified with the codespace of the
MCQC. Errors on the MCQC are described by Ej � �i2j�12j (shifted pedants
of Sj ). Indeed, Ei anticommutes with Sj if and only if j D i or j D i � 1

(otherwise they commute) so that a state j‰i 2 C is thrown out of the codespace:
Ei j‰i … C . To extract information on an error pattern Ei1Ei2 : : : we can only
measure observables that leave C invariant lest we perturb the stored qubit. These
are exactly the Sj -operators with eigenvalues ˙1. Measuring all Sj then yields a
binary syndrome pattern of ˙1 where �1 indicates the boundary of an error string
EiEiC1 : : : ; this is illustrated in Figure 4.1 (b). Decoding the MCQC means to
cancel all errors so that the state returns unaltered to the codespace. Because of
E2i D 1, we only have to apply the error pattern Ei1Ei2 : : : a second time (now
deliberately) and we are done. A complication arises due to the fact that for a given
syndrome pattern (indicating edges of error strings), there are two complementary
error configurations that match129, see Figure 4.1 (b). Only if we choose the correct
pattern, the qubit is restored to its original state. What to do?

129On the boundaries of the open chain, syndromes cannot be measured and endpoints of error
strings remain covert.
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If we assume that errors are scarce (say, only 10% of the physical qubits suffer
from an error Ei on average), then the error pattern with fewer errors is more
probable [the lower one in Figure 4.1 (b)]. Note that we can compute the number of
required errors for both choices based on the syndrome data alone. In most cases,
this will be the correct choice but in some cases we might fail (this is unavoidable).
The above prescription of selecting the pattern with fewer errors is also used for
classical repetition codes where a bit is copied L times. If a small fraction (say 10%)
of the copies is flipped, we can recover the original bit by selecting the majority of
the disturbed L bits. Again, in most cases this procedure is successful. It is known
as majority voting and this is just what we did to decode the MCQC: Flipping the
minority of bits (= applying the pattern with fewest errors) reestablishes the majority
as consensus among all.

Majority voting is a very powerful decoding scheme in that its failure rate
vanishes if more and more copies are used (L!1) as long as the error probability
on each copy (or fermionic site, in the case of the MCQC) is below 50%130.
Implementing majority voting in hardware for L� 1 sites is tricky because it is an
inherently global function. To see this, consider the bit pattern

01010101010101010101X 4.2

with the task to set each bit to the majority of all. Since X 2 f0; 1g tips the scales,
the target value of the first bit depends on the current value X of the last. If the
register (4.2) is realized on a chip, information has to flow from one end to the other
to apply the majority vote in all cases exactly. This takes time and restricts the rate
at which the majority vote can be applied to counter errors in a noisy environment.
This becomes particularly restrictive if (4.2) describes the error pattern on an
extended Majorana chain because the distance between the endpoints of the chain is
crucial for its resilience against noise (the further apart, the better).

The objective of this chapter is to find and study an approximation of majority
voting that applies local corrections to the MCQC based on nearby syndrome mea-
surements only. The locality of such a decoder renders it scalable by construction
and averts possible timing issues since long-range communication is not required.
To achieve this goal, we employ the concept of (binary) cellular automata131: Cells,
each hosting a bit, are placed on a regular lattice (here a one-dimensional chain of
L cells) and evolved in time by local rules that are applied periodically and for all
cells at the same time. “Local rules” here refers to a deterministic prescription
of how to set the bit of cell i in dependence of the bits of neighboring cells up to
distance R (where R is a fixed integer specific for a particular automaton). Cellular
automata are a well-developed framework of “physical computation” where the
already mentioned spatio-temporal constraints of real systems are intrinsic, while
still being abstract enough to allow for concise mathematical statements.

130Note that for 50% error probability, the majority of L bits is scrambled for all L.
131A quite famous cellular automaton (in two dimensions) is Conway’s Game of Life.
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Figure 4.2 • The Two-Line Voting automaton. (a) Definition of the two local rules for TLV-
updates. There are different rules for even and odd sites (mirror images of each other). Periodi-
cally and synchronously, all sites are set to the majority of three of their neighbors (black cells).
(b) These rules realize the core mechanism of TLV: Syndromes (boundaries of error clusters)
spawn symmetric slow signals to scout for nearby partners to pair with. Two colliding slow signals
are converted into counterpropagating fast signals that eat away errors and capture the other
two slow signals propagating away from the cluster. (c) Exemplary time evolution of TLV on
an ensemble of three nearby error clusters. Note that the signals of different clusters interact
whereas the complex of three clusters is still eroded successfully in just 6 time steps.

A cellular automaton that decodes the MCQC has to fulfill two requirements:
First, it should perform majority voting (or an approximation thereof ), and second,
it is only allowed to use syndrome information to achieve this task (that is, the rules
“see” only endpoints of error strings and not the errors themselves). The first task is
known as density classification and has been studied heavily in the past. The second
requirement is equivalent to a symmetry of the local rules called self-duality132. In
“cellular automaton jargon,” we are looking for a self-dual density classifier.

Possible automata are scarce; however, the so called Two-Line Voting (TLV)
automaton fulfills both requirements: If xi 2 f0; 1g denotes the current state of cell
i and x0

i its next state, the local update is defined as

x0
i �

(
maj Œxi�1; xiC2; xiC4� for i even ;
maj ŒxiC1; xi�2; xi�4� for i odd ;

4.3

132Self-dual rules yield the inverted (0$ 1) result when applied to an inverted input.
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where maj Œx1; x2; x3� denotes the majority of the three bits x1;2;3; this is illustrated
in Figure 4.2 (a). In our case, xi D 1 encodes a state of the MCQC with the error
Ei applied. Prima facie, the rules (4.3) seem to use the error pattern itself instead of
the measured syndromes. We show in this chapter that this is not so: Exploiting its
self-duality, (4.3) can be rewritten in a form that only uses syndromes as inputs and
returns correction operations as outputs. Therefore, TLV is a legitimate aspirant for
replacing the global majority vote as MCQC decoder. A large part of this chapter is
dedicated to study its performance both numerically and analytically.

Despite the rather enigmatic form of (4.3), the mechanism that allows TLV
to remove sparse clusters of errors—when only their boundaries are known—is
quite simple [see Figure 4.2 (b)]: The rules spawn “slow signals” (particular
binary patterns of cell states) at boundaries of error strings. These signals travel
symmetrically in both directions to scout for other slow signals that indicate,
hopefully, the other boundary of the same error string. When two slow signals
meet, they are converted into “fast signals” (another binary pattern) that travels
back to capture the other “unsuccessful” slow signal heading away from the error
cluster. Along the way, it cleans the error cluster by flipping the bits accordingly. A
spacetime diagram of the actual evolution of an initial error pattern consisting of
three separate clusters is shown in Figure 4.2 (c). There, the three clusters are too
close and their signals interact; nevertheless, the complex consisting of the three
clusters is cleaned successfully after only 6 time steps.

The fact that only 6 time steps are necessary to remove a rather large complex
of errors hints already at an advantage of local decoders (such as TLV) over global
ones (such as exact majority voting): They can decode MCQCs of linear size L in
sublinear time—which is impossible for global decoders because collecting data from
distributed sites requires O.L/ time steps due to the finite speed of information
transfer. One of the main results presented in this chapter is a mathematically
rigorous quantification of this claim for the specific case of TLV. More precisely, we
show that if TLV runs for at most

tmax � L
� 4.4

time steps on an initially error-afflicted MCQC of length L, where 0 < � < 1 is
arbitrary, the probability Pr for the MCQC to be not completely error-free vanishes
exponentially fast for longer chains, i.e.,

Pr . Errors survive tmax.L/ steps /! 0 for L!1 ; 4.5

as long as the error probability on each site is below some critical value. This is
underpinned and in accordance with numerical results we obtained from simulated
evolutions sampled over many random error patterns. The bottom line is that for
low enough error rates the global nature of exact majority voting is not required and
can be replaced by the local decoding strategy implemented by TLV. This is good
news because the scalability of the latter comes for free with its description as a
cellular automaton.
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There is, however, a pitfall that demands for a more sophisticated setup when
errors on the quantum chain occur during the evolution of TLV; that is, when
TLV is not used to decode a static pattern of errors but to fight a continuously
accumulating stream of errors. In the last part of this chapter, we demonstrate
that the evolution of TLV is profoundly altered when errors appear randomly
during runtime and, as a consequence, that an accumulation of errors cannot be
fought efficiently. This is bad news because this is what reality is like: There is a
never-ending stream of errors from the environment trying to decohere the qubit
stored in the MCQC.

Fortunately, we can come up with a setup that combines D copies of TLV,
without requiring long-range communication between its parts, so that errors do no
longer accumulate but are dealt with in a time-sliced fashion by parallel instances of
TLV. The price to pay is additional (classical) hardware, quantified by the number
of instancesD. As this number is directly linked to the required decoding time for a
single instance, we find that

D � L� 4.6

is enough to extend the coherence time of the stored qubit exponentially for L!1.
This result tells us that for realistic error rates, shallow circuits along the quantum
chain are sufficient to stabilize the MCQC for long times.

In conclusion, the application of the cellular automaton TLV as a decoder for the
Majorana chain quantum code may be a viable alternative to simple majority voting,
featuring better scalability and a simpler implementation. The results presented
in this chapter may be useful for future designs of quantum memories as building
blocks of applied quantum computers.
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4.1 Introduction

Storing quantum information in a noisy, classical environment is essential for
scalable quantum computation and communication [300]. Kick-started by Shor’s
9-qubit code [301], quantum error correction comes to the rescue: Logical qubits
are stored in virtual subsystems [302] that decouple from typical environmental
perturbations and allow for error detection and correction [174, 303].

Quantum error correction codes come in two flavors:

→ The conventional ones (e.g., Shor’s code) have no physical interpretation and
are treated as abstract entities, isolated from the underlying computational
architecture (much like classical error correction codes).

→ Topological quantum codes, by contrast, are tied to the real world in that
they are realized as ground state manifolds of local Hamiltonians and thereby
inherit the geometry of their environment.

For the latter class, prominent examples are the Majorana chain (a p-wave
superconductor) in one [82,173] and the toric code in two spatial dimensions [24,49],
both of which have seen experimental progress in the last years, see e.g. [178, 304–
306] and references therein. Here we are interested in such topological codes in
one dimension and introduce a method to stabilize them using only strictly local
resources.

Topological codes allow, in principle, for two modes of operation:

→ Taking their realization as ground states seriously entails the intriguing con-
cept of self-correction where errors appear as excitations that are energetically
suppressed by the parent Hamiltonian [307–309].

→ By contrast, active error correction adopts the algorithmic scheme of conven-
tional codes, i.e., an external decoder is fed with measured syndromes and
computes compatible corrections.

The fragility of low-dimensional topological order to thermal excitations [310–312],
and the so far unsettled quest for realizable self-correcting codes [50], makes active
error correction on topological codes one of the most promising routes to long-term
qubit coherence [313–315].

As realizable quantum architectures loom on the horizon [316], convenient
abstractions face the intricacies of reality: Can active error correction be imple-
mented efficiently? How can it be scaled up when it is cast into hardware? Since
space and time constraints can rule out implementations of otherwise promising
algorithms, it is a crucial question whether and how topological quantum codes can
be stabilized by manifestly local decoders. For the toric code, this has been tackled
with a completely local but hierarchical decoder in [317] (inspired by [318]), with
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translationally invariant cellular automata [319, 320], with a modular setup of simple
units connected by noisy links in [321], and with optimized versions of minimum
weight perfect matching [322–325]. Prolonging the lifetime of certain stabilizer
codes by local unitary operations (instead of full-fledged error correction) may be a
viable alternative [326]. However, rigorous results on the performance of decoders
with strict space and time constraints are scarce.

Here, we focus on the simplest case of a one-dimensional topological quantum
code, defined by the ground state space of the Majorana chain [82], and remodel
a known (classical) cellular automaton [327, 328] to contrive a convenient, strictly
local quantum decoder. We prove that both the probability for successful decoding
and the time required to do so scales favorably with the chain length, surpassing
conventional global decoding schemes. For realistic error rates, this allows for the
stabilization of logical qubits in the presence of continuous (uncorrelated) noise
using shallow, translationally invariant circuits with local wiring only. This may be
useful for scalable and modular on-chip realizations of actively corrected topological
quantum memories based on one-dimensional p-wave superconductors.

In the following, we provide a detailed outline of the methods and approaches
used to derive these results:

Outline

In Subsection 4.2.1 we start with a description of the quantum code defined by
the degenerate ground state space of the Majorana chain, where dephasing is
topologically suppressed and depolarizing errors are forbidden by fermionic parity
superselection (which can be violated in real setups due to quasiparticle poison-
ing [238, 239]). This paradigmatic model exemplifies topological quantum error
correction and relates to the familiar toric code via Jordan-Wigner transformation in
the degenerate case of a L � 1 square lattice with open boundaries. The syndromes
of the Majorana chain quantum code (MCQC) are fermionic quasiparticles flanking
strings of parity-conserving errors. Maximum-likelihood decoding therefore requires
pairing quasiparticles with minimum-length error strings; this scheme is known as
minimum weight perfect matching (MWPM) [329] for the toric code and reduces in
one dimension to simple majority voting, the decoding scheme used for classical
repetition codes. In Subsection 4.2.2, we review the known result that applying
majority voting at a fixed rate to the MCQC leads to an exponentially growing
lifetime of the encoded logical qubit with the chain length L. This is true for
continuous, uncorrelated (Bernoulli) noise on the physical qubits with arbitrary
on-site error probability p7

0—except for the singular, completely mixing channel
with p7

0 D
1
2
; there is no non-trivial error threshold, in contrast to “true” two-

dimensional MWPM for the toric code [322, 330]. However, global majority voting
violates locality as it requires space for each logic gate and time for communication
between them. This raises the question whether this extraordinary robustness
of majority voting survives in realistic setups. In Subsection 4.2.3 we argue that
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low-level decoders of quantum memories must be realized in hardware and close
to the coherent subsystem (here the Majorana chain) to allow for modularity and
scalability, both in the number of chains and their length. Then, collecting the
syndromes of an extended chain in a central processing unit, and distributing
corrections afterwards requires time—which scales with the system size L. We
demonstrate that this important feature of global majority voting precludes its
application at a fixed rate for L!1, and thereby spoils the favorable scaling of
decay times.

This line of thought motivates our search for a manifestly local decoder of the
MCQC, taking finite communication speed and spatial extent seriously. Then,
locality implies that restrictions on the time granted for decoding translate into
restrictions on the syndromes that can influence a local correction. We derive a
generic upper bound on the success probability for decoding the MCQC with local
decoders and discuss implications for the scaling of the decoding time with the
chain length.

After setting the scene (and sketching what we can expect and what we cannot),
we aim for a feasible local decoder of the MCQC. To this end, Subsection 4.3.1
introduces the concept of cellular automata (CA) as well-developed prime example
for physically realistic local computation. The natural invariance of local CA rules in
space narrows down the choice of local decoders but allows for implementations that
can be scaled up easily. While CAs naturally operate on classical bits, the physical
qubits of the MCQC are not accessible—only the syndromes can be measured
without perturbing the state (we call this the “quantum handicap”). We argue that
only CAs featuring a particular symmetry (called self-duality) can be employed as
MCQC decoders.

To decode the MCQC by means of a CA, implementing a global majority vote
by local rules seems a good approach. This task is known as density classification
problem [331, 332] and has been shown to be unsolvable for binary CAs in any
dimension [333]. In Subsection 4.3.2 we review some of the results on approximate
density classifiers which could provide viable replacements for perfect majority
voting if error rates are small (i.e., away from p7

0 D
1
2
). We present two binary

CAs that are known to perform well on density classification, one of which (called
TLV) is self-dual; it can be rewritten in a form that complies with the “quantum
handicap”: It naturally takes syndromes as input and produces correction operations
as output. Before we can explore the performance of TLV as MCQC decoder, the
question of boundary conditions has to be addressed. It is common to place CAs
on finite chains with periodic boundaries. In Subsection 4.3.3 we point out that this
is not compatible with locality of classical computations on the one hand and the
necessity of a stretched quantum chain on the other. Hence a modification of TLV
at the boundaries is required (denoted by TLV). We demonstrate that for MCQC
decoding, mirrored boundary conditions are the way to go: The CA operates in a
cavity-like geometry to pair quasiparticles with partners in the edge modes of the
MCQC.
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In Subsection 4.4.1 we start our analysis of TLV with a numerical evaluation of
its decoding capabilities. Sampling uncorrelated Bernoulli random configurations
with on-site error probability p7

0 and subsequent evolution with TLV allows us
to gauge the possible downsides of performing only approximate majority voting.
Despite the existence of periodic cycles that cannot be decoded, numerics suggests
that for p7

0 <
1
2
only an exponentially (in L) small fraction of error patterns

fails to be corrected successfully. Moreover, the typical time needed to rotate an
error-afflicted instance of the MCQC back into the codespace grows sublinearly
with the chain length L (in contrast to global majority voting). To substantiate
these claims, we apply the concept of sparse errors to the particular case of TLV. In
Subsection 4.4.2 we derive a central statement of this chapter: The probability to
decode a length-L MCQC successfully with TLV after t / L� time steps (with
� > 0 arbitrary) tends to 1 exponentially fast for L!1 and small but finite error
probabilities p7

0 �
1
2
. This provides us with a much simpler and faster decoder

than global majority voting (the decoding time of which scales linearly with L), and
especially implies that for these error probabilities the “expensive” global nature of
majority voting is not required for efficient decoding.

In the remainder, we shift our focus from the decoding of static error patterns
to the protection of the MCQC in the presence of continuous (Bernoulli) noise. In
Subsection 4.5.1 we realize this scenario by applying the local rules of TLV and
on-site errors with probability p7

0 alternately. We demonstrate numerically that
TLV cannot cope with such perturbations of its evolution in that the lifetime of
the logical qubit grows only subexponentially with the chain length. In the light
of known results on the behavior of one-dimensional CAs, this is unfortunate but
not surprising: Simple, one-dimensional CAs subject to noise are expected to be
ergodic; this is known as the positive rates conjecture [334]—it is well-established that
this conjecture is incorrect, but the only known counterexample is extraordinary
complex [318, 335, 336], and we cannot expect that our setup is a simpler one.

If one abandons strictly one-dimensional decoders (with circuit complexity
� L), there is a rather generic solution to this problem: Any given decoder can
be employed to counter continuous noise by repetitive applications with a fixed
rate. If the time required to decode a fixed error pattern grows with the code size
L, so does the number of required instances running in parallel to prevent errors
from accumulating. Thus the additional hardware overhead due to continuous noise
correlates with the decoding time for fixed error patterns. In Subsection 4.5.2 we
follow this idea and stack copies of TLV in the second dimension perpendicular
to the quantum chain. The depth of this classical circuit quantifies the hardware
overhead required for the retention of the logical qubit in the presence of noise;
as it directly relates to the decoding time of TLV, it grows sublinearly with the
chain length, so that shallow circuits suffice for reasonably low error rates. Indeed,
the complexity of these circuits scales with L1C� for 0 < � < 1, in contrast to the
typical L2-scaling of global majority voting.
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Figure 4.3 • Topological quantummemories. (a)TheMajorana chain with fermions ci on sites,
composed ofMajorana fermions j , parity-symmetric errorsEi and syndromemeasurementsSi .
(b) The toric code on a planar square lattice with rough and smooth edges. Stabilizers As (Bp)
act on spins on edges adjacent to sites s (faces p). (c) The degenerate L � 1 toric code is the
Jordan-Wigner transform of the Majorana chain. Thus it features the same error syndromes and
correction schemes, namelymajority voting.

4.2 1D Topological Quantum Codes

We start this section with a description of the Majorana chain and thereby review
the realization of a topological quantum code as degenerate ground state space
of a local Hamiltonian. In particular, we revisit the procedure of quantum error
correction using syndrome measurements and demonstrate that it reduces to
global majority voting in this particular case. This decoding scheme features an
exponentially growing lifetime of the encoded logical qubit with the chain length L.
However, global majority voting violates locality as it relies on the evaluation of a
function of spatially distributed syndrome measurements. But the time required
for collecting the syndromes of an extended chain in a central processing unit (and
distributing corrections afterwards) scales with the system size L. We conclude
by demonstrating that taking into account this processing time eliminates the
exponential scaling of the qubit lifetime. This sets the stage for the construction and
study of a strictly local, inherently scalable replacement for global majority voting.

4.2.1 Majorana Chain

The simplest example of a topological quantum error correction code in one
dimension is given by the degenerate ground state manifold of the paradigmatic
Majorana chain [82], see Figure 4.3 (a); see also Subsection 1.2.2 for an introduction.
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The Hamiltonian for an open chain of L spinless fermions ci reads

HMC D

L�1X
iD1

�
wi c

�
i ciC1 C�i ciciC1 C h.c.

�
C

LX
iD1

�i

�
c
�
i ci �

1

2

�
4.7

where ci ; c
�
i denote fermionic annihilation and creation operators,wi is the tunneling

amplitude, �i the superconducting gap parameter, and �i denotes the chemical
potential. At the “sweet spot,” �i D 0 and wi D ��i D 1, the Hamiltonian takes
the form

HMC D i

L�1X
jD1

2j2jC1 D �

L�1X
jD1

Sj 4.8

with Majorana fermions 2j � i.c
�
j � cj / and 2j�1 � c

�
j C cj , 

�
j D j and

fi ; j g D 2ıij . The operators Sj D �i2j2jC1 D .�1/Qc
�

j
Qcj measure the parity

of the localized quasiparticle modes Qc�j above the superconducting condensate and
play the role of a stabilizer known from quantum information theory [173, 264]:
ŒSi ; Sj � D 0, S�j D Sj , and S2j D 1. Let S D hfS1; : : : ; SL�1gi be the (Abelian)
stabilizer group. The codespace C � f j‰i 2 H jS j‰i D j‰i g is the S -invariant
subspace and encodes a single logical qubit, dimC D 2; this space is equivalent to
the degenerate ground state space of Eq. (4.8). This observation can be understood
as follows: Since the edge Majorana modes L � 1 and R � 2L are missing
in Hamiltonian (4.8), one finds that †´ D Sedges � �iLR acts on the ground
state space C since Œ†´; Sj � D 0. Furthermore, it allows for the definition of a
convenient basis of the codespace, namely

†´j˙1i D ˙j˙1i : 4.9

Flipping the encoded qubit is possible via the edge modes †x � L and †y � R,
e.g.,

†xj˙1i D j�1i 4.10

without violating any stabilizer constraint, Œ†x;y; Sj � D 0. The operators †˛

characterize the logical qubit completely as they realize the Pauli algebra Œ†˛; †ˇ � D
2i"˛ˇ†

 on C .
Crucial for realizing a quantum memory is its resilience against depolarizing and

dephasing noise. The Majorana chain fights these types differently: Depolarizing
(bit-flip) noise cannot be suppressed by the Hamiltonian since the logical operators
†x and †y are perfectly local in any embedding of the open chain and energetically
not penalized by the Hamiltonian in Eq. (4.8). However, in terms of the fermions
it is †x D c

�
1 C c1 and †y D i.c

�
L � cL/—operators which break the fermionic

parity symmetry of the superconducting Hamiltonian. In superconducting systems,
fermionic parity is considered a natural symmetry that can be enforced to high
precision because fermions are created by breaking cooper pairs (though it can be
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violated by quasiparticle poisoning [238,239]). In that sense, the fermionic nature
of the physical realization is exploited to suppress depolarizing errors. Strictly
speaking, this is just symmetry protection.

By contrast, dephasing noise operates as †´ / LR on the chain which is a
non-local operator that cannot be induced directly by a noisy environment respecting
locality. Indeed, the generic form of environmental noise that is both local and parity-
symmetric has the form Ej D �i2j�12j (note that pairs shifted by a single site
act trivially on the codespace). Since fEi ; Sj g D 0 if and only if j D i or j D i � 1
(otherwise ŒEi ; Sj � D 0), a single error Ei is flanked by a pair of syndromes or
charges with Si D �1 D Si�1. From the condensed matter point of view, this
accounts for breaking a cooper pair and lifting the localized quasiparticles above
the superconducting gap. Subsequent errors can move and/or create additional
quasiparticle pairs that can, as time goes on, traverse the macroscopic chain in a
noise-driven, diffusive process. Once a pair of charges traverses the whole chain, it
is described by YL

jD1
Ej D �iL

�YL�1

iD1
Si

�
R D †

´ ; 4.11

where we used Si D 1 on the codespace. Thus dephasing noise on the logical qubit
is only possible if quasiparticles travel freely through the system. Unfortunately,
save for the energy gap which penalizes the creation of charges, there is no cost for
moving them. This deconfinement renders the Hamiltonian theory unstable at finite
temperatures133.

To protect the logical qubit from dephasing, active error correction must be
employed. Assume the system is initialized in state j‰i 2 C and subsequently
has been affected by the error E.x/ D

Q
j E

xj

j , encoded by the binary vector
x D .x1; : : : ; xL/ 2 FL2 . Because E

2
i D 1, applying the same error twice cancels

the latter and removes all syndromes,

E.x/E.x/j‰i D E.x ˚ x/j‰i D E.0/j‰i D j‰i ; 4.12

rotating the system’s state back into the codespace C . Here,˚ denotes the (element-
wise) modulo-2 addition. To infer x, the local stabilizers fS1; : : : ; SL�1g are
measured periodically to yield a binary syndrome pattern s D .s1C 1

2
; : : : ; sL�1C 1

2
/ 2

FL�1
2 (with Sj D .�1/

s
j C 1

2 ) that indicates the boundaries of E.x/. (Recall that
only projective measurements that leave C invariant do not destroy the logical
qubit—these are exactly the stabilizer generators.) In terms of binary vectors, this
reads

s D @x with .@x/iC 1
2
� xi ˚ xiC1 : 4.13

133This is related to the fact that there is no phase transition for the one-dimensional classical Ising
model.
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The index shift by 1
2
for syndromes is purely formal to distinguish them from error

patterns xi . Inferring x from s is complicated by the fact that @x D s D @xc, where
.xc/i D xi ˚ 1 is the element-wise binary complement. The decoding problem is
therefore not unique as complementary error strings share the same syndrome. If
xc is chosen to specify the correction, one has

E.xc/E.x/j‰i D E.xc ˚ x/j‰i D E.1/j‰i D †´j‰i 4.14

and thereby (unknowingly) applies a quantum gate on the stored qubit; this follows
from Eq. (4.11). Thus it is of paramount importance to choose the correct error
pattern. The optimal decoding strategy depends on the error channel that gave rise
to E.x/.

Here we will always assume x to be a sequence of uncorrelated Bernoulli
random variables xi with parameter 0 � p7

0 �
1
2
so that Pr.xi D 1/ D p7

0 for all
i D 1; : : : ; L. Then, the provably best decoder � is (global) majority voting,

�.s/ � y with @y D s and jyj < jycj 4.15

which realizes maximum-likelihood decoding for repetition codes, i.e., y is preferred
over yc because the former requires less errors (xi D 1) and this makes it more
probable with respect to a Bernoulli distribution with p7

0 <
1
2
. In the context

of quantum codes (in particular the toric code), the prescription (4.15) is also
called minimum weight perfect matching, which is equivalent to majority voting in one
dimension (see below). Here, the weight jxj is the number of non-zero components
xi D 1 and we require L to be odd to avoid ties (jxj D jxcj).

Note that � indeed performs majority voting on x in the sense that

x ˚�.@x/ D

(
x ˚ x D 0 if jxj � L�1

2

x ˚ xc D 1 if jxj � LC1
2

4.16a

D maj Œx1; : : : ; xL� : 4.16b

Here the majority function on L binary inputs xi is defined as

maj Œx1; : : : ; xL� �
�
1

2
C
1

L

�XL

iD1
xi �

1

2

��
4.17

(ties evaluate to 0 with this definition) and the bold version maj Œ�� indicates a
vectorized result with each entry given by maj Œ��; bxc denotes the greatest integer
less than or equal to x. We conclude that the “quantum handicap” of having only
access to the syndrome s for decoding the topological code does not change the
decoding strategy as compared to a classical repetition code.
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Indeed, for a correctable binary error pattern x (jxj < jxcj , maj Œx� D 0),
the classical repetition code word ‰ 2 f0; 1g, and the quantum code word j‰i 2 C ,
we have for the classical code

‰
E
�! x ˚‰ D ‰0 4.18a

C
�! �.@‰0/˚‰0 4.18b

D �.@x/˚ x ˚‰ 4.18c

D maj Œx�˚‰ 4.18d

D ‰ 4.18e

and the quantum analogue

j‰i
E
�! E.x/j‰i 4.19a

C
�! E.�.@x//E.x/j‰i 4.19b

D E.�.@x/˚ x/j‰i 4.19c

D E.maj Œx�/j‰i 4.19d

D j‰i ; 4.19e

where E (C) denotes the application of errors (corrections).
To make connection with another well-known topological quantum code, let

us, just for a second, peek into the second dimension: There, the simplest model
is given by the toric code [24,45,49] which features a four-fold degenerate ground
state manifold (the codespace) and is defined by the Hamiltonian

HTC D �
X
Sites s

As �
X

Faces p

Bp 4.20

with stabilizer operators

As D
Y
e2s

�xe and Bp D
Y
e2p

�´e 4.21

living on an Lx � Ly square lattice with periodic boundary conditions and spin-1
2

representations �e (physical qubits) on the edges. While the toroidal geometry
of Hamiltonian (4.20) is crucial for its four-fold ground state degeneracy, it also
renders the model experimentally challenging (even more than it already is due
to its four-spin interactions). However, if the above Hamiltonian is adapted to
a planar square lattice with appropriately chosen (“rough” and “smooth”) open
boundaries [52], the experimental implementation becomes more attractive while
the ground state manifold is still two-fold degenerate and constitutes a topological
quantum memory with the two Abelian anyonic excitations As D �1 and Bp D �1,
see Figure 4.3 (b).
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Reducing this code to the degenerate, one-dimensional case Lx D L and
Ly D 1, yields a one-dimensional spin system which maps directly to the Majorana
chain under the Jordan-Wigner transformation

2j $

�Yj�1

iD1
�´i

�
�
y
j 4.22a

2j�1 $

�Yj�1

iD1
�´i

�
�xj 4.22b

[Figure 4.3 (c)] with the identifications

Sj $ �xj �
x
jC1 .D As/ 4.23a

Ej $ �´j : 4.23b

Note that in one dimension there are no faces and the Bp stabilizers are absent.
Then, Hamiltonian (4.20) describes the 1D Ising model and local errors Ej D �´j
correspond to spin-flips in the �x-basis; syndromes Sj D �xj �

x
jC1 D �1 can be

associated with domain walls.
The physical distinction between Majorana chain and 1D toric code/Ising chain

becomes evident if one realizes that error strings E.x/ can be directly measured
by �xj D ˙1 in the 1D toric code/Ising chain (and not only their endpoints by
Sj D ˙1). The analogous operator for the Majorana chain error strings violates the
fermionic parity and is thereby suppressed. Similarly, while †x D L is forbidden
in the fermionic setting of the Majorana chain due to parity superselection, there
is no natural symmetry in the spin chain preventing †x D �x1 from depolarizing
the logical qubit. This is why it is legit to call the Majorana chain a 1D topological
quantum memory whereas the mathematically equivalent 1D toric code/Ising chain
only protects a classical bit by realizing a repetition code.

Nevertheless, from the algorithmic point of view, both theories carry the same
syndromes and therefore can be corrected with the same algorithms. In particular,
MWPM on the toric code degenerates into majority voting on the Majorana chain.
Note that for the degenerate toric code, this active error correction procedure has
already been demonstrated experimentally with transmon qubits [178, 305].

4.2.2 Global Majority Voting

We proceed with a brief analysis of global majority voting. As we argued above, we
can ignore the “quantum handicap“ that restricts our knowledge to the endpoints of
error strings (the syndromes) and instead work with the actual error patterns.

Assume a classical bit x, initialized as x D 0, is flipped by a (unbiased) Bernoulli
process with probability 0 � p7

0 �
1
2
per time step ıt . If we think of the state x D 0

as the “clean“ one while x D 1 indicates a site that is error-afflicted, the probability
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to find x D 1 after t time steps is given by

p7.t/ D
1

2

h
1 �

�
1 � 2p7

0

�ti
4.24

which renormalizes to the completely mixed state p7.t/ ! 1
2
exponentially fast

whenever 0 < p7
0 < 1. If we copy the bit L times, .x1; : : : ; xL/, and encode a

logical bit X via a simple repetition code,

X D 0 ! x D .0; 0; : : : ; 0/ ; 4.25

then, for uncorrelated Bernoulli error processes on the physical bits xi , the best
decoder is given by the global majority vote

X D maj Œx1; : : : ; xL� : 4.26

An erroneous logical bit X D 1 occurs whenever the majority is altered by the local
errors. Formally, the probability to find X D 1 after t time steps of accumulating
errors is given by (L odd)

P 7

L;p7
0

.t/ D

LX
kD

LC1
2

 
L

k

! �
p7.t/

�k �
1 � p7.t/

�L�k
4.27a

D
LC 1

2

 
L
LC1
2

! Z p7.t/

0

Œx � x2�
L�1

2 dx 4.27b

where in the last line we used the regularized incomplete beta function to express
the cumulative Binomial distribution in a closed form [337] (see ⁂ Section 4.A for
details). We illustrate P 3

L;p7
0

.t/ D 1 � P 7

L;p7
0

.t/ as a function of t in Figure 4.4 (a)

for different system sizes L and fixed continuous noise p7
0. Note that the decay time

grows very slowly with the system size L.
After a single time step, we have the logical failure probability P 7

L;p7
0

�

P 7

L;p7
0

.t D 1/. Assume that after each time step ıt the errors that occurred during

ıt are immediately countered by majority voting, i.e., following Eq. (4.18) for
classical and Eq. (4.19) for quantum codes. The probability of the logical (qu)bit to
be in its original state after t time steps is then

QP 3

L;p7
0

.t/ D
1

2

�
1C

�
1 � 2P 7

L;p7
0

�t�
4.28

which yields the timescale TL;p7
0
for the logical information loss

TL;p7
0
D

24log 1

1 � 2P 7

L;p7
0

35�1

L!1
����!

1

P 7

L;p7
0

4.29
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d e

Time step Time step

(a) (b)

Figure 4.4 • Global majority voting. (a) The probability P3

L;p7
0

.t/ of correctly decoding an

ensemble ofL bits by global majority voting under continuous noise p7
0 D 0:05 as a function of

time t for different system sizes L D 1; : : : ; 19 without any stabilizing correction performed.
(b) The same [ QP3

L;p7
0

.t/] for a stabilized system with global majority voting and active correction

after each time step. Mind the logarithmic t-axis.

if limL!1 P 7

L;p7
0

D 0. Moreover, it is straightforward to show that it diverges

exponentially with the system size for any non-trivial (and non-critical) microscopic
error probability 0 < p7

0 <
1
2
. Indeed, we can use Eq. (4.27b) to derive the upper

bound

P 7

L;p7
0

�
LC 1

2

 
L
LC1
2

!
p7
0 q

L�1
�
p
LeL log.2q/ 4.30

with q D
q
p7
0.1 � p

7
0/ <

1
2
for p7

0 <
1
2
; in the last step, we used the asymptotic

approximation
�
L

LC1
2

�
�

q
2
�
2L
p
L

for L!1. It follows the exponentially diverging
decay time of the code

TL;p7
0

&
eL log 1

2q

p
L

: 4.31

This is illustrated in Figure 4.4 (b) by plotting QP 3

L;p7
0

.t/ over time for different

system sizes and fixed continuous error rate. Eq. (4.31) is a quantitative manifestation
of the perfect decoding properties of global majority voting on a repetition code.
Note that the only error rate for which decoding fails in the thermodynamic limit is
the singular point p7

0 D
1
2
for which 2q D 1 ) log 1

2q
D 0.
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4.2.3 Constraints by Locality

Eq. (4.31) tells us that global majority voting is a very powerful decoding scheme for
the 1D quantum code realized by the Majorana chain: its critical error rate p7

c D
1
2

is optimal. In physics, nothing is for free. This begs the question what it is that
we are paying with by employing the global majority decoder � (or, equivalently,
the function maj Œ: : : �/. One particularly expensive feature of maj Œx1; : : : ; xL� is its
global nature: It depends non-trivially on all L inputs while their number grows
with the system size [see Eq. (4.17)]. Indeed, one needs to take into account at least
LC1
2

of the inputs to be sure about the majority; for generic inputs even more. This
makes the evaluation of maj Œ: : : � a relevant factor that has to be taken into account
when the scaling of the quantum code with L is addressed.

A generic global function, depending on � L spatially distributed inputs
(syndromes) requires at least � c�1L time steps to gather its input data (for a 1D
geometry). Here c denotes the speed of classical information propagation in the
auxiliary systems framing the quantum chain. This is illustrated by the light cone in
Figure 4.5 (a). In addition, the evaluation itself (shaded region) also requires at least
O.L/ time steps because every input has to be read at least once, see e.g., Eq. (4.17).
Depending on the decoder, the latter may be improved by parallelization (which, in
turn, is payed for by additional hardware overhead), whereas the former argument
remains valid as it is based on physical constraints alone.

An immediate consequence for the global majority decoder � is sketched in the
left panel of Figure 4.5 (b): The time between syndrome measurement (blue square)
and correction (red disk) scales with the system size L. Depending on the relevant
velocity c (which should be henceforth thought of as comprising both information
propagation and computations) and chain length L, this upper bounds the rate at
which � can be applied to fight continuous noise on the quantum code.

This has important consequences: The probability that� flips the logical (qu)bit
after accumulating errors for t D c�1L time steps is given by Eq. (4.27b),

OP 7

L;p7
0

� P 7

L;p7
0

.t D c�1L/
L!1
����!

1

2
4.32

where the limit holds for all 0 < p7
0 �

1
2
, see ⁂ Section 4.A for the derivation. This

is in contrast to
P 7

L;p7
0

D P 7

L;p7
0

.t D 1/
L!1
����! 0 4.33

which led to the exponential growth of TL;p7
0
if the correction rate is independent of

the system size, see Eq. (4.30). We conclude that the exponential growth of TL;p7
0

(which depends on the exponential vanishing of the logical error probability P 7

L;p7
0

)
is lost if we take into account the time needed to evaluate the global majority vote.

A possibility to keep both a size-independent correction rate and the global
majority vote decoder � is illustrated in the right panel of Figure 4.5 (b): Multiple
copies of � running in parallel can keep up with continuous noise if after each time
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Figure 4.5 • Locality constraints. (a) A global correction scheme on a quantum code of
linear size L requires the syndrome data to be merged, processed, and afterwards the results
to be distributed again. The finite communication speed makes the time between syndrome
measurements (blue squares) and error corrections (red circles) scale with L in the best case.
(b)With constrained hardware overhead, only one instance of the syndrome processing runs
at once, giving rise to intervals without correction growing with � L. Repeating syndrome
measurements and corrections with a period independent of L requires� L instances running
in parallel, thus increasing the hardware overhead dramatically. (c) Local schemes can be used to
keep hardware overhead in check by reducing the computation time needed to sublinear (or even
logarithmic) scaling ifD � L� with � < 1. This restricts the syndromes that a local correction
operation depends on to a subsystem inside the past light cone of diameter 2D, and allows
syndromes to influence only corrections in their future light cone.

step ıt a new instance of � is fed with the syndrome @.x t�1˚ x t/ D @x t�1˚ @x t
that encodes only errors accumulated during ıt . Note that intertwining corrections
and errors is acceptable as both commute. The obvious downside of this approach
is its hardware overhead: The number of parallel instances required (the “depth”
of the decoder) scales with the time needed for a single instance to finish, that is,
with L.

If we retrace our line of thought, it is obvious that the global nature of � is
responsible for the L-scaling of the depth in the presence of continuous noise. This
motivates the question whether the global decoder � can be replaced by a local
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version �D which requires only syndrome data within a radius D of each site to
compute the correction at this very site; the corresponding spacetime diagram is
shown in Figure 4.5 (c). The benefits of such a local decoder would be less hardware
overhead, simpler implementation, and thus better scaling properties. It cannot
implement maj Œ: : : � perfectly and one has to expect decoding errors in some cases
(where � would have succeeded). However, if these cases are rare for low error
rates p7

0 < p7
c with finite critical rate 0 < p7

c �
1
2
, and the relaxation time TL;p7

0

still scales exponentially with L, this would be perfectly acceptable. It is such a
“D-local” decoder that we describe and analyze in the following:

Definition 4.1: D-local decoders

Given a decoder � W FL�1
2 ! FL2 for the Majorana chain of length L that maps a

syndrome pattern @x 2 FL�1
2 to the correction string�.@x/ 2 FL2 . Let

�Di x D
�
xmaxfi�D;1g; : : : ; xi ; : : : ; xminfiCD;Lg

�
4.34

denote the neighborhood of site i with radiusD.
The decoder� is called D-local (write�D) if

�Di .@x/ D fi.@�
D
i x/ 4.35

for some family of functions ffig: Its correction at site i only depends on (syndromes of )
error patterns within distanceD of i .

SinceD-local decoders finish after � D time steps (if the fi can be evaluated
efficiently), the required depth [cf. Figure 4.5 (c)] also scales withD.

In the remainder of this subsection, and before we zoom in on our particular
decoder, we discuss a constraint that follows for the class of D-local decoders
�D quite generally. Namely the (weak) upper bound for the probability P 3

dec of
successfully decoding Bernoulli samples with aD-local decoder

P 3
dec �

"
1C

�
p7
0

1 � p7
0

�2DC1
#� L

2DC1

: 4.36

Note that this result is generic in the sense that it holds for all decoders of the
MCQC where the correction of site i depends only on nearby syndromes in the
neighborhood �Di x, irrespective of their local functions ffig. We call Eq. (4.36) the
light cone constraint; its proof can be found in ⁂ Subsection 4.B.1.

Here we discuss some scaling limits of Eq. (4.36) and their implications for
potential decoders replacing �. We assume D D D.L/ to be a function of the
linear size L of the code (the length of the quantum chain). We stress that the
interpretation of the radiusD can be either a spatial depth of a feedforward physical
circuit or a time-like depth in a spacetime diagram of a truly one-dimensional
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physical automaton. In the first case, scalingD with L means growing the system
into the second dimension; in the second case, it accounts for a longer runtime of
the decoder. Note that the class of decoders with at leastD � L comprises exactly
the global ones (e.g., �). We discuss two important cases:

1 D D const. This describes a truly one-dimensional feedforward circuit of
finite depthD. We find in the thermodynamic limit

lim
L!1

P 3
dec �

(
0 for 0 < p7

0 �
1
2
;

1 for p7
0 D 0 ;

4.37

i.e., there is no successful decoding possible for any finite microscopic error
rate p7

0 > 0.

2 2D C 1 � L� (� > 0). This describes a truly two-dimensional feedforward
circuit, possibly slowly growing in the second dimension if � � 0. We find in
the thermodynamic limit

lim
L!1

P 3
dec �

8̂̂̂<̂
ˆ̂:
1 for 0 � p7

0 <
1
2
;

0 for p7
0 D

1
2
and � < 1 ;

1
2

for p7
0 D

1
2
and � D 1 ;

1 for p7
0 D

1
2
and � > 1 ;

4.38

i.e., except for the critical point p7
0 D

1
2
, there is no constraint on P 3

dec. At
the critical point, the upper bounds depend on whether the second dimension
scales slower or faster than the length of the chain. For faster scaling depth,
there is no constraint, whereas for slower scaling depth, non-trivial upper
bounds arise. Note that actually P 3

dec �
1
2
follows for p7

0 D
1
2
for all decoders

(not onlyD-local ones) since a completely mixing Bernoulli process destroys
all encoded information. P 3

dec <
1
2
arises whenever the decoder fails to get

rid of all syndromes (this is in contrast to the global decoder � which always
succeeds in removing all syndromes). P 3

dec D
1
2

can be realized if the decoder
succeeds in removing all syndromes but still fails to recover the original state
in 50% of the cases. A detailed derivation of these results is presented in
⁂ Subsection 4.B.2.

In conclusion, decoding the Majorana chain in a single step with a constant-D
decoder is impossible in the thermodynamic limit. However, while D � L�

with � � 1 describes only global decoders (in particular, the global majority
vote �), there is also no restriction on P 3

dec for the larger class of local decoders
with 0 < � < 1. This leaves the possibility open for local decoders with less
hardware overhead than �.
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One of the main results presented in this chapter is a lower bound on P 3
dec for a

class of local decoders which allows to scale D at will. In particular, we find that
Eq. (4.36) is saturated in the thermodynamic limit forD � L� with arbitrary � > 0
below a critical error rate p7

c > 0.

4.3 Cellular Automata

In this section, we introduce a strictly local decoder for the MCQC. Our approach is
based on cellular automata, thus we start with a description of this framework and the
relevant properties. In particular, we demonstrate that for the MCQC—where only
the syndromes can be measured—we have to resort to CAs that are characterized by
self-duality, a symmetry of the local evolution rules. The natural choice is then to
focus on such CAs which additionally approximate global majority voting. This task
is known as density classification and we present two CAs that are known to perform
well as density classifiers, one of which (called TLV) exhibits self-duality. Since the
quantum code is embedded on a finite chain with open boundaries, it is essential to
modify TLV at the edges; this new CA is denoted as TLV. We argue that it acts as
a self-dual density classifier on finite chains, and thereby qualifies as a promising
local replacement for global majority voting on the MCQC.

4.3.1 Properties of Cellular Automata

To describe our local decoder, we make use of the well-known framework of
one-dimensional, binary cellular automata [338, 339]; discrete dynamical systems
defined on a 1D lattice L of binary cells i 2 L with indices in L D Z (infinite), N

(semi-infinite), or f1; : : : ; Lg (finite). A state x 2 FL
2 is formally a map x W L! F2

assigning a state xi to each cell i 2 L. Equivalently, x � L may be read as the
subset of lattice indices i 2 L where xi D 1. A cellular automaton �L W FL

2 ! FL
2

of radius R 2 N is defined by a collection of binary functions i W F2RC1
2 ! F2

that determines a discrete time evolution on FL
2 via

x0
i D �i.x/ � i.�

R
i x/ : 4.39

We write x0 D �L.x/ for short. If i D  for all i 2 L, �L is called translationally
invariant. For R > 0, translational invariant CAs can be defined on infinite chains
L D Z and finite chains L D f1; : : : ; Lg with periodic boundary conditions, as
opposed to semi-infinite chains L D N and finite chains with open boundaries
where modifications at the boundaries are necessary (see below). We write
x.t/ D � t

L
.x.0// for the state x.t/ that is produced by t consecutive applications of

�L on the initial state x.0/. A state x� with x� D �L.x
�/ is called fixed point of �L.

More generally, a finite subset of states C � FL
2 which is invariant, �L.C / D C ,
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and does not contain a proper invariant subset is called a cycle (a fixed point is a cycle
with one element). On finite chains L D f1; : : : ; Lg, the CA always ends up in a
cycle after a finite relaxation time due to the finiteness of the state space FL

2 . For a
given cycle C , the maximal set of states AC � FL

2 with limt!1 � t
L
.AC / D C is

called attractor of C . We will be interested in CAs with the uniform fixed points
x� D 0 and 1 (characterized by the absence of syndromes) and their corresponding
attractors A0 and A1.

The dynamics of a CA can be strongly influenced and restricted by symmetries
of the transition rules �L. In the following, we are particularly interested in the
special class of self-dual CAs:

Definition 4.2: Self-duality

A binary cellular automaton�L W FL
2 ! FL

2 described by x0
i D �i.x/ is called self-dual

if .�i.x//
c
D �i.x

c/ for all i 2 L with the binary complement xci � xi ˚ 1.

Self-duality is therefore a symmetry satisfied only by particular CA rules �L.
For example, local rules based on majority votes of adjacent cells are automatically
self-dual because the binary majority function is134,

maj
�
xci1; : : :

�
D .maj Œxi1; : : : �/

c
; 4.40

whereas logical dis– and conjunctions violate the symmetry, e.g.,

xc1 ^ x
c
2 D .x1 _ x2/

c
¤ .x1 ^ x2/

c : 4.41

The importance of self-dual CAs in the context of quantum error correcting the
Majorana chain stems from the following observation:

Lemma 4.1: State-state and syndrome-delta representation

Let �L be a self-dual, binary cellular automaton �L W FL
2 ! FL

2 acting on a one-
dimensional chain L (infinite, semi-infinite, open or periodic boundaries); let s D @x

denote the syndromes. Then there are two equivalent representations of �L:

→ The state-state representation is given by the conventional transformation rule

x 7! x0
D �L.x/ 4.42

which transforms the current state x into the new state x0. It operates on the states of
cells FL

2 on the lattice L.

134This is true if ties are excluded, i.e., for an odd number of inputs.
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→ The syndrome-delta representation is given by the two-step process

s 7! � D @�L.s/ 4.43a

.�; s/ 7! s0
D @�˚ s 4.43b

and transforms the current syndrome s into the new syndrome s0 via the intermediate
result (delta) �. It operates on states of syndromes F@L2 on the dual lattice @L. The
derived rule @�L is defined for i 2 L as

@�i.s/ � �i
�˚
xk D

L
�2kis�

	�
4.44

where for two sites k; i 2 L, ki D ik denotes the set of sites in @L (edges in L)
between i and k135.

The following (rather technical) proof can be skipped on first reading if the
existence of the syndrome-delta representation is intuitively understood and/or
accepted as a fact.

Proof. We show that there is a one-to-one correspondence between the two
descriptions by constructing them explicitly. To this end, consider an arbitrary
self-dual binary function f W FL

2 ! F2. First, note that self-duality is equivalent to
the property

f .fy ˚ xig/ D y ˚ f .fxig/ 4.45

for y 2 F2 since xci D 1˚ xi . If we use that

xi ˚ xk D xi ˚ .xiC1 ˚ xiC1/˚ � � � ˚ .xk�1 ˚ xk�1/˚ xk 4.46a

D .xi ˚ xiC1/˚ .xiC1 ˚ � � � ˚ xk�1/˚ .xk�1 ˚ xk/ 4.46b

D siC 1
2
˚ � � � ˚ sk� 1

2
D

M
�2ik

s� 4.46c

and therefore
xi D xk ˚

M
�2ik

s� 4.47

for any k 2 L and s D @x, it follows (for fixed but arbitrary k)

f .fxig/ Df
�˚
xk ˚

L
�2ik s�

	�
4.48a

Dxk ˚ f
�˚L

�2ik s�
	�

4.48b

�xk ˚ Qf jk.fs�g/ 4.48c

Dxk ˚ Qf jk.@x/ : 4.48d

For a self-dual CA in state-state representation, this reads

x0
i D �i.fxj g/ D xk ˚

Q�i jk.s/ 4.49

135For periodic boundary conditions, this is well-defined due to˚�2@Ls� D 0.
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for arbitrary k 2 L. If we set k D i , this becomes

x0
i ˚ xi D �i.fxj g/˚ xi D

Q�i ji.s/ : 4.50

If we define the state change as � � x0 ˚ x and @�i.s/ � Q�i ji.s/, we arrive at

�i D @�i.s/ D �i
�˚
xk D

L
�2ki s�

	�
: 4.51

On the other hand, it is

s0

iC 1
2

D x0
i ˚ x

0
iC1 D .xi ˚�i/˚ .xiC1 ˚�iC1/ 4.52a

D .�i ˚�iC1/˚ .xi ˚ xiC1/ D .@�/iC 1
2
˚ siC 1

2
4.52b

so that
s0
D @�˚ s with � D @�L.s/ 4.53

indeed describes the evolution of the syndrome s D @x given by the action of
�L on the states x. Thus we provided a procedure to derive a syndrome-delta
representation from a given state-state representation. Conversely, it is enough to
realize that the knowledge of � D @�L.@x/ allows for the computation of x0 via
x0 D x ˚�, i.e.,

x0
D �L.x/ D x ˚ @�L.@x/ : 4.54

This concludes the proof. �

It should be clear that it is exactly the syndrome-delta representation of a
self-dual CA that makes it suited for decoding the Majorana chain and comply
with the “quantum handicap”: It operates on the measured syndromes s via the
correction operations � that can be applied directly to the quantum chain.

4.3.2 Density Classification in 1D

We seek to apply a simple, one-dimensional binary CA as local decoder for the
MCQC. If we upper bound the allowed runtime of a radius-R CA �L with T time
steps, the map �T

L
is D D RT -local per construction (since information spreads

over R sites per time step under CA evolution). Then the depth scaling discussed
previously becomes a matter of required runtime for a specific CA.

As we know that (global) majority voting is a perfect decoder for the Majorana
chain, it is natural to ask whether one can implement the function maj Œx1; : : : ; xL�
by a hypothetical CA MAJL such that

lim
t!1

MAJtL.x/ D 0 .1/ if maj Œx� D 0 .1/ I 4.55

this is known as the density classification problem [331, 332]. Unfortunately, it can
be rigorously shown that perfect majority voting cannot be achieved with binary
CAs in any dimension [333]. This, however, is not a deal breaker for majority-based
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error correction (both classical and quantum) as long as the erroneously classified
instances are rare with respect to the noise channel in question. Motivated by
applications for classical error correction, there evolved a vivid field concerned
with the construction of approximate density classifiers (e.g., [327, 340–343]) and
extensions capable of performing density classification exactly (e.g., [344–347]),
see [332] for a review.

This is how we address the problem of finding a local decoder for the MCQC:
Lemma 4.1 allows us to filter the literature of one-dimensional binary CAs for
self-dual density classifiers; rewritten in syndrome-delta representation, these could
be directly applied as potential Majorana chain decoders.

The first, most famous and well-studied (approximate) density classifier is
dubbed “soldiers rule” and has been introduced by Gács, Kurdyumov, and Levin
(GKL) [340, 348]. On L D Z, it is defined by the transition rule

x0
i D GKLi.x/ �

(
maj Œxi ; xi�1; xi�3� if xi D 0 ;

maj Œxi ; xiC1; xiC3� if xi D 1 ;
4.56

with radius R D 3 [see Figure 4.6 (a)]. Unfortunately, it is easy to check that it
violates self-duality,

.GKLL.x//
c
¤ GKLL .x

c/ 4.57

due to the dependence of the evaluated sites in the local majority vote on the state
of site i . This can also be seen from the exemplary time evolution of a three-cluster
configuration under GKL shown in Figure 4.7 (a): The emerging patterns are
different for the left and right boundaries of clusters. This cannot be interpreted in
terms of syndromes because on this level both boundaries are indistinguishable and
hence must give rise to the same pattern.

Note that most elementary CAs (one-dimensional binary CAs with radius
R D 1) violate self-duality as well, and the few that do not are unsuited for
(approximate) density classification [349]. Most generalizations capable of exact
density classification are not self-dual either [344, 345, 350] and/or reformulate the
task such that a solution is no longer applicable as Majorana chain decoder [344,350].

There are stochastic generalizations of density classifiers, some of which are self-
dual [341, 342] and some of which are not [343]. However, we prefer deterministic
CAs due to their simpler realization in terms of elementary logic gates. We
therefore resort to the less known “two-line voting” automaton (TLV) introduced
by Toom [327]. Originally, it is defined on the extended state space .F2 � F2/

L

describing two parallel binary chains (“two lines”) and defined by the transition rule

TLVi;˛.x/ �

(
maj

�
x�1
i ; xC1

i�1; x
C1
i�2

�
for ˛ D C1 ;

maj
�
xC1
i ; x�1

iC1; x
�1
iC2

�
for ˛ D �1 ;

4.58

depicted in Figure 4.6 (b). In x˛i , the index i D 1; : : : ; L denotes the position along
the chains while ˛ D ˙1 selects the subchain (up or down).
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occupied site

empty site

even site

odd site

a

b

GKL

TLV (two-line)

TLV (stretched)c

(a)

(b)

(c)

Figure 4.6 • Two classical density classifiers. (a) The famous Gács-Kurdyumov-Levin (GKL)
CA features R D 3 rules with a state-dependent choice for local majority voting. (b) The
two-line voting (TLV) CA can be considered a symmetrized version of GKL that gets rid of the
state-dependent majority vote by adding an additional bit per site. (c) In our case, the stretched
version of TLV is more intuitive: Instead of adding new states, one adds new sites with different
transition rules for even and odd positions.
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Example: GKL

Example: TLV (stretched)

d

e

(a)

(b)

Figure 4.7 • Exemplary time evolution. (a) Example evolution of a three-cluster state (red)
under GKL transitions (time runs upwards). (b) Decoding of the same initial state under TLV
transitions. Note the different messaging behavior of GKL (asymmetric) and TLV (symmetric).

The payoff of this more complicated geometry is the sought-after self-duality
which is easily checked to hold,

.TLVL.x//
c
D TLVL .x

c/ ; 4.59

due to the new independence of the evaluated sites in the local majority vote on the
state of site i (as compared to GKL).

For our purpose, it is more convenient to rewrite TLV in its “stretched” form
[Figure 4.6 (c)] with state space FL

2 and state-state representation

x0
i D TLVi.x/ �

(
maj Œxi�1; xiC2; xiC4� for i even ;
maj ŒxiC1; xi�2; xi�4� for i odd ;

4.60

for even and odd sites i . Figure 4.7 (b) depicts the evolution of the same three-
cluster configuration as in (a). In contrast to GKL, left and right boundaries spawn
symmetric patterns that eventually annihilate (initially, the majority of cells was
white).
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Despite the rather abstract rules (4.60), the spatio-temporal visualization reveals
the simple functional principle of TLV [see Figure 4.7 (b) and also Figure 4.17 (a)
below]: Domain walls emit “slow signals” of the form : : : 010101 : : : symmetrically
in both directions, seeking for nearby domain walls to pair with. When two
counterpropagating slow signals meet, they transmute into “fast signals” that head
back and delete the 01-markers along the way. Since the velocity of the fast signal
is twice that of the other slow signal traveling into the same direction, the latter is
overtaken by the returning fast signal eventually. As a result, TLV fills the gaps
between the pairs of domain walls which are closest; if errors are sparse, this implies
convergence to the uniform state maj Œx.0/�.

We can now apply Lemma 4.1 to construct the syndrome-delta representation.
Namely,

�i D @TLVi.s/

D maj
h
si� 1

2
; si˙ 1

2
˚ si˙ 3

2
; si˙ 1

2
˚ si˙ 3

2
˚ si˙ 5

2
˚ si˙ 7

2

i
4.61

and s0

iC 1
2

D siC 1
2
˚ .�i ˚�iC1/; here the upper (lower) signs correspond to i even

(odd).
This describes the action of TLV completely in the quantum mechanically

more suitable language of syndromes s (obtained by measurements) and deltas �

(applicable by local operations). Due to the equivalence of both representations, we
can (and will) still use the “common” state-state representation (4.60) to discuss
the properties of TLV. The implementation, however, requires Eq. (4.61) as a
concession to the “quantum handicap.”

Eroder Property

Both GKL and TLV can be shown to share a property which is known to be
responsible for their superior performance as approximate density classifier [328].
Clearly, the uniform (syndrome-free) configurations 0 and 1 are fixed points (a
necessary condition for density classifiers). What distinguishes them from most
other CAs with these fixed points is the structure of the attractors A0 and A1,
i.e., the perturbed states which are drawn towards the uniform fixed points: Every
finite perturbation of diameter l on an infinite uniform background of zeros or
ones is eroded after a time tdec � ml where m 2 RC is a CA-specific constant.
Therefore GKL and TLV are called linear eroders—a crucial property for their use
as approximate density classifiers (see below) and responsible for their stability
close to the uniform fixed points. The time evolutions in Figure 4.7 (a) and (b) are
examples for the erosion of finite perturbations of ones (red/black) on a background
of zeros (white).
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a bPeriodic Boundary Conditions (PBC) Mirrored Boundary Conditions (MBC)(a) (b)

Figure 4.8 • Boundary conditions—Definition. (a) Periodic boundary conditions (PBC). A
finite system of length L (black arrow) is copied and chained without inverting the direction.
Four local rules traverse the boundary and are modified accordingly. (b)Mirrored boundary
conditions (MBC). Here every other copy is reversed, giving rise to a finite system bounded by
two mirrors with modified rules TLVL.

4.3.3 Boundary Conditions

Often CAs are studied in the limit of infinite system size with state space FZ
2 .

However, we employ the CA for physical means which requires finite systems.
Finiteness, in turn, entails a choice of boundary conditions and complicates
the analysis due to finite-size effects. Periodic boundary conditions (PBC) are
common as they mimic the infinite case as closely as possible [see Figure 4.8 (a)]:
Translational invariant CAs on Z remain translational invariant on a finite system
with PBC and no modification of the rules is necessary.

Again, due to physical constraints we cannot use periodic boundaries: It
is crucial that the quantum subsystem is an open chain with spatially separated
endpoints (edge modes). Thus we are forced to modify TLV close to the endpoints
to comply with open boundary conditions. Modifying the rather complicated rules
of TLV can go amiss easily. It is therefore helpful to specify our goal: Since the
edges of the quantum chain carry edge modes, they can host endpoints of error
strings which do not show up in the syndrome, see Eq. (4.11); physically, this
corresponds to a quasiparticle in the delocalized edge mode. It is therefore crucial
that solitary quasiparticles close to the edges are transferred into the corresponding
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B B

c d

Mirrored cluster

Free cluster

(a) (b)

Figure 4.9 • Boundary conditions—Effects. (a) An unmodifiedTLV operating on an infinite
chain and restricted to bond-inversion symmetric states (magenta/white sites for xi D 1=0) is

equivalent to a modified
���!
TLV operating on a semi-infinite chain with MBC on the edge. This is a

consequence of the bond-inversion symmetry of the unmodified TLV rules. (b) A finite cluster
of errors can be effectively doubled in size if it is close to the mirror. Consequently, correction
times close to the mirror can be longer than for a free cluster of the same size.

edge mode. Thus we have to modify TLV so that syndromes are attracted by the
edges (which do not emit signals themselves), while preserving self-duality and the
eroder property (in a modified sense, see below and ⁂ Section 4.C).

A neat trick to come up with the correct modifications is to put the finite
chain in a “cavity,” between two imaginary mirrors placed left (right) of the first
(last) site, see Figure 4.8 (b). Rules which traverse the edges use the mirrored
cells to compute their local update. Formally this is achieved by redefining these
rules to use the corresponding “real” cells of the system (note that this is a local
modification for a stretched open chain, in contrast to periodic boundaries); we call
this mirrored boundary conditions (MBC). If we denote the finite-size version of TLV
on L D f1; : : : ; Lg with mirrored boundary conditions as TLV, the modified rules
on the left edge read

TLV1.x/ D maj Œx2; x2; x4� 4.62a

TLV3.x/ D maj Œx4; x1; x2� 4.62b

and on the right edge (L even)

TLV1.x/ D maj Œx2; x2; x4� 4.63a

TLV3.x/ D maj Œx4; x1; x2� ; 4.63b

where we used the shorthand notation k � LC 1� k to index cells from the end of
the chain (e.g., 1 D L), see Figure 4.8 (b). For all other sites it is TLVi D TLVi .

Clearly, 0 and 1 are still fixed points of TLV (there are no static signal sources
introduced) and self-duality is also preserved. By construction, a slow signal emitted
from a solitary syndrome close to the edge will meet its mirror image at the edge
which sends it back as a fast signal to capture the other slow signal heading into the
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bulk and thereby initiates pairing towards the edge, see Figure 4.9 (b). Note that this
mechanism affects the time needed to erode a contiguous cluster of errors: Adjacent
(or close) to the mirror, the number of errors is “doubled” artificially; correction
time and affected territory double accordingly. In Figure 4.9 (b) we illustrate this
effect by comparing the same cluster far away and close to the edge.

An important observation allows for the analysis of systems with mirrored
boundary conditions in terms of the unmodified rules (on the infinite chain L D Z):
Let x 2 FZ

2 be an arbitrary state and define the bond-centered inversion Is as

.Isx/i � x2s�iC1 : 4.64

Isx describes the configuration that is obtained by inversion of x at the bond .s; sC
1/. We define the set of invariant configurations,

Ks �
˚

x 2 FZ
2 jIsx D x

	
4.65

and argue that Is is a symmetry of TLV for any s 2 Z, namely

TLVL.Isx/ D Is TLVL.x/ : 4.66

Indeed, this follows from the fact that TLVi is related to TLViC1 by a bond-centered
inversion at .i; i C 1/; this is true for both even and odd sites i , see Figure 4.6 (c).
It follows that Ks � FZ

2 is invariant under the evolution of TLV which hence
can be restricted to Ks. Note that this is a special feature of TLV, in contrast to
GKL, for instance. Without loss of generality, we set s D 0 in the following, i.e.,
.I0x/i D x1�i . Then we can describe a semi-infinite chain on L D N with a single

mirrored boundary (we write
���!
TLV) by the unmodified rules of TLV operating on

the infinite chain L D Z if we restrict the state space to K0. Indeed,

���!
TLV1.x/ D maj Œx2; x2; x4� D maj Œx2; x�1; x�3� D TLV1.x/ 4.67a
���!
TLV3.x/ D maj Œx4; x1; x2� D maj Œx4; x1; x�1� D TLV3.x/ 4.67b

where we used x4 D x�3 and x2 D x�1 for x 2 K0; see Figure 4.9 (a) for an

example. This allows us to trade the rule modifications of
���!
TLV for a restriction on

the state space of TLV which, in turn, simplifies the analysis of the finite version
TLV (see below). As an immediate consequence, it follows that the semi-infinite
���!
TLV is an eroder because TLV is one136.

While the previously introduced definition of eroders carries over to semi-
infinite chains, it cannot be applied to finite systems because there is no longer
a qualitative difference between perturbation and background (both of which are
necessarily finite). A possible finite-size modification reads as follows: A cellular
automaton on a finite chain L D f1; : : : ; Lg is a finite-size linear eroder if there
exist real constants 0 < a < 1 and m 2 RC such that for any size L <1 and any

136Note that mirrored finite perturbations remain finite.
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finite perturbation of 0 (1) with diameter l � aL, the unperturbed state 0 (1) is
recovered at tdec � ml . It is easy to check that TLV is an eroder in this sense if one

uses that
���!
TLV is an eroder in the original sense (see ⁂ Section 4.C). Alternatively,

note that the majority function is monotonic, i.e., changing an input bit from 0 to
1 cannot change the output bit from 1 to 0. Therefore the evolution of a generic,

non-contiguous, finite cluster of errors under TLV/
���!
TLV/TLV can be constructed

from the evolution of a contiguous cluster of the same size by erasing errors in the
spacetime diagram, and it is sufficient to consider contiguous intervals of errors to
check for the eroder property (which is straightforward to verify).

4.4 Decoding with a Self-Dual Density
Classifier

In the previous section, we introduced TLV and argued that it is a self-dual,
finite-size linear eroder. These properties make TLV a promising candidate for
decoding errors E.x/ that are small compared to L and/or sparse enough. In the
following, we assess the decoding performance of TLV by numerical and analytical
means. We show that error patterns for which the erosion (viz. decoding) fails are
rare for reasonably small error rates, and that the time tdec required for decoding
scales sublinearly with the chain length—one of the main benefits of locality.

4.4.1 Numerical Results

We start with a qualitative discussion of possible evolutions under TLV: Apart from
the two stable uniform fixed points 0 and 1, there are four additional (unstable) fixed
points for TLV [327] two of which cannot be realized by TLV on finite chains with
MBC (see ⁂ Section 4.D). This leads to the four possible fixed points depicted
in Figure 4.10 (a) and (b). Note that their realization on finite chains with MBC
(vertical lines) is only possible if their realization on L D Z is consistent with
the boundary conditions given by the mirrors. Whereas the uniform fixed points
survive, independent of the bond where the mirror is placed [Figure 4.10 (a)], the
two additional fixed points can only be realized if the leftmost (rightmost) site is
denoted by an even (odd) index [Figure 4.10 (b)]. Henceforth, we will take the first
index to be odd (i.e., i D 1) and the last to be even (i.e., L), which eliminates these
two additional fixed points. Note that this choice coincides with the default labeling
of sites L D f1; : : : ; Lg. We stress that the elimination of the two additional fixed
points (which are not syndrome-free) is not crucial for the performance of the
decoder: First, both are characterized by a density of set bits � D 0:5 which is
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even odd

a Fixed points

b Competing �xed points

(a)

(b)

Figure 4.10 • Properties of TLV—Fixed points. (a) The uniform fixed points of TLV with
minimum/maximum filling � D 0=1 correspond to the syndrome-free states of the quantum
code. The eroder property makes them stable in that (small enough) perturbations are erased
and do not proliferate. (b)Two of four additional fixed points ofTLV are inherited byTLV if the
leftmost/rightmost site are labeled by even/odd indices (check marks). Those are characterized
by a critical filling � D 0:5.

far from the relevant error densities realistic for small p7
0. Second, simulations

suggest that their attractors are trivial, i.e., contain only the fixed points themselves
(⁂ Section 4.D).

However, there are competing cycles of various lengths and with non-trivial
attractors; three examples are shown in Figure 4.11. The longer a cycle and the larger
its attractor, the more probable it is with respect to Bernoulli noise. This explains
why the largest cycle in Figure 4.11 is by far the most common in simulations. Note
that it also illustrates the MBC nicely by “bouncing” a cluster of errors hence and
forth between the two mirrors. Again, these cycles are characterized by densities �
close to criticality, which renders them rare for p7

0 �
1
2
. In Figure 4.12 we sketch

the attractor landscape of the total state space ordered by the density �: Close to the
extreme densities � D 0=1 every configuration is drawn towards the corresponding
uniform fixed point due to the eroder property. This is where TLV implements
effectively majority voting by local rules and therefore becomes a viable replacement
for the global decoder �. Only close to criticality � � 0:5, TLV fails to decode a
(still small) fraction of error patterns by evolving them into cycles instead of cleaning
them according to a global majority vote. This underpins our previous statement
that the impossibility of realizing global majority voting perfectly is not too much of
an issue if it fails in regions of the state space which are exponentially suppressed by
Bernoulli noise for physically realistic error rates.
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Figure 4.11 • Properties of TLV—Cycles. Three examples of random initial configurations
(magenta) which relaxed into cycles of various lengths. The first recurring configurations are
highlighted with the same color to separate the cycle from the relaxation path. We find only
cycles close to criticality with � � 0:5.
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0 1Density

Figure 4.12 • Properties ofTLV—Attractor landscape. Sketch of the state space with dashed
attractor paths, based on the results in Figure 4.10 and Figure 4.11. The two uniform fixed
points are attractors of all states away from criticality; this motivates the application of TLV as
decoder for the MCQC.

In the remainder of this subsection, we will quantify these statements by
sampling error patterns from a Bernoulli distribution with fixed rate p7

0 and evolving
them with TLV until we can decide whether it reached a fixed point or entered a
cycle. We interpret the empty state 0 as error-free and define the probability of
successful decoding as

P 3
dec � Pr

�n
x 2 FL

2 j lim
t!1

TLV
t

L.x/ D 0
o�
: 4.68

We stress that in addition to limt!1 TLV
t

L.x/ D 1, and in contrast to the global
decoder �, TLV can also fail by evolving into cycles which are not syndrome-free.
Both cases make up for the failed decodings of TLV and are measured by the
probability P 7

dec D 1 � P
3
dec. As a consequence, P 7

dec >
1
2
is possible for TLV even

for p7
0 �

1
2
.

In Figure 4.13 (a) we plot estimates for P 7
dec as function of the system size for

various error rates 0 < p7
0 � 0:5. Except for the critical value p7

0 D 0:5, the
probability of unsuccessful decoding vanishes exponentially with the chain length
L, confirming our hope that TLV is a viable replacement for �. Note that this
result already tells us that the measure of all attractors of cycles vanishes quickly
for L!1. Indeed, in Figure 4.13 (b) we plot the probability of an error pattern to
belong to the attractor of a non-trivial cycle, again as function of L for the same
error rates as in (a): For p7

0 < 0:5 and L & 50, there seems to be an exponential
decay which is in accordance with the results in (a). Whether at criticality p7

0 D 0:5

the probability vanishes or saturates at a small but non-zero value cannot be inferred
from (b). Interestingly, the results so far not only support the hope that TLV can
replace � for p7

0 � p
7
c with a non-trivial critical rate 0 < p7

c <
1
2
, but even suggest

that p7
c D

1
2
is still optimal (at least 0:4 . p7

c ).
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Figure 4.13 • Properties of TLV—Numerics. (a) Numerical results for the probability of
erroneous decoding P 7

dec D 1� P
3
dec vs. chain length L for different microscopic error probabil-

ities p7
0. P

7
dec vanishes exponentially in the thermodynamic limit for any p

7
0 < 0:5. (b) Away

from criticality (presumably for p7
0 < 0:5) the probability to relax into a cycle vanishes exponen-

tially. For realistic error rates (p7
0 � 0:1), cycles cannot be observed in reasonable sample sizes.

(c) Averaged time needed to reach a uniform fixed point (tdec) as a function of the system sizeL
for various error rates p7

0. The growth is remarkably slow but unbounded for p7
0 > 0. Whether

tdec grows algebraically or only logarithmically for small p7
0 > 0 cannot be inferred from these

results. (d)Distributions of the decoding times tdec for two error rates p7
0 D 0:1=0:4 and system

sizesL D 50=500. For p7
0 D 0:1, there is barely any difference betweenL D 50 andL D 500

visible (squares). We sampled 106 random initial states for each data point in (a-d).

Now that we know that the decoding probability of TLV approaches 1 exponen-
tially with L!1 comes a crucial question we shunned so far: How many steps
tdec does TLV need, on average, to evolve an error pattern x into the error-free state
0? If the decoding time scaled linear, tdec � L, there would be barely any benefit
from replacing the global decoder � by the local one. Fortunately, Figure 4.13 (c)
reveals that the average decoding time grows linearly only at criticality whereas
the growth for p7

0 < 0:5 is much slower. E.g., for L D 600 and p7
0 D 0:1 on

average only tdec � 3 steps are necessary to eliminate all errors correctly. We stress
that due to the almost vanishing slope in (c) it is not possible to decide whether
tdec / L

� for 0 < � � 1 or tdec � logL, even though the very fact that tdec grows
so slowly hints at a logarithmic scaling. To describe the required decoding times in
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detail, we show the complete probability distribution in Figure 4.13 (d) for two sizes
L D 50=500 and error rates p7

0 D 0:1=0:4 in bins of �tdec D 10. Most strikingly,
for the lower error rate (p7

0 D 0:1) there is no difference between L D 50 and a
chain of the tenfold length; again a manifestation of the extremely slow growth of
tdec for reasonable error rates.

4.4.2 Rigorous Analytical Results

In this subsection, we prove a central statement of this chapter: The probability for
TLV on a chain of length L with MBC to be in a non-empty state x.t/ ¤ 0 after
t / L� time steps vanishes exponentially with L for arbitrary � > 0 if the initial
state x.0/ is a Bernoulli random configuration with single-site error probability
p7
0 < p7

c for some critical value 0 < p7
c �

1
2
. In Section 4.5 we will use this

result to construct a completely local decoder for the Majorana chain with length
L and depth / L� that stabilizes a logical qubit for times that grow exponentially
with L. Furthermore, it confirms the numerical results of Subsection 4.4.1: Neither
competing fixed points nor cycles threaten the performance of TLV as long as p7

0

is small enough. To prove the claimed result, we follow the lines of [351] with
modifications to account for the finiteness of TLV and the mirrored boundaries. In
the following, we present three crucial steps but provide only brief sketches of their
proofs; the details are presented in ⁂ Section 4.E.

Before we can state our first result, we have to introduce the pivotal concepts
of independence and sparseness [318, 335, 336, 351, 352]. Let x � Z be an arbitrary
subset (error pattern). A finite subset I � x is called cluster of diameter kIk D
maxfjx � yj j x; y 2 I g. If we fix an integer k > 0 (the sparseness parameter, to be
chosen later), the territory Tk.I / is defined as the interval of integers with distance
at most kkIk from I . Two clusters I1 and I2 are called independent if at least one
does not intersect the territory of the other, i.e., I2\Tk.I1/ D ; or I1\Tk.I2/ D ;
(or both); since I � Tk.I /, this implies I1 \ I2 D ;. This concept is illustrated
in the lower part of Figure 4.14. If, in addition, there exists a partition of x into a
family I D fIag of pairwise independent clusters Ia, x D

S
a Ia, then x is called

sparse.
We need some additional terminology: First, I�l denotes the family of clusters

I 2 I with diameter kIk � l and x n I�l � x n
S
I2I�l

I is the subset of sites for
given x that remains after cleaning all independent clusters of diameter at most l .
Second, a (infinite) mirrored Bernoulli random configuration x � Z is defined by
the single-site probability Pr.xi D 1/ D p7

0 for sites i > 0 and the mirror constraint
xi D x1�i [recall Eq. (4.65)].
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We can now state our variation of the main result of Ref. [351]:

Proposition 4.1: Cluster decomposition on infinite chains

Consider infinite mirrored Bernoulli random configurations x with single-site probabil-
ity p7

0. Let k 2 N be a given sparseness parameter.
Then, for each instance x, there exists a constructive family Ix of pairwise independent

clusters137such that the probability of a site i 2 Z to be in x and remain uncovered by
independent clusters of diameter l or less (write Ix

�l
) is bounded from above by

Pr
�
i 2 x n Ix

�l

�
� ˛l

ˇ

4.69

for ˇ D ln.2/= ln.4k C 3/ (and therefore 0 < ˇ < 1) and ˛ D .2k/.4k C 3/
q
p7
0. If

we define the critical value

Qp7
c � Œ.2k/.4k C 3/�

�2 ; 4.70

for p7
0 < Qp

7
c it is ˛ < 1 and Eq. (4.69) becomes an exponentially decaying upper bound.

The proof can be divided roughly into three steps: First, the family Ix is
constructed recursively in the cluster diameter l for a given instance x. In a second
step it is shown that this prescription always yields a family of pairwise independent
clusters. In the crucial third step, an upper bound on the probability for a site i 2 x

to be not covered by a cluster in Ix of diameter l or less is derived. To do this,
one constructs so called explanation trees, hypothetical error patterns that explain
why a given site i could survive the construction of Ix without being covered by
clusters up to diameter l . The probability for its survival is then estimated by finding
an upper bound on the number of possible explanation trees and calculating their
probability with respect to a mirrored Bernoulli distribution. One finds that the
number of explanation trees grows exponentially (with cluster diameter l) while the
probability for a single explanation tree to be realized by a Bernoulli process vanishes
exponentially. The latter factor dominates for p7

0 < Qp
7
c so that the probability for

the existence of at least one explanation tree vanishes exponentially for increasing l;
this leads to Eq. (4.69).

The rationale behind TLV (or any other linear eroder) is the following: For an
error to survive the erosion process, there must be other errors nearby that protect
it; and these, in turn, require further errors in their neighborhood to survive and
so forth. Such a structure of errors that protect each other from being eroded
constitutes an explanation tree which prevents a global error pattern from decaying
into independent clusters. Explanation trees are dense in a very specific sense—and
this denseness renders their existence improbable for low error rates. By contrast,
sparse error patterns are those without explanation trees that span the whole system.

137It is not necessarily x D
S
I2Ix I , i.e., x does not have to be sparse.
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independent dependent

Figure 4.14 • Independent clusters. A pattern of three clusters Ii (i D 1; 2; 3) with kI3k <
kI1k < kI2k. The erosion process of TLV is sketched for I1 whereas for I2 and I3 only the
causal patches that cover the erosion are shaded gray (time runs upwards). For a linear eroder,
the erasure of an independent cluster requires at mostmkIik time steps, the height of the shown
trapezoids. During this time, signals can travel at mostRmkIik sites from the boundary of a
cluster Ii . Clusters that are independent with sparseness parameter k D 2Rm do not interact;
this is true for I1 and I2 since I2 \ Tk.I1/ D ; (dashed circle). Note that I1;3 \ Tk.I2/ ¤ ;
(green intervals) has no effect on their (in-)dependence because kI2k � kI1k; kI3k. By contrast,
since I2 \ Tk.I3/ ¤ ; (red interval), the causal trapezoids of I2 and I3 intersect (red triangle).
Thus, I2 and I3 are dependent and may not be erased separately.

They are initial states of linear eroders such that the causal regions of correlated
sites in the spacetime diagram do not percolate through the system, but instead
separate into many local patches which are eroded independently. The initial seeds
of these patches are the independent clusters from above: Linear eroders clean a
single cluster I after at mostmkIk time steps, and can therefore influence only sites
with maximum distance RmkIk from I . Then, a collection of pairwise independent
clusters is eroded independently if the sparseness parameter is set to k D 2Rm, see
Figure 4.14. It is this causal locality on sparse sets which results in the sublinear
scaling of decoding times for TLV [recall Figure 4.13 (c)].

Eventually we want to use Proposition 4.1 to derive an upper bound for the
probability of errors to survive the first t steps of TLV on a finite chain with
mirrored boundaries. To this end, we first need an intermediate step:

Lemma 4.2: Cleaning of semi-infinite chains

Consider a semi-infinite chain on L D N governed by
���!
TLVL with initial configurations

x.0/ � L drawn from a Bernoulli distribution with parameter p7
0. Let J � L be an

arbitrary finite interval on the chain.
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Then the probability of x.t/ D
���!
TLVt

L
.x.0// to be non-empty on J is bounded from

above by

Pr .x.t/ \ J ¤ ;/ � .2tRC jJj/ exp
�
� bt=mcˇ

�
4.71

with  D � log.˛/ ( > 0 for p7
0 < Qp

7
c ), and 0 < ˇ < 1 as in Proposition 4.1. Here the

sparseness parameter is given by k D 2Rm D 8 wherem D 1 andR D 4 are the eroder
parameter and the radius of TLV, respectively. bxc denotes the greatest integer less than or
equal to x.

The proof exploits that
���!
TLV is equivalent to TLV for symmetric states in K0.

Then Proposition 4.1 provides us with a family Ix that fails to cover errors in x

with a probability that vanishes exponentially with increasing cluster diameter l .
If an error xi D 1 belongs to an independent cluster of diameter l , the linear
eroder property of TLV ensures that it is eroded after at most ml time steps. It is
important to realize that this does not imply xi D 0 for all later times as signals from
distant, larger clusters may enter the territory of smaller ones (e.g., I1 and I2 in
Figure 4.14). With R the radius of local rules, the neighborhood UtR.J/ includes all
sites that potentially influence sites in J after t time steps, i.e., sites with distance
at most tR from J. Therefore one has to demand that all sites in the growing
neighborhood UtR.J/ belong to clusters of maximum diameter l in Ix to guarantee
that J is clean after t D ml time steps. Subadditivity of probability measures then
leads to the upper bound of Lemma 4.2 where .2tRC jJj/ is the size of UtR.J/.

With Lemma 4.2, we are now prepared to tackle the case of finite chains:

Lemma 4.3: Cleaning of finite chains

Consider a finite chain of lengthL on L D f1; : : : ; Lg governed by TLV with mirrored
boundaries and initial configurations x.0/ � L drawn from a Bernoulli distribution with
parameter p7

0.
Then the probability of x.t/ D TLV

t

L.x.0// to be non-empty is bounded from above by

Pr .x.t/ ¤ ;/ � .4R ftg C L/ exp
�
� bftg=mcˇ

�
4.72

with ftg � minft; t�Lg and t�L D bL=2Rc. The parameters are the same as in Proposi-
tion 4.1 and Lemma 4.2.

Whereas the infinite TLV and the semi-infinite
���!
TLV are qualitatively similar

due to the discussed equivalence on K0, there are fundamental differences to the

finite TLV. This can be understood intuitively as follows:
���!
TLV equals TLV with

pairwise correlations between mirrored sites. These pairwise correlations lead to
the square in the expression for Qp7

c (recall Proposition 4.1). By contrast, TLV
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introduces an infinite number of perfectly correlated partners for each of the L
sites due to the cavity geometry138. To avoid these complications, we use a trick:
For times t � t�L D bL=2Rc, there is no site with both boundaries (mirrors) in its
past light cone (the site(s) closest to the center of the chain can get “aware” of the
cavity geometry earliest at t�L C 1). Therefore locally the finite system TLV behaves

exactly as the semi-infinite system
���!
TLV for t � t�L and the results of Lemma 4.2

apply. For t > t�L we can exploit the finiteness of L: Recall that in the context of
Lemma 4.2 we stressed that an empty interval does not necessarily remain empty on
a (semi-)infinite chain because signals from outside the interval may interfere at later
times. Now L is finite and the argument no longer holds: if x.t/ D ; at some time
t , it follows x.t 0/ D ; for all later times t 0 > t . Thus the probability of x.t/ ¤ ; is
monotonically decreasing in t . This leads to the replacement t ! ftg D minft; t�Lg
in Lemma 4.3.

Note that the lower-bounded decay of the probability in Lemma 4.3 is to be
expected for finite systems: Due to the finite state space, there is an upper bound for
t (depending on L) such that the system either (1) relaxed to the clean state, (2) to a
non-clean fixed point, or (3) entered a non-trivial cycle. In the first case, it is clean
forever, whereas in the latter two cases, it can never become clean. Therefore the
probability to be not clean cannot decrease arbitrarily and must be bounded from
below for fixed L and t !1. However, if we are interested in the limit L!1,
we can ask how long one has to wait for TLV to clean the system almost surely.

This leads to our main result:

Corollary 4.1: Scaling of cleaning times

Consider a finite chain of lengthL on L D f1; : : : ; Lg governed by TLV with mirrored
boundaries and initial configurations x.0/ � L drawn from a Bernoulli distribution with
parameter p7

0.
For � 2 R with 0 < � < 1, the probability of x.t/ D TLV

t

L.x.0// to be non-empty
after

tmax.L/ � bL
�
c 4.73

time steps is bounded from above by

Pr .x.tmax/ ¤ ;/ � .4RC 1/L exp
�
� bL�=mcˇ

�
4.74

forL � LR with 0 < LR <1 aR-dependent constant. For p7
0 < Qp

7
c it follows that

Pr .x.tmax.L// ¤ ;/! 0 for L!1 4.75

exponentially fast. The parameters are the same as in Proposition 4.1 and Lemma 4.2.

138Imagine standing in front of a single mirror vs. standing between two opposing mirrors.
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To prove this, we use the result of Lemma 4.3 with tmax.L/ < t�L for L � LR
large enough, thus ftmax.L/g D minftmax.L/; t

�
Lg D tmax.L/. With bL�c � L and

bbL�c=mc D bL�=mc (for m 2 N), Eq. (4.74) follows immediately.
The important message of Corollary 4.1 is that the probability

P
3

dec � Pr
�n

x 2 FL
2 jTLV

tmax.L/

L .x/ D 0
o�

4.76

of successfully decoding a Bernoulli random configuration with time constraint
tmax.L/ [cf. Eq. (4.68)] approaches 1 rapidly for longer chains even if the allocated
decoding time tmax.L/ increases sublinearly—as long as p7

0 < Qp
7
c . We stress that

there is no statement about p7
0 � Qp

7
c ; Corollary 4.1 only asserts that there is a finite

range for p7
0 where decoding with TLV is possible and that the required decoding

time tdec scales favorably with L on average.
To conclude this subsection, we present numerical results for P

3

dec as a function
of the microscopic error probability 0:3 � p7

0 � 0:5 and for different chain lengths
L D 16; : : : ; 784 in Figure 4.15. As constraints we use (a) tmax D1, (b) tmax D L,
(c) tmax D L0:5, and (d) tmax D const D 20. Instances that are not empty after
tmax.L/ time steps count as failed decodings, even if they are cleaned eventually
(for t !1). In addition, forbidden regions due to the light cone constraint (4.36)
with D D R tmax.L/ (with R D 4) are shaded for L D 16 (orange) and L D 784

(black). Note hat for tmax D1 it is P
3

dec D P
3
dec, compare Eq. (4.68) and Eq. (4.76).

All numerical results satisfy the rigorous bounds of the light cone constraint
which manifests as a weak upper bound for p7

0 close to criticality. Note the
difference between (a), (b), and (c) where the light cone constraint does not rule
out successful decoding for any non-critical p7

0 and L ! 1, and (d) where it
does. The rigorous results from above complete this picture by providing lower
bounds that imply limL!1 P

3

dec D 1 for p7
0 < Qp

7
c . However, we do not know the

true error threshold p7
c except that it is larger than Qp7

c � 3:2 � 10
�6 for TLV and

therefore finite (see ⁂ Section 4.F). Figure 4.15 (a) and (b) suggest that p7
c D

1
2
for

(super-)linear tmax which matches the performance of global majority voting (but also
requires at least the same runtime scaling). By contrast, Figure 4.15 (c) is compatible
with a non-optimal 0 < p7

c <
1
2
, even though we believe that still p7

c D
1
2
due to a

(slow) tendency of the crossing point towards 1
2
for L!1. Finally, Figure 4.15 (d)

confirms that p7
c D 0 for a fixed-depth decoder, in compliance with both Lemma 4.3

and the light cone constraint.
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Figure 4.15 • Constrained TLV-decoding. The four plots show the probability P
3

dec of suc-
cessfully decoding an initial Bernoulli random configuration with microscopic error probability
p7
0 using TLV on chains of length L D 16; : : : ; 784. Evolutions that take longer than tmax.L/

steps are regarded as failed decodings. Upper bounds from the light cone constraint are shaded
orange (black) forL D 16 (L D 784) and compared with the respective numerical results in the
insets close top7

0 D 0:5. We sampled over 106 realizations for each data point. (a)Unrestricted:

tmax D 1. The minimum P
3

dec D 0:5 is reached only for p7
0 D 0:5 for L ! 1. (b) Linear:

tmax D L. The minimum of P
3

dec dips slightly below 0:5 for the critical system p
7
0 D 0:5. Pre-

sumably there is still perfect performance forp7
0 < 0:5 andL!1. (c) Sublinear: tmax D L0:5.

The results suggest limL!1 P
3

dec D 1 for 0 � p7
0 < p7

c . Whether p7
c <

1
2
cannot be in-

ferred from numerics (note that the light cone constraint allows for p7
c D

1
2
). (d) Constant:

tmax D const.D 20/. As dictated by the light cone constraint, there is no decoding possible for
p7
0 > 0 and consequently limL!1 P

3

dec D 0.
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4.5 Error Correction for Continuous
Noise

So far, we focused on the decoding of initial error patterns x.0/, the probability of
success P 3

dec (respectively P
3

dec) and the time needed to clean the system tdec . The
ultimate goal, however, is the preservation of the logical qubit in the presence of
continuous noise: While we assume error-free processing of classical information,
decoherence of the quantum chain is a constant source of errors, characterized by
the microscopic error rate p7

0 per time step ıt . In this section, we first demonstrate
numerically that TLV cannot cope with such perturbations of its evolution in that
the lifetime of the logical qubit grows only subexponentially with the chain length.
In the second part, we resolve this problem by extending the TLV-decoder into the
second dimension, and show that its depth grows weakly (sublinearly) with the chain
length. We conclude that shallow circuits suffice for reasonably low error rates.

4.5.1 Continuous Noise in Strictly One Dimension

As a first step, we evaluate the performance of TLV as follows: Starting from
an error-free chain, x.0/ D 0, we apply errors x0.t C 1/ D e.t C 1/˚ x.t/ and
TLV-steps x.t C 1/ D TLVL.x

0.t C 1// in turns. Here e.t C 1/ 2 FL
2 is drawn

from a Bernoulli distribution with parameter p7
0 and describes the accumulated

errors on the quantum chain between time t and t C 1. To quantify the ability
of TLV to prevent errors from accumulating, we introduce the time to the first
majority flip Tff, i.e., maj Œx.Tff/� D 1 and maj Œx.t/� D 0 for t < Tff. Sampling over
many error histories fe.t/g yields the average hTffi characterizing the timescale over
which the logical qubits survives (decay time).

Numerical results are shown in Figure 4.16. In (a) hTffi is plotted versus 1=p7
0

for different lengths L, revealing an substantial growth of the decay time for p7
0 ! 0.

By contrast, the dependence of hTffi on L seems to be much less pronounced. This
is confirmed in (b) where hTffi is plotted as function of the system size L for two
error rates p7

0 D 0:050 and 0:125: The growth with L is clearly subexponential,
although the absolute scale of hTffi strongly depends on the error rate. To asses the
gain in decay time by using TLV, we compare it with global majority voting (�;
complete correction after each time step) and no correction at all (7; accumulating
errors without corrective actions). As shown in Figure 4.16 (b), global majority
voting exhibits perfectly exponential growth of hTffi and outperforms TLV clearly.
The comparison of a system without corrective actions and TLV reveals that the
latter does not improve on the scaling but only increases the absolute values of hTffi

and their susceptibility to variations in p7
0. In conclusion, continuous noise thwarts
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Figure 4.16 • Noise-induced deconfinement—Numerics. (a) Average time to the first ma-
jority flip hTffi vs. the inverse microscopic error rate 1=p7

0 for different system sizes L D
10; : : : ; 210 for TLV. The dependence on 1=p7

0 is approximately exponential. (b) The same
data vs. the system size L for different error rates p7

0 D 0:050 and 0:125 (joined bold crosses
and bullets for TLV). The numerics clearly suggests that there is no exponential growth of hTffi
for L ! 1, i.e., the storage time of the encoded qubit grows considerably slower than for
global majority voting (�) with constant correction rate; for comparison, we show simulations
and theory for� with p7

0 D 0:125 (disjoined bullets and circles). With no correction (7), hTffi
becomes almost constant (joined small crosses and bullets for p7

0 D 0:050 and 0:125, respec-
tively). For statistics, we sampled 103 evolutions per data point to measure Tff; the standard
error of the shown sample mean is� 3% such that the error bars are not visible.

the benefits one expects from making the quantum chain longer. This is in contrast
to the previous sections where we considered the decoding of static error patterns
and found an exponentially suppressed failure rate P 7

dec for increasing chain length.
The susceptibility of TLV to continuous noise can be most easily understood

by example: Figure 4.17 (a) depicts the spacetime diagram encoding the evolution
of an initial cluster of errors under TLV without continuous noise; as this is
the decoding procedure discussed above, TLV erodes the cluster reliably. Since
TLV effectively operates on the syndrome space, it is instructive to think of the
evolution as attraction and subsequent annihilation of Z2-charges (the syndromes,
red bullets). If continuous noise is switched on [Figure 4.17 (b)], the attractive
interaction is screened by a bath of noise-induced charge-anticharge pairs and
the cluster’s endpoints are governed by an undirected, diffusive process. From a
renormalization group perspective, there is a confinement-deconfinement transition
at p7

0 D 0 which prevents the erosion of large clusters of errors, supporting their
proliferation throughout the system. The susceptibility of simple one-dimensional
CAs to continuous noise is a well-known phenomenon, see e.g. Ref. [328] for TLV
and GKL. Indeed, due to the lack of counterexamples, it was conjectured that
all one-dimensional CAs subject to noise are ergodic, that is, forget about their
initial state eventually; this is known as the positive rates conjecture [334]. Peter Gács
proved it wrong by providing an extraordinary complex counterexample that relies
on self-simulation [318, 335, 336]. To the author’s knowledge, there is no simpler
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Figure 4.17 • Noise-induced deconfinement—Example. (a) Spacetime diagram of a large
cluster without continuous noise (p7

0 D 0) andTLV-evolution. (b) Evolution of the same initial
state with continuous noise p7

0 D 0:1 and the same scale as in (a). Note that the messaging
between left and right boundary of the cluster is jammed by the noise within the cluster, leading
to an effective deconfinement of the charges at the cluster boundaries.

counterexample known till this day, and it is widely believed that any non-ergodic
CA in 1D must, in some form or another, implement the core mechanisms of Gács’
automaton. It is therefore highly unlikely that a simple CA (such as TLV) can
retain information about its initial state for t !1 if continuous noise is switched
on. This is exactly what our numerical results suggest: The timescale Tff after
which TLV forgets about the initial majority does not diverge exponentially in the
thermodynamic limit—an indicator for ergodicity.

4.5.2 Evading Noise with a Two-Dimensional Extension

To protect the evolution of TLV in the face of continuous noise, we pay with
(classical) hardware by unrolling the time evolution into the (spatial) second
dimension, perpendicular to the quantum chain. Then, our previous discussions
and results on the time required for decoding translate directly into statements about
the scaling of the depth of this “overhead dimension.”
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Setup

We start with a description of the envisioned setup in Figure 4.18. Note that the
details of its implementation, described in the next few paragraphs, serve as a proof
of principle only and may be subject to optimizations depending on the physical setup
chosen for its realization.

We start with the quantum chain which is placed on top of a 2D substrate that
hosts a classical two-layer circuit parallel and attached to the chain. The circuit
has the topology of a cylinder glued to the quantum chain, see Figure 4.18 (a);
we illustrate both layers by slicing the cylinder along the chain and unfolding the
circuit into the plane. The logical wiring of the circuit is sketched in Figure 4.18 (b),
Figure 4.19, and Figure 4.20 on various levels of detail. Its width equals the
length of the chain L whereas the depth DL (folded up DL=2) is arbitrary (up to
a fixed overhead), see (b) and below. All syndrome measurements are performed
periodically—once per time step—and fed into the syndrome register in the
top layer of the circuit [Substep 1 in (b), red]. Subsequently each (binary) cell
of the two-dimensional classical system is updated synchronously according to
specific rules that take as inputs values of spatially adjacent cells [Substep 2 in
(b), black]. Finally, set bits in the final correction register on the lower layer
(again adjacent to the chain) are used to determine the unitary error correction, the
application of which completes a single time step [Substep 3 in (b), red]. Note that
due to the spatially local computations, the time needed for a single time step is
constant and does neither scale with L nor withDL.

The rules defining the classical automaton (applied in Substep 2) can be divided
roughly into two functional classes [see Figure 4.18 (b) Substep 2]. The first
is independent of the depth DL and located close to the chain. It consists of
the syndrome register (upper layer), syndrome memory (upper layer), and the
final correction register (lower layer) and computes the syndrome of errors
that accumulated since the last syndrome measurement, taking into account the
correction operations at the end of the last step. Formally,

x.t C 1/ D e.t C 1/˚ c.t/˚ x.t/ 4.77a

) @e.t C 1/ D @x.t C 1/˚ @x.t/˚ @c.t/ 4.77b

D s.t C 1/˚ s.t/˚ @c.t/ 4.77c

with
@ciC 1

2
.t/ D ci.t/˚ ciC1.t/ ; 4.78

where s.tC1/ denotes the newly measured syndrome (in the syndrome register),
s.t/ is the previously measured syndrome (in the syndrome memory), and c.t/

encodes the previously applied correction (in the final correction register);
the (inaccessible) error configuration is x.t/ and e.t C 1/ denotes the accumulated
errors during Œt; t C 1�. Eventually, the syndrome memory is overwritten with the
values of the syndrome register.

339



ERROR CORRECTION WITH CELLULAR AUTOMATA

Classical 2-layer circuit

Quantum chain

(a)

Figure 4.18 • 2D-evolved TLV—Setup. (a) The quantum chain is placed on top and framed
by a 2D substrate that allows for the implementation of classical two-layer circuitry (e.g., by
photo lithography) that connects to projective gates (measurements) and unitary gates along the
chain. The classical circuits are used to process measurement results and control unitary gates
in an integrated, scalable fashion. For illustrative purposes, the two layers are drawn unfolded
with a copy of the quantum chain at top and bottom. The length of the chain is L and the
depth of the (unfolded) circuit is denoted byDL, the scaling of which is discussed in the text.
(b) Detailed setup to fight continuous noise on the quantum chain. Information propagates in a
feedforward manner from top (syndrome measurements) to bottom (correction operations). At
the beginning of each time step, the syndrome pattern from projective measurements is fed into
the syndrome register (Substep 1, red arrows). Subsequently, the content of all horizontal
registers is evolved to the next row (Substep 2, black arrows). Finally, the results in the final
correction register are applied to the quantum chain (Substep 3, red arrows). The initial
syndrome register is fed by the parity of syndrome memory, syndrome register and the
syndrome of the last applied correction in the final correction register (indicated by the
yellow box). The shading of classical bits (squares and circles) from black to white (or vice
versa) illustrates the typical operation of the circuit: The syndrome register starts off in a
non-empty state at the top whereas the cumulative correction register is initialized with all
bits zero. Propagation to the bottom transforms the correction register into the non-trivial
result of the decoding procedure while depleting the syndrome register. The latter reaches
an empty state at the bottom (with high probability, see text). The elements marked by (*) are
drawn twice for illustrative purposes and exist only once in hardware [see (a)].

The result (4.77c) describes only errors that occurred in the previous time interval
Œt; t C 1� and ignores both older errors (which are already taken into account) and
previous corrections (which are not to be “corrected”). (4.77c) is fed into the first
row (initial syndrome register) of the second sector, a translationally invariant
2D circuit (except for the boundaries) with freely adjustable depthDL. Its purpose
is to simulate TLV in the syndrome-delta representation in a feedforward manner,
from top to bottom in Figure 4.18 (b), where � D @TLVL.s/ is accumulated
modulo 2 in the correction registers (circles) and s0 D @�˚ s is written into
the syndrome register of the next row. @TLVL is given by Eq. (4.61) and the
MBC modifications in (4.62) and (4.63)—and can be implemented as illustrated in
Figure 4.19.
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3 3

Figure 4.19 • 2D-evolved TLV—Details. Detailed logical flow in the scalable bulk that
defines the new state of the next row in dependence of the state of the last row. The shown
operations implement the evolution of TLV in syndrome-delta representation directly on the
syndrome registers (squares) while accumulating all applied operations on the qubits in the
correction registers (circles). Note that actual qubit rotations are only applied once at the
bottom, defined by the state of the final correction register (see Figure 4.18). For the
sake of compactness, we write cti D ci .t/ etc. as compared to the text.

Notably, there are only two types of logic gates required, both of which can
be easily reduced to elementary gates. The XOR-gates (˚) are equivalent to
X ˚ Y D .X _ Y / ^ :.X ^ Y / while the majority gates on three bits (MAJ3) can
be rewritten as

maj ŒX; Y;Z� D .X ^ Y / _ .X ^Z/ _ .Y ^Z/ ; 4.79

see Figure 4.20. The XOR-gate can be realized in established CMOS technology with
only 3 transistors [353, 354], while the MAJ3-gate requires about 14 transistors. How-
ever, going beyond CMOS may be beneficial [355], depending on the environment
preferred by the coherent subsystem (the quantum chain): Whereas the MAJ3-gate is
rather complex in CMOS technology, it becomes an elementary logic gate in the
framework of quantum-dot cellular automata [356].

3

Figure 4.20 • Majority gate. Besides the ubiquitous XOR-gates, the only additional gate
required is the majority gate with three inputs (MAJ3-gate) which can be easily translated into a
network of elementary AND- and OR-gates.
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Evaluation

The second sector evolves TLV on @e.t C 1/ in space and thereby circumvents the
noise-induced deconfinement because subsequent errors e.t C 2/ : : : are tackled by
a completely decoupled evolution of TLV. If TLV decodes the syndrome @e.t C 1/
successfully in

tdec � tmax.L/ D DL 4.80

time steps, the final syndrome register is empty at t� D t C 1CDL and the
final correction register contains c.t�/ D e.t C 1/ which is applied to the
quantum chain in Substep 3 to cancel the errors E.e.t C 1//. We point out that
the occurrence of errors e and the application of corresponding corrections c are
separated byDL time steps, the depth of the circuit, which reflects the finite speed
of information transfer in a spatially extended decoder [recall Figure 4.5 (c)]. Since
errors and correction operations commute, this is not an issue.

We demonstrate the evolution of the complete circuit for a single (minority)
cluster of errors without continuous noise in Figure 4.21 on a chain of lengthL D 10
with depth DL D 5. Note how the syndrome memory prevents the automaton
from issuing multiple instances of the same computation (Frames 4-6), and how
the final correction register prevents the “correction of the correction” in
Frame 9. Most importantly, the classical subsystem only uses syndrome information
and is not aware of the actual error pattern (which we plot as blacked out qubits for
convenience only).

Our setup fails to protect the qubit if, at some point in time, an error pattern
accumulates during a single time step which cannot be successfully corrected by
TLV within DL time steps. This may be because it is eroded to 1 instead of 0 or
there are syndromes left after DL time steps so that residual errors survive. The
last case splits into two subcases: First, TLV might have succeeded and reached 0

after tdec > DL time steps, or, second, the initial configuration was in the attractor
of a cycle such that no correction was possible anyway (even for t !1).

The time that quantifies the performance of our setup is then the time-to-first-
failure Ttff (“decay time”), i.e., the time after which the first uncorrectable (in the
above sense) error pattern appears. Its expectation value is given by

hTtffi D

1X
TD1

T P
7

dec.1 � P
7

dec/
T�1
D

1

P
7

dec

4.81

where P
7

dec D 1 � P
3

dec denotes the restricted failure probability of TLV with
tmax.L/ D DL, as discussed previously [recall Eq. (4.76)]. Eq. (4.81) follows
because each time step corresponds to a Bernoulli sample independent of the
previous error patterns, a consequence of the spatial evolution of TLV in our 2D
circuit.
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Syndrome measurement

Syndrome measurementUnitary correction

1st time step 2nd time step

3rd time step4th time step5th time step

Empty �xed point

Minority cluster of errors1

2 3 4

567

8 9 10

Figure 4.21 • Exemplary evolution of 2D-evolved TLV. Exemplary evolution of a depth
DL D 5 2D-evolved TLV-automaton of length L D 10 without continuous noise, starting
from a contiguous minority cluster of errors in the center. (See Figure 4.18 (b) for a description
of the setup.) The initial syndrome register and the final correction register are
highlighted yellow and green, respectively. A copy of the final correction register is
reproduced between syndrome register and syndrome memory (gray) to emphasize that the
initialization of the initial syndrome register depends on all of them. Shown are 6 time
steps in total, each consisting of three substeps: syndrome measurement, a single step of the 2D
CA, and a unitary correction. Õ
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Figure 4.22 • Failure probability for 2D-evolved TLV. Failure probability P
7

dec of decoding
error configurations with a 2D-evolved TLV-decoder of depthDL as a function of the system
size L for microscopic error rate p7

0 D 0:2. Note that failed decodings include both syndrome-
free states with corrupted logical qubit and states with residual syndromes. We sampled 5 � 106

instances per data point. The gray rectangle (dashed boundary) is shown as inset. The solid and
dashed lines show the analytic functions e�L0:32

, 1=L, and e�0:15L as a guide to the eye; these
are neither fits nor analytical results. We compare setups with constant depthDL D const D 20
(empty squares) and sublinear depthDL D L0:5 (filled squares). Note that the curves intersect
for L D 400 because

p
400 D 20. The inset depicts the much faster decreasing cases of

unbounded depthDL D1 (filled circles) and linear depthDL D L (empty circles). There is
no qualitative difference between the two for the shown parameters.

In Figure 4.22 we show simulations of P
7

dec as function of L for fixed error rate
p7
0 D 0:2 and four different depth scalings DL (see also Figure 4.15). Decreasing

failure probabilities P
7

dec translate via Eq. (4.81) into growing decay times hTtffi: A
constant-depth DL D 20 decoder does not benefit from longer quantum chains
whereas both “infinite depth” and linear depth decoder perform similarly and yield
exponentially increasing decay times Ttff. Decoders with slowly growing algebraic
depths, such as the shown DL D L0:5, still exhibit exponential growth of Ttff,
although weaker than that of global decoders withDL & L.

Õ We omit trivial substeps (measurements and corrections), indicated by broken arrows. The
first time step comprises frames 1-3 where the correction step is omitted at the end. Time steps
2-4 are shown in frames 4-6 where both measurements and corrections are omitted. The 5th
time step starts in frame 7 and ends with the first (and last) non-trivial correction in frame 8. The
6th and final time step starts with a non-trivial syndrome measurement in frame 9 and resets
the CA to the empty fixed point in frame 10. Details are given in the text.
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4.6 Conclusion & Outlook

Motivated by the requirement for scalable and modular decoders for topological
quantum memories, we set out to construct a strictly local decoder for the one-
dimensional Majorana chain quantum code. As the latter constitutes the quantum
analogue of the classical repetition code, it can be efficiently decoded and stabilized
by global majority voting if spatio-temporal constraints are ignored. Taking into
account the time needed for classical syndrome processing and communication
suggests the implementation of decoders as cellular automata. We argued that the
decoding problem at hand translates into the problem of one-dimensional density
classification with the additional symmetry constraint of self-duality; this led us to
the two-line voting automaton TLV as promising local decoder. We equipped the
latter with mirrored boundaries (called TLV) to comply with the requirement of
open boundaries on the level of the quantum chain.

Both numerics and rigorous analytical results showed that TLV succeeds
in decoding Bernoulli random patterns with exponentially vanishing failure rate
as L ! 1. Whereas the rigorous results are restricted to small but finite
microscopic error probabilities p7

0 < Qp
7
c � 3:2 � 10�6, numerics suggest that

p7
0 <

1
2
may be enough for successful decoding. In addition, the time needed for

decoding scales sublinearly for p7
0 <

1
2
. In particular, we proved that the failure

rate for decoding a code of length L in at most t / L� time steps (� > 0 arbitrary)
vanishes exponentially with L!1 for small but finite p7

0 < Qp
7
c . In a nutshell: for

low error rates, global majority voting is not required.
In the final section we investigated the performance of TLV in the presence

of continuous noise. In accordance with the expected ergodicity of simple, one-
dimensional cellular automata, we argued that TLV cannot fight continuous noise
because long-range communication is cut off by locally created charge-anticharge
pairs. As a consequence, we had to evolve TLV into the second dimension to
prevent errors from accumulating during the syndrome processing. Thereby the
superior (i.e., sublinear) scaling of decoding times for TLV—as opposed to the
linear scaling of global majority voting—was turned into a modest scaling of classical
hardware overhead: For reasonably low error rates, simple, shallow circuits, lacking
the capability of global communication, can replace the hardware-expensive global
majority voting. These results add to the quest of scalable and modular realizations
of actively corrected topological quantum memories.
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Open Questions

In the light of these results, there are a few open ends that deserve further scrutiny:

→ One of our main results was that, for realistic error rates p7
0 �

1
2
, there is

no need to implement the capabilities for global majority voting since the
local rules of TLV perform well enough. It would be interesting to gauge the
benefits of TLV, as compared to global majority voting, quantitatively. To
this end, an implementation of a scalable global majority decoder, in terms of
the same building blocks (i.e., logic gates) as used for our implementation of
TLV, is required. Then, a cost-benefit analysis (number of gates vs. decay
time) would allow for a thorough assessment of both approaches139.

→ A qubit stored in the ground state space of the Majorana chain is protected
by topology and fermionic parity symmetry (if the chain couples to an
environment). By contrast, two-dimensional topological quantum codes (such
as the toric code) feature intrinsic topological order and do not require any
symmetry to protect the logical qubit from decoherence. It is therefore an
interesting question to which extent the techniques and results presented
here can be applied to the decoding and stabilization of two-dimensional
topological quantum codes. For the toric code, this is presumably a highly
non-trivial task because true minimum weight perfect matching is inherently
more complex than simple majority voting. Furthermore, it is not clear
whether and how the core mechanism of TLV can be generalized to two
dimensions where point-like messages can miss each other easily140.

139A similar question arose in Chapter 3 which motivated a formal framework for describing tasks
and quantifying solutions thereof (introduced in Section 5.3).

140The transition from one to two dimensions is often accompanied by fundamental changes in
physics. For instance, the classical Ising model gains a phase transition and interacting fermions gain a
quasiparticle description in terms of Fermi liquid theory.
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Appendices for Chapter 4

4.A Cumulative Binomial Distribution

Here we prove some of the statements about global majority voting used in
Subsection 4.2.2 and Subsection 4.2.3 of the main text. To this end, we start with
the probability for more than half of L (odd) binary sites xi to be error-afflicted (i.e.,
in state xi D 1) after t rounds of additive, uncorrelated Bernoulli noise:

P 7

L;p7
0

.t/ D

LX
kD

LC1
2

 
L

k

! �
p7.t/

�k �
1 � p7.t/

�L�k
4.82

where
p7.t/ D

1

2

h
1 �

�
1 � 2p7

0

�ti
4.83

is the renormalized single-site probability for X.t/ D X1 ˚ � � � ˚ Xt with Xi
Bernoulli random variables with parameter p7

0, i.e.,

Pr.X.t/ D 1/ D
X
k odd

 
t

k

! �
p7
0

�k �
1 � p7

0

�t�k
4.84a

D
1

2

h
1 �

�
1 � 2p7

0

�ti
: 4.84b

Eq. (4.82) is a special case of the cumulative binomial distribution function
which is known to be expressible in a closed form by the incomplete beta function,

B.xI a; b/ D

Z x

0

ya�1.1 � y/b�1 dy 4.85

via [337]

P 7

L;p7
0

.t/ D Ip7.t/

�
LC 1

2
;L �

LC 1

2
C 1

�
4.86
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where Ix.a; b/ D B.xI a; b/=B.1I a; b/ is called regularized incomplete beta func-
tion. With a; b 2 N we can use

B.1I a; b/ D
�.a/�.b/

�.aC b/
D
.a � 1/Š.b � 1/Š

.aC b � 1/Š
4.87

to evaluate

B

�
1I
LC 1

2
;L �

LC 1

2
C 1

�
D

"
LC 1

2

 
L
LC1
2

!#�1

: 4.88

Then Eq. (4.86) reads

P 7

L;p7
0

.t/ D
LC 1

2

 
L
LC1
2

! Z p7.t/

0

Œx � x2�
L�1

2 dx 4.89

which is a useful form to derive estimates and limits of Eq. (4.82).
In particular, we can now derive the limit for 0 < p7

0 �
1
2
and 0 < c <1

lim
L!1

P 7

L;p7
0

.t D c�1L/ D
1

2
4.90

if we use the asymptotic expression (Stirling’s approximation) 
L
LC1
2

!
�

r
2

�

2L
p
L

for L!1 : 4.91

Indeed, with t D L
c

P 7

L;p7
0

.t/ D
LC 1

2

 
L
LC1
2

! Z p7.t/

0

Œx � x2�
L�1

2 dx 4.92a

�

p
L

p
2�

Z p7.t/

0

Œ2.2x/ � .2x/2�
L�1

2 d.2x/ 4.92b

yD2x
D

p
L

p
2�

Z 2p7.t/

0

Œ2y � y2�
L�1

2 dy 4.92c

uDy�1
D

p
L

p
2�

Z 2p7.t/�1

�1

Œ1 � u2�
L�1

2 du 4.92d

�
1
p
�

Z �

q
L�1

2
.1�2p7

0/
L
c

�

q
L�1

2

"
1 �

x2

L�1
2

#L�1
2

dx 4.92e
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where we used the substitution x D
q
L�1
2
u in the last row. If we use that

(0 < p7
0 �

1
2
)

lim
L!1

Z 0

�

q
L�1

2
.1�2p7

0/
L
c

"
1 �

x2

L�1
2

#L�1
2

dx D 0 4.93

and

lim
n!1

Z 0

�n

�
1 �

x2

n2

�n2

dx D lim
n!1

n

Z 1

0

�
1 � y2

�n2

dy 4.94a

D

p
�

2
lim
n!1

n�
�
1C n2

�
�
�
3
2
C n2

� 4.94b

D

p
�

2
; 4.94c

we find for 0 < p7
0 �

1
2
and 0 < c <1 the final result

lim
L!1

P 7

L;p7
0

.c�1L/ D
1

2
D

1
p
�

Z 0

�1

e�x2

dx : 4.95

Note that limL!1 P 7

L;p7
0

.c�1L/ > 0 only because p7.t/ renormalizes to 1
2
expo-

nentially fast with t , such that the upper bound of the integral converges to zero.
Similarly, for limL!1 P 7

L;p7
0

.t D 1/ one easily re-derives the exponential decay to

zero (modified by
p
L from the integral bounds).

4.B Light Cone Constraint

In Subsection 4.2.3 we introduced the light cone constraint Eq. (4.36) and discussed
its scaling properties. Below, in ⁂ Subsection 4.B.1, we present its derivation in
detail; in ⁂ Subsection 4.B.2 the limits for various relations between depthD and
size L are discussed.

4.B.1 Derivation

Here we prove the following upper bound for the decoding probability P 3
dec of a

D-local physical decoder of linear size L:

P 3
dec �

"
1C

�
p7
0

1 � p7
0

�2DC1
#� L

2DC1

: 4.96
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The microscopic error probability per qubit and time step is p7
0. Let the error

pattern be described by the vector x of length L with syndrome s D @x. A given
D-local decoder �D then calculates a correction �D.s/ such that �D.s/ ˚ x

describes the new error state after the correction has been applied. For an arbitrary
but fixed site 1 � i � L we define two sets :

X3
i �

˚
x j�Di .s/˚ xi D 0

	
; 4.97a

X7
i �

˚
x j�Di .s/˚ xi D 1

	
: 4.97b

X3
i and X7

i describe the sets of all error patterns that �D (un)successfully corrects
at site i , respectively. We define the local complement operator CDi such that for
x0 D CDi x

x0
j D

(
xj for jj � i j > D ;

xj ˚ 1 for jj � i j � D ;
4.98

i.e., it inverts the error pattern in a region of radius D around site i . Clearly
CDi ı C

D
i D 1, such that CDi defines a bijection on the total error state space

X D X3
i
P[X7

i D FL2 . Let �Di W X ! F2DC1
2 be the projector that slices the range

on which CDi acts non-trivially from a state x. We have @x ¤ @CDi x due to the
boundaries of the partial complement. However,

@�Di x D @�Di C
D
i x 4.99

since the syndrome does not change inside the range of the local complement. We
can now define the two sets

NX3
i � C

D
i X3

i D
˚
CDi x jx 2 X3

i

	
; 4.100a

NX7
i � C

D
i X7

i D
˚
CDi x jx 2 X7

i

	
: 4.100b

Since CDi is a bijection, we still have X D NX3
i
P[ NX7

i .
Now comes a crucial step: Because �D is D-local, its action on site i only

depends on the syndromes within �Di x, i.e., @�Di x. Therefore we find that if
x 2 X3

i is successfully corrected at site i , then �D fails to correct CDi x because its
action on site i is the same. In a nutshell,

x 2 X3
i , CDi x 2 X7

i : 4.101

Thus we have NX3
i D X3

i D X7
i and NX7

i D X7
i D X3

i where � denotes the
complement in X.

For a Bernoulli process, the probability of the error pattern x is

Prp7
0
.x/ D

�
p7
0

�jxj �
1 � p7

0

�L�jxj
4.102
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width jxj D
P
i xi the total number of errors. For the local complement, we have

Prp7
0

�
CDi x

�
D
�
p7
0

�jCD
i

xj �
1 � p7

0

�L�jCD
i

xj
4.103a

D

�
p7
0

1 � p7
0

�jCD
i

xj�jxj

Prp7
0
.x/ 4.103b

where
jCDi xj � jxj D .2D C 1/ � 2j�Di xj 4.104

is the change of errors in the light cone due to the local complement. Thus
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CDi x

�
D

�
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0

�.2DC1/�2j�D
i

xj

Prp7
0
.x/ : 4.105

We start from the trivial relationX
x2X3

i

Prp7
0
.x/C

X
x2X7

i

Prp7
0
.x/ D 1 4.106

and rewrite the first termX
x2X3

i

Prp7
0
.x/ D

X
x2 NX3

i

Prp7
0

�
CDi x

�
4.107a

D

X
x2X7

i

�
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0

1 � p7
0

�.2DC1/�2j�D
i

xj

Prp7
0
.x/ 4.107b

which yields

X
x2X7

i

241C � p7
0

1 � p7
0

�.2DC1/�2j�D
i

xj

35 Prp7
0
.x/ D 1 : 4.108

So far, all statements are exact and valid for 0 � p7
0 � 1. Now we assume

0 � p7
0 �

1
2
and estimate�

p7
0

1 � p7
0

�.2DC1/�2j�D
i

xj

�

�
1 � p7

0

p7
0

�2DC1

4.109

where we used that j�Di xj � 2D C 1 and p7
0=.1 � p

7
0/ � 1 for p7

0 �
1
2
. We have

1 �

"
1C

�
1 � p7

0

p7
0

�2DC1
#
�

X
x2X7

i

Prp7
0
.x/ 4.110
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and therefore the lower bound on the error probability"
1C

�
1 � p7

0

p7
0

�2DC1
#�1

�

X
x2X7

i

Prp7
0
.x/ : 4.111

Note that this is the probability that an error at site i survives a single correction
procedure with �D. This lower bound can be easily recast as an upper bound on
the probability of successful correction,

X
x2X3

i

Prp7
0
.x/ D 1 �

X
x2X7

i

Prp7
0
.x/ �

"
1C

�
p7
0

1 � p7
0

�2DC1
#�1

: 4.112

The last step is to use this result for an upper bound on the global correction
probability

P 3
dec D

X
x2

T
i X3

i

Prp7
0
.x/ 4.113a

D

X
x2X

Prp7
0
.x/

Y
i

1X3
i
.x/ 4.113b

D

*Y
i

1X3
i

+
¤

Y
i

D
1X3

i

E
4.113c

where 1X3
i
denotes the indicator function of X3

i . The last inequality follows from
the fact that 1X3

i
and 1X3

j
may be correlated random variables for ji � j j < 2DC1,

i.e., if their past light cones overlap and they depend on common syndrome
measurements. This motivates the second estimate*Y

i

1X3
i

+
�

*
L=.2DC1/Y
kD1

1X3
k.2DC1/

+
4.114

where we assume for simplicity that L is a multiple of 2D C 1. We can separate
the system into subsystems xk of length 2D C 1 such that 1X3

k.2DC1/
.x/ D

1X3
k.2DC1/

.xk/ (slight abuse of notation) with xk D �D
k.2DC1/

x. Here we use the
fact that the correctability of site k.2D C 1/ only depends on a causal region of
radius D. The last step is to realize that Prp7

0
.x/ is a product measure due to the

uncorrelated Bernoulli process,

Prp7
0
.x/ D

Y
k

Prp7
0
.xk/ ; 4.115
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so that *
L=.2DC1/Y
kD0

1X3
k.2DC1/

+
D

L=.2DC1/Y
kD1

D
1X3

k.2DC1/

E
4.116

factorizes. Using translational invariance and our result Eq. (4.112), it follows the
final result

Result 4.1: Light cone constraint

P 3
dec �

D
1X3

i

E L
2DC1

�

"
1C

�
p7
0

1 � p7
0

�2DC1
#� L

2DC1

: 4.117

Note that this result is generic and we used only that the decoder (1) has only
access to the syndrome @x which is invariant under complementation of error
patterns and (2) the correction of site i only depends on nearby syndromes in the
neighborhood �Di x.

4.B.2 Scaling Behavior

Here we derive some scaling limits of Eq. (4.117). To this end, we assume
D D D.L/ to be a function of the linear size L of the code. There are three major
cases:

→ D D const. This describes a truly one-dimensional feedforward circuit of
finite depthD. We find in the thermodynamic limit

lim
L!1

P 3
dec � lim

L!1

"
1C

�
p7
0

1 � p7
0

�2DC1
#� L

2DC1

D

(
0 for 0 < p7

0 �
1
2
;

1 for p7
0 D 0 ;

4.118

i.e., there is no successful decoding possible for any finite microscopic error
rate p7

0 > 0.
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→ 2D C 1 � L� (� > 0). This describes a truly two-dimensional feedforward
circuit, possibly slowly growing in the second dimension if � � 0. We find in
the thermodynamic limit

lim
L!1

P 3
dec � lim

L!1

"
1C

�
p7
0

1 � p7
0

�L�#�L1��

D

8̂̂̂<̂
ˆ̂:
1 for 0 � p7

0 <
1
2
;

0 for p7
0 D

1
2
and � < 1 ;

1
2

for p7
0 D

1
2
and � D 1 ;

1 for p7
0 D

1
2
and � > 1 ;

4.119

i.e., except for the critical point p7
0 D

1
2
, there is no constraint on P 3

dec coming
from Eq. (4.117). At the critical point, the upper bounds depend on whether
the second dimension scales slower or faster than the length of the chain.
For faster scaling depth, there is no constraint, whereas for slower scaling
depth, non-trivial upper bounds arise. Note that P 3

dec �
1
2
follows for p7

0 D
1
2

since a completely mixing Bernoulli process destroys all encoded information
about the majority. P 3

dec <
1
2
arises whenever the decoder fails to get rid of all

syndromes. P 3
dec D

1
2

can be realized if the decoder succeeds in removing all
syndromes but still fails to recover the original state in 50% of the cases.

To prove the result for 0 � p7
0 <

1
2
, we write p7

0=.1 � p
7
0/ D q with

0 � q < 1. First, note that

lim
L!1

�
1C qL

���L1��

� lim
L!1

1�L1��

D 1 4.120

because of q � 0.

Furthermore it is �L� log q � logL for q < 1, � > 0 and L large enough.
This allows us to estimate

�
1C qL

��L
D

"
1C

�
1

e

��L� logq
#L

4.121a

�

"
1C

�
1

e

�logL
#L
D

�
1C

1

L

�L
4.121b

� C 4.121c

for some constantC > 0 and where we used that 1=e < 1 and limL!1 .1C 1=L/L D

e. With this result, we can find a lower bound as follows:

lim
L!1

�
1C qL

���L1��

� lim
L!1

1

C
1

L�

D 1 4.122
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for � > 0. In conclusion, we have shown limL!1

�
1C qL

���L1��

D 1 for
q < 1 and � > 0.

→ 2DC 1 � logL� (� > 0). This describes still a two-dimensional feedforward
circuit, but with an exponentially smaller second dimension. In a certain
sense, it interpolates between the one- and two-dimensional cases above.

Indeed,

lim
L!1

P 3
dec � lim

L!1

"
1C

�
p7
0

1 � p7
0

�� logL
#� L

� logL

D

(
1 for p7

0 � p
7
c ;

0 for p7
0 > p

7
c ;

4.123

where the critical microscopic error rate is

p7
c D

1

1C e1=�
: 4.124

To show this, we write�
1C q� logL�L

D

�
1C

1

L�� logq

�L
D

�
1C

1

L�

�L
4.125

with q D p7
0=.1 � p

7
0/ and � D �� log q. Using limx!0 log.1 C x/=x D

limx!0 1=.1C x/ D 1, we find

lim
L!1

log .1C L��/ =L��
D 1 4.126

for � > 0. Hence

lim
L!1

�
1C q� logL�� L

� logL

D lim
L!1

exp
�
�
L1��

� logL
� log .1C L��/ =L��

�
4.127a

D

(
0 for � < 1 ;

1 for � � 1 :
4.127b

The critical value �c D 1 corresponds to �� log qc D 1 , qc D e
�1=� and

therefore p7
c D 1=.1C e

1=�/.

Whereas constant depth allows for no correction if p7
0 > 0 and algebraically

growing D, in principle, imposes no restriction at all (except for p7
0 D

1
2

of course), a logarithmically growing depth could still be sufficient for low
enough error rates p7

0 � p
7
c <

1
2
.
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4.C Linear Eroders on Finite Chains

Regarding the eroder property of a finite chain, we have to relax the definition to
account for the finiteness of the system as there is no qualitative difference between
perturbation and background (both of which are finite). A possible modification
reads as follows:

Definition 4.3: Finite-size linear eroders

A cellular automaton on a finite chain L D f1; : : : ; Lg (with arbitrary boundary condi-
tions) is a finite-size linear eroder if there exist real constants 0 < a < 1 andm 2 RC

such that for any sizeL <1 and any finite perturbation of 0 (1) with diameter l � aL,
the unperturbed state 0 (1) is recovered at tdec � ml .

Here we focus on TLV. Clearly, a contiguous cluster of errors touching the
mirror is eventually eroded by the modified TLV rules if it is small enough (so
that no signal reaches the opposite boundary before dissolving). Since the majority
function is monotonic (changing an input bit 0! 1 never changes the output bit
from 1! 0), the evolution of TLV from a non-contiguous, finite cluster of errors
can be constructed from the evolution of a contiguous cluster of the same size (its
convex hull) by erasing errors in the spacetime diagram. This implies that TLV is
an eroder in the above sense.

We can make this statement more rigorous (see Figure 4.23): It is straightforward
to verify that a finite cluster I of diameter kIk D l (without loss of generality
contiguous, due to monotonicity) is eroded by TLV in a spacetime rectangle of
dimensions Œ.2RmC 1/ l� � .m l/ for appropriately chosen m 2 RC (for TLV it is
m D 1 and R D 4, see ⁂ Section 4.F). This holds also for TLV if I is separated
from the edges by more than ı.l/ � Rml sites since .2Rm C 1/l D l C 2ı.l/

guarantees that the cluster is eroded before the boundaries can have any effect, see
Figure 4.23 (1). Necessary for this situation is

.2RmC 1/l � L , l �
L

2RmC 1
: 4.128

If, on the other hand, I is closer than ı.l/ to one of the edges, we can no longer
guarantee that it can be eroded in the neighborhood given by ı.l/ due to possible
interactions with its mirror image. We define a padded interval I 0 � I of length
l � l 0 < l C ı.l/ D .Rm C 1/l that closes the gap between I and the critical
edge. Now we know that this interval is eroded in a spacetime box of dimensions
Œ.2RmC 1/ 2l 0� � .m 2l 0/ due to the mirror. In the “real” chain, this accounts for
an interval of length l 0 C ı.2l 0/ D .2RmC 1/l 0 adjacent to the corresponding edge.
If the latter does not make contact with the opposite edge, the original cluster I is
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B BB B

Mirrored clusterFree cluster
1

2

3

Figure 4.23 • Eroders on finite chains. Eroder property for a finite system with mirrored
boundary conditions. Errors in the cluster I are marked red. Without loss of generality, I can
be made contiguous by padding holes with additional errors (black). An explanation is given in
the text of⁂ Section 4.C.

guaranteed to be eroded, see Figure 4.23 (2). We have the sufficient condition

.2RmC 1/l 0 � L , l 0 �
L

2RmC 1
: 4.129

If we require instead

l C ı.l/ �
L

2RmC 1
, l �

L

.2RmC 1/.RmC 1/
; 4.130

this implies Eq. (4.129) for all critical lengths l 0 < l C ı.l/ and Eq. (4.128) trivially.
We conclude that with a � .2Rm C 1/�1.Rm C 1/�1 any cluster of diameter
l � aL is eroded in finite time (linear in l). For TLV we find141 a D 1=45 � 0:02.

Note that if the interval l 0 C ı.2l 0/ is larger than the system [Figure 4.23 (3)], it
is possible that the cluster relaxes into non-uniform fixed points or non-trivial cycles.
This is a consequence of the two mirrors which allow for the periodic reflection of
messages in this “CA cavity.”

141This is an extremely conservative lower bound; TLV allows for much larger values of a as
simulations suggest.
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4.D Fixed Points

In addition to the two uniform fixed points (which are stable due to the eroder
property), TLV-based automata can feature up to 4 unstable fixed points, depending
on the boundary conditions imposed. As shown rigorously in ⁂ Section 4.E, these
are no threat to the decoding capabilities because their occurrence in a Bernoulli
random process is exponentially suppressed. For the sake of completeness, we
discuss them in the following:

→ Infinite chain. The original TLV features six fixed points [327]: The
two uniform (stable) ones and, in addition, the four periodic (unstable)
configurations shown in Figure 4.24 (b).

→ Semi-infinite chain with mirrored boundary. A modified
���!
TLV with a single

mirrored boundary features 2 of the 4 unstable fixed points of the infinite
chain. Note that the first two patterns in Figure 4.24 (b) are not bond-inversion
symmetric and therefore cannot be interpreted as a valid configuration on the
semi-infinite chain. However, the latter two are bond-inversion symmetric
if the mirror is placed such that the first cell is even. By contrast, if the cell
next to the mirror is odd [lower two patterns in Figure 4.24 (c)], there are no
additional fixed points.

→ Finite chain with periodic boundaries. If TLV is placed on a closed ring of length
L 2 2N, potential fixed points can be used to construct periodic ones on
the infinite chain. Since there are only the four depicted in Figure 4.24 (b),
we have to check which of those remains invariant under periodic boundary
conditions. As illustrated in Figure 4.24 (d), if L is a multiple of 4, all four
fixed points in (b) can be transferred to the finite chain with PBCs. However,
if L … 4N, the two 4-periodic patterns are no longer invariant and only the
two 2-periodic patterns survive (compare the yellow patterns on the left with
the colored patterns on the right).

→ Finite chain and mirrored boundaries. If TLV is placed on a chain of length
L 2 2N with mirrored boundaries, we can infer from the semi-infinite case
in Figure 4.24 (c) that only if the first (left) cell is even and the last (right)
cell is odd, two additional fixed points survive. Otherwise the uniform
configurations are the only ones, Figure 4.24 (e). This is the modification
TLV we use throughout this chapter.
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Uniform �xed points

Competing �xed points on in�nite chains
evenodd

Competing �xed points for PBCs

Competing �xed points for MBCs

Competing �xed points on semi-in�nite chains with MBC

(a)

(b)

(c)

(d)

(e)

Figure 4.24 • Fixed points. (a)The uniform fixed points are always present and the only stable
ones (due to the eroder property). Competing (unstable) fixed points are possible but depend
on the boundary conditions: (b) Infinite chain (4 additional fixed points). (c) Semi-infinite
chain with mirrored boundary condition (2 additional fixed points if the first cell is even, none
otherwise). (d) Periodic boundary conditions (4 additional fixed points if L is a multiple of 4, 2
otherwise). (e)Mirrored boundary conditions (2 additional fixed points if the first cell is even
and the last is odd, none otherwise).
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None of the additional fixed points are relevant for the correction of Bernoulli
random patterns because the probability of their occurrence is exponentially
suppressed with L. This follows directly from the fact that there are no non-trivial
preimages of these fixed points, i.e., their attractors are trivial: The only way to end
up in one of them is that the noise gives rise to its pattern by chance. We checked
this for finite chains of TLV by solving the corresponding systems of Boolean
equations to determine all fixed points and their preimages.

4.E Sparse Errors and Correction Time

Here we prove a central statement of this chapter: The probability for a chain
of length L, ruled by TLV with MBC to be in a non-empty state x.t/ ¤ 0 after
t / L� time steps vanishes exponentially with L for arbitrary � > 0 if the initial
state is a Bernoulli random configuration with single-site error probability p7

0 < p
7
c

for some critical value 0 < p7
c �

1
2
.

For convenience, we reproduce the definitions from Subsection 4.4.2: Let
x � Z be an arbitrary subset (error pattern). A finite subset I � x is called
cluster of diameter kIk D maxfjx � yj j x; y 2 I g. If we fix an integer k > 0

(the sparseness parameter, to be chosen later), the territory Tk.I / is defined as the
interval of integers with distance at most kkIk from I . Two clusters I1 and I2
are called independent if at least one does not intersect the territory of the other,
i.e., I2 \ Tk.I1/ D ; or I1 \ Tk.I2/ D ; (or both); since I � Tk.I /, this implies
I1 \ I2 D ;. If there exists a partition of x into a family I D fIag of pairwise
independent clusters Ia, x D

S
a Ia, then x is called sparse. A cluster I � x with

Tk.I / \ x D I is called independent in x and we write I v x.
To state our first result, we need some additional terminology: First, I�l denotes

the family of clusters I 2 I with diameter kIk � l and x n I�l � x n
S
I2I�l

I is
the subset of sites for given x that remains after cleaning all clusters of diameter
at most l . Second, a (infinite) mirrored Bernoulli random configuration x � Z is
defined by the single-site probability Pr.xi D 1/ D p7

0 for sites i > 0 and the mirror
constraint xi D x1�i .

We can now state our main result (an adaptation of Theorem 4 in Ref. [351] for
mirrored Bernoulli random configurations) which is also given in Subsection 4.4.2:

Proposition 4.1: Cluster decomposition on infinite chains

Consider infinite mirrored Bernoulli random configurations x with single-site probabil-
ity p7

0. Let k 2 N be a given sparseness parameter.
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Then, for each instance x, there exists a constructive family Ix of pairwise independent
clusters142such that the probability of a site i 2 Z to be in x and remain uncovered by
independent clusters of diameter l or less (write Ix

�l
) is bounded from above by

Pr
�
i 2 x n Ix

�l

�
� ˛l

ˇ

4.131

for ˇ D ln.2/= ln.4k C 3/ (and therefore 0 < ˇ < 1) and ˛ D .2k/.4k C 3/
q
p7
0. If

we define the critical value

Qp7
c � Œ.2k/.4k C 3/�

�2 ; 4.132

for p7
0 < Qp

7
c it is ˛ < 1 and Eq. (4.131) becomes an exponentially decaying upper bound.

Proof. Let x � Z be an arbitrary mirrored configuration. Fix the sparseness
parameter k 2 N. We proceed stepwise:

1 Construction of Ix. Ignoring the inversion symmetry of x, we construct the
family of clusters Ix recursively: Set Ix

0 � ; and I<l �
S
0�k<l Ix

k
. Define

Ix
l
(l > 0) as the family of all independent clusters I v .x n Ix

<l
/ of diameter

kIk D l; i.e., I consists of errors in x that do not belong to already defined
smaller clusters and I is independent in x after deleting all these smaller
clusters. The construction of Ix

l
is well-defined because two different clusters

I1 and I2 of diameter l cannot intersect due to Tk.Ia/ \ .x n Ix
<l
/ D Ia,

a D 1; 2 (note that a cluster Ia can be thought of as an interval of length l
with “holes” away from the edges). Then we define Ix �

S
l Ix
l
.

2 Independence of Ix. We show that distinct clusters in Ix are pairwise
independent by construction.

Since being independent is an asymmetric relation between two clusters of
unequal diameter (if kI1k � kI2k, then I2\Tk.I1/ D ; ) I1\Tk.I2/ D ;

and it is enough to check for I1 \ Tk.I2/ D ;), it is sufficient to check that
(1) all equal-sized clusters in Ix

l
are pairwise independent and (2) they do not

intersect the territories of the smaller clusters in Ix
<l
.

(1) follows immediately from the well-defined construction of Ix
l

(see
previous paragraph).

(2) follows because I 2 Ix
l
belongs to x n Ix

<l 0
for all l 0 < l and hence

I 0 \ I D ; for all I 0 2 Ix
<l
. Since I 0 was chosen independent from all

other elements in x n Ix
<l 0

, it follows that Tk.I 0/\ I D ;, i.e., I 0 and I
are independent.

142It is not necessarily x D
S
I2Ix I , i.e., x does not have to be sparse.
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3 Completeness of Ix. Here we show that the constructed Ix is complete in the
sense that

i 2 x n Ix
�l ) 8Iv.xnIx

<l
/;kIk�l W i … I 4.133

which we will use in step 4 below.

Eq. (4.133) is a bit subtle because only

i 2 x n Ix
�l ) 8Iv.xnIx

<l
/;kIkDl W i … I 4.134

follows trivially from the construction of Ix
l
(see step 1 above). To prove

Eq. (4.133), we show that 8Iv.xnIx
<l
/ W kIk � l , i.e., our construction never

recreates clusters of smaller diameter143:

Assume 9I�v.xnIx
<l
/ W kI

�k D l� < l . It must have been Tk.I �/ \ .x n

Ix
<l�
/ � I � because otherwise our prescription demands I � 2 Ix

l�
and we

had I � \ .x n Ix
<l
/ D ;. Since Tk.I �/ \ .x n Ix

<l
/ D I � by assumption,

there must have been a cluster QI 2 Ix
Ql
with l� � Ql < l and Tk.I �/ \ QI ¤ ;.

But because k QIk � kI �k, this implies Tk. QI / \ I � ¤ ;. Since I � ª QI and
I � � x n Ix

<Ql
, this contradicts the independence of QI in x n Ix

<Ql
and we are

done.

4 Explanation trees. Clearly .x n Ix
�l
/ � .x n Ix

<l
/, i.e., fewer and fewer errors

in x survive with increasing l because on each level additional clusters are
deleted from x. This monotonicity holds also for all monotonic sequences
.ln/ 2 NN with ln > ln�1 for all n 2 N: .x n Ix

�ln
/ � .x n Ix

�ln�1
/. In the

end, we aim to upper bound the probability of an arbitrary site i 2 Z to
belong to x n Ix

�l
. We first prove this for x n Ix

�ln
instead, where .ln/ will be

specified below, and generalize our result (with some tradeoff ) to ln D n in
the next (and last) step 5.

For the sake of simplicity, let ln be an odd integer for n � 1 and define l0 � 0
in the following. To bound the probability for i 2 x n Ix

�ln
from above, we

start with a trivially true, sufficient condition: For an arbitrary configuration y

with i 2 y, we have (n � 1)

8j2y W ji � j j �
ln

2
_ ji � j j >

�
k C

1

2

�
ln

) 9I�vy;kI�k�ln W i 2 I
� 4.135

(I � includes all j 2 y with ji � j j � ln
2
; the strict “>” becomes important

only for even ln).

143In principle, this could happen because we are successively deleting clusters.
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The (equivalent) contraposition reads

8Ivy;kIk�ln W i … I

) 9j�2y W
ln

2
< ji � j �

j �

�
k C

1

2

�
ln : 4.136

If we now set y D x n Ix
�ln�1

D x n Ix
<ln

and use Eq. (4.133) with l D ln
(this is the crucial step that exploits the structure of Ix), we end up with the
sequence of implications

i 2 x n Ix
�ln

) 8Iv.xnIx
<ln

/;kIk�ln W i … I 4.137a

) 9j�2xnIx
�ln�1

W
ln

2
< ji � j �

j �

�
k C

1

2

�
ln 4.137b

) 9j�2xnIx
�ln�1

W
ln

2
< ji � j �

j �

�
k C

1

2

�
ln 4.137c

where we used x n Ix
�ln�1

� x n Ix
�ln�1

(since ln�1 � ln � 1) in the last line;
this is illustrated in Figure 4.25 (a). In combination with i 2 x n Ix

�ln
) i 2

x n Ix
�ln�1

, Eq. (4.137c) gives rise to a binary tree of depth n (with sites as
vertices) that explains the existence of i 2 x n Ix

�ln
at its root if the sites at all

its leafs belong to x n Ix
�0 D x; it is aptly called explanation tree (ET) [352].

An example is shown in Figure 4.25 (b).

By counting possible ETs and calculating their probability of being realized
based on the (mirrored) Bernoulli distribution on their leafs, it is possible to
upper bound the probability for i 2 x n Ix

�ln
because the existence of at least

one realized explanation tree is a necessary condition. Counting explanation
trees and computing their probability (by counting their leafs) is complicated
by the fact that for arbitrary ln > ln�1 > ln�2 > � � � > l0 the allowed ranges
for j � on different levels n intersect. Therefore the number of leafs is not
fixed and only bounded from above by 2n (reducing the number of leafs can
be achieved by “reusing” a site to explain more than one other site). This
complicates the derivation of the probability for the existence of a realized
explanation tree considerably. If, by contrast, .ln/ is chosen so that different
subtrees cannot intersect, the number of leafs for any ET is fixed at 2n. This
can be guaranteed if on each level 1 � m � n the distance between any site i
and its explanatory site j � is larger than the maximum width of the subtrees
emanating from each of them. Formally,

lm

2
� 2

�
k C

1

2

� m�1X
kD1

lk 4.138
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„explains“

Explanation trees on semi-in�nite chains

Construction of explanation trees(a)

(b)

Figure 4.25 • Explanation trees. (a) Illustration of the implication in Eq. (4.137b): An element
i 2 x n Ix

�l
requires the existence of another element j � 2 x n Ix

�l�1
in a specific range given

by k and l . (b) Explanation tree on the semi-infinite chain with mirrored boundary condition.
Cells in state 0 (1) are marked white (red). The probability to realize the shown explanation
tree by a mirrored Bernoulli process with rate p D p7

0 is labeled by Pr. Note that the shown
error pattern (red) fails to realize this explanation tree (arrows) since some explanatory sites are
empty. Details are given in step 4 of the proof of Proposition 4.1 in⁂ Section 4.E.

where a factor of 2 is necessary because two subtrees (one at i and one at j �)
grow independently. Equating both sides yields the tightest solution via the
recursion

lmC1 D4

�
k C

1

2

� mX
kD1

lk 4.139a

D4

�
k C

1

2

�
lm C lm D .4k C 3/lm 4.139b

which is solved by
lm D .4k C 3/

m�1 4.140

with l1 D 1.

LetNn denote the number of possible ETs of depth n (i.e., the number of ETs
that can explain i 2 x n Ix

�ln
, all of which are realized in the completely filled

state x D 1). It holds recursively that Nm � 2klmN 2
m�1 for all 1 � m � n

144.

144For non-overlapping trees, this is an equality.
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One factor, Nm�1, counts the possible subtrees attached to i while another
factor, 2klmNm�1, counts the possible positions for the new root j � [2klm,
recall Eq. (4.137c)] and the possible subtrees attached to this root (Nm�1).
Clearly

logNm � a .m � 1/C b C 2 logNm�1 4.141

with a D log.4k C 3/ > 0 and b D log.2k/ > 0 for our specific choice
of lm in Eq. (4.140). An upper bound on logNm can be found by solving
the corresponding equality which corresponds to the affine recursion of two
sequences �

gm
fm

�
D

�
2 a

0 1

�
�

�
gm�1

fm�1

�
C

�
b

1

�
4.142

with gm D logNm and fm D m and initial conditions g0 D 0 D f0 (N0 D 1).
Diagonalization of the matrix yields�

�m
'm

�
D

�
2 0

0 1

�
�

�
�m�1

'm�1

�
C

�
aC b
p
1C a2

�
4.143

with �m D afmCgm and 'm D
p
1C a2fm. Now we can use that recursions

of the form Xn D AXn�1 C B are generically solved by

Xn D X0A
n
C B

1 � An

1 � A
for A ¤ 1 4.144

and Xn D X0 C B n for A D 1. With the initial conditions, we find
immediately 'm D

p
1C a2m and �m D .2m � 1/.a C b/. Transforming

�m and 'm back into gm and fm yields the result fm D m and

gm D .2
m
� 1/.aC b/ � am 4.145

which is the solution of the recursive equality in Eq. (4.141). It is automatically
an upper bound, thus

Nm � exp Œ.2m � 1/.aC b/ � am� � exp Œ2m.aC b/� 4.146

and we find Nm � Œ.2k/.4k C 3/�2
m

with eaCb D .2k/.4k C 3/.

Now comes the only step where we use the mirror symmetry of the Bernoulli
configuration x: The probability for all 2n leafs of a particular ET to be
occupied is .p7

0/
2n

for sites that are independent Bernoulli random variables.
The mirror symmetry, however, introduces perfect correlations between
pairs of sites. Since all leafs are distinct sites (on Z) there are at least
2n=2 independent Bernoulli random variables associated to an ET (the worst
case being a completely mirror-symmetric explanation tree). Therefore the

probability for an arbitrary ET to be realized is bounded from above by
q
p7
0

2n
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(as compared to .p7
0/
2n

in systems without mirror symmetry). This reflects
the fact that mirrors “enlarge” error clusters artificially by their mirror images.
This is illustrated in Figure 4.25 (b).

In conclusion, we find an upper bound

Pr
�
i 2 x n Ix

�ln

�
� Nn

q
p7
0

2n

�

�
.2k/.4k C 3/

q
p7
0

�2n

4.147

for an arbitrary site i 2 Z to be in x but uncovered by clusters up to diameter
ln of the constructive family Ix. This follows from the subadditivity of
probability measures and the statement that i 2 x n Ix

�ln
if there is at least

one of Nn possible ETs realized by x.

If we define .2k/.4k C 3/
p
Qp7
c D 1 , Qp7

c � Œ.2k/.4k C 3/��2, it follows

with ˛ � .2k/.4k C 3/
q
p7
0

Pr
�
i 2 x n Ix

�ln

�
� ˛2

n

: 4.148

For on-site probabilities p7
0 < Qp

7
c , ˛ < 1, this leads to a double-exponential

decay of the probability to remain uncovered on level ln.

5 Upper bound. Above we showed that Pr
�
i 2 x n Ix

�ln

�
� ˛2

n

with ln D

.4k C 3/n�1. The double-exponential decay of the probability with n and
the exponential growth of the level ln suggest that there is an exponentially
decaying upper bound with l 145.

Indeed, if we use the monotonicity

Pr
�
i 2 x n Ix

�l

�
� Pr

�
i 2 x n Ix

�l�1

�
; 4.149

it follows that
Pr
�
i 2 x n Ix

�l

�
� ˛l

ˇ

4.150

if we require ˛l
ˇ
n

Š
D ˛2

n�1

for ˇ > 0, because for l 2 Œln�1; ln� we know that

Pr
�
i 2 x n Ix

�l

�
� ˛2

n�1

and ˛2
n�1

� ˛l
ˇ

4.151

per construction (because ˛ < 1).

This determines ˇ via .4k C 3/ˇ.n�1/ Š
D 2n�1, i.e.,

ˇ D
ln.2/

ln.4k C 3/
< 1 : 4.152

This concludes the proof. �
145Recall that our choice of ln was technically motivated: it is easier to count the leafs of ETs if their

branches do not intersect.
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Note that for p7
0 > Qp

7
c the upper bounds become trivial which still allows for an

exponential decay of Pr
�
i 2 x n Ix

�l

�
. Therefore we conclude that there is a critical

value p7
c with 0 < Qp7

c � p
7
c such that Pr

�
i 2 x n Ix

�l

�
vanishes exponentially for

l ! 1 if p7
0 < p7

c . Simulations suggest that p7
c D

1
2
so that Qp7

c � 1 is a rather
weak lower bound on the true critical value, see ⁂ Section 4.F.

Eventually we want to employ Proposition 4.1 to derive an upper bound for
the probability of errors to survive the first t steps of TLV on a finite chain with
mirrored boundaries. To this end, we first need a consequence of Proposition 4.1:

Lemma 4.2: Cleaning of semi-infinite chains

Consider a semi-infinite chain on L D N governed by
���!
TLVL with initial configurations

x.0/ � L drawn from a Bernoulli distribution with parameter p7
0. Let J � L be an

arbitrary finite interval on the chain.
Then the probability of x.t/ D

���!
TLVt

L
.x.0// to be non-empty on J is bounded from

above by

Pr .x.t/ \ J ¤ ;/ � .2tRC jJj/ exp
�
� bt=mcˇ

�
4.153

with  D � log.˛/ ( > 0 for p7
0 < Qp

7
c ), and 0 < ˇ < 1 as in Proposition 4.1. Here the

sparseness parameter is given by k D 2Rm D 8 wherem D 1 andR D 4 are the eroder
parameter and the radius of TLV, respectively.

Proof. Because
���!
TLV is an eroder, there is a constant m such that any cluster of

errors I on a background of zeros is erased for t � mkIk. During this process,
signals emitted beyond the boundaries of I can at most travel RmkIk sites where
R is the radius of the local rules (or the propagation speed of information). If we set
k D 2Rm as sparseness parameter, an error cluster I v x.0/ that is independent
in x.0/, is safely erased after at most mkIk time steps without interfering with its
environment. This follows because signals from I and x.0/ n I can meet only after
traversing the void territory Tk.I / n I which takes at least kkIk=.2R/ D mkIk

time steps—but the last trace of I is erased after mkIk time steps. Therefore the
evolution of x.t/ for t � mkIk is completely independent of the configuration
within the boundaries of I (this motivates the notion of independent clusters). See
Figure 4.14 in Subsection 4.4.2 for an illustration.

If x.0/ is a mirrored Bernoulli random configuration with parameter p7
0 < Qp

7
c

with k set as above, we know from Proposition 4.1 that the probability of any site
i 2 N to be uncovered by clusters in Ix.0/ of diameter at most l is bounded from
above by

Pr
�
i 2 x.0/ n I

x.0/

�l

�
� ˛l

ˇ

4.154
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with 0 < ˛; ˇ < 1. By subadditivity, an analogous bound holds for any finite subset
J � N,

Pr
�
J \

�
x.0/ n I

x.0/

�l

�
¤ ;

�
� jJ j˛l

ˇ

: 4.155

Let Ur.J/ be the interval of all sites within distance r � 0 from J and set
J D UtR.J/ for time t � 0. Then

Pr
�
UtR.J/ \

�
x.0/ n I

x.0/

�l

�
¤ ;

�
� .2tRC jJj/ ˛l

ˇ

: 4.156

This holds for all l 2 N, especially for l D bt=mc (b�c is the floor function):

Pr
�
UtR.J/ \

�
x.0/ n I

x.0/

�bt=mc

�
¤ ;

�
� .2tRC jJj/ ˛bt=mcˇ

4.157

If we exploit that no signal from outside UtR.J/ can reach J up to time t and that
all errors that belong to independent clusters of diameter l � bt=mc � t=m are
erased at time t , we can conclude that

UtR.J/ \
�
x.0/ n I

x.0/

�bt=mc

�
D ;

) x.t/ \ J D ; 4.158

and consequently

Pr .x.t/ \ J ¤ ;/ � Pr
�
UtR.J/ \

�
x.0/ n I

x.0/

�bt=mc

�
¤ ;

�
: 4.159

Therefore we find

Pr .x.t/ \ J ¤ ;/ � .2tRC jJj/ ˛bt=mcˇ

: 4.160

If we define  D � log.˛/ (with  > 0 for p7
0 < Qp

7
c ), it follows

Pr .x.t/ \ J ¤ ;/ � .2tRC jJj/ exp
�
� bt=mcˇ

�
4.161

and we are done. �

370



SPARSE ERRORS AND CORRECTION TIME

With Lemma 4.2, we are ready to tackle the case of finite chains:

Lemma 4.3: Cleaning of finite chains

Consider a finite chain of lengthL on L D f1; : : : ; Lg governed by TLV with mirrored
boundaries and initial configurations x.0/ � L drawn from a Bernoulli distribution with
parameter p7

0.
Then the probability of x.t/ D TLV

t

L.x.0// to be non-empty is bounded from above by

Pr .x.t/ ¤ ;/ � .4R ftg C L/ exp
�
� bftg=mcˇ

�
4.162

with ftg � minft; t�Lg and t�L D bL=2Rc. The parameters are the same as in Proposi-
tion 4.1 and Lemma 4.2.

Proof. Let x0 D x.0/ � Z \ Œ1; L� be an arbitrary configuration of length L and
y0 D y.0/ � Z \ ŒLC 1;1/ another arbitrary, half-infinite configuration. Denote
by x0y0 D x0 [ y0 the extension of the finite chain x0 by y0 to a half-infinite

chain. If we write x.t/ D TLV
t

Œ1;L�.x0/ and
�!
x .t/y.t/ D

���!
TLVtN.x0y0/, it is clear

that (L even)

xi.t/ D
�!x i.t/ for 1 � i �

L

2
; 0 � t � t�L 4.163

with t�L D bL=2Rc due to the finite speed R of information transfer. To put it in a
nutshell: the leftmost half of a finite chain evolves exactly like the corresponding
section of a half-infinite chain adjacent to the mirrored boundary for t � t�L. This
is obvious because these sites cannot be influenced by the existence/non-existence
of the rightmost boundary as long as it does not enter their past light cone (which
happens at t � L=2R or later). If we combine this with the fact that, for Bernoulli
distributed initial states, x0 and y0 are uncorrelated, it follows immediately that all

results on
���!
TLV hold also for TLV as long as only times t � t�L and sites in Œ1; L=2�

are concerned.
In particular, Lemma 4.2 tells us that

Pr .x.t/ \ Œ1; L=2� ¤ ;/ � .2tRC L=2/ exp
�
� bt=mcˇ

�
4.164

for t � t�L. On account of the reflection symmetry of TLV, all statements hold also
for the rightmost half ŒL=2C 1;L� with a mirrored boundary to the right (then with

a reflected, half-infinite set of rules
 ���
TLV). Therefore subadditivity yields

Pr .x.t/ ¤ ;/ � .4tRC L/ exp
�
� bt=mcˇ

�
4.165

for t � t�L.
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Here comes the crucial step: Since the chain is finite and x D ; is a fixed point
of TLV, it is x.t�L/ D ; ) x.t/ D ; for all t � t�L. It follows that

Pr .x.t/ ¤ ;/ � Pr
�
x.t�L/ ¤ ;

�
4.166

for t � t�L. This leads to

Pr .x.t/ ¤ ;/ � .4R ftg C L/ exp
�
� bftg=mcˇ

�
4.167

with ftg � minft; t�Lg for all t � 0. �

Note that the lower-bounded decay of the probability is to be expected for a
finite system: Due to the finite state space, there is an upper bound for t (depending
on L) such that the system either (1) relaxed to the clean state, (2) to a non-clean
fixed point, or (3) entered a non-trivial cycle. In the first case, it is clean forever,
whereas in the latter two cases, it can never become clean. Therefore the probability
to be not clean cannot decrease arbitrarily and must be bounded from below for
fixed L and t !1.

However, if we are interested in the thermodynamic limit, L!1, we can ask
how long one has to wait for TLV to clean the system almost surely. This leads us
to our main result:

Corollary 4.1: Scaling of cleaning times

Consider a finite chain of lengthL on L D f1; : : : ; Lg governed by TLV with mirrored
boundaries and initial configurations x.0/ � L drawn from a Bernoulli distribution with
parameter p7

0.
For � 2 R with 0 < � < 1, the probability of x.t/ D TLV

t

L.x.0// to be non-empty
after

tmax.L/ � bL
�
c 4.168

time steps is bounded from above by

Pr .x.tmax/ ¤ ;/ � .4RC 1/L exp
�
� bL�=mcˇ

�
4.169

forL � LR with 0 < LR <1 aR-dependent constant. For p7
0 < Qp

7
c it follows that

Pr .x.tmax.L// ¤ ;/! 0 for L!1 4.170

exponentially fast. The parameters are the same as in Proposition 4.1 and Lemma 4.2.

Proof. Use the result of Lemma 4.3 with t D tmax.L/ < t
�
L for L > LR where LR is

a finite R-dependent constant. Then

ftmax.L/g D minftmax.L/; t
�
Lg D tmax.L/ 4.171
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and we have

Pr .x.tmax/ ¤ ;/ � .4R tmax C L/ exp
�
� btmax=mc

ˇ
�
: 4.172

If we use that bbL�c=mc D bL�=mc (for m 2 N), this yields the final result

Pr .x.tmax/ ¤ ;/

� .4R bL�c C L/ exp
�
� bL�=mcˇ

�
4.173a

� .4RC 1/L exp
�
� bL�=mcˇ

�
4.173b

which vanishes for L!1 for �; ˇ > 0 and  > 0, i.e., if p7
0 < Qp

7
c . �

Remarks

Note that one could get rid of the remaining floor function via

bL�=mc � L�=m � 1 � .1 � "/L�=m 4.174

where the last lower bound requires

"L�=m � 1 4.175

which holds for all " > 0 if L > L" is large enough. Then, for L > maxfLR; L"g,
one finds

Pr .x.tmax/ ¤ ;/ � .4RC 1/L exp
�
�Œ.1 � "/=m�ˇ L�ˇ

�
4.176

which clearly vanishes exponentially fast for L!1 if 0 < " < 1 and ; �; ˇ > 0.
As a concluding remark, we note that the growth of tmax with L can be much

slower, namely (poly-)logarithmic,

tmax.L/ D b.lnL/�c 4.177

for large enough � > 0. Indeed, the probability still vanishes for L!1 (but now
subexponentially),

Pr .x.tmax/ ¤ ;/ . L exp
h
� Q .lnL/�ˇ

i
4.178a

D L1� Q= ln.L/1��ˇ

�! 0 for L!1 4.178b

if �ˇ > 1 , � > ˇ�1 D ln.4k C 3/= ln.2/ and for some Q > 0.
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4.F Parameters

TLV is a linear eroder, i.e., clusters on a background of zeros/ones with diameter l
are erased after at most ml time steps, where m 2 RC is a rule-specific constant:

tdec � mkIk 4.179

for arbitrary (independent) clusters I . To determine m, it is easiest to simulate
the evolution of uniform clusters of ones on a background of zeros for increasing
diameter l . The monotonicity of TLV (holes in the initial cluster entail holes in the
spacetime diagram) makes the inferred upper bound valid for arbitrary clusters.

In Figure 4.26 we show results for 0 � l � 25. The exact results feature
a 4-periodic structure which is related to the rules of radius R D 4. The most
stringent upper bound reads

tdec �
3

4
� l C 1 4.180

which does not exactly fit our needs of linearity (due to the affine offset, it can be
recast into a purely linear upper bound for large enough l with slightly increased
prefactor 3

4
C "). For the sake of simplicity, we choose

tdec � 1 � l ; 4.181

such that the eroder parameter becomes m D 1. Figure 4.26 confirms that this
upper bound on tdec is valid for all l � 0.

With Lemma 4.2, Proposition 4.1 and the radius R D 4 we find the (non-
optimal) sparseness parameter k D 2Rm D 8, and the lower bound on p7

c evaluates
to

Qp7
c D

1

Œ.2k/.4k C 3/�2
� 3:2 � 10�6 : 4.182

Note that this result does not convey any information on the true critical value p7
c

(below which successful decoding is possible) but that it is larger than the above
value and therefore non-zero. In fact, simulations suggest that p7

c D
1
2
and Qp7

c is
only a weak lower bound146.

146This explains why there is no much sense in optimizingm slightly fromm D 1 tom D 3
4
C ".

374



PARAMETERS

0 5 10 15 20 25
0

5

10

15

20

Cluster diameter

Exact results

D
ec

od
in

g 
tim

e

Figure 4.26 • Eroder parameter. Time tdec needed by TLV to erase a uniform cluster of
diameter l completely. The red bullets mark exact results from simulations, featuring a 4-periodic
structure that derives from the rules of radiusR D 4. The most stringent upper bound is given
by tdec � 3

4
� l C 1 (dashed line) but we use tdec � 1 � l (solid line) for the sake of simplicity (i.e.,

m D 1). These bounds are also valid for non-uniform clusters due to the monotonicity of TLV.
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5
Miscellaneous

“No-one knows the reason for all this,
but it is probably quantum.”

—Terry Pratchett
in Pyramids

This chapter is a safe haven for all projects that do not deserve their own
chapter but are still interesting enough to be discussed somewhere. Some—mostly
conceptual—are possible starting points for future projects, some are closely related
to projects of the main part, and some are contributions to publications that were
not covered so far.
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IN A NUTSHELL

There is no common theme to the projects covered in this chapter:

→ In Section 5.1 we present an extended and pedagogically inclined discussion
of the theoretical foundations of Ref. [4] about the“Experimental realization of
a symmetry protected topological phase of interacting bosons with Rydberg atoms.”

We start from the fermionic Su–Schrieffer–Heeger (SSH) chain (known
from Chapter 3) and then shift to its bosonic counterpart, i.e., a dimer-
ized chain of interacting hard-core bosons (in the experiment realized as
Rydberg excitations). We discuss the bosonic counterpart of the sublattice
symmetry—which protects the topological phase of the fermionic model—and
demonstrate that the former allows for perturbations that are forbidden for
fermions (a counterintuitive feature that has been verified experimentally).
We then review the general classification of interacting, symmetry-protected
topological (SPT) phases in one dimension. An application to the bosonic
SSH chain demonstrates that the experimentally realized ground state belongs
to an SPT phase protected by particle number conservation and the bosonic
counterpart of the sublattice symmetry. In the last part of this section, we
explore the environment of the bosonic SSH chain in “theory space.” In
particular, we discuss its relation to the famous Haldane phase of the spin-1
antiferromagnetic Heisenberg chain.

→ In Section 5.2 we study a proposal by Kane et al. [357] for the construction
of fractional quantum Hall states from coupled quantum wires of interacting
fermions or bosons (which form a Luttinger liquid). The idea is to place a
two-dimensional array of parallel quantum wires in a perpendicular magnetic
field and add interactions between close-by wires to describe the strongly
correlated quantum phases of fractional quantum Hall fluids in an anisotropic
limit. In this limit, Luttinger liquid theory and the renormalization group
provide powerful tools to gain insights that are hard to come by in the natural
but isotropic setting of the fractional quantum Hall effect.

Here we focus on the bosonic fractional quantum Hall state with half-filled
lowest Landau level (that is, a Laughlin state). We calculate the inter-
wire density-density interactions needed to render a particular “Laughlin
interaction” between the wires relevant. Here, “relevant” refers to the
property of a perturbation to dominate the long-wavelength physics of a
theory (“to flow to strong coupling” in renormalization group parlance). It
is this particular perturbation that opens a gap in the bulk of the 2D array
and drives the system into the Laughlin state. Unfortunately, there are
other perturbations that compete with the “Laughlin interaction” and, if
relevant, drive the system into other phases that we are not interested in.
Using bosonization (a method to parametrize fermionic or bosonic quantum
fields by bosonic phase- and density fields) in combination with first-order
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renormalization group arguments, we show that there are parameter regimes
where the “Laughlin interaction” dominates over its competitors and drives
the system into the fractional quantum Hall regime.

→ Section 5.3 is a spin-off from Chapter 3 where we utilized the symmetry-
protected Su–Schrieffer–Heeger chain in its topological phase for the robust
transfer of quantum information. We compared this approach with a “non-
topological” competing arrangement that allows for quantum state transfer
as well. This comparison prompts questions about the comparability of such
setups: How can we, formally and objectively, quantify the performance of
setups with respect to a given task?

To this end, we conceptualize a (still unpolished) framework to formalize
the notions of tasks, solutions thereof, and the performance of the latter with
respect to the former. We elaborate on classical mechanics and systems
described by Hamiltonian functions to work out the details of our rather
abstract concept. The basic idea is inspired by LEGO® Mindstorms: Assume
two contestants are given a copy of the same base plate. The plates are
empty except for a brick in one corner and a box in the opposite corner;
this is the initial state. The target state is the same plate with the brick in
the box. The state transformation between initial and target state formalizes
the notion of a task. In a next step, each contestant is given a collection
of LEGO® bricks (possibly including actuators, sensors and the like). Both
contestants construct setups (solutions), using only the provided parts, with
the goal to solve the given task. The winner of this contest solves the task with
as few parts as possible. In this scenario, it is evident that a fair and sensible
comparison of the solutions is only possible if both contestants are given the
same parts. In Section 5.3 we formalize this insight, which eventually sheds
light on the claims of Chapter 3 regarding the superiority of the topological
SSH chain for quantum state transfer.

→ Section 5.4 is the prequel to Chapter 4 where we studied the performance of
a strictly local cellular automaton as decoder (or stabilizer) of the topological
quantum code that arises as degenerate ground state space of the famous
Majorana chain.

This project was preceded by a similar approach based on artificial neural
networks (ANN) as decoders (instead of a cellular automaton): After a brief
introduction to ANNs, specifically convolutional neural networks, we present
and discuss the construction of such a network to decode the Majorana
chain quantum code. The proposed network is rather unconventional as it
does without long-range connections between neurons (known as “dense
layers” in the ANN community). The motivation for this restriction
stems from scalability issues that typically arise when physical systems host
infinite-dimensional subsystems (entities that interact instantaneously with
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arbitrarily remote counterparts). It is exactly this demand for locality that
eventually led to the replacement of neural networks by cellular automata
(which are the natural framework to describe the local dynamics of scalable
systems). Nevertheless, we demonstrate in Section 5.4 that our ANN
performs reasonably well as quantum decoder. We even skim two dimensions
and train another ANN to mimic the (classical) self-correction of the
Ising model (known in physics as spontaneous breaking of the Z2 spin-flip
symmetry).

→ Section 5.5 is the product of pure curiosity and essentially unrelated to
the main part of this thesis: We start with a brief survey of quantum
stabilizer codes, a particularly well-understood class of quantum codes that
can be described in terms of abelian subgroups of the group generated by
Pauli matrices. We then motivate the concept of “self-correcting quantum
memories” which do not require active control to prevent the accumulation
of errors (just like hard drives store classical information even when powered
down). Recent results suggest that if there are (topological) stabilizer codes
with these properties, they break translational invariance.

Motivated by this insight, we present a scheme to design two-dimensional
stabilizer codes (defined on a square lattice) that are aperiodic by construction.
We derive them from Wang tiles, a mathematical concept that allows for
provably aperiodic tessellations of the Euclidean plane by square tiles with
colored edges. The placement of these tiles is restricted by their edge colors
(similar to dominoes where numbers of adjacent pieces must match up). By
means of a particular set of Wang tiles (named Culik tiles), we demonstrate
the construction of the corresponding stabilizer group which is generated by
13 types of local operators. Note that we make no claims about the structure
of the codespace that comes with these “Wang stabilizers,” nor do we study
the geometry of its logical operators.

→ Section 5.6 is, in some sense, a sequel to Section 5.5. The reason is that
geometry and size of logical operators that act on a codespace determine
the robustness of the encoded qubits in the presence of uncorrelated, local
noise. For stabilizer groups with an extensive codespace dimension—and the
aperiodic “Wang stabilizers” of Section 5.5 are of this type—the evaluation of
these geometric properties is a computationally non-trivial task. This makes
it hard to decide whether such codes host qubits that are delocalized and
potentially protected against local decoherence.

In Section 5.6, we discuss this problem first for the quantum case, which,
in turn, motivates a classical counterpart that inherits the key complexity of
the problem but lacks the intricacies of the quantum version. The problem
reads as follows: Consider a classical Hamiltonian on a regular lattice with
discrete degrees of freedom on the sites (think of an Ising-like Hamiltonian).
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Assume that this Hamiltonian has a symmetry group that is extensive, i.e.,
grows with the system size (a feature of gauge theories, for instance). The
question is whether this symmetry group can be generated by local generators
only. We formalize this problem and discuss possible approaches to assess its
computational complexity.
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5.1 Symmetry-Protected Topological
Phase of Interacting Bosons with
Rydberg Atoms

This is a brief survey of the theoretical basement that Ref. [4] is built upon. To
draw profit from this section, it is advisable to be familiar with the message of this
paper. Then, the following subsections can be read as an extended supplement on
the theory with pedagogical emphasis:

In Subsection 5.1.1 we discuss the symmetries of the fermionic Su–Schrieffer–
Heeger (SSH) model first in a many-body picture and then on the single-particle
level. In Subsection 5.1.2 we use a Jordan-Wigner transformation to translate
both the SSH Hamiltonian and its many-body symmetries into the bosonic spin
language; we discuss consequences of the non-local nature of this transformation.
In Subsection 5.1.3 we review the classification of interacting, symmetry-protected
topological phases of one-dimensional spin systems with focus on its application to
an SSH chain filled with hard-core bosons. Finally, in Subsection 5.1.4 we explore
the environment of this model in “theory space”; in particular, we show how it
smoothly connects to the Haldane phase.

5.1.1 Symmetries of the SSHModel

Here we discuss relevant symmetries of the SSH Hamiltonian [126]. We start
with their many-body representation on the fermionic Fock space and subsequently
derive their action on the first-quantized single-particle Hamiltonian to establish a
connection with the Altland-Zirnbauer classification of random matrices [90–93]
and the related classification of symmetry-protected topological phases of free
fermions [21, 22, 95, 97].

Fermionic Many-Body Theory

The SSH Hamiltonian (Subsection 1.2.1) with fermions ai and bi , i D 1; : : : ; L, is
given by

H D J1

LX
iD1

.a
�
i bi C b

�
i ai/C J2

L0X
iD1

.b
�
i aiC1 C a

�
iC1bi/ ; 5.1

where L0 D L � 1 for open (OBC) and L0 D L for periodic boundary conditions
(PBC). At jJ1j D jJ2j the spectrum of (5.1) is gapless whereas for jJ1j ? jJ2j the
ground state of H is in a gapped phase. For OBC, jJ1j < jJ2j is a topological
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phase with exponentially degenerate fermionic edge modes near the boundaries (for
J1 D 0, these are just Qcl D a1 and Qcr D bL). For PBC, the distinction between
topological and trivial phase becomes arbitrary as it depends on the definition of
the elementary cell, namely .ai ; bi/ or .bi ; aiC1/. The transition from PBC to
OBC requires a definite choice since cutting is only allowed between elementary
cells. The Hamiltonian (5.1) acts naturally on the (many-body) fermionic Fock
space H

f
2L spanned by states jna1; n

b
1; : : :i � .a

�
1/
na

1 .b
�
1/
nb

1 � � � j0i. Then, H
f
2L forms

a finite-dimensional representation of the fermion algebra fxi ; y
�
i g D ıij ıxy for

x D a; b.
The SSH Hamiltonian features several symmetries which, according to Wigner’s

theorem, are represented as unitary or antiunitary operators on H
f
2L that commute

with the Hamiltonian. These are…

→ Particle number conservation: The abstract symmetry group is U.1/, a Lie
group with one-dimensional Lie algebra u.1/ D R. The representation of the
latter is defined by its generator on H

f
2L, namely the particle number operator

N D
P
i;x x

�
i xi which commutes with H . Exponentiation then yields the

representation of U.1/ on H
f
2L:

R� � e
i�N with

�
R�;H

�
D 0 for all � 2 Œ0; 2�/ : 5.2

→ Time-reversal symmetry: The abstract symmetry group is Z2 D f1; T g

with T 2 D 1, sometimes147 written as ZT2 . Its generator T is represented
antiunitarily on H

f
2L, in our case as complex conjugation K, with T xiT �1 D

xi for x D a; b and T iT �1 D �i . Then, H commutes with T as both
couplings J1 and J2 are real. As an operator on H

f
2L, we have

T D K with ŒT;H� D 0 : 5.3

→ Particle-hole symmetry: The abstract symmetry group is again Z2 D f1; C g

with C 2 D 1. It is represented unitarily on H
f
2L, in our case by CaiC�1 D a

�
i

and CbiC�1 D �b
�
i and CiC�1 D i . It is easy to check that CHC�1 D H

since there are only couplings between the two sublattices a and b. As an
operator on H

f
2L, we have

C D
Y
i

.a
�
i � ai/.b

�
i C bi/ with ŒC;H� D 0 : 5.4

Note: It is .x�i ˙ xi/xi.xi ˙ x
�
i / D ˙x

�
i and .x�i ˙ xi/.xi ˙ x

�
i / D 1. As the

total number of sites is even, there is an additional minus coming from the
exchange of xi with the other 2L � 1 factors in C .

147See the notes on twisted group cohomology in Subsection 5.1.3.
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→ Sublattice- or chiral symmetry: The abstract symmetry group is Z2 D

f1; Sg with S2 D 1. Its generator S is represented antiunitarily on H
f
2L,

in our case by SaiS�1 D a
�
i and SbiS

�1 D �b
�
i and SiS�1 D �i .

The sublattice symmetry is the product of time-reversal and particle-hole
symmetry, S D T � C ; since H already features both of them, it inherits S
automatically. As an operator on H

f
2L, we have

S D
Y
i

.a
�
i � ai/.b

�
i C bi/ ıK with ŒS;H� D 0 : 5.5

Note: From the perspective of H , the symmetries C and S seem to be
equivalent. This is not true once the hopping amplitudes become complex.
Indeed, if we define

QH D

LX
iD1

.J1 a
�
i bi C J

�
1 b

�
i ai/C

L0X
iD1

.J2 b
�
i aiC1 C J

�
2 a

�
iC1bi/ ; 5.6

it is straightforward to show that ŒT; QH� ¤ 0 and ŒC; QH� ¤ 0 but still
ŒS; QH� D 0. This demonstrates two points: First, as complex hopping
amplitudes are “natural” perturbations of H , sublattice symmetry is the
“natural” symmetry of the SSH chain (C becomes a symmetry only with the
aid of time-reversal symmetry T ). Second, we see that although S D T � C
is the “combination” of two symmetries, it is possible that both of them
are broken whereas their product is still conserved because their violations
“cancel” each other.

Fermionic Single-Particle Theory

As (5.1) is quadratic in fermion modes, we can write

H D J1

LX
iD1

.a
�
i bi C b

�
i ai/C J2

L0X
iD1

.b
�
i aiC1 C a

�
iC1bi/ 5.7a

D

LX
i;jD1

X
x;y2fa;bg

x
�
i
OH.i;x/;.j;y/ yj 5.7b

D ‰� OH‰ 5.7c

with pseudo-spinor ‰ D .a1; b1; : : : ; aL; bL/
T and 2L � 2L matrix OH . Since

H � D H , we have OH � D OH and there is a unitary U such that U OHU � is diagonal.
Then Q‰ � U‰ still satisfies the fermionic algebra and one can easily diagonalize the
many-body HamiltonianH in terms of its fermionic eigenmodes Q‰; this property
makes H a free theory. Its many-body ground state j�i is then given by the state
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in H
f
2L where all eigenmodes in Q‰ with negative eigenenergy are occupied, i.e.,

j�i describes the Fermi sea of the filled lower band. In the case of OBC, there
is always a unique ground state in finite systems (for J1 ¤ 0)—but there are four
degenerate ground states in the thermodynamic limit L!1 if jJ1j < jJ2j because
the eigenenergies of the two fermionic edge modes become exponentially degenerate
with growing chain length.

The matrix OH is commonly called single-particle Hamiltonian for the following
reason: SinceH is particle number conserving, we can restrict the operatorH to
the 2L-dimensional subspace

H
.1/
2L D span

n
x
�
i j0i

ˇ̌̌
i D 1; : : : ; LI x D a; b

o
� H

f
2L ; 5.8

i.e., the subspace with a single particle. If we choose the basis x�i j0i, the action of
H is described by the matrix

OH
.1/

.i;x/;.j;y/
� h0jxiHy

�
j j0i 5.9a

D

X
k;lIu;v

h0jxiu
�

k
OH.k;u/;.l;v/ vly

�
j j0i 5.9b

D OH.i;x/;.j;y/ : 5.9c

Thus the matrix OH—which encodes the complete structure of the many-body
HamiltonianH—is identical to its representation in the single-particle subspace if
the basis is chosen appropriately.

We can now ask how the symmetries T , C , and S , defined on H
f
2L, act on OH .

This is a non-trivial question as their action is defined on the Fock space operators
xi and OH encodes H via these operators. Note that the same question for H is
trivial: all three operators commute withH . The calculations are straightforward:

→ Time-reversal symmetry:

We find

THT �1
D

X
i;j Ix;y

x
�
i
OH �
.i;x/;.j;y/ yj

Š
D H 5.10a

, T OHT �1
D OH �

D OH ; 5.10b

where T D K is the representation of T acting on the single-particle
Hamiltonian OH . In our case, the reality of OH is equivalent to time-reversal
symmetry. More generally, time-reversal can be represented as T D UTK

with an arbitrary unitary UT ; then the condition reads UT OH �U
�
T D

OH (in
our case UT D 1).
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→ Particle-hole symmetry:
We find

CHC�1
D

X
i;j Ix;y

xi .�1/
ıxb OH.i;x/;.j;y/.�1/

ıyb y
�
j 5.11a

D

X
i;j Ix;y

y
�
j Œ�.�1/

ıxb OH.i;x/;.j;y/.�1/
ıyb � xi

C

X
i;j Ix;y

.�1/ıxb OH.i;x/;.j;y/.�1/
ıyb ıij ıxy

5.11b

D

X
i;j Ix;y

x
�
i

Š
D OH.i;x/;.j;y/‚ …„ ƒ

Œ�.�1/ıyb OH.j;y/;.i;x/.�1/
ıxb � yj

CTr
h
OH
i

„ ƒ‚ …
Š

D0

5.11c

Š
D H : 5.11d

The first condition reads

�.�1/ıyb OH.j;y/;.i;x/.�1/
ıxb D OH.i;x/;.j;y/ 5.12a

, UC OH
TU

�
C D �

OH ; 5.12b

with unitary

UC D 1L�L ˝

�
1 0

0 �1

�
: 5.13

Because OH � D OH , OHT D OH �, we can write

C OHC �1
D UC OH

�U
�
C D �

OH ; 5.14

in analogy with time-reversal T . Note that C is a unitary operator on the
Fock space but C is realized as antiunitary operation on the single-particle
Hamiltonian OH . Furthermore, C is not an ordinary symmetry of OH as it
anticommutes with the matrix OH .

The second constraint TrŒ OH� D 0 is not independent but follows from (5.14):
The spectrum of UC OHTU

�
C and OH is the same if UC is unitary (and thus

invertible); then (5.14) requires the spectra of OH and � OH to be the same.
But this implies that the sum of all eigenvalues vanishes, i.e., TrŒ OH� D 0.
Physically, TrŒ OH� D 0 excludes chemical potentials—which is to be expected
for a symmetry which maps particles to holes and vice versa.

Again, the form of UC is special to our representation of particle-hole
symmetry. More generally, particle-hole symmetry can be represented
as C D UCK with an arbitrary unitary UC ; the condition still reads
UC OH

�U
�
C D �

OH .
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→ Sublattice- or chiral symmetry:
We find

SHS�1
D

X
i;j Ix;y

xi .�1/
ıxb OH�

.i;x/;.j;y/.�1/
ıyb y

�
j 5.15a

D

X
i;j Ix;y

y
�
j Œ�.�1/

ıxb OH�
.i;x/;.j;y/.�1/

ıyb � xi

C

X
i;j Ix;y

.�1/ıxb OH�
.i;x/;.j;y/.�1/

ıyb ıij ıxy

5.15b

D

X
i;j Ix;y

x
�
i

Š
D OH.i;x/;.j;y/‚ …„ ƒ

Œ�.�1/ıyb OH�
.j;y/;.i;x/.�1/

ıxb � yj

CTr
h
OH�
i

„ ƒ‚ …
Š

D0

5.15c

Š
D H : 5.15d

The first condition reads

�.�1/ıyb OH �
.j;y/;.i;x/.�1/

ıxb D OH.i;x/;.j;y/ 5.16a

, US OH
�U

�
S D �

OH ; 5.16b

with the same unitary as before, US D UC . Because OH � D OH , we can write

S OHS �1
D US OHU

�
S D �

OH ; 5.17

in analogy with time-reversal T and particle-hole symmetry C . Note that
S is an antiunitary operator on the Fock space but S is realized as unitary
operation on the single-particle Hamiltonian OH . Just as C , S is not an
ordinary symmetry of OH as it anticommutes with the matrix OH . As before,
the second constraint TrŒ OH �� D 0 follows from (5.17) and forbids chemical
potentials.

In general, S follows from S D T �C directly: S D T �C D UTK �UCK D

UTU
�
C D US . In our case U �

C D UC and UT D 1 such that US D UC .

In conclusion, we found three properties of the matrix OH that relate to true
many-body symmetries on the Fock space. In prosaic form, these properties read as
follows:

→ The matrix OH is called time-reversal symmetric if it is unitarily equivalent to its
complex conjugate: UT OH �U

�
T D

OH .

→ The matrix OH is called particle-hole symmetric if it is unitarily equivalent to its
negative complex conjugate: UC OH �U

�
C D �

OH .
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→ The matrix OH is called sublattice symmetric if it is unitarily equivalent to its
negative: US OHU

�
S D �

OH .

The unitary matrices UX for X D T;C; S define the representation of the
corresponding symmetries on the single-particle level and are therefore system
dependent. For example, on spinful fermions, time-reversal is usually represented
by T D i�yK, i.e., with UT D i�y .

Remarks

1 The three properties (“symmetries”) listed above should be interpreted
as abstract features of classes of (Hermitian) matrices OH [90–93]. If a
given combination of these properties is realized by specified unitaries UX ,
this allows for the definition of topological invariants (in translationally
invariant systems) and thereby symmetry-protected topological phases of free
fermions [21, 22, 95, 97].

2 On this level, all statements are essentially statements about a class of
matrices OH . Therefore all consequences (such as protected edge modes)
are inherited by any physical system that makes use of these matrices to
encode its dynamics. In our case, we use OH to encode a fermionic many-
body HamiltonianH which then features protected (fermionic) edge modes.
But we could also use the same OH to describe the classical Hamiltonian
of a network of spring-coupled harmonic oscillators [204], radio-frequency
circuits [214], photonic waveguides [213], etc. All these systems can host
topological features inherited by OH ; there is nothing quantum about it [199].

3 Above we mentioned the alternative time-reversal representation T D i�yK.
It has the characteristic feature that T 2

D �1. By contrast, for the SSH chain
we have T D 1K with T 2

D 1. This list is exhaustive in the sense that one
can show T 2

D UTU
�
T D ˙1. The same is true for particle-hole symmetry:

C 2
D UCU

�
C D ˙1. By contrast, sublattice symmetry always squares to one:

S 2
D C1. In conclusion, there are three possibilities for time-reversal: (1) it

is not present, (2) it is present and squares toC1, (3) it is present and squares
to �1; one writes T D 0;˙1 for short. Particle-hole symmetry comes with
the same three possibilities (C D 0;˙1). In total, this makes 9 different
symmetry classes that a matrix OH can belong to. Because S D T � C , the
presence/absence of sublattice symmetry is determined whenever either T
or C (or both) are present. But there is the special case when both T and
C are not present. Then, as demonstrated above, their product can still
be a symmetry and OH can feature the sublattice property; this gives one
additional class (S D 1). Thus, in total there are 10 different symmetry
classes of random matrices OH [90] which correspond to the exhaustive list
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of 10 symmetry classes of free fermion Hamiltonians H described by OH .
This is known as the tenfold way [97]. We refer the reader to Ref. [85] for a
pedagogical introduction.

4 For our specific case of the SSH chain, we find

T 2
D UTU

�
T D C1 ) T D C1 ; 5.18a

C 2
D UCU

�
C D C1 ) C D C1 ; 5.18b

and sublattice symmetry is present, S D 1. Thus the SSH chain, as given
in (5.1), belongs to the class .T; C; S/ D .C1;C1; 1/ which is labeled BDI
(the label has mathematical origin but is not important to us). This is true
but actually too restrictive (and not necessary to protect the topological
phase of the SSH chain). Above we already demonstrated that complex
hopping amplitudes immediately destroy both particle-hole and time-reversal
symmetry but keep the sublattice symmetry intact. Such a perturbed
Hamiltonian no longer belongs to BDI but to AIII characterized by .T; C; S/ D
.0; 0; 1/ (which features topological phases in one dimension, see [97]). This
can easily be verified numerically: Adding complex hopping does not gap out
the edge modes.

5 The matrix property US OHU
�
S D �

OH for a Hermitian matrix OH and a unitary
US has the following algebraic consequences: We already argued that this
implies a symmetric spectrum of OH around zero. For simplicity, assume
that the dimension of OH is even (in our case this is true since OH is a
2L � 2L-matrix). Then, the symmetry of the spectrum implies that there is a
unitary matrix U such that

U OHU � D

�
D 0

0 �D

�
5.19

with diagonal L � L-matrixD. Now apply the following (unitary) Hadamard
transformM :

MU OHU �M �
D

1
p
2

�
1 1

1 �1

�
�

�
D 0

0 �D

�
�
1
p
2

�
1 1

1 �1

�
D

�
0 D

D 0

�
: 5.20

If we interpret OH as quadratic fermion theory, this argument tells us that
if there is a unitary US such that US OHU

�
S D �

OH , there exists a basis
of fermionic modes (not necessarily the “physical” modes) in which the
couplings/hoppings are described by an off-diagonal block-matrix. But this
is the defining property of bipartite hopping: There is a subset/sublattice
of modes that does not couple within itself but only to a complementary
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subset/sublattice of modes. This explains why the property US OHU
�
S D �

OH

always implies a sublattice structure of couplings and motivates the term
sublattice symmetry. In the case of the SSH Hamiltonian (5.1), this sublattice
structure is already revealed on the level of physical modes ai and bi . Note
that the decisive feature of the sublattice property is the symmetry of the
spectrum and not whether in a particular basis the coupling structure is
bipartite. The symmetry of the spectrum only guarantees that there exists a
basis in which the couplings are bipartite.

6 We started our discussion with four many-body symmetries, namely T , C ,
S , and particle number conservation R� . When deriving the action on the
single-particle Hamiltonian, we silently dropped the latter. Why? The answer
is simple: A quadratic Hamiltonian like (5.7) without superconductivity (i.e.,
pairing) is always number-conserving. For such Hamiltonians,R�HR�1

� D H

does not impose any constraint on the matrix OH . To put it differently: OH
parametrizes the family of number-conserving, non-interacting many-body
Hamiltonians H . The symmetry R� is “built into” this parametrization
and cannot be violated without altering the family of Hamiltonians. Since
the tenfold way is only concerned with the classification of matrices OH ,
many-body symmetries that do not impose restrictions on these matrices are
of no interest148.

5.1.2 Jordan-Wigner Transformation

We are now interested in the bosonic counterpart of the SSH Hamiltonian (5.1).
To this end, we apply the Jordan-Wigner transformation � [358]. The latter can
be seen as a representation of the (abstract) fermion algebra fxi ; y

�
j g D ıij ıxy on

the 22L-dimensional space H b
2L �

N2L
iD1 C2

i . Recall that the fermionic Fock space
H
f
2L (generated from the vacuum j0i) is a different 22L-dimensional representation

of the same algebra [359]. From a mathematical perspective, both representations
are isomorphic and therefore equivalent. The difference is an interpretational one:
The operator algebra on the Fock space is naturally generated by the fermion modes
ai and bi . By contrast, the operator algebra on H b

2L is conveniently given by Pauli
matrices �˛i with ˛ D x; y; ´ acting on the i th tensor factor C2

i . The subsystem C2
i

can either be interpreted as a spin-1
2
degree of freedom (d.o.f.) or a hard-core boson

(for which one would relabel the Pauli algebra as bi D ��
i and b�i D �C

i etc.). In
the following, we adopt the “spin picture” as operations with/on spins are more
intuitive (see the side note on hard-core bosons below).

148The tenfold way actually includes superconductivity via an extended parametrization in an
artificially doubled mode space (called Nambu space); then, fermion parity takes the role of R� as
symmetry that is tacitly assumed.
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We define the Jordan-Wigner transformation as follows:

�.aj � a
�
j / D

2j�2Y
kD1

�´
k
� .i�

y
2j�1/ ; �.bj � b

�
j / D

2j�1Y
kD1

�´
k
� .i�

y
2j / ; 5.21a

�.aj C a
�
j / D

2j�2Y
kD1

�´
k
� .�x2j�1/ ; �.bj C b

�
j / D

2j�1Y
kD1

�´
k
� .�x2j / : 5.21b

Note that we got rid of the a/b sublattice labels in favor of indices i D 1; : : : ; 2L.
The above definition is equivalent to

�.aj / D

2j�2Y
kD1

�´
k
� �C

2j�1 ; �.bj / D

2j�1Y
kD1

�´
k
� �C

2j ; 5.22a

�.a
�
j / D

2j�2Y
kD1

�´
k
� ��
2j�1 ; �.b

�
j / D

2j�1Y
kD1

�´
k
� ��
2j : 5.22b

It is now easy to check thatn
�.xi/; �.y

�
j /
o
D ıij ıxy and

n
�.x

.�/
i /; �.y

.�/
j /

o
D 0 ; 5.23

so that � indeed serves as a representation of the fermion algebra on H b
2L. We stress

that � is a non-local mapping in the sense that a “local” fermion ai is mapped to
an operator with extensive support on H b

2L in terms of Pauli matrices (depending
on the site i). This is due to the string operators

Q
k �

´
k
which are necessary to

implement the anticommutation of fermions that are “far apart.”

Transformation of the SSHHamiltonian

If we apply � to the SSH Hamiltonian (5.1), �.H/, we find

J1

LX
iD1

Œ�.a
�
i /�.bi /C �.b

�
i /�.ai /�

CJ2

L�1X
iD1

Œ�.b
�
i /�.aiC1/C �.a

�
iC1/�.bi /�

5.24a

D J1

LX
iD1

.��
2i�1�

C
2i C �

�
2i�

C
2i�1/C J2

L�1X
iD1

.��
2i�

C
2iC1 C �

�
2iC1�

C
2i / 5.24b

D
J1

2

LX
iD1

.�x2i�1�
x
2i C �

y
2i�1�

y
2i /C

J2

2

L�1X
iD1

.�x2i�
x
2iC1 C �

y
2i�

y
2iC1/ 5.24c
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which is a dimerized spin-exchange model (also known as XY model). How this
connects to the commonly studied isotropic spin chains is explained in Subsec-
tion 5.1.4. Note that here we allow only OBC (L0 D L � 1) because the non-local
Jordan-Wigner string makes �.H/ a non-local spin Hamiltonian for PBC. The
Hamiltonian (5.24b) is the idealization of what is realized experimentally in Ref. [4]
if the two Rydberg levels are identified with the two spin states jli (and if long-range
hopping is ignored).

Transformation of the Symmetries

Just like the Hamiltonian, we can translate its (many-body) symmetries with � into
the bosonic spin world of H b

2L. Since � is an algebra isomorphism, the commutation
relations will survive and the Jordan-Wigner transformed operators will again be
symmetries of the Hamiltonian �.H/. Indeed:

→ Particle number conservation: We find the representation

�.R�/ D e
i��.N/

D exp
�
i�
X

i

1 � �´i
2

�
5.25

of U.1/ on H b
2L with Œ�.R�/; �.H/� D 0 for all � 2 Œ0; 2�/. In particular,

for � D � we find the parity symmetry

�.R�/ D exp
�
i�
X

i

1 � �´i
2

�
/

Y
i
�´i � Z 5.26

where we used e�i �
2
�´

D �i�´.

→ Particle-hole symmetry: We can directly apply (5.21) and find

�.C / D

LY
jD1

�.a
�
j � aj /�.b

�
j C bj / 5.27a

/

LY
jD1

242j�2Y
kD1

�´
k
� .i�

y
2j�1/

2j�1Y
kD1

�´
k
� .�x2j /

35 5.27b

D

LY
jD1

h
.i�

y
2j�1/�

´
2j�1 � .�

x
2j /
i

5.27c

D

LY
jD1

h
.��x2j�1/ � .�

x
2j /
i

5.27d

/

2LY
jD1

�xj � X 5.27e
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with Œ�.C /; �.H/� D 0. Note that we ignore global phase factors and in the
third line the Jordan-Wigner strings canceled up to a single term �´2j�1.

The effect of X is nothing but a global spin-flip j"i $ j#i. Since we can
interpret the spin states j"i/j#i as empty/occupied by a hard-core boson, the
operator X converts particles into holes and vice versa. This makes sense as
we started from an operator which describes a particle-hole transformation.

→ Time-reversal symmetry: We note that the matrices �.xi/ and �.x
�
i / are

real (because �´ and �˙ are) so that K�.xi/K D �.xi/ for x D a; b.
Therefore

�.T / D K with Œ�.T /; �.H/� D 0 : 5.28

→ Sublattice- or chiral symmetry: The sublattice symmetry is given as S D
T � C so that

�.S/ D �.T / � �.C / D K ıX D X ıK 5.29

and Œ�.S/; �.H/� D 0 follows immediately.

The transformation of both the Hamiltonian and its symmetries is completely
rigorous and, from the perspective of a mathematician, “trivial” as the Jordan-
Wigner transformation is an isomorphism between two representations of the same
algebra. For every operator O that acts on the Fock space H

f
2L, there is a bosonic

counterpart �.O/ that acts on the Hilbert space H b
2L. Since the commutation rela-

tions are preserved by �, a local perturbation O that violates/preserves a symmetry
S has a bosonic counterpart �.O/ that violates/preserves the symmetry �.S/.

Example

To understand why “the sublattice symmetry is no longer needed” for the bosonic
version of the SSH chain implemented in Ref. [4], it is important to realize that
there is no mathematical difference between the two pictures (� is an isomorphism!).
What changes is our interpretation of operators as description of real-world processes.
Let us illustrate this with an example:

The hopping of a fermion between sites a1 and a2 is described on the Fock
space H

f
2L simply by

Fermion hopping D a�1a2 C a
�
2a1 � Of ; 5.30

whereas the hopping of a spin excitation/hard-core boson is described on H b
2L by

Spin-exchange D ��
1 �

C
3 C �

�
3 �

C
1 � Ob : 5.31
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Since the Jordan-Wigner transformation is nothing but a dictionary between
two representations of the same thing, we can translate both operations into their
respective counterparts using (5.22):

�.Of / D �.a
�
1a2 C a

�
2a1/

D �´2 .�
�
1 �

C
3 C �

�
3 �

C
1 / ¤ Ob ; 5.32a

��1.Ob/ D ��1.��
1 �

C
3 C �

�
3 �

C
1 /

D .1 � 2b
�
1b1/ .a

�
1a2 C a

�
2a1/ ¤ Of : 5.32b

[The last equation follows from �.1 � 2b
�
1b1/ D �´2 .] Thus �.Of / describes the

hopping of a fermion in the mathematical framework of spins on H b
2L whereas

��1.Ob/ describes the spin-exchange in the mathematical framework of fermions
on H

f
2L. Most importantly, Of and Ob are not mapped onto each other by the

isomorphism �: �.Of / ¤ Ob.
Let us now compare these two perturbations with respect to the sublattice

symmetry S and its bosonic counterpart �.S/ D XK. Again, since � is an
isomorphism, we can immediately conclude ŒO; S� D 0 , Œ�.O/; �.S/� D 0.
This allows us to reduce the computations for the four operators Of , Ob, �.Of /,
��1.Ob/ to two cases. We find:h

Ob; �.S/
i
D 0 ,

h
��1.Ob/; S

i
D 0 ; 5.33ah

Of ; S
i
¤ 0 ,

h
�.Of /; �.S/

i
¤ 0 : 5.33b

The first line follows because �.S/ D
Q
i �

x
i ı K clearly commutes with the

spin-exchange interaction Ob / .�x1 �
x
3 C �

y
1 �

y
3 /. The second line follows because

Of clearly violates the fermionic sublattice symmetry S , namely SOf S�1 D �Of .
Let us comment on the conclusions that we can and cannot draw from this example
at this point:

1 The fermionic perturbation Of D a
�
1a2C a

�
2a1 has two important properties:

First, it violates the many-body sublattice symmetry S , and second, it is
quadratic. The latter property allows us to treat it in the single-particle picture
discussed in Subsection 5.1.1. If we add this perturbation to the Hamiltonian,
Hpert D H COf can still be described by a perturbed single-particle matrix
OHpert. This matrix violates the sublattice property, US OHpertU

�
S ¤ �

OHpert,
and allows us to gap out the fermionic edge modes of the SSH chain. We
know that this really happens as it can be easily checked numerically. This
is not too surprising. However, a non-trivial conclusion is that perturbing
the bosonic Hamiltonian (5.24b) with the rather complicated and interacting
spin-exchange �.Of / D �´2 .�

�
1 �

C
3 C �

�
3 �

C
1 / must lift the degeneracy of the

bosonic edge modes, too!
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2 The bosonic perturbation Ob D ��
1 �

C
3 C ��

3 �
C
1 satisfies the symmetry

�.S/ D XK. But at this point we cannot conclude that this protects
anything because we do not yet have a native concept of symmetry-protected
topological phases for interacting spins/bosons (all we know is the tenfold
way for free fermions). However, we could hope that its fermionic counterpart
can be exploited to derive the protection from the tenfold way. As shown
above, it reads

��1.Ob/ D .1 � 2b
�
1b1/ .a

�
1a2 C a

�
2a1/ 5.34

and we can again think of a perturbed many-body HamiltonianH 0
pert D H C

��1.Ob/ which satisfies the many-body sublattice symmetry, ŒS;H 0
pert� D 0.

But here we have reached an impasse: Since H 0
pert is no longer a quadratic

fermionic Hamiltonian, there is no single-particle matrix OH 0
pert associated with

it. This implies that the tenfold way is not applicable and it might be possible
to deform H ! H.�/ from H.0/ D H to H.1/ D Htrivial (with a trivial
ground state) without closing the gap and without violating the sublattice
symmetry S . The tenfold way only guarantees that this is impossible as
long asH.�/ remains quadratic along this path; interactions can change this
picture completely (and it is known that this happens [107]).

Note: The fermionic operator ��1.Ob/ satisfies the sublattice/chiral symmetry
S although it couples sites of the same sublattice. This demonstrates that the
nature of symmetries changes when interactions are included. Recall that the
picture of sublattices and bipartite hopping enters the stage via matrices that
satisfy a particular property. But this characterization is (just like the tenfold
way) only applicable to non-interacting theories.

We conclude: In order to understand why the symmetry �.S/ D XK [in
combination with particle number conservation �.R�/] protects the edge modes
of (5.24b) against bosonic perturbations such as Ob, we cannot resort to the
framework of free fermion theories (the tenfold way) because the latter does not
cover interacting perturbations (which is what the simple hopping of hard-core
bosons Ob looks like in the fermionic picture). Now we have two choices:

1 We can work in the fermionic picture and ask for the effects of interactions on
the classification of the tenfold way.

2 We can work in the spin picture and ask for the classification of symmetry-
protected topological phases in one-dimensional spin systems.

Here we choose the second approach because it is the natural framework for the
system in Ref. [4]. With this we proceed in Subsection 5.1.3.
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Aside: Why Hard-Core Bosons Are Hard

As mentioned above, hard-core boson and spin-1
2

picture are mathematically
completely equivalent; this is just about names, labels and intuition. But intuition is
important when doing calculations, and the hard-core boson picture can provide the
wrong one. Here is an example why:

Consider two modes a and b which are (1) fermions, (2) bosons, (3) hard-core
bosons, formally149:

Fermions:
˚
x; x�

	
D 1 and

n
a.�/; b.�/

o
D 0 5.35a

Bosons:
�
x; x�

�
D 1 and

h
a.�/; b.�/

i
D 0 5.35b

Hard-core bosons:
˚
x; x�

	
D 1 and

h
a.�/; b.�/

i
D 0 5.35c

where x D a; b. Now assume that we unitarily transform the old modes a and b
into new ones. For instance:�

c

d

�
D

1
p
2

�
1 1

1 �1

�
„ ƒ‚ …

DU

�
a

b

�
: 5.36

As U is unitary, it is straightforward to show that both fermions and bosons survive
this transformation (i.e., the transformation is canonical):

Fermions:
˚
x; x�

	
D 1 and

n
c.�/; d .�/

o
D 0 5.37a

Bosons:
�
x; x�

�
D 1 and

h
c.�/; d .�/

i
D 0 5.37b

where now x D c; d . So for fermionic/bosonic a and b, the new modes c and d
are again fermionic/bosonic. This property lies hat the heart of the solvability of
non-interacting theories. More precisely, this is the reason why “quadratic”,
“non-interacting” for fermionic and bosonic theories.

However, for hard-core bosons we find˚
c; c�

	
D
1

2

˚
aC b; a� C b�

	
D 1C .a�b C b�a/ ¤ 1 5.38

where we used Œa; b�� D 0. Notice that c and d are no longer hard-core bosons
but satisfy a more complicated algebra. This makes quadratic theories of hard-core
bosons interacting in general and prevents their exact diagonalization in many cases.
Thus hard-core bosons differ on a fundamental level from fermions and bosons, and

149The careful readermightwonderwhether themissing fourth possibility in the suggestive list (5.35)
has any physical significance. Indeed it has: Particles that are on-site bosons but off-site fermions are
known as pseudofermions and play a role in 1D interacting systems [360].
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it is dangerous to think of the former as slight modifications of the latter. This is also
evident if one thinks of hard-core bosons as true bosons with an on-site repulsive
interaction that goes to infinity.

Why is the spin-1
2
picture more intuitive? From the “spin perspective,” we write

a D ��
a and b D ��

b
(and similarly for a� and b�), where �˙ D

1
2
.�x ˙ i�y/ and

�˛ are Pauli matrices. But now the new mode c reads

c D
1
p
2
.aC b/ D

1
p
2
.��
a C �

�
b / / †

�
c 5.39

where †c � � a C � b is the angular momentum operator of two coupled spin-1
2
.

However, we know that
1

2
˝
1

2
D 0˚ 1 ; 5.40

i.e., coupling two spins yields the irreducible representations of a singlet (0) and a
triplet (1). But these are one- and three-dimensional, respectively. It is intuitively
clear that †�

c cannot act irreducibly on a two-dimensional subspace—but this is
necessary to describe a hard-core constraint.

Thus the intrinsic complexity of hard-core bosons is much less obscure in spin
language than in an abstract, algebraic language. This is why I prefer the former
over the latter in this section.

5.1.3 Symmetry-Protected Topological Phases of
One-Dimensional Spin Systems

Remark 5.1:

Here we switch to the spin picture for good. As there are no fermions in this subsection, we
omit the Jordan-Wigner transformation � from all expressions.

We begin this subsection with a compilation of possible symmetry groups
of the bosonic SSH Hamiltonian (5.24b). Then we discuss the classification of
symmetry-protected topological phases of one-dimensional spin systems and apply
its machinery to the symmetry group generated by particle number conservation
and the sublattice/chiral symmetry. After a brief account on the emergence of edge
modes, we close with a note on twisted group cohomology—the formal framework
needed for the classification of antiunitary projective symmetry representations.
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Symmetry Groups of the Bosonic Theory

Since the unperturbed Hamiltonian (5.24b) features a variety of symmetries, we
can combine them to construct new symmetry groups. Let us first summarize the
symmetry groups from above:

Particle number: R� D exp
h
i�
P
i

1��´
i

2

i
! U.1/ 5.41a

Parity: Z D
Q
i �

´
i ! Z2 5.41b

Time-reversal: T D K ! ZT2 5.41c

Particle-hole: X D
Q
i �

x
i ! Z2 5.41d

Sublattice/Chiral: XK D
Q
i �

x
i ıK ! ZT2 5.41e

In the right column we list the abstract groups represented by these operators.
Note that ZT2 Š Z2; the superscript T only indicates that the group is represented
antiunitarily (see the side note on twisted group cohomology below).

We can combine these symmetries to construct new subgroups of the total
symmetry group of the SSH Hamiltonian (5.24b). Here we list only three important
ones:

→ We can combine parity and particle-hole symmetry to generate the symmetry
group

D2 D Z2 � Z2 D hX;Zi 5.42

with X2 D 1 D Z2 and XZ D ZX (because the number of sites is even).
More precisely: X and Z constitute a linear representation of D2 on H b

2L.
D2 is a dihedral group which is well-known to protect the degeneracy of
the spin-1 Haldane phase [65, 243]. D2 protects also the degeneracy of
our bosonic SSH model (5.24b). To get an intuition why D2 protects the
edge modes in our case (which for J1 D 0 are just two dangling spin-1

2
at

the ends of the chain) it is instructive to ask whether a magnetic field �˛i
for i 2 f1; 2Lg and ˛ D x; y; ´ can be switched on without violating the
symmetry. ForD2 the answer is clearly negative as either X or Z (or both)
anticommute with �˛i for any ˛. This shows that the most trivial way to gap
out the edge modes is prohibited byD2 (we did not show that this is true for
more complicated perturbations, though). The perturbations that are allowed
by this symmetry are products of Pauli matrices with an even or odd number
of all three types ˛ D x; y; ´. For instance, �x1 �

y
2 �

´
3 is allowed but �x1 �

´
3 is

forbidden.

→ We can multiply parity and the chiral symmetry to get the simple group

ZT2 D hZX ıKi with ZX ıK D
Y

j
.i�

y
j / ıK / YK 5.43
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that is antiunitarily represented on H b
2L. Note that indeed .YK/2 D 1 (as

the number of sites is even) whereas on a single site .i�yj K/
2 D �1. Since

i�
y
j K anticommutes with all three Pauli matrices �˛j , it is immediately clear

that this symmetry protects the edge modes against magnetic fields; as before,
the protection against generic perturbations is not evident. On spins, i�yj K
is interpreted as time-reversal symmetry which is well-known to protect the
Haldane phase (as an alternative to D2, see [65, 243]). The perturbations
that are allowed by this symmetry are products of an even number of Pauli
matrices (since i�yj K anticommutes with all Pauli matrices). For instance,
�x1 �

´
3 is allowed but �x1 �

y
2 �

´
3 is forbidden.

→ We can abandon time-reversal and particle-hole symmetry and require only
particle number conservation (which is a natural symmetry of the setup in [4])
and the chiral symmetry (which is the natural symmetry of the SSH chain in
the fermionic picture):

U.1/ � ZT2 D hR�; XKi � hZ;XKi � hYKi : 5.44

Note that this symmetry group includes YK and therefore protects the edge
modes if YK alone protects the edge modes (which it does due to the
connection between our model and the Haldane phase, see Subsection 5.1.4).

To argue why it is sensible to preserve XK but abandon time-reversal K and
particle-hole X , imagine that we perturb the hopping in (5.24b) with complex
amplitudes:

�C

i �
�
j C �

C

j �
�
i ! ei'�C

i �
�
j C e

�i'�C

j �
�
i 5.45a

/ cos.'/ .�xi �
x
j C �

y
i �

y
j /

C sin.'/ .�xi �
y
j � �

y
i �

x
j / :

5.45b

It is obvious that such a perturbation commutes with K and X separately only
for ' 2 f0; �g as the second term violates both time-reversal and particle-hole
symmetry. The chiral symmetry XK, however, is preserved for arbitrary '.

Note that a perturbation that violates a symmetry does not necessarily lift the
edge mode degeneracy as there can be other symmetries that protect it. For
instance, �x1 �

y
2 �

´
3 violates the symmetry generated by YK but does not destroy the

edge modes as it commutes with the generators of D2 (which protects the edge
modes, too). Vice versa, �x1 �

´
2 violates theD2 symmetry but does not gap out the

edge modes either because they are still protected by YK. However, the sum of
both perturbations (�x1 �

y
2 �

´
3 C �

x
1 �

´
2 ) violates both symmetries so that there is no

symmetry left to protect the edge modes. Numerics (DMRG150) supports these
claims, see Figure 5.1.

150Density Matrix Renormalization Group.
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Figure 5.1 • Perturbations (DMRG). In each panel we show the five lowest eigenenergies of
Hamiltonian (5.24b) with different perturbations t�ıH as a function of the number of dimersL;
we setJ1 D 0:25 andJ2 D 1:0. Bond dimension and number of sweeps used for the DMRG sim-
ulations areD D 200 andS D 10, respectively (we used ALPS for these simulations [251,361]).
The ground state energy is normalized to zero and does not show up in the logarithmic plots.
A four-fold ground state degeneracy is therefore indicated by three states with exponentially
vanishing energy. The red curves show results with weak perturbations t D 0:1; for compar-
ison, the gray curves show results without perturbations (t D 0). As consistency check, we
performed exact diagonalization (ED) for small systems by means of a completely independent
implementation with Mathematica (black crosses and circles). (a) ıH1 D

P
i �
´
2i�1 C

1
2
�´2i .

This is a magnetic field that breaks both D2 and ZT2 and immediately lifts the ground state
degeneracy. Note that we explicitly break the (bond-)inversion symmetry of the Hamiltonian
by alternating the strength of the perturbation between even and odd sites to exclude potential
degeneracies due to inversion symmetry (which we are not interested in as it is a non-local
symmetry). The perturbation ıH1 lifts the degeneracy already in first-order perturbation theory.
(b) ıH2 D

P
i �
x
2i�1�

y
2i�

´
2iC1 C

1
2
�x2iC2�

y
2iC1�

´
2i . This perturbation breaks ZT2 (and inver-

sion symmetry) but satisfiesD2. We clearly see that there is a four-fold ground state degeneracy
in the limit L!1. (c) ıH3 D

P
i �
x
2i�1�

´
2iC1 C

1
2
�x2iC2�

´
2i . This perturbation breaksD2

(and inversion symmetry) but satisfies ZT2 . Again there is a four-fold ground state degeneracy
in the limit L!1. (d) ıH4 D ıH2 C ıH3. This perturbation breaks bothD2 and ZT2 . The
simulation shows that the degeneracy is indeed lifted forL!1. This splitting is much weaker
than for ıH1 as it occurs in second-order perturbation theory.
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Classification of One-Dimensional SPT Phases

Here we sketch the idea underlying the classification of symmetry-protected
topological phases in one-dimensional interacting spin-systems. Eventually, this
leads to a rigorous argument why perturbations that respect one of the three
symmetry groups discussed above (D2, ZT2 , U.1/�ZT2 ) cannot lift the ground state
degeneracy and/or connect the topological ground state to the trivial one. The line
of arguments is highly non-trivial and asks for advanced mathematical concepts
which we will sketch briefly in the following.

Assume that we are given a Hilbert space H (here H b
2L) that describes our

system, a Hamiltonian H that acts as an operator on this Hilbert space, and an
abstract symmetry group G (sayD2 D Z2 � Z2). The latter is defined by abstract
elements (here D2 D f1; x; ´; x´g) and its multiplication table (here x2 D 1,
´2 D 1, x´ D ´x). We say that H features a G-symmetry if there is a (faithful)
linear representation � of G on H , i.e., an injective map from G to operators on H

with
�.g1/�.g2/ D �.g1g2/ for g1; g2 2 G 5.46

such that ŒH; �.g/� D 0 for all g 2 G. In physics, we are always interested in
(anti)unitary representations, i.e., �.g/ is a (anti)unitary operator on H (this follows
from Wigner’s theorem [362]). The representation � tells us how the abstract group
G is realized in the physical world via its action on states j‰i 2 H . In our example
of D2, we define first

�i.x/ � �
x
2i�1�

x
2i and �i.´/ � �

´
2i�1�

´
2i 5.47

for each site i D 1; : : : ; L (where L is the number of dimers). It is easy to check
that these are representations; in particular �i.x´/ D �i.x/�i.´/ D �i.´/�i.x/ D
�i.´x/ because one anticommutes two Pauli matrices. However, the �i.g/ are
no symmetries of H [recall (5.24b)] as they act locally and anticommute with
the adjacent coupling terms in H . Thus define a global product representation
�.g/ �

Q
i �i.g/. In our example, these are

�.x/ D
Y
i

�x2i�1�
x
2i D X and �.´/ D

Y
i

�´2i�1�
´
2i D Z 5.48

for which we know that ŒH;X� D 0 D ŒH;Z� so that these are true symmetries of
the Hamiltonian.

We will return to the concept of representations (5.46) in a minute but first we
need a few facts about gapped quantum systems in one dimension. For now, we let
go of edge states and consider periodic boundary conditions. This has no impact
on the concept of a (topological) phase because the latter is a bulk property; in
particular, edge states and a ground state degeneracy for open boundaries are only
side-effects of these bulk properties.
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So let us consider a one-dimensional, periodic system described by a Hamiltonian
H built from local interactions that has a unique ground state j�i and a spectral
gap � > 0 above the ground state energy E0 for L ! 1. Then it can be
shown [262, 363–365] that j�i is short-range entangled and can be written (or at least
approximated) as matrix-product state (MPS),

j�i D
X
fikg

Tr
�
Ai1Ai2 � � �Ai2L

�
ji1; i2; : : : ; i2Li : 5.49

Here, ik D 0; 1 encodes the two spin states at site k, jiki D j0=1i D j" = #i
denotes the local spin state, and the sum is over all 22L spin configurations. Ai for
i D 0; 1 are matrices of dimensionD (called bond dimension) so that the coefficient
of the basis state ji1; i2; : : : ; i2Li in j�i can be encoded as the trace of the matrix
product Ai1Ai2 � � �Ai2L (which motivates the name “matrix-product state”). One
can show that if the bond dimension grows exponentially with the system size L,
every state in H b

2L can be written as an MPS. Thus writing states as MPS is only a
neat way to encode them (more precisely: their amplitudes) in matrices Ai . The
crucial (an non-trivial) point is that for ground states of gapped one-dimensional
systems j�i this is possible with constant bond dimension D, i.e., D does not
grow with the system size L. This makes such ground states a rare species in the
exponentially large Hilbert space H b

2L and is directly related to their short-range
entanglement. Since MPS are specified by their matrices Ai , we write jAi in the
following to emphasize this relation.

In our case, it is beneficial to count the spins �2i�1 and �2i as one site with 4
different states (this is the elementary cell and makes both Hamiltonian and ground
state in the fully dimerized limit translational invariant). For J1 D 0 we have a
decoupled chain of inter-site Bell pairs j01i ˙ j10i as unique ground state (for
periodic boundary conditions); the sign depends on the sign of J2 and I will assume
J2 < 0 in the following so that j01i C j10i describes the ground state. Since the
Hamiltonian (5.24b) satisfies all of the above criteria, there should be a set of four
matrices Aij (i; j 2 f0; 1g) such that

jAi D

LO
iD1

.j0i2i j1i2iC1 C j1i2i j0i2iC1/ 5.50a

D

X
fikg

Tr
�
Ai1i2Ai3i4 � � �Ai2L�1i2L

�
ji1i2; : : : ; i2L�1i2Li ; 5.50b

where the bond dimension of the Aij is independent of L (we ignore normalizing
factors throughout this subsection to keep expressions simple). It is easy to check
that we can set

A
ij

˛ˇ
�
�
Aij
�
˛ˇ
D ıi˛�

x
jˇ 5.51
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where �x is the Pauli matrix. The indices ˛; ˇ 2 f0; 1g label the components of the
matrix Aij and we see that hereD D 2 is the bond dimension (for J2 > 0 we had�
Aij
�
˛ˇ
D ıi˛ i�

y

jˇ
to account for the negative sign of the Bell states).

In the other phase, for J2 D 0 (and J1 < 0), one finds almost the same ground
state—except that the Bell pairs are shifted by one spin,

jBi D

LO
iD1

.j0i2i�1j1i2i C j1i2i�1j0i2i/ 5.52a

D

X
fikg

Tr
�
B i1i2B i3i4 � � �B i2L�1i2L

�
ji1i2; : : : ; i2L�1i2Li : 5.52b

Here the structure of the matrices B ij is even simpler, namely

B
ij

˛ˇ
�
�
B ij

�
˛ˇ
D �xij ; 5.53

where ˛; ˇ D 0 are dummy indices, i.e., the matrix product simplifies to a product
of numbers and the bond dimension D D 1 is sufficient (which characterizes
product states).

Thus the ground states in both phases can be written as MPS with L-inde-
pendent bond dimension. Away from the perfectly dimerized points (J1 ¤ 0

and J2 ¤ 0) and the phase transition (jJ1j ¤ jJ2j), this remains true with more
complicated matrices and larger bond dimensions.

So far, we completely ignored the role played by symmetries in this framework.
Let us assume that the Hamiltonian H satisfies all conditions from above and,
in addition, features a symmetry G with linear representation �. Because of
ŒH; �.g/� D 0 for g 2 G and due to the uniqueness of the ground state j�i, it
follows that the latter is invariant under the action of the symmetry up to a phase,

�.g/j�i D ˛.g/j�i with j˛.g/j D 1 : 5.54

Note that the phase ˛.g/ can be g-dependent and yields a (one-dimensional)
representation of G; for the following discussion, we can ignore this prefactor.

Let us apply �.x/ for x 2 D2 on the ground state jAi from above. Clearly it is
invariant,

�.x/jAi D X jAi 5.55a

D

LO
iD1

�x2i�
x
2iC1 .j0i2i j1i2iC1 C j1i2i j0i2iC1/ 5.55b

D ˛.x/jAi 5.55c
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with ˛.x/ D 1. More interesting is how this invariance is realized in the MPS
picture. For simplicity, we check this for one factor of �.x/, i.e.,

�k.x/jAi

D

X
:::

X
i2k�1;i2k

Tr
h
� � �Ai2k�1i2k � � �

i
�x2k�1�

x
2kj: : : i2k�1i2k : : :i 5.56a

D

X
:::

X
i;j

Tr
h
� � �Aij � � �

i
�x2k�1�

x
2kj: : : ij : : :i 5.56b

D

X
:::

X
i;j

Tr
h
� � �Aij � � �

i X
i 0;j 0

.�x2k�1/i 0;i .�
x
2k/j 0;j j: : : i

0j 0 : : :i : 5.56c

In the second line we replaced i2k�1 ! i and i2k ! j to clean up the notation. If
we write .�x

2k�1
/i 0;i D �

x
i 0;i and .�

x
2k
/j 0;j D �

x
j 0;j and exchange the sums over i; j

and i 0; j 0, we find

�k.x/jAi D
X
:::

X
i 0;j 0

Tr
h
� � �

X
i;j
�xi 0;i�

x
j 0;jA

ij
� � �

i
j: : : i 0j 0 : : :i 5.57a

D

X
:::

X
i 0;j 0

Tr
h
� � � QAi

0j 0

� � �

i
j: : : i 0j 0 : : :i 5.57b

with the transformed matrices

QAi
0j 0

D

X
i;j

�xi 0;i�
x
j 0;jA

ij 5.58

that encode the action of �k.x/ on the MPS jAi.
In our case, we can evaluate further

QA
i 0j 0

˛ˇ
D

X
i;j

�xi 0;i�
x
j 0;jA

ij

˛ˇ
5.59a

D

X
i

�xi 0;iıi˛
X
j

�xj 0;j�
x
jˇ 5.59b

D

X
˛0

�x˛0;˛ıi 0˛0

X
ˇ 0

�xˇ 0;ˇ�
x
j 0ˇ 0 5.59c

D ˛k.x/
h
O�xAi

0j 0

O�x
i
˛ˇ

5.59d

where we reorganized the sums in the third line and introduced ˛k.x/ D 1. In the
last line, we write the Pauli matrices with a hat to emphasize that they act on the
virtual indices ˛ and ˇ whereas the original Pauli matrices of the representation
�.x/ act on the physical indices i and j .
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Now we know how the matrices transform under the action of �k.x/ and can
check again the invariance of the ground state under the global symmetry �.x/,

�.x/jAi D
X
fikg

Tr
h
QAi1i2 QAi3i4 � � � QAi2L�1i2L

i
ji1i2; : : : ; i2L�1i2Li 5.60a

D ˛.x/
X
fikg

Tr
h
O�xAi1i2 O�x O�xAi3i4 O�x � � � O�xAi2L�1i2L O�x

i
� ji1i2; : : : ; i2L�1i2Li

5.60b

D ˛.x/
X
fikg

Tr
h
Ai1i2Ai3i4 � � �Ai2L�1i2L

i
ji1i2; : : : ; i2L�1i2Li 5.60c

D ˛.x/jAi ; 5.60d

where we used the cyclicity of the trace and defined ˛.x/ �
Q
k ˛k.x/. Along

the same lines one can show for the transformation under �k.´/ that QAi
0j 0

D

˛k.´/ O�
´Ai

0j 0

O�´ with ˛k.´/ D �1 so that �.´/jAi D ˛.´/jAi with ˛.´/ D .�1/L.
The results we demonstrated here for a specific example are valid in general [112,

366]: For a symmetry �.g/ D �.g/ ˝ �.g/ � � � ˝ �.g/ that acts locally on each
physical site via unitary representations �.g/, and an MPS jAi that is invariant
under the action of �.g/ up to a phase, �.g/jAi D ˛.g/jAi, one can show that the
matrices Ai transform asX

i

Œ�.g/�i 0iA
i
D .g/ V �1.g/ � Ai

0

� V.g/ 5.61

where the “�” denote matrix products and .g/ is a phase (a one-dimensional linear
representation of G). We stress that this necessarily requires the invariance of
the state under �.g/! For instance, the reorganization of the sums in (5.59c) was
possible because the state encoded by these particular matrices Aij was invariant
under this particular representation �.x/.

If we recall that � satisfies

�.g1/�.g2/ D �.g1g2/ for g1; g2 2 G 5.62

as a linear representation of G, one can show that the matrices V in (5.61) satisfy
almost the same relation,

V.g1/V .g2/ D �.g1; g2/V .g1g2/ for g1; g2 2 G 5.63

where j�.g1; g2/j D 1 is a g1- and g2-dependent phase. The function �.g1; g2/
is called (2-)cocycle or factor system of the projective representation V.g/; it is not
arbitrary: Application of associativity, .g1g2/g3 D g1.g2g3/, yields the cocycle
condition

�.g1; g2/�.g1g2; g3/ D �.g2; g3/�.g1; g2g3/ 5.64

which must be satisfied to make (5.63) well-defined on the entire group G.
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The reason for this “relaxed” multiplication law is that in (5.61) all phases
�.g1; g2/ that violate the multiplication rules of the abstract group cancel because
V.g/ and V �1.g/ always pair up. Matrices that satisfy the relation (5.63) realize a
so called projective representation of the group G on the virtual bond vector space
CD; linear representations are then special cases of projective representations with
�.g1; g2/ � 1.

In our example, we started from the linear representations �.a/ D �k.a/ D

�a
2k�1

�a
2k

(a D x; ´) that act on the physical sites and showed by straightforward
calculations that the action on the bond space is given by

V.x/ D O�x and V.´/ D O�´ : 5.65

However, in D2 we have x´ D ´x but clearly V.x/V .´/ D �V.´/V .x/ so that V
cannot satisfy (5.62): we found a projective representation ofD2. Note that we have
two choices to define V.x´/ D V.´x/, namely

V1.x´/ D V1.´x/ � O�
x
O�´ 5.66a

or V2.x´/ D V2.´x/ � O�
´
O�x : 5.66b

Together with Vi.x/ D O�x, Vi.´/ D O�´ and Vi.1/ D 1, one finds the multiplication
rules

V1.x/V1.´/ D O�
x
O�´ D C1 � V1.x´/ ;

V1.´/V1.x/ D O�
´
O�x D �1 � V1.´x/ 5.67a

or V2.x/V2.´/ D O�
x
O�´ D �1 � V2.x´/ ;

V2.´/V2.x/ D O�
´
O�x D C1 � V2.´x/ : 5.67b

Thus the cocycles for the two projective representations read

�1.x; ´/ D C1 ; �1.´; x/ D �1 5.68a

or �2.x; ´/ D �1 ; �2.´; x/ D C1 ; 5.68b

so that (5.63) is satisfied for choices. Note that there are also other non-trivial
elements, e.g., �1.x´; x/ D �1 and �2.x´; ´/ D �1. To understand the relation
between these two projective representations, let us step back and recall the
transformation law of MPS matricesX

i
Œ�.g/�i 0iA

i
D .g/ V �1.g/ � Ai

0

� V.g/ 5.69a

D .g/ Œf .g/V .g/��1 � Ai
0

� Œf .g/V .g/� 5.69b

D .g/ QV .g/�1 � Ai
0

� QV .g/ 5.69c

where we defined QV .g/ � f .g/V .g/ with an arbitrary g-dependent phase f .g/,
i.e., jf .g/j D 1 and f .g/ 2 C (note that Œf .g/��1 D f �.g/). We conclude that
projective representations V and QV that are related by a g-dependent phase f .g/
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are completely equivalent on the level of an MPS. Let �.g1; g2/ be the cocycle of the
representation V ; then we find for the equivalent representation QV :

QV .g1/ QV .g2/ D f .g1/f .g2/ V .g1/V .g2/ 5.70a

D f .g1/f .g2/�.g1; g2/ V .g1g2/ 5.70b

D f .g1/f .g2/Œf .g1g2/�
�1�.g1; g2/ QV .g1g2/ 5.70c

D Q�.g1; g2/ QV .g1g2/ 5.70d

with the relation between the two cocycles

f .g1/f .g2/

f .g1g2/
�.g1; g2/ D Q�.g1; g2/ : 5.71

This defines an equivalence relation on the set of all cocycles [i.e., phase-valued
functions of two group elements that satisfy the cocycle condition (5.64)]: Two
cocycles belong to the same equivalence class, write � � Q� or Œ�� D Œ Q��, if
and only if there exists a function f such that (5.71) holds. The set of all these
equivalence classes of cocycles features an abelian group structure [since the product
of two cocycles yields a new cocycle, check (5.64)] and is called second cohomology
group of G in U.1/, write H 2.G;U.1//. Here, U.1/ signifies that the functions
f and the cocycles � are phases. Equation (5.69) revealed that the action of a
linear representation �.g/ on an invariant MPS is characterized not by a particular
projective representation V.g/ on its (virtual) bond space but by the cohomology class
Œ�� 2 H 2.G;U.1// that its cocycle belongs to.

If we return to the example above, it is now clear that the non-uniqueness of the
projective representations that can be constructed from the ground state MPS jAi is
a consequence of this fact. Indeed, the transformation

V1.1/ D 1 D C1 � V2.1/ D f .1/ � V2.1/ 5.72a

V1.x/ D O�
x
D C1 � V2.x/ D f .x/ � V2.x/ 5.72b

V1.´/ D O�
´
D C1 � V2.´/ D f .´/ � V2.´/ 5.72c

V1.x´/ D O�
x�´ D �1 � V2.x´/ D f .x´/ � V2.x´/ 5.72d

maps the two representations into each other and via (5.71) relates also their cocycles
�1 and �2, e.g.,

�1.´; x/ D �1 D
1 � 1

�1
� 1 D

f .´/f .x/

f .´x/
�2.´; x/ : 5.73

Thus Œ�1� D Œ�2� 2 H 2.D2;U.1// belong to the same cohomology class.
It is important to realize that this concept of equivalence allows for the

comparison of projective representations V and QV even if they do not have the same
dimension D because the equivalence relation (5.71) only relies on their cocycles
� and Q�. Then, the equivalence � � Q� does not imply QV .g/ D f .g/V .g/ [this
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equation does not make sense because V.g/ and QV .g/ have different dimensions].
If we keep this in mind, we can now state a crucial (and non-trivial) fact for matrix
product states [17, 119]:

Let HA and HB be two one-dimensional, gapped Hamiltonians on a common
Hilbert space H with symmetry �.g/ for g 2 G and unique ground states
jAi and jBi, respectively. The latter are invariant under the action of � and
can be described by MPS with matrices Ai and B i of bond dimensions DA
and DB . The action of the linear representation �.g/ on these states induces
projective representations VA and VB on their bond spaces with cocycles �A
and �B and matrix dimensions DA and DB . Then there exists a path H.�/ of
gapped, �-symmetric Hamiltonians on H with H.0/ D HA and H.1/ D HB if and
only if �A � �B , i.e., iff VA and VB are projective representations of the same cohomology
class Œ�A� D Œ�B � 2 H

2.G;U.1//. This implies that two symmetric states jAi
and jBi belong to the same quantum phase if and only if their corresponding
cocycles (defined via their MPS representation) are representatives of the same
cohomology class. This fact leads to the somewhat cryptic statement that the
one-dimensional symmetry-protected topological phases of interacting spin systems
(with symmetry group G), are in one-to-one correspondence with elements of the
second cohomology groupH 2.G;U.1//.

While the proof of the direction “same cohomology class”) “same phase”
is rather technical (one has to construct a path between both Hamiltonians), the
inverse direction is more intuitive: AssumeH.�/ parametrizes a manifold of gapped
Hamiltonians that do not violate the symmetry �.g/ for all g 2 G. For every � we
can follow the above procedure and derive the �-dependent quantities

H.�/ ! jA.�/i ! Ai.�/ ! V� ! �� ! Œ��� : 5.74

It is now sensible to assume that none of these steps introduces discontinuities so
that the mapping � 7! Œ��� is continuous in some appropriately defined sense. In
all cases relevant for the classification of SPT phases, H 2.G;U.1// is a discrete
group (in many cases even finite). But then the continuous map � 7! Œ��� must be
constant on domains of � where it is well-defined, i.e., all ground states that can be
continuously connected without closing the gap or violating the symmetry belong to
the same cohomology class.

If H.�/ connects two different phases so that jAi and jBi belong to different
cohomology classes, then the construction in (5.74) must be ill-defined somewhere
on the path fromHA toHB . There are two possibilities how this can happen:

1 H.�/ becomes gapless for some ��. Then the construction of a well-defined
projective representation fails because the bond dimensionD�� is unbounded
in the thermodynamic limit (the ground states of gapless Hamiltonians are
weakly long-range entangled in one dimension).
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2 H.�/ violates the symmetry for some �� and jA.��/i is no longer in-
variant under �.g/ such that the construction of a well-defined projective
representation fails even thoughD�� remains bounded.

Equipped with this new knowledge, let us return to the example G D D2 with
the two ground states jAi and jBi. Recall that we still consider periodic boundaries;
nevertheless it is clear that cutting the system between physical sites makes jBi the
ground state of the trivial phase (J1 < 0 and J2 D 0) whereas jAi becomes the
ground state of the topological phase (J2 < 0 and J1 D 0), recall (5.50a) and (5.52a).
We can now prove that both cannot be continuously connected without closing the
gap or violating theD2 symmetry �.g/ if their cohomology classes cannot be related
via (5.71). Possible representatives for the cocycles of the topological phase jAi
where already given in (5.68). For the trivial phase with B ij

˛ˇ
D �xij , we immediately

find

QB
i 0j 0

˛ˇ
D

X
i;j

�xi 0;i�
x
j 0;j�

x
ij D �

x
i 0;j 0 D .x/ Œ1 � B

i 0j 0

� 1�˛ˇ 5.75a

QB
i 0j 0

˛ˇ
D

X
i;j

�´i 0;i�
´
j 0;j�

x
ij D ��

x
i 0;j 0 D .´/ Œ1 � B

i 0j 0

� 1�˛ˇ 5.75b

with the one-dimensional representation .g/; thus the projective representation
reads

VB.1/ D 1 ; VB.x/ D 1 ; VB.´/ D 1 ; VB.x´/ D 1 : 5.76

This is the trivial representation with trivial cocycle �B.g1; g2/ � 1 that belongs
to the cohomology class Œ1� which is the identity element of H 2.D2;U.1//. Note
that this also follows directly from the fact that jBi is a product state and therefore
has bond dimension D D 1. Consequently, VB.g/ must be a phase (a 1 � 1
unitary matrix) and the representation (5.76) can always be achieved by appropriate
factors f .g/.

To show that (VA D V1)

VA.1/ D 1 ; VA.x/ D O�
x ; VA.´/ D O�

´ ; VA.x´/ D O�
x
O�´ 5.77

belongs to a different cohomology class, we have to show that the equation

�A.g1; g2/ D
f .g1/f .g2/

f .g1g2/
�B.g1; g2/ D

f .g1/f .g2/

f .g1g2/
5.78

has no solution f .g/, i.e., Œ�A� ¤ Œ�B � D Œ1�. If we assume that there is such a
function, we immediately encounter a contradiction:

C 1 D �A.x; ´/ D
f .x/f .´/

f .x´/
D
f .´/f .x/

f .´x/
D �A.´; x/ D �1 : 5.79
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With this we showed that jAi is a non-trivial topological phase protected by D2

with the on-site representation �k.a/ D �a
2k�1

�a
2k

(a D x; ´). In addition, we
demonstrated thatH 2.D2;U.1// is non-trivial as it contains at least two elements,
Œ1� and Œ�A�. One can show that there are no more inequivalent classes and therefore
H 2.D2;U.1// D Z2. Physically this means that there are only two phases possible
in one dimension that are protected byD2: the trivial Œ1� (a representative of which
is jBi) and a topological Œ�A� (a representative of which is jAi). This can be read off
the respective classification tables for SPT phases, see e.g. [18, 112].

Application to U.1/ � ZT
2

Let us now focus on the symmetry group U.1/�ZT2 represented by particle number
conservation and the antiunitary “chiral” symmetry,

R.�/ D exp
�
i�
X

i

1 � �´i
2

�
and S D XK D

Y
i
�xi ıK : 5.80

Note: Here we label the representation of the chiral symmetry by S D XK but write
T 2 ZT2 for the abstract group element, i.e., �.T / D S . This is not to be confused
with the T D K in Subsection 5.1.1. Similarly, we write R.�/ for the (global)
representation of U.1/ and R� 2 U.1/ for the abstract group element.

On each physical site, the representations are

rk.�/ D e
i� e�i �

2
.�´

2k�1
C�´

2k
/ and sk D �

x
2k�1�

x
2k ıK : 5.81

Note that s2
k
D 1 and rk.2�/ D 1, but

skrk.�/ D e
�2i�rk.�/sk 5.82

whereas the abstract elements of U.1/ and ZT2 commute (this is implied by the direct
product “�” of groups). Therefore (5.81) defines a projective representation on
the physical sites (and not a linear one as we assumed in our discussion of D2).
But this is only a pseudo problem as we can multiply each group element by an
arbitrary phase f .g/ without changing the physical content of the representation.
Indeed, since �k.g/j‰i and f .g/�k.g/j‰i describe the same physical state, there
is no physical difference between �k.g/ and f .g/�k.g/. So let f .R�/ � e�i� and
f .T / D 1; this yields the equivalent representation

Qrk.�/ D f .R�/ rk.�/ D e
�i �

2
.�´

2k�1
C�´

2k
/ 5.83a

and Qsk D f .T / sk D �
x
2k�1�

x
2k ıK 5.83b

which now satisfies Qsk Qrk.�/ D Qrk.�/Qsk and therefore defines a linear (antiunitary)
representation of U.1/ � ZT2 .
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Now we can follow the same procedure as for D2 and calculate the action of
Qrk.�/ and Qsk on the matrices Aij and B ij of the MPS jAi and jBi. Note that both
jAi and jBi are invariant under the action of QR.�/ D

Q
k Qrk.�/ and QS D S so

that we again expect a projective representation on the virtual bond indices. The
question is whether their corresponding cocycles belong to different cohomology
classes ofH 2.U.1/�ZT2 ;U.1// which, according to the above continuity argument,
would obstruct continuous deformations between the two states without closing the
gap or violating the symmetry representation (5.80).

Straightforward calculations yield for the matrices of the “topological” state jAi
the action of Qrk.�/

QA
i 0j 0

˛ˇ
D

X
ij

h
e�

�
2
�´
i
i 0;i

h
e�

�
2
�´
i
j 0;j

A
ij

˛ˇ
5.84a

D

X
˛0ˇ 0

h
e�

�
2
�´
i
˛;˛0

h
eC

�
2
�´
i
ˇ 0;ˇ

ıi 0˛0�xj 0ˇ 0 5.84b

D .R�/
h
e�

�
2

O�´

Ai
0j 0

eC
�
2

O�´
i
˛ˇ

5.84c

D .R�/
h
e

�
2
.1� O�´/Ai

0j 0

e�
�
2
.1� O�´/

i
˛ˇ

5.84d

where the one-dimensional representation .R�/ D 1 is trivial. Note that in the
last line we inserted the phase ei

�
2 so simplify our discussion of the cocycles

below. That this is possible follows from the structure of (5.84c) and illustrates
the emergence of projective representations in this context. Here we found
the projective representation VA.R�/ D e�

�
2
.1� O�´/ for R� 2 U.1/. Note that

VA.R�/ � VA.R�/ D e��.1� O�´/ D 1 D VA.R0/ such that VA.R�/ alone is a linear
representation of U.1/ and the corresponding cocycle is trivial,

�A.R�1
; R�2

/ D 1 : 5.85

(This is false if we do not insert the phase gauge ei
�
2 .)

But of course we have to take care of ZT2 D f1; T g as well. Along the same lines
one finds for the action of Qsk

QA
i 0j 0

˛ˇ
D

X
ij

�xi 0;i�
x
j 0;j

�
A
ij

˛ˇ

��

5.86a

D

X
˛0ˇ 0

�x˛;˛0�
x
ˇ 0;ˇ ıi 0˛0�xj 0ˇ 0 5.86b

D .T /
h
O�xAi

0j 0

O�x
i
˛ˇ

5.86c

with the trivial 1D representation .T / D 1; thus we have VA.T / D O�xK (the
complex conjugation K must be added for the correct evaluation of the projective
representation, see [112]). Clearly VA.T /VA.T / D 1 D VA.1/ D VA.T

2/ so that
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again the corresponding cocycle is trivial,

�A.T; T / D 1 : 5.87

But what about �A.T;R�/ and �A.R�; T /? As forD2, we have two choices and
we define

VA.TR�/ D VA.R�T / � VA.R�/VA.T / D e
�i �

2
.1� O�´/

O�xK 5.88

(one can check that this is a valid choice by concatenating the application of Qsk and
Qrk.�/). With this choice (that defines a particular representative of the projective
representation), we find the multiplication rules

VA.R�/ VA.T / D e
�i �

2
.1� O�´/

O�xK

D 1 � VA.R�T / D �A.R�; T / � VA.R�T / 5.89a

VA.T / VA.R�/ D O�
xK e�i �

2
.1� O�´/

D ei� � VA.TR�/ D �A.T;R�/ � VA.TR�/ 5.89b

so that �A.T;R�/ D ei� is the only non-trivial value of the cocycle (without the
gauge factor ei

�
2 , it would be trivial; but then �A.R�1

; R�2
/ ¤ 1 becomes non-trivial

to ensure that the representation is still in the same cohomology class).
If we follow the same procedure for the “trivial” state jBi with matrices

B
ij

˛ˇ
D �xij , it is clear that (as forD2) we end up with the trivial representation,

VB.1/ D 1 ; VB.R�/ D 1 ; VB.T / D 1 ;

and VB.TR�/ D VB.R�T / D 1 ;
5.90

with the trivial cocycle �B.g1; g2/ D 1 for all g1; g2 2 U.1/ � ZT2 . Clearly jBi
deserves the label “trivial”: it is a product state and its cohomology class is
Œ�B � D Œ1� 2 H

2.U.1/ � ZT2 ;U.1//.
The crucial question is now whether Œ�A� ¤ Œ�B �. Since �B is trivial, the

question is whether �A can be trivialized with a phase factor f .g/, i.e., whether

�A.g1; g2/
‹
D
f .g1/f

�.g1/.g2/

f .g1g2/
5.91

for all g1; g2 2 U.1/ � ZT2 . Here, �.g/ D C1.�1/ if g is represented by a unitary
(antiunitary) operator (see the side note on twisted group cohomology below); in
particular, �.R�/ D C1 and �.T / D �1.

Similar as forD2, we can show that this is impossible but the argument is a bit
more involved. First, note that �A.R�1

; R�2
/ D 1 D f .R�1

/f .R�2
/=f .R�1C�2

/

implies that f .R�/ is a linear, one-dimensional representation of U.1/, i.e., it
takes the form f .R�/ D eik� for k 2 Z. If we combine �A.R�; T / D 1 D
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f .R�/f .T /=f .R�T / and �A.T;R�/ D ei� D f .T /f �1.R�/=f .TR�/ and use
that R�T D TR� , we find ei� D 1=f 2.R�/ D e�2ik�; but this cannot be satisfied
for all � 2 Œ0; 2�/ with k 2 Z.

We conclude that Œ1� ¤ Œ�A� 2 H 2.U.1/ � ZT2 ;U.1// and therefore jAi
indeed is a topological phase, symmetry-protected by U.1/ � ZT2 with physical
representation (5.80); in particular, jAi and jBi cannot be connected by a smoothly
varying HamiltonianH.�/ that commutes with the symmetry operators and remains
gapped in the thermodynamic limit.

As a final remark, we stress that there are in total four distinct cohomology
classes of U.1/ � ZT2 [18] and

H 2
�
U.1/ � ZT2 ;U.1/

�
D Z2 � Z2 : 5.92

That is, the symmetry group U.1/ � ZT2 can protect two additional topological
phases that smoothly connect neither to jAi nor to jBi (these are related to “chiral”
symmetries that square to �1, i.e., V.T /2 D �1). This is in contrast to D2

where H 2.D2;U.1// D Z2 so that jAi is the only topologically non-trivial phase.
There is an important lesson: Whether a given state in some Hilbert space is in a
symmetry-protected topological phase is not a property of the state alone but rather
a feature of the state with respect to a representation of a given symmetry group that
acts on the Hilbert space. The same state can be trivial w.r.t. the action of symmetry
group G1 while it is topological w.r.t. the action of another symmetry group G2. This
is the essence of symmetry protection.

Edge Modes

So far we considered chains with periodic boundary conditions and a unique,
symmetric ground state. The bulk properties of short-range correlated states, such
as jAi and jBi, should not depend on the boundaries. In particular, the MPS
description should remain valid—except for the boundaries where we have to
modify the matrices since there is no entanglement between the opposite edges of
the system151.

For the topological phase, we have the ground state

jA.0; 0/i D j0i0 ˝

L�1O
iD1

.j0i2i j1i2iC1 C j1i2i j0i2iC1/˝ j0i2L 5.93a

D

X
fikg

A
i1i2
Œ1�
A
i3i4
Œ2�
� � �A

i2L�1i2L

ŒL�
ji1i2; : : : ; i2L�1i2Li ; 5.93b

151For periodic boundaries, the same correlations are “short-range”; we see that changing from
periodic to open boundary conditions only changes our interpretation of mathematical objects, not the
mathematical objects themselves.
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where the matrices Aij
Œk�

now can depend on the site k D 1; : : : ; L as we break
translational invariance. The trace is gone because we do not need entanglement
between the first and the last site (recall that the trace is nothing but a “long-range”
matrix product between the first and the last matrix). Note that the matrices do not
have to be square; in particular, the first and last one are row- and column vectors to
ensure that the complete matrix product yields numbers as amplitudes of the basis
states.

Since the bulk is the same as for periodic boundaries, we find the same matrices

A
ij

Œk�˛ˇ
�

�
A
ij

Œk�

�
˛ˇ
D ıi˛�

x
jˇ for k D 2; : : : ; L � 1 ; 5.94

whereas on the first and last site, we have

A
ij

Œ1�
D ıi0�

x
jˇ and A

ij

ŒL�
D ıi˛ıj0 5.95

to account for the fixed boundary spins.
In the trivial phase, the open boundaries do not cut entangled pairs so that the

state

jBi D

LO
iD1

.j0i2i�1j1i2i C j1i2i�1j0i2i/ 5.96a

D

X
fikg

B
i1i2
Œ1�
B
i3i4
Œ2�
� � �B

i2L�1i2L

ŒL�
ji1i2; : : : ; i2L�1i2Li 5.96b

is described by the same (site-independent) matrices

B
ij

Œk�˛ˇ
�

�
B
ij

Œk�

�
˛ˇ
D �xij : 5.97

(Note that these are already numbers so that special row/column matrices at the
boundaries are not necessary to convert the “matrix product” into an amplitude.)

Let us act with symmetry operators on these states. We demonstrate this for
D2 instead of U.1/ � ZT2 because the former is simpler and more suitable for a
pedagogical exposition.

First, for the trivial state jBi we find the same transformation rules as for
periodic boundaries because the matrices B ij are the same:X

i;j

�xi 0;i�
x
j 0;j B

ij

˛ˇ
D .x/ Œ1 � B i

0j 0

� 1�˛ˇ ; 5.98aX
i;j

�´i 0;i�
´
j 0;j B

ij

˛ˇ
D .´/ Œ1 � B i

0j 0

� 1�˛ˇ : 5.98b

In particular, the state is still invariant under the global symmetry operators �.g/ for
g 2 D2 and there is no ground state degeneracy (more formally, the ground state
space forms a one-dimensional representation L.g/ of the symmetry groupD2).
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Similarly, the action on the topological state jAi in the bulk (for k D 2; : : : ; L�1)
remains also unchanged,X

i;j

�xi 0;i�
x
j 0;jA

ij

Œk�˛ˇ
D .x/

h
O�x � A

i 0j 0

Œk�
� O�x

i
˛ˇ
; 5.99aX

i;j

�´i 0;i�
´
j 0;jA

ij

Œk�˛ˇ
D .´/

h
O�´ � A

i 0j 0

Œk�
� O�´

i
˛ˇ
; 5.99b

whereas on the boundaries we have (here for k D 1)X
i;j

�xi 0;i�
x
j 0;jA

ij

Œ1�˛ˇ
D

X
i

�xi 0;iıi0
X
j

�xj 0;j�
x
jˇ 5.100a

D

X
i

�xi 0;iıi0
X
ˇ 0

�xˇ 0;ˇ�
x
j 0ˇ 0 5.100b

D .x/
X
i

ŒUL.x/�i 0;i

h
1 � A

ij 0

Œ1�
� O�x

i
˛ˇ
: 5.100c

Note that the left sum
P
i cannot be rewritten as a sum

P
˛0 over bond indices

because i D 0; 1 whereas the left bond dimension is one, i.e., ˛0 D 0. Therefore the
unitary action UL.x/ D �x has to act on the physical indices and does not translate
to a “gauge transformation” V �1

A .x/ on the virtual bonds of Aij
Œ1�
. The calculation

for the action of �1.´/ yields an analogous result so that we findX
ij

Œ�1.g/�i 0i Ij 0j A
ij

Œ1�˛ˇ
D .g/

X
i

ŒUL.g/�i 0;i

h
1 � A

ij 0

Œ1�
� VA.g/

i
˛ˇ

5.101

as transformation law for jAi under the linear representation �1.g/ of D2 on the
left boundary site. We find a similar relation for the right boundary,X

ij

Œ�L.g/�i 0i Ij 0j A
ij

ŒL�˛ˇ
D .g/

X
j

ŒUR.g/�j 0;j

h
V �1
A .g/ � A

i 0j

ŒL�
� 1
i
˛ˇ
; 5.102

where now the right bond representation becomes trivial. Here comes a crucial
observation: If we apply the transformation (5.101) [or (5.102)] consecutively for
two elements g1; g2 2 D2, then the left-hand side transforms according to the linear
representation �k.g/ with (5.62) whereas the single bond representation on the
right-hand side transforms projectively according to (5.63); but the latter violates
the multiplication law of linear representations by phases given by the cocycle
�A.g1; g2/ that characterizes the projective class of VA. There is only one solution:
the physical representation UL on the boundary spin must also transform projectively
to cancel the phases introduced by VA, i.e.,

UL.g1/UL.g2/ D �
�
A.g1; g2/ UL.g1g2/ 5.103
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so that the combination

UL.g1/VA.g1/UL.g2/VA.g2/

D ��
A.g1; g2/�A.g1; g2/ UL.g1g2/VA.g1g2/ 5.104a

D UL.g1g2/VA.g1g2/ 5.104b

transforms linearly—in accordance with the left-hand side of (5.101). Thus we
see that the trivial representation on one bond in (5.101) “lifts” the projective
transformation laws of the bond representations in the bulk (VA) to the physical
level (UL). A similar conclusion holds for the right boundary:

UR.g1/UR.g2/ D �A.g1; g2/ UR.g1g2/ : 5.105

In a nutshell: For periodic boundaries, the emergence of projective representa-
tions is “hidden” as it affects only the virtual level of the MPS (where it obstructs the
deformation into a trivial product state). However, if one cuts the system open, the
projective class of the topological phase is revealed by the—now projective—action
of the physical symmetry on the boundaries. This is the mathematical reason for
the emergence of degenerate edge states at the boundaries of topological phases.

Indeed, if we combine our findings for the left boundary (5.101), the right
boundary .5:102/ and the (invariant) bulk (5.99), the action of the global symmetry
�.g/ on the ground state jAi D jA.0; 0/i reads

�.g/jAi D UL.g/UR.g/jAi 5.106

where UL.g/ (UR.g/) acts only on the left (right) boundary spin. Notice how the
product of both boundary representations is again linear,

UL.g1/UR.g1/UL.g2/UR.g2/

D ��.g1; g2/�.g1; g2/ UL.g1g2/UR.g1g2/ 5.107a

D UL.g1g2/UR.g1g2/ ; 5.107b

consistent with �.g/ being a linear representation ofD2. This physical “splitting”
of a linearly realized symmetry into two projective “parts” is known as symmetry
fractionalization.

How does this imply a robust ground state degeneracy? To this end, let us write
down the explicit form of the boundary representations on the ground state space of
our Hamiltonian at the special point with J2 < 0 and J1 D 0:

UL.x/ D �
x
1 and UL.´/ D �

´
1 and UL.x´/ D �

x
1 �

´
1 ; 5.108

UR.x/ D �
x
2L and UR.´/ D �

´
2L and UR.x´/ D �

x
2L�

´
2L : 5.109

It is clear that both belong to the non-trivial projective class Œ�L� D Œ�R� D Œ�A� 2
H 2.D2;U.1// that also classifies the bond representations VA. It is a feature of the
point where J1 D 0 that these boundary representations are exact symmetries of the
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HamiltonianH ,

ŒH;UL.g/� D 0 and ŒH;UR.g/� D 0 : 5.110

For J1 ¤ 0 and finite chain length L <1, this holds only approximately as long
as jJ1j < jJ2j, i.e., in the topological phase. Then, the operators UL and UR are
no longer localized on the left- and rightmost spins but “leak” into the bulk. For
L!1 the symmetry (5.110) is restored for J1 ¤ 0. This relates to the fact that for
J1 ¤ 0 the ground state degeneracy is lifted for L <1 and restored for L!1.
Only at J1 D 0 the degeneracy is exact even for finite chains.

That there must be a degeneracy is a direct consequence of the non-trivial
cohomology class of the boundary operators UL and UB . Indeed, recall that their
non-trivial cocycle is �L.´; x/ D �R.´; x/ D �1, i.e.,

UL.x/UL.´/ D �UL.´/UL.x/ 5.111a

and UR.x/UR.´/ D �UR.´/UR.x/ : 5.111b

Now recall that the cohomology class of the bond representations VA does not
change for arbitrary perturbations (e.g., J1 ¤ 0) as long as the system remains
gapped and D2-symmetric. Above we argued that the projective class of the
boundary representations UL;R must be identical to that of VA (or its inverse)—so
it cannot change either. Thus the relations (5.111) remain valid for perturbed
systems even though the specific form and domain of the operators UL;R may
change. However, they can never act irreducibly on a one-dimensional subspace
because (complex) numbers cannot satisfy (5.111). This implies that the product
representation of the two non-trivial projective representations defined in (5.111)
requires at least a four-dimensional subspace. Due to (5.110) the ground state space
must carry such a representation; i.e., at least a four-fold ground state degeneracy
is necessary to realize the projective symmetries UL and UR. Since the projective
class cannot be changed by (symmetric) perturbations, the ground state degeneracy
cannot be lifted by such.

In finite systems, (5.110) is only approximately valid for generic parameters in
the topological phase. Therefore the conclusion that the ground state space carries
a representation of UL and UR separately is no longer valid; only their product
�.g/ D UL.g/UR.g/ is a true symmetry of the system. Since this symmetry is
represented linearly, we cannot exclude the possibility that �.g/ / 1 acts with
the trivial representation on a one-dimensional ground state space. This is what
happens in finite systems where the ground state degeneracy is lifted.
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Remarks

1 For U.1/�ZT2 the projective representations on the boundary spins are given
by

UL.R�/ D e
i �

2
.1��´

1 / and UL.T / D �
x
1K ; 5.112a

UR.R�/ D e
i �

2
.1��´

2L/ and UR.T / D �
x
2LK : 5.112b

Again, the fact that the corresponding cocycles �L.T;R�/ D e�i� D

�R.T;R�/ cannot be trivialized precludes one-dimensional representations
and implies an at least four-fold degenerate ground state space.

Note that the product UL.g/UR.g/ of the projective representations in (5.112)
yields a cocycle with �L.T;R�/�R.T;R�/ D e�2i� ¤ 1; this is not a linear
representation but a projective one. However, if we retrace our argument
to show that Œ�A� ¤ Œ1� (for the bond representations VA), it is easy to see
that the even exponent in e�2i� allows for the trivialization of �L�R, i.e.,
Œ�L� � Œ�R� D Œ�L�R� D Œ1�. Thus UL.g/UR.g/ belongs to the projective
class of the linear representation and is therefore physically equivalent to it.

2 The line of arguments that led to projective boundary representations (and
thereby to edge states and a robust ground state degeneracy) is built upon
two crucial assumptions: First, the ground state of the Hamiltonian to be
classified is separated by a gap from excited states so that one can describe the
ground state as matrix product state with bounded bond dimension even in
the thermodynamic limit. And second, the ground state is invariant (up to a
phase) under the global symmetry so that its action translates into projective
representations on the virtual bonds of the MPS (for periodic boundaries).

When we consider our particular Hamiltonian (5.24b) in a sector of fixed
particle number away from half-filling, we violate both assumptions: First,
since one band is no longer completely filled, the ground state of this system
is no longer separated by a gap from other states of the many-body spectrum.
And second, since S D XK acts like a particle-hole transformation, such a
state is no longer invariant under this symmetry. In conclusion, the machinery
of symmetry-protected topological phases presented above makes no claim
about degeneracies in this situation whatsoever (it does not even require the
degeneracy to be lifted).
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ANote on ZT
2
: Twisted Group Cohomology

Our “chiral” symmetry S D XK is represented antiunitarily on the Hilbert space.
In the literature (e.g., [18]) this is indicated by ZT2 D f1; T g although the abstract
group structure is clearly that of Z2 since T 2 D 1 (or S2 D 1 on the representation
level). Since the cohomology groupH 2.G;U.1// depends on the abstract group G,
it is mathematically opaque how we should read the statements [18]

H 2.Z2;U.1// D Z1 and H 2.ZT2 ;U.1// D Z2 5.113

if actually ZT2 Š Z2. The reason for this apparent contradiction is that we are
actually interested in the classification of projective representations of a symmetry
group G where each element can be represented by either a unitary or antiunitary
operator. If one fixes this choice by “labeling” the abstract group elements via a map

� W G ! Z2 ; g 7! �.g/ 2 f1;�1g 5.114

so that we restrict our classification to representations where g is represented by a
unitary (antiunitary) operator if �.g/ D C1 (�1), consistency requires that � is a
group homomorphism (since the product of two antiunitary operators is unitary).
Note that this restricts the possibilities for antiunitary representations, e.g., the
cyclic group Z3 does not allow for any antiunitary representation as it is of odd
order.

For G D Z2 D f1; T g, there are exactly two such homomorphisms, namely

�0.1/ D 1 �0.T / D 1 5.115a

and �1.1/ D 1 �1.T / D �1 : 5.115b

Here, �0 encodes an all-unitary representation and �1 a representation where T acts
antiunitarily.

We are now interested in a group G augmented by such a group homomorphisms
� , write .G; �/. Given this set of data, we can define the set Z2�.G;U.1// of
� -twisted 2-cocycles as the set of all maps � W G � G ! U.1/ that satisfy the
“twisted” cocycle condition

�.g1; g2/�.g1g2; g3/ D �
�.g1/.g2; g3/�.g1; g2g3/ 5.116

where ��1 here is just the complex conjugate since j�.g1; g2/j D 1.
The motivation for this definition stems from the action of antiunitary operators

on the phase factors [367,368]. Indeed, let � be a projective representation of G with
�.g1/ antiunitary (i.e., �.g1/ D �1) and �.g2/, �.g3/ arbitrary for g1; g2; g3 2 G.
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Then associativity implies the relation

Œ�.g1/�.g2/��.g3/

D �.g1; g2/�.g1g2/�.g3/ 5.117a

D �.g1; g2/�.g1g2; g3/�.g1g2g3/ 5.117b

Š
D �.g1/Œ�.g2/�.g3/�

D �.g1/�.g2; g3/�.g2g3/ 5.117c

D ��.g2; g3/�.g1; g2g3/�.g1g2g3/ ; 5.117d

where we used that �.g1/�.g2; g3/ D ��.g2; g3/�.g1/. Thus the cocycle condi-
tion (5.116) is “twisted” whenever g1 is represented antiunitarily.

A similar “twist” occurs when we multiply the operators by g-dependent phases
(remember that we are ultimately interested in projective representations). Let
Q�.g/ D f .g/�.g/ with phase factor f .g/; then

Q�.g1/ Q�.g2/ D f .g1/�.g1/f .g2/�.g2/ 5.118a

D f .g1/f
�.g1/.g2/ �1.g1/�1.g2/ 5.118b

D f .g1/f
�.g1/.g2/�.g1; g2/ �.g1g2/ 5.118c

D
f .g1/f

�.g1/.g2/

f .g1g2/
�.g1; g2/ Q�.g1g2/ 5.118d

� Q�.g1; g2/ Q�.g1g2/ : 5.118e

Therefore we define the � -twisted equivalence relation R� of � -twisted 2-cocycles

�1
R�
� �2 W, �1.g1; g2/ D

f .g1/f
�.g1/.g2/

f .g1g2/
�2.g1; g2/ 5.119

for some function f W G ! U.1/, and with this the � -twisted second cohomology
group of G in U.1/ as

H 2
� .G;U.1// D Z

2
�.G;U.1//

ı
R� ; 5.120

i.e., the set of equivalence classes in Z2�.G;U.1// with respect to R� . With this
concept, we can now properly define what we mean by ZT2 :

H 2.Z2;U.1// � H 2
�0
.Z2;U.1// ; 5.121a

H 2.ZT2 ;U.1// � H
2
�1
.Z2;U.1// : 5.121b

Let us evaluate both groups:
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1 For the “untwisted” groupH 2
�0
.Z2;U.1//, the cocycle condition yields the

restrictions [we write .g1; g2; g3/ in the first column]

.1; T; T / ) �.1; T /�.T; T / D �.T; T /�.1; 1/

) �.1; T / D �.1; 1/ ; 5.122a

.T; T; T / ) �.T; T /�.1; T / D �.T; T /�.T; 1/

) �.1; T / D �.T; 1/ ; 5.122b

such that only �.1; 1/ and �.T; T / are independent.

Then the equations

�.1; 1/ D
f .1/f .1/

f .1/
D f .1/ and �.T; T / D

f .T /f .T /

f .1/
5.123

can easily be solved for f .1/ and f .T / for arbitrary cocycles �.g1; g2/ so
that all are trivial and H 2

�0
.Z2;U.1// D Z1; i.e., there are no topological

phases protected by a unitary Z2-symmetry.

2 For the “twisted” group H 2
�1
.Z2;U.1// the cocycle condition yields the

restriction

.1; T; T / ) �.1; T /�.T; T / D �.T; T /�.1; 1/

) �.1; T / D �.1; 1/ 5.124

(which is the same as above), but also

.T; T; T / ) �.T; T /�.1; T / D ��1.T; T /�.T; 1/

) �2.T; T / D
�.T; 1/

�.1; T /
; 5.125a

.T; 1; 1/ ) �.T; 1/�.T; 1/ D ��1.1; 1/�.T; 1/

) �.T; 1/ D
1

�.1; 1/
; 5.125b

due to the antiunitarity of �.T /. So again �.1; 1/, �.1; T / and �.T; 1/ cannot
be chosen independently. However, the relation �2.T; T / D ��2.1; 1/ allows
for two solutions: �.T; T / D ˙��1.1; 1/.

If we try to trivialize a given cocycle,

�.1; 1/ D
f .1/f .1/

f .1/
D f .1/ 5.126a

and �.T; T / D
f .T /f �1.T /

f .1/
D

1

f .1/
D

1

�.1; 1/
; 5.126b
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only the possibility �.T; T / D C��1.1; 1/ can be realized. The cocycles
with �.T; T / D ���1.1; 1/ constitute a non-equivalent class and we find
H 2
�1
.Z2;U.1// D Z2; i.e., there is a single topological phase protected by an

antiunitary Z2-symmetry.

Our topological ground state jAi is an example of this phase if we choose the
symmetry YK with projective representations UL.T / D i�

y
1K and UR.T / D

i�
y
2LK on the boundaries. Note that indeed UL.T /UL.T / D �1 D �UL.1/

so that �L.T; T / D �1 D ���1
L .1; 1/.

5.1.4 Connection to the Haldane Phase

In this subsection we explore the “neighborhood” of our Hamiltonian (5.24b) and
show how it can be smoothly connected to isotropic spin chains that are known
to be in the famous Haldane phase. The latter is an iconic, symmetry-protected
topological phase, protected by either D2 or ZT2 (which explains why our system
can be protected by these symmetries).

We start with the antiferromagnetic Heisenberg model (AFHM)

HAF D J

L�1X
iD1

SiSiC1 5.127

(J > 0) for spin-1 representations S˛i . This is the most prominent model subject to
Haldane’s conjecture [62, 63], namely that antiferromagnetic Heisenberg chains with
integer spin are gapped quantum phases whereas half-integer representations come
with a gapless spectrum. The model (5.127) cannot be solved exactly as it is not
integrable (at least the author is not aware of any solution); in particular, its ground
state cannot be derived exactly although its properties are well understood, see e.g.
Ref. [369] and references therein. However, a minor modification yields the AKLT
model [370],

HAKLT D J

L�1X
iD1

�
SiSiC1 C

1

3
.SiSiC1/2

�
5.128

which is in the same phase as (5.127), dubbed the Haldane phase (i.e., one
can switch on the biquadratic term without closing the gap or violating the
SU.2/-symmetry [371]).

The feature of (5.128) is that its ground state can be derived exactly and
takes a particularly simple form known as valence-bond state [370]; the latter is the
archetype of an (interacting) symmetry-protected topological phase and captures
the entanglement structure of the Haldane phase152. It can be described as follows:
Assign each site i two (artificial) spin-1

2
representations � 2i�1 and � 2i . Let Pij

152It is exactly the entanglement structure that characterizes topological phases; recall that their
symmetries remain unbroken so that they cannot be characterized by a local order parameter.
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denote the projector onto the triplet (S D 1) subspace of the two spins � i and �j .
Then, there are four degenerate ground states of (5.128) given by

jsL; sRi D

�YL

kD1
P2k�1;2k

�
�

jsLi1 ˝

L�1O
iD1

j"i2i j#i2iC1 � j#i2i j"i2iC1
p
2

˝ jsRi2L ;

5.129

with sL; sR 2 f";#g the states of the unpaired left and right boundary spins. Note
that the state in (5.129) essentially consists of spin-1

2
dimers/singlets between the

sites and a subsequent projection onto spin-1 on each site. Due to the “SSH-like”
pairing of spins, there are dangling boundary spins left on both boundaries which
give rise to the four-fold ground state degeneracy. If one ignores the projection onto
the triplet sector of the artificial spin-1

2
Hilbert space H b

2L, this describes exactly
the ground state of our Hamiltonian (5.24b) for J1 D 0 and J2 > 0 (in our case,
H b
2L is the physical Hilbert space).

Sign-(in)dependence and Relation to the Isotropic Point

The relation between dimerized spin-1
2
chains (such as ours) and the Haldane

phase has been studied before [372–376]. There, commonly an isotropic coupling is
assumed,

Hiso D
J1

2

LX
iD1

� 2i�1� 2i C
J2

2

L�1X
iD1

� 2i� 2iC1 ; 5.130

which then is deformed to include anisotropies like (5.24c). To relate our model
to the isotropic point and to make connections to known results, we introduce the
family of Hamiltonians

Hı D
J1

2

LX
iD1

.�x2i�1�
x
2i C �

y
2i�1�

y
2i C ı �

´
2i�1�

´
2i/

C
J2

2

L�1X
iD1

.�x2i�
x
2iC1 C �

y
2i�

y
2iC1 C ı �

´
2i�

´
2iC1/

5.131

with arbitrary couplings J1; J2 2 R and isotropy ı � 0; then, ı D 0 describes
our Hamiltonian (5.24c) and ı D 1 its isotropic counterpart. We discuss 8 cases:
The four sign combinations of J1 and J2 times the two regimes jJ1j ? jJ2j; this is
illustrated in Figure 5.2.

We start with the simpler case, namely ı D 0, see Figure 5.2 (a). Without
Z-couplings �´i �

´
j , the Hamiltonian (5.131) maps onto free fermions under Jordan-

Wigner transformation. We known that fermions permit for gauge transformations
xk ! Qxk D ei'kxk with arbitrary phases 'k; i.e., the mapping preserves the
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trivial
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trivial
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(4b)
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Figure 5.2 • Phase diagram. Weshow the phases ofHamiltonian (5.131) at the non-interacting
point ı D 0 in (a) and at the isotropic point ı D 1 in (b) in the J1-J2-plane. Regions of the
same color belong to the same phase. The symbolic chains characterize their sector via the color
of couplings (red=positive, blue=negative) and their thickness (dashed=weak, solid=strong).
The identification of phases as “topological” and “trivial” is based on the symbolic chains where
vertical couplings are “intra-site” and diagonal couplings are “inter-site.” Dashed circles labeled
with “PT” indicate phase transitions in the out-of-plane ı-direction that separate the phases for
ı D 0 and ı D 1. The cross in (a) locates the experimentally realized phase in [4], the gray
arrow in (b) refers to Figure 5.4. Details are discussed in the text.

fermion algebra f Qxk; Qx
�

l
g D ıkl . It is now straightforward to check that this

transformation translates into a unitary mapping between equivalent representations
of the Pauli algebra

�x' � cos.'/ �x � sin.'/ �y 5.132a

�y' � sin.'/ �x C cos.'/ �y 5.132b

�´' � �
´ 5.132c

for ' 2 Œ0; 2�/. It is easy to check that �a'�
b
' D ıab1C i"abc�c' . Note that the

transformation can be compactly written as �a' D ei
'
2
�´

�ae�i '
2
�´

. Because of
XK e˙i '

2
�´

XK D e˙i '
2
�´

, it follows that the commutation relations between the
“chiral” symmetry S D XK and the unitarily transformed spins �a' are independent
of '; in particular, terms which commute with XK for ' D 0 do not violate this
symmetry for ' > 0 [the same argument holds for the U.1/ symmetry R.�/].
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We now make in (5.131) every other spin '-dependent, i.e.,

Hı.'/ D
J1

2

LX
iD1

.�x';2i�1�
x
2i C �

y
';2i�1�

y
2i C ı �

´
';2i�1�

´
2i/

C
J2

2

L�1X
iD1

.�x2i�
x
';2iC1 C �

y
2i�

y
';2iC1 C ı �

´
2i�

´
';2iC1/ :

5.133

This defines a path of smoothly connected Hamiltonians that (1) satisfy both
symmetries and (2) do not close the gap for ' 2 Œ0; 2�/ (this follows because
their spectrum is independent of ' due to their unitary equivalence). For ı D 0

and ' D 0 this yields the Hamiltonian (5.24c), H0.0/ D H . But for ' D � we
find H0.�/ D �H and can conclude that the phases for Ji and �Ji are the same
(i D 1; 2). This makes the phase diagram in Figure 5.2 (a) inversion symmetric.

A similar argument can be used to show that the phase diagram is mirror-
symmetric about the two axes: Replacing both spins �a ! �a' on every other dimer
(either on-site or between sites) implements the selective sign change of either
J1 ! �J1 or J2 ! �J2.

In conclusion, all regions in Figure 5.2 (a) with the same color can be transformed
into each other without breaking the symmetry or closing the gap—they belong to
the same phase. This reflects our knowledge about the SSH chain which has only
two distinct phases: the trivial and the topological. In particular, the signs of the
couplings in Hamiltonian (5.24b) are completely irrelevant.

It is important to stress that in generalHı.�/ D �H�ı.0/ so that for interacting
Hamiltonians (ı ¤ 0) these arguments do not hold. This explains why at the
isotropic point ı D 1 the inversion symmetry of the phase diagram in Figure 5.2 (b)
is lost. Let us discuss this case in detail and how it connects to the non-interacting
case ı D 0:

1 J1 > 0 and J2 > 0.

a jJ1j > jJ2j. We can consider the limit J2 ! 0. The isotropic on-site
interaction J1� 2i�1� 2i with J1 > 0 leads to on-site singlet pairing.
Thus there are no low-energy d.o.f. and switching on J2 cannot change
the non-degeneracy of the ground state manifold. Since these arguments
also apply to the non-interacting point ı D 0, we do not expect a phase
transition for ı D 0! 1. This is confirmed by DMRG simulations in
Figure 5.3 (e) where the gap stays open and the ground state degeneracy
does not change.

b jJ1j < jJ2j. Here the same arguments apply for a model shifted by one
spin-1

2
site. However, now there is a four-fold ground state degeneracy

at J1 D 0 due to the dangling edge spins. This degeneracy cannot be
lifted for small 0 < jJ1j � jJ2j due to the lack of low-energy d.o.f. in
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the bulk and the SU.2/ symmetry of the interaction. This is verified
numerically in Figure 5.3 (a) where it is shown that the gap does not
close and the four-fold ground state degeneracy is stable for ı D 0! 1.
Note that for J1 D J2 the Hamiltonian describes an antiferromagnetic
spin-1

2
Heisenberg chain (which is gapless as can be shown by the Bethe

ansatz [377]). Hence there is a phase transition between (1a) and (1b).

2 J1 < 0 and J2 > 0.

a jJ1j < jJ2j. Here a similar argument applies. The only difference
is that for 0 < jJ1j � jJ2j the couplings between the singlets are
ferromagnetic and not antiferromagnetic (which does not affect the
ground state degeneracy). Since for ı D 0 there is also a four-fold
degeneracy, we do not expect a phase transition for ı D 0 ! 1; this
is validated in Figure 5.3 (c). Note that the bulk remains gapped for
J1 D 0 so that there is no phase transition between (1b) and (2a).

b jJ1j > jJ2j. So far, there was no difference between the non-interacting
Hamiltonian (ı D 0) and its isotropic counterpart (ı D 1). For
jJ1j > jJ2j with J1 < 0 and J2 > 0 this is no longer true. Recall
that for ı D 0 the chain is in the trivial phase without ground state
degeneracy. For ı D 1, however, the low-energy physics follows from
the limit J2 ! 0 where the negative, isotropic (!) on-site coupling
leads to triplet pairing. Therefore each on-site pair of spins forms
an effective spin-1 d.o.f. that is weakly (0 < J2 � jJ1j) coupled
by antiferromagnetic, isotropic terms to its neighbors. The effective
low-energy description is then given by the antiferromagnetic spin-1
Heisenberg model in (5.127) of which we known that it is in the
topological Haldane phase with four-fold ground state degeneracy due
to emergent spin-1

2
d.o.f. at the boundaries. This line of arguments

suggests a phase transition for ı D 0 ! 1 between gapped phases
for ı D 0=1 with one-fold/four-fold ground state degeneracy. This is
verified by numerics in Figure 5.3 (g). In particular, we expect no phase
transition between (2a) and (2b)—which is not obvious because one
has to traverse a point where jJ1j D jJ2j (but J1 D �J2). Recall that
without interactions (ı D 0) there is a phase transition.
Note: In a sense, the projector used for the AKLT ground state (5.129)
to map from the artificial Hilbert space H b

2L of spins onto the physical
Hilbert space of spin-1 representations here becomes a projector from
the full physical Hilbert space H b

2L onto the low-energy sector of the
theory.

427



MISCELLANEOUS

10-10

10-8

10-6

10-4

10-2

100

 0  0.5  1  1.5  2

En
er

gy
 Δ

E

Isotropy δ

L=10
L=20 10-10

10-8

10-6

10-4

10-2

100

 0  0.5  1  1.5  2

En
er

gy
 Δ

E

Isotropy δ

L=10
L=20

10-10

10-8

10-6

10-4

10-2

100

 0  0.5  1  1.5  2

En
er

gy
 Δ

E

Isotropy δ

L=10
L=20 10-10

10-8

10-6

10-4

10-2

100

 0  0.5  1  1.5  2

En
er

gy
 Δ

E

Isotropy δ

L=10
L=20

(a) J1 > 0; J2 > 0 (b) J1 < 0; J2 < 0

(c) J1 < 0; J2 > 0 (d) J1 > 0; J2 < 0

Figure 5.3 • Phase transitions (DMRG). Shown are the five lowest eigenenergies of Hamilto-
nian (5.131) as function of the isotropy ı; the ground state energy is normalized to zero and does
not show up in the logarithmic plots. We show results for two chain lengthsL D 10; 20 to reveal
tendencies forL!1. Bond dimension and number of sweeps used for the DMRG simulations
areD D 300 and S D 10, respectively (we used ALPS [251,361]). A four-fold ground state
degeneracy is often indicated by three energies close to zero for L D 10; for L D 20 these
three energies then vanish from the plots as their energy is essentially zero. For ı D 0 the system
maps to free fermions and resembles the XY model. For ı D 1 (dashed vertical line), the system
becomes an isotropic Heisenberg model with alternating bonds. In (a-d) we show the four sign
combinations for “topological” systems with jJ1j D 0:25 < 1:0 D jJ2j. Õ

3 J1 < 0 and J2 < 0.

a jJ1j > jJ2j. Here the same argument as in (2b) leads to the low-energy
effective theory (5.127) but now with a weak ferromagnetic coupling
between the spin-1 d.o.f. Note that at J2 D 0 the system becomes
gapless as it consists of decoupled spins with S D 1 in the low-energy
sector. Thus we expect a phase transition between (2b) and (3a).
The ground state of ferromagnetic Heisenberg models constructed
from L spin-S d.o.f. belongs to the sector of maximum total spin
Smax D LS [378,379] (which contains the stretched state jS; S; : : : ; Si).
Due to the global SU.2/ symmetry of (5.127) (which is generated by the
total spin algebra Stot D

P
i Si ), this implies an extensive ground state
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(e) J1 > 0; J2 > 0 (f) J1 < 0; J2 < 0

(g) J1 < 0; J2 > 0 (h) J1 > 0; J2 < 0

Õ In (e-h) we show the four sign combinations for “trivial” systems with jJ1j D 1:0 > 0:25 D
jJ2j. All panels are discussed in the text.

degeneracy of 2Smax C 1 D 2LS C 1. These ground states break the
SU.2/ symmetry; in particular, for S D 1

2
the stretched state j"" � � � "i

breaks the chiral symmetry XK. This ferromagnetic phase therefore
differs fundamentally from the topological and the trivial phase [see
(1a) and (1b)] which are XK-symmetric. The ferromagnetic phase is
therefore well-described by Landau’s paradigm of symmetry breaking
and there is no need for the machinery developed in Subsection 5.1.3.
The numerics for ı D 0! 1 is shown in Figure 5.3 (f ) and suggests a
vanishing of the five lowest energy states at ı D 1.

b jJ1j < jJ2j. Here the same arguments as in (3a) apply except for
the additional spin-1

2
d.o.f. at the chain boundaries. Again, this sector

is not interesting from the perspective of SPTs. The numerics for
ı D 0! 1 is shown in Figure 5.3 (b) and suggests a vanishing of the
five lowest energy states at ı D 1. Note that we do not expect a phase
transition between (3a) and (3b) as neither ground state degeneracy nor
symmetry change. In particular, for J1 D J2 the system becomes a
spin-1

2
ferromagnetic Heisenberg model. But Smax D 2L �

1
2
D L is the
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same as for the effective spin-1 models for jJ1j � jJ2j or jJ2j � jJ1j
(there we count Smax D L � 1 D L). Hence the ground state space is the
same in the entire region J1; J2 < 0.

4 J1 > 0 and J2 < 0.

a jJ1j < jJ2j. We can reduce this setting to (2b) with J1 < 0, J2 > 0,
and jJ1j > jJ2j in the bulk. The only difference is that two additional
spin-1

2
d.o.f. are antiferromagnetically coupled to the boundaries of the

effective AFHM (5.127). In (2b) we argued that there are emergent
spin-1

2
d.o.f. at the boundary of this model; these are here antiferro-

magnetically coupled to the additional spin-1
2
d.o.f. at the boundaries.

Then the two spin-1
2
d.o.f. at each boundary form a singlet and gap out,

lifting the four-fold ground state degeneracy of (2b). We are left with a
trivial state that does not break any symmetry. Since for ı D 0 there
is a four-fold ground state degeneracy, we expect a phase transition for
ı D 0 ! 1. The change in ground state degeneracy is numerically
verified in Figure 5.3 (d).

b jJ1j > jJ2j. Here the same argument as in (1a) applies: Weakly
(jJ2j � jJ1j) ferromagnetically (J2 < 0) coupled singlets give rise to a
unique ground state of unbroken symmetry. It is clear that there is no
phase transition between (1a) and (4b); we also expect none between
(4b) and (4a), similar to (2b) and (2a). For ı D 0 we also find a chain
of singlets so that there is no phase transition for ı D 0! 1. This is
shown in Figure 5.3 (h).

In the above discussion it was noted that we do not expect a phase transition
between (2a) and (2b). Without interactions ı D 0 there is a phase transition
between topological and trivial phase. We argued that this cannot be true for
isotropic systems ı D 1 due to the ground state degeneracy of the effective AFHM
in (2b). But this is a non-trivial statement which implies that for jJ1j D jJ2j the gap
does not close if J1 D �J2. In Figure 5.4 we checked this numerically by plotting
the five lowest eigenenergies for the parametrization J1 D �J and J2 D 1 � J

along 0 � J � 1 [a path following the gray arrow in Figure 5.2 (b)]. We find that
the four-fold ground state degeneracy emerges exponentially for L!1 even for
J D �J1 D J2 D 0:5 without closing the gap. This verifies that our arguments are
correct and (2a) and (2b) constitute the same phase.

In conclusion, we showed by numerical means and perturbative arguments that
all phases in Figure 5.2 of the same color are smoothly connected by deformations of
the Hamiltonian (5.131) that do not close the gap or violate the relevant symmetries
[R.�/ and XK]. The experiment in Ref. [4] essentially realizes the case J1 > 0

and J2 < 0. This places the system at the black cross in Figure 5.2 (a). From
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Figure 5.4 • Path for J2 > 0 and J1 < 0 (DMRG). Shown are the five lowest energy
eigenvalues for systems of length L D 10; 20 along a path with J1 D �J and J2 D 1 � J for
0 � J � 1. The path follows the gray arrow in Figure 5.2 (b). The ground state is normalized
to zero energy and does not show up in the plot. Bond dimension and number of sweeps used
for the DMRG simulation areD D 300 and S D 10, respectively (we used ALPS [251,361]).
Clearly there is no phase transition for J D �J1 D J2 D 0:5. This underpins that the phases
in (2a) and (2b) are the same. Note that for J D 1 the ground state is a chain of decoupled
triplets with extensive ground state degeneracy.

there one can travel smoothly to one of the topological regions with J2 > 0 [using
the rotation (5.132)] and subsequently switch on the isotropy ı D 0 ! 1. One
reappears in Figure 5.2 (b) in either (2a) or (1b) and can smoothly cross the border
to (2b) which connects to the Haldane phase of the AFHM in the limit J1 ! �1.
The upshot is that the SPT phase of Ref. [4] is essentially the Haldane phase.
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5.2 Fractional Quantum Hall States
from Coupled Luttinger liquids

5.2.1 Introduction

This section is somewhat exotic. While the three main projects in Chapter 2, 3, and 4
fit under the umbrella of symmetry-protected topological phases in one dimension,
here we venture into the iridescent realm of two-dimensional intrinsic topological
order (long-range entangled phases that neither break nor require any symmetry
for their stability). Such topologically ordered systems [15] are promising substrates
for fault-tolerant (topological) quantum computation—a paradigm that exploits the
unusual (anyonic) statistics of quasiparticle excitations above topologically ordered
ground states [24,45], see Ref. [47] for a review of this concept.

To date, the only153 candidates for topologically ordered states of matter that
can be realized in the laboratory are fractional quantum Hall states [27–29]. Their
hallmark—quantized Hall resistivities at fractional fillings—sets them apart from
the integer quantum Hall effect [69], which can be understood in terms of free
fermions that fill smeared Landau levels in the presence of disorder [380]. However,
due to the flatness of Landau levels, the Coulomb interaction dominates the physics
in the macroscopically degenerate subspace of nearly degenerate fermion modes at
fractional fillings (if disorder is not too strong). The fractional quantum Hall effect
(FQHE) is therefore an inherently interaction-driven phenomenon that cannot be
described by conventional band theory; in particular, ground states and low-lying
excitations cannot be constructed from single-particle states.

Due to a constrained set of analytical tools to handle strongly correlated many-
body systems, the exact structure of fractional quantum Hall states is unknown.
Fortunately, there are structurally simpler trial wave functions that capture the
essential features of the true ground states154. These trial wave functions not only
describe the ground states at various fillings, but also reveal the unusual statistics
of quasiparticle excitations that can be abelian [37] or non-abelian [38] anyons (see
also Chapter 2, especially Subsection 2.5.2).

For a more complete picture of fractional quantum Hall states and their
low-energy physics, complementary descriptions are desirable155. Here we focus
on a rather unconventional approach that has recently been put forward by
Kane et al. [357]:

153This statement is not entirely true, see Footnote 11 in Subsection 1.1.1.
154The trial wave functions are believed to belong to the same phase as the true ground states: Their

pattern of long-range entanglement describes (up to quasilocal unitaries) the true ground states.
155We quote R. P. Feynman: “Therefore psychologically we must keep all the theories in our heads, and

every theoretical physicist who is any good knows six or seven different theoretical representations for exactly
the same physics.” in The Character of Physical Law, p. 168.
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In one dimension, it is well-established that gapless phases of (possibly inter-
acting) fermions form a Luttinger liquid (LL) [255, 381, 382]. The latter replaces
Fermi liquid theory since the paradigm of weakly interacting quasiparticles is not
valid in one dimension where all excitations are necessarily collective. As Luttinger
liquids are naturally described by quantum field theories within the framework of
(abelian) bosonization [255, 383], the renormalization group (RG) can be used to
assess their stability in the presence of interacting perturbations. This powerful
toolkit makes Luttinger liquid theory an appealing framework to study the effect of
strong interactions in electronic systems. The FQHE requires strongly interacting
electrons—but in two dimensions. However, one of the most striking features of
both integer and fractional quantum Hall effect is the existence of chiral (and thereby
scattering-free) gapless edge modes; and indeed, these can be described as (chiral)
Luttinger liquids [39, 384, 385]. But what about the gapped bulk of the fractional
quantum Hall state? Can it be understood in terms of Luttinger liquids as well, so
that the edge modes emerge naturally?

The answer is affirmative and based on the concept of coupled Luttinger liquids.
The idea is to start from two-dimensional structures of many parallel quantum wires,
each in a gapless Luttinger liquid phase, and couple them by local interactions to
construct a truly two-dimensional system. The problem is that there are various
relevant (in the RG sense) couplings (generated by, e.g., inter-wire single-particle
hopping or density-density interactions) that destabilize the Luttinger liquids and
drive the two-dimensional system into—from our perspective—uninteresting phases
like Fermi liquids or charge density waves (CDW). However, it has been shown
that strong forward scattering156 between nearest- and next–nearest-neighbor wires
can render these couplings irrelevant [386–389]. The resulting gapless phase of the
two-dimensional array of wires is highly anisotropic and inherits characteristics of
Luttinger liquids along the wires (viz. algebraic correlations) while being short-range
correlated in the transverse direction; it has been dubbed sliding Luttinger liquid
(SLL) (derived from a “sliding symmetry” between the wires). The construction
proposed by Kane et al. [357] and elaborated by Teo and Kane [390] builds on the
sliding Luttinger liquid scenario and adds tailored inter-wire couplings that drive
the system into gapped fractional quantum Hall states. To this end, a perpendicular
magnetic field is applied that renders the “wanted” couplings relevant and the
“unwanted” competing couplings irrelevant. In summary, the combination of
magnetic field and strong forward scattering can be used to single out the couplings
that drive the system into fractional quantum Hall states as the only relevant
operators.

Here we explore this approach in more detail by combining the RG methods
of Ref. [388] with the proposal of Teo and Kane [390]. In particular, we aim at
a quantification of the inter-wire forward scattering interactions needed to drive
the system into the fractional quantum Hall regime. To this end, we focus on

156Realized by density-density and/or current-current interactions.
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the simplest non-trivial (bosonic157) fractional quantum Hall state: The Laughlin
state [36] at filling � D 1=2. The latter allows for abelian anyons as bulk excitations
that are known as semions158.

5.2.2 Setup

We consider an array of N one-dimensional quantum wires of length L aligned
along the x-axis and stacked in y-direction with distance a, penetrated by a uniform
magnetic field B´ in ´-direction. The wires are populated with charged (�e),
interacting hard-core bosons that are described by (complex) bosonic fields ‰j .x/
(where j denotes the wire index), see Figure 5.5 (a). We work in the Landau gauge
A D �B´yjex with yj D ja and ex the unit vector in x-direction. The bosonic
fields can be “bosonized,” i.e., expressed in terms of (compact and real) bosonic
phase and density fields 'j .x/ and �j .x/ with canonical commutation relations�

'j .x/; @x0�j 0.x0/
�
D i�ıjj 0ı.x � x0/ : 5.134

Then, the fields ‰j .x/ and densities �j .x/ can be written as

‰j .x/ D
p
�0 e

�i.'j .x/Cbjx/ 5.135a

�j .x/ D �0 �
1

�
@x�j .x/C Qc cos

�
2��0x � 2�j .x/

�
; 5.135b

where �0 is the average 1D density on the wires, b D B´ae=„, and Qc is a parameter
that depends non-universally on the microscopic implementation [255, 392]. Note
that we take into account density modulations with wave vector 2��0, in addition
to the smooth density profile �.0/j .x/ D �@x�j .x/=� , as those give rise to relevant
operators (see below). The filling � D �2D=n� with the 2D density �2D D �0=a and
the density of flux quanta n� D B´=.e=h/ takes the form � D 2��0=b; here we
will focus on the half-filled lowest Landau level: � D 1=2 , b D 4��0.

The hard-core constraint for the bosons is readily described by the sum of
Luttinger Hamiltonians

HLL D
v0

2�

Z
j

�
K0.@x'j /

2
C

1

K0
.@x�j /

2

�
5.136

with Luttinger parameter K0 D 1 (which also describes free fermions); the sound
velocity is v0 and we introduced the shorthand

R
j
�
P
j

R
dx. This is schematically

illustrated in the leftmost column of Figure 5.5 (a).

157We focus on fractional quantum Hall states of strongly interacting bosons because our context is
that of artificial quantummatter that can be realized by ultracold atoms. On these platforms, excitations
play the role of particles that are naturally described as hard-core bosons (see also Section 5.1).

158The statistics of semions interpolates between bosons and fermions in that exchanging one
semion with another yields a phase of i (and notC1= � 1 as for bosons/fermions) [37, 391].
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Gaussian �xed point (SLL) Perturbations(a)

(b)

Figure 5.5 • Setup. (a)We consider an array of one-dimensional quantum wires populated
with hard-core bosons in a perpendicular magnetic field B´ with intra- (Hintra) and inter-wire
forward scattering (Hinter). We are interested in parameter regimes where the two-wire Laughlin
interaction HL2 becomes relevant and defeats competing charge density wave perturbations
O
.n/
CDW to drive the system into the fractional quantum Hall regime at filling � D 1=2. (b) The

action of HL2 is most transparent if the physical fields 'j and �j are combined to chiral bosons
Q�
R;L
j which, in turn, can be recombined between wires to new fields Q'jC1=2 and Q�jC1=2. The

“twirls” symbolize linear combinations of fields.

Adding repulsive intra-wire density-density interactions,

Hintra D
v0

2�

Z
j

w .@x�j /
2 ; .w > 0/ 5.137

allows us to lower the Luttinger parameter K0 ! K D K0=
p
1CK0w into the

repulsive regime 0 � K � 1 [second column in Figure 5.5 (a)]; the sound velocity is
rescaled as v0 ! v D v0

p
1CK0w.

Finally, we couple the wires through density-density interactions described by

Hinter D
v0

2�

X
n

Z
j

m�.n/

2
.@x�j /.@x�jCn/ : 5.138
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Here, m� encodes the translationally invariant, symmetric inter-wire couplings of
densities (for periodic boundary conditions in y-direction): m�.n/ D m�.nCN/,
m�.n/ D m�.�n/ and m�.0/ D 0. Note that one could extend Hinter by flux-flux
couplings [388, 389] (which we do not need in the following). The action of Hinter is
illustrated in the third column of Figure 5.5 (a).

The sum of the three terms (5.136), (5.137), and (5.138) corresponds to a
Gaussian fixed point action dubbed Sliding Luttinger Liquid (SLL),

HSLL � HLL CHintra CHinter ; 5.139

which has been shown to feature islands of stability against generic perturba-
tions. This is an example of a true “non-Fermi liquid” phase in two di-
mensions, characterized by the sliding symmetry 'j .x/ ! 'j .x/ C 'j and
�j .x/ ! �j .x/ C �j for arbitrary constants 'j ; �j [386–389]. If we define
M�.n/ � .1=K/ ın;0 C .v0=2v/m�.n/ andM'.n/ � K ın;0, the SLL Hamiltonian
can be compactly written as

HSLL D
v

2�

X
n

Z
j

�
' 0
j M'.n/ '

0
jCn C �

0
j M�.n/ �

0
jCn

�
5.140

where primes denote derivatives with respect to x.
Following the proposal by Kane et al. [357, 390], we additionally couple adjacent

wires through the Laughlin term

OL2;j � cos
�
'j � 'jC1 � 2.�j C �jC1/

�
) HL2 D "

Z
j

OL2;j 5.141

with small coupling constant " (compared to the SLL couplings). Then, the
complete Hamiltonian reads

H D HSLLŒM';M� �CHL2 ; 5.142

where the second term is treated as a perturbation of the SLL fixed point [fourth
column in Figure 5.5 (a)]. Let us briefly sketch the intention behind OL2 (we omit
the wire index j whenever possible); for details we refer the reader to Ref. [390]:

The elementary density and phase fields � and ' that describe the uncoupled
wires can be linearly combined to chiral fields

Q̂ R
j � 'j � 2�j and Q̂ L

j � 'j C 2�j 5.143

that live on the wires, see Figure 5.5 (b). In these, the Laughlin term reads OL2 D

cosŒ Q̂ Rj � Q̂
L
jC1�. Using Œ'j .x/; �j 0.x0/� D i�=2 ıjj 0 sign.x0 � x/, it is easy to show

that right- and left-movers decouple: Œ Q̂ ˛j .x/; @x0 Q̂ ˛
0

j 0 .x0/� D ˙4�i ı˛˛0ıjj 0ı.x0�x/,
whereC=� corresponds to ˛ D L=R.
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The Laughlin term can be further simplified by pairing left- and right-moving
modes from adjacent wires to new density and phase fields Q�jC1=2 and Q'jC1=2 that
live “between” the wires:

Q'jC1=2 �

Q̂ L
jC1 C

Q̂ R
j

2
and Q�jC1=2 �

Q̂ L
jC1 �

Q̂ R
j

2
: 5.144

In these new variables, the Laughlin term simply becomes a sine-Gordon interaction
OL2 D cos.2 Q�jC1=2/. It is straightforward to verify that the new fields obey
Œ Q'k.x/; @x0 Q�k0.x0/� D 2�i ıkk0ı.x � x0/ for k D j C 1=2 and k D j 0 C 1=2

[cf. Eq. (5.134)].
The crucial observation is that in a system with N parallel wires and boundaries

along the x-direction, this procedure leaves the chiral modes Q̂ RN and Q̂ L1 on the
two boundaries unpaired. They remain gapless even when the N � 1 couplings
OL2 in the bulk flow to strong coupling and open a gap. Then, the boundaries of
the gapped bulk host gapless edge modes that are described by a chiral Luttinger
liquid with topologically pinned Luttinger parameter K D � D 1=2—a well-known
feature of fractional quantum Hall states [39].

This explains why we are interested in a parameter regime ofM' andM� where
HL2 flows to strong coupling and determines the properties of the gapped bulk (and,
by the argument above, the edge mode physics as well).

5.2.3 Allowed Operators

Let us first focus on possible microscopic interactions, in terms of the elementary
bosonic fields ‰j .x/, that give rise to the required Laughlin term OL2. Using
the bosonized fields (5.135), it is straightforward to show that nearest-neighbor
single-particle hopping with additional density interactions gives rise to the Laughlin
term OL2:

�j‰
�
j‰jC1�jC1 C h.c. � OL2 C R : 5.145

Here, R collects irrelevant and fast oscillating terms that do not enter the
renormalization group analysis below, see Subsection 5.2.5 for details. Note
that the long-wavelength effective description that derives from the microscopic
interaction (5.145) is given by OL2 because of the magnetic field and only at the
particular filling � D 1=2.

The perturbation (5.145) is the one needed to drive the SLL into the fractional
quantum Hall regime. To this end, OL2 must be a relevant perturbation of the
Gaussian fixed point (5.140) in the RG sense. But this is not sufficient if there are
competing (symmetry-allowed) perturbations that can be added to the fixed point
action. All of these must be irrelevant (or less relevant) to ensure that the gapped
phase is a � D 1=2 Laughlin state.
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We postpone a comprehensive discussion of allowed perturbations to the future
and focus on only one class of competing terms, namely density-density interactions

�j�jCn � O.n/
CDW C R 5.146

that give rise to the bosonized perturbations O
.n/
CDW � cosŒ2.�j � �jCn/�; these are

unaffected by the magnetic field and potentially relevant at any filling. When O
.n/
CDW

becomes relevant and flows to strong coupling, the density fields �j on wires with
distance n are locked and the system displays CDW-crystalline order [357, 389].

In the following, we study the competition between the (wanted) Laughlin term
OL2 and the (unwanted) CDW terms O

.n/
CDW with a first-order renormalization group

analysis.

5.2.4 Renormalization Group Analysis

The stability of a phase—described by a Gaussian fixed point action—against
perturbations is determined by the flow of their coupling constants under first-order
RG transformations [256],

d"O

dl
D .2 ��O/ "O ; 5.147

where "O 2 R and �O 2 RC denotes the coupling constant and scaling dimension
of the perturbation O 2 fOL2;O

.n/
CDWg, respectively. The dimensionless parameter

l describes the length scale, where l ! 1 denotes the infrared limit (“zooming
out”). From the RG flow (5.147) it follows that O is relevant (j"Oj ! 1 for
l !1) if �O < 2 and irrelevant (j"Oj ! 0 for l !1) if �O > 2.

The scaling dimensions of the operators OL2 and O
.n/
CDW are straightforwardly

evaluated (see Subsection 5.2.5 for details) and read

�.n/CDW D 2K�
�
n 5.148a

�L2 D
1

2K
��
1 C 2K �

C
1 5.148b

with the K-independent integrals (for wire distance a D 1)

�˙
n �

Z �

��

dq
2�

1

�.q/
Œ1˙ cos.qn/� 5.149a

�˙
n �

Z �

��

dq
2�

�.q/ Œ1˙ cos.qn/� : 5.149b
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The marginal inter- and intra-wire couplings of HSLL are encoded in �.q/ D

K

q
QM�.q/= QM'.q/ where QM�;'.q/ is the discrete Fourier transform ofM�;'.n/:

QM�;'.q/ �

N�1X
nD0

M�;'.n/ e
�iqn : 5.150

In the following, we restrict our analysis to nearest- (NN) and next–nearest-
neighbor (NNN) density-density interactions as these are sufficient to stabilize the
SLL [388]. Thus m�.n/ D m1 ın;˙1 Cm2 ın;˙2 and consequently

M�.n/ D
1

K
ın;0 C

v0

2v
.m1 ın;˙1 Cm2 ın;˙2/ : 5.151

In combination with M'.n/ D K ın;0 and the rescaled coupling constants �k �
mk K

2=K0 (k D 1; 2), one finds

�.q/ D
p
1C �1 cos.q/C �2 cos.2q/ ; 5.152

see Subsection 5.2.5 for details. Note that we translated the physically meaningful
parameters m1, m2 and w into the new parameters �1, �2 and K as the latter are
convenient coordinates for the phase diagram (see below).

Strict Condition

We are now in the position to search the parameter space .�1; �2; K/ for domains
where the system is driven into the fractional quantum Hall regime. To this end, we
require O

.n/
CDW to be irrelevant for all n � 1 and OL2 to be relevant:

8n W �
.n/
CDW > 2 and �L2 < 2 : 5.153

Given a pair of couplings �1; �2, these conditions translate into intervals for the

effective Luttinger parameter K. One finds K 2K
.N/

CDW � \n�N

�
1=��

n ;1
�
for the

irrelevance of O
.n/
CDW up to distance N , and

K 2KL2 �
�
Œ1 �ƒ� =2�C

1 ; Œ1Cƒ� =2�
C
1

�
5.154

with ƒ D Re
q
1 � �C

1 �
�
1 for the relevance of the Laughlin term OL2. (Note that

this interval is empty for �C
1 �

�
1 � 1.) The system is safely driven into the � D 1=2

Laughlin state if

K 2K.N/
�KL2 \K

.N/

CDW : 5.155

Thus we are interested in couplings �1; �2 for which K.N/ ¤ ; for N !1.
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Figure 5.6 • Phase diagram. (a) The parameter domain for which the SLL is stable against
transversal CDW order is shaded yellow. The marked region (dashed box) with repulsive nearest-
neighbor interactions (�1 > 0) is shown in (b): Stability against CDW perturbations O

.n/
CDW with

range up to N D 1; 2; 3 reduces the domain for which HL2 is the only relevant perturbation
considerably. The marked region (dashed box) is shown in the close-up (c): The colored patch is
stable againstN � 3 CDW perturbations; color and diameter of the discs encode the centerK
of theK-interval K.3/ and its size jK.3/j, respectively. The maximum diameter corresponds
to jK.3/j � 0:28 atK � 0:55.

An additional constraint follows from inspection of Eq. (5.149a) in combination
with Eq. (5.152): �˙

n is only well-defined if �.q/ > 0 for all q 2 Œ��; ��. Physically,
this ensures stability against the formation of transversal CDW order [388]. Solving
this inequality yields the allowed parameter regime j�1j <

p
8�2.1 � �2/ for

1=3 � �2 < 1 and j�1j < �2C 1 for �1 < �2 < 1=3, depicted in Figure 5.6 (a) and
derived in Subsection 5.2.5 (see also Figure 5.8). Note that this region covers all
four cases: attractive or repulsive nearest-neighbor interactions �1 7 0 combined
with attractive or repulsive next–nearest-neighbor interactions �2 7 0.

Within this admissible parameter regime, the condition K.1/ ¤ ; (which
guarantees stability against nearest-neighbor CDW order only) restricts the couplings
to the marked region in Figure 5.6 (b), which lies completely in the sector of repulsive
nearest-neighbor interactions. For N D 2 and N D 3, this region shrinks gradually
to the smallest patch labeled by “N � 3”—which then remains stable for larger
distances N > 3. Figure 5.6 (c) shows a close-up of this stable domain and reveals
that the center K of the interval K.3/ varies from the weakly repulsive regime
K . 1 to K � 1=2; the interval is rather narrow, with maximum extent close to the
transversal CDW instability.
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Figure 5.7 • Relaxed condition. (a) Comparison of the K-intervals K.3/ and QK.3/ in the
parameter domain with the largest intervals (see Figure 5.6). The diameter of discs (circles)
encodes the size jK.3/j (j QK.3/j) of the intervals; the color encodes the centerK of K.3/. The
maximum diameter of discs and circles corresponds to jK.3/j � 0:28 and j QK.3/j � 0:43,
respectively. (b) Interval boundaries for a cut in �1-direction at �2 D 0:5 and N D 1 (these
parameters were chosen for illustrative reasons); red: KL2, green: K.1/, yellow+green: QK.1/.
Note the interval close to �1 � 0 where KL2 D ;. The solid and dashed black curves are the

lower boundaries of the intervals K
.1/
L2<CDW and K

.1/

CDW.

Relaxed Condition

The condition (5.153) is rather strict as it demands that the only relevant operator is
the Laughlin term. However, depending on the bare values of the coupling constants
it may be sufficient for OL2 to be the most relevant operator; this allows for less
relevant CDW terms and may relax the constraints on inter-wire couplings and the
Luttinger parameter.

Formally, the relaxed condition reads

�L2 < min
n�1
f2;�.n/CDWg 5.156

which is equivalent to (N !1)

K 2 QK.N/
�KL2 \K.N/

L2<CDW ; 5.157

where the interval K
.N/
L2<CDW is a function of �1 and �2 and reads

K.N/
L2<CDW �

\
n�N

�p
��
1 =2 Re

q
��
n � �

C
1 ; 1

�
I 5.158

see Subsection 5.2.5 for the derivation [starting at Eq. (5.250)].
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Numerical results are shown in Figure 5.7: Relaxing the condition of being
the only relevant operator to being the most relevant operator does not change the
phase boundaries in the �1-�2-plane but expands the interval of allowed Luttinger
parameters K instead: K.N/ ¨ QK.N/, see Figure 5.7 (a). This is explained
in Figure 5.7 (b) where we plot the interval boundaries of K.N/ and QK.N/ along a
cut in �1-direction for fixed �2. The invariant phase boundary for both conditions
(strict and relaxed) is rooted in a relation of �˙

n and �˙
n that is responsible for the

threefold intersection of interval boundaries at the critical nearest-neighbor coupling
strength ��

1 D �
�
1.�2/.

The upshot is that the relaxation allows for a broader range of Luttinger
parameters (determined by the intra-wire interactions), but has no effect on the
necessary inter-wire couplings �1 and �2.

5.2.5 Technical Details

Here we provide detailed derivations for the results presented above. We start
with a careful discussion of the parameters used for the description of the SLL
Hamiltonian. Then we construct the allowed perturbations and derive their scaling
dimension. Finally, we discuss the intervals for the Luttinger parameter and
reproduce the coupling range found in Ref. [388] that is stable against transversal
CDW order.

Dictionary of Parameters

The physical parameters relevant for our model are the sound velocity v0, the intra-
wire repulsion w, and the nearest- and next–nearest-neighbor inter-wire interaction
m1 and m2. For these parameters, the SLL Hamiltonian reads

HSLL D HLL CHintra CHinter 5.159a

D
v0

2�

Z
j

8̂̂̂<̂
ˆ̂:

K0.@x'j /
2
C

1

K0
.@x�j /

2
C w .@x�j /

2

C
1

2

X
n¤0

m� .n/ .@x�i /.@x�iCn/

9>>>=>>>; 5.159b

where K0 D 1 for hard-core bosons and
R
j
�
P
j

R
dx. Combining all intra-wire

terms yields the Hamiltonian

HSLL D
v

2�

Z
j

8̂̂̂<̂
ˆ̂:

K.@x'j /
2
C
1

K
.@x�j /

2

C
v0

2v

X
n¤0

m� .n/

Z
i

.@x�i /.@x�iCn/

9>>>=>>>; 5.160
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with rescaled Luttinger parameter K and sound velocity v,

K D
K0

p
1C wK0

and v D v0
p
1C wK0 : 5.161

Collecting intra- and inter-wire interactions yields

HSLL D
v

2�

X
n

Z
j

8<: Kın;0.@x'j /.@x'jCn/

C

�
1

K
ın;0 C

v0

2v
m� .n/

�
.@x�j /.@x�jCn/

9=; 5.162a

D
v

2�

X
n

Z
j

�
M'.n/.@x'j /.@x'jCn/CM� .n/.@x�j /.@x�jCn/

�
5.162b

with

M'.n/ D Kın;0 and M�.n/ D
1

K

�
ın;0 C

Kv0

2v
m�.n/

�
: 5.163

With m�.n/ D m1ın;˙1 Cm2ın;˙2 and Kv0=v D K2=K0 the second term reads

M�.n/ D
1

K

�
ın;0 C

K2

2K0
.m1ın;˙1 Cm2ın;˙2/

�
5.164a

D
1

K
Œın;0 C �1 ın;˙1=2C �2 ın;˙2=2� 5.164b

with the rescaled couplings �k D mkK
2=K0. The discrete Fourier transform

(2 < N <1) yields

QM�.q/ D

N�1X
nD0

M�.n/e
�iqna 5.165a

D
1

K
Œ1C �1 cos.qa/C �2 cos.2qa/� 5.165b

where we used thatM�.nCN/ DM�.n/. Together with QM'.q/ D K, this leads
to

�.q/ D K

q
QM�.q/= QM'.q/ 5.166a

D
p
1C �1 cos.qa/C �2 cos.2qa/ : 5.166b
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In conclusion, we have the following relation between the triple .w;m1; m2/ of
physical parameters and the dimensionless parameters .K; �1; �2/ used for the RG
analysis: 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

w D
1

K0

�
K2
0

K2
� 1

�
m1 D

K0

K2
�1

m2 D
K0

K2
�2

9>>>>>>=>>>>>>;
,

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
K D

K0
p
1C wK0

�1 D
K0

1C wK0
m1

�2 D
K0

1C wK0
m2

9>>>>>>=>>>>>>;
: 5.167

Note that due to the mixing of parameters, the integrals �˙
n and �˙

n in (5.149)
are functions of .�1; �2/ via (5.166b) (but independent of K!), while they depend
non-trivially on all three physical parameters .w;m1; m2/. This allows for a straight-
forward computation of domains for solutions in the dimensionless parameters (as
discussed above).

Allowed Perturbations

Here we derive perturbations of the SLL fixed point action that are allowed (i.e.,
slowly varying) in the presence of the perpendicular magnetic field B´. We focus on
the Laughlin term and the competing CDW coupling. A systematic study of more
general perturbations is postponed to the future.

We use the bosonization formulas for bosons with density modulations up to the
first harmonic 2kF D 2��0 [255]:

‰j .x/ D
p
�0 e

�i.'j .x/Cbjx/ ; 5.168a

�j .x/ D �0 �
1

�
@x�j .x/C cos

�
2��0x � 2�j .x/

�
: 5.168b

The filling is fixed at � D 1=2 by setting the magnetic field to b D 4��0 (i.e., two
flux quanta per boson in the lowest Landau level). Note that the absent density field
� in the exponential (5.168a) and the missing Klein factors impose ‰j with bosonic
commutation relations (single particles manifest as steps of � in the � -field). As the
prefactors of operators are of no relevance for their scaling behavior, we omit them
in the following.

As a first observation, we find that inter-chain single-particle hopping between
chains j and k ¤ j , described by

‰
�
j .x/‰k.x/ � e

i.'j .x/Cbjx/e�i.'k.x/Cbkx/ 5.169a

D eib.j�k/xei.'j .x/�'k.x//„ ƒ‚ …
fast oscillating

� 0 ; 5.169b
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is fast oscillating due to the applied magnetic field and therefore irrelevant for the
infrared regime.

To find slowly varying perturbations that may become relevant and affect the
low-energy physics, we have to include interactions via the periodic modulation of
the density fields. We focus on the two simplest cases:

→ Inter-chain density-density interactions between chains j and k ¤ j are
described by

�j .x/�k.x/ �
�
1C @x�j .x/C cos

�
2��0x � 2�j .x/

��
� Œ1C @x�k.x/C cos .2��0x � 2�k.x//�

5.170a

D 1C @x�k.x/C @x�j .x/„ ƒ‚ …
chemical potential

C @x�j .x/@x�k.x/„ ƒ‚ …
marginal

C cos .2��0x � 2�k.x//

C cos
�
2��0x � 2�j .x/

�„ ƒ‚ …
fast oscillating

C@x�j .x/ cos .2��0x � 2�k.x//

C@x�k.x/ cos
�
2��0x � 2�j .x/

�„ ƒ‚ …
fast oscillating

C cos .2��0x � 2�k.x// cos
�
2��0x � 2�j .x/

�
:

5.170b

The last term contains slowly varying components,

�j .x/�k.x/ � cos
�
2�j .x/ � 2�k.x/

�
C cos

�
4��0x � 2�j .x/ � 2�k.x/

�„ ƒ‚ …
fast oscillating

5.171a

� cos
�
2�j .x/ � 2�k.x/

�
; 5.171b

which is the CDW term O
.n/
CDW for jk � j j D n.

→ Inter-chain hopping with density-density interactions between chains j and k ¤ j
is described by

�j .x/‰
�
j .x/‰k.x/�k.x/C h.c.

� ŒO.0/CO.2��0/CO.4��0/�

� cos
�
4��0.j � k/x C 'j .x/ � 'k.x/

�
;

5.172

where we introduced the notation O.k/ for terms modulated with wavenum-
ber k, see Eq. (5.170). The term can be expanded as a sum of frequency
components,

�j .x/‰
�
j .x/‰k.x/�k.x/C h.c.

� O.2��0Œ0C 2.j � k/�/CO.2��0Œ0 � 2.j � k/�/

CO.2��0Œ1C 2.j � k/�/CO.2��0Œ1 � 2.j � k/�/

CO.2��0Œ2C 2.j � k/�/CO.2��0Œ2 � 2.j � k/�/ :

5.173
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It is clear that only the terms in the first and third row can be tuned non-
oscillatory with integer i and k. The first row demands j D k, which is not
an inter-chain interaction; the terms in the third row become slowly varying
for

jj � kj D 1 ; 5.174

that is, nearest-neighbor interactions.
Without loss of generality, let k D j C 1; then the product with slowly
varying components is

cos
�
4��0x � 2�j .x/ � 2�jC1.x/

�„ ƒ‚ …
fast oscillating from density-density

� cos
�
�4��0x C 'j .x/ � 'jC1.x/

�„ ƒ‚ …
fast oscillating from hopping

5.175a

D cos
�
'j .x/ � 'jC1.x/ � 2.�j .x/C �jC1.x//

�
CO.8��0/ 5.175b

� cos
�
'j .x/ � 'jC1.x/ � 2.�j .x/C �jC1.x//

�
; 5.175c

which is the wanted Laughlin term OL2.

Note that this term becomes slowly varying only at filling � D 1=2 with an
applied magnetic field b D 4��0.

Renormalization Group Analysis

To derive the scaling dimensions of the operators

O.n/
CDW � e

2i.�j ��j Cn/ 5.176a

OL2 � e
iŒ'j �'j C1�2.�j C�j C1/� 5.176b

we follow the conventional renormalization procedure in momentum space [256]. To
this end, we start with a finite system of length L in x-direction, Na in y-direction,
and periodic boundary conditions. The classical fields can be expressed as Fourier
series

�j .r/ D
X
Q

�.Q/ ei.qrCqyja/ 5.177a

, �.Q/ D
1

V

NX
jD1

a

Z ˇv

0

d´
Z L

0

dx �j .r/ e�i.qrCqyja/ 5.177b

with � 2 f'; �g, Q D .q; qy/ and volume V D LxLyL´ with Lx D L, Ly D Na
and L´ D ˇv. Here q D .qx; q´/ D .qx; !=v/ is the momentum in Euclidean
coordinates r D .x; ´/ D .x; v�/ with sound velocity v and imaginary time � D i t .
Periodicity in x-direction demands qx 2 2�

L
Z and periodicity in (imaginary) time

with period ˇ requires q´ D !=v 2 2�
L´

Z. Finally, qy 2 2�
Ly

Z \ Œ��=a; �=a� is the
transversal momentum in y-direction.
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We can now split fields into their fast and slow components:

�j .r/ D

ƒX
Q

�.Q/ ei.qrCqyja/ 5.178a

D

ƒ0X
Q

�.Q/ ei.qrCqyja/ C

ƒ0:::ƒX
Q

�.Q/ ei.qrCqyja/ 5.178b

� �<j .r/C �
>
j .r/ : 5.178c

Here we introduced the circular UV-cutoff ƒ in the qx-q´-plane to make the
integrals that follow convergent; we also introduced the shorthand notation

ƒX
Q

�

X
Q; jqj<ƒ

and
ƒ0:::ƒX

Q

�

X
Q;ƒ0<jqj<ƒ

: 5.179

Note that this corresponds to the introduction of a lattice with spacing ƒ�1 in x-
and .´ / �/-direction; in y-direction this is not necessary due to the discrete nature
of the array of wires.

We are interested in the running of the coupling constants "i andM�.n/ in the
long-wavelength limit of the perturbed action

SŒ'; �� D SSLLŒ'; ��C "1 S
.n/
CDWŒ'; ��C "2 SL2Œ'; �� 5.180

in first order of the perturbations (for "i � 1). Here, SSLL is the Gaussian fixed
point action of the SLL [see Eq. (5.196b) below]. In first order, the perturbations do
not couple and we can consider the generic action

SŒ'; �� D SSLLŒ'; ��C " SOŒ'; �� 5.181

with
SOŒ'; �� D

Z
d�
Z

dxO.'; �/ 5.182

and O some function of the fields ' D f'ig and � D f�j g. In the following, we
again write � for ' and � to simplify expressions.

Let D Œ�7� denote the functional integration measure for the slow and fast field
components, respectively. It is straightforward to show that the quadratic SLL
action is additive in the momenta, and thus in the slow-fast decomposition [see
Eq. (5.204) below]:

SŒ�< C �>� D SSLLŒ�
<�C SSLLŒ�

>�C " SOŒ�
<
C �>� : 5.183
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For an RG step, we integrate out the fast modes in the partition function of the
perturbed action,

Zƒ �

Z
D Œ�� e�SŒ�� 5.184a

D

Z
D Œ�<�

Z
D Œ�>� e�SSLLŒ�

<��SSLLŒ�
>��"SOŒ�

<C�>� 5.184b

D

Z
D Œ�<� e�SSLLŒ�

<�

Z
D Œ�>� e�SSLLŒ�

>� e�"SOŒ�
<C�>� 5.184c

D Z>
Z

D Œ�<� e�SSLLŒ�
<�
D
e�"SOŒ�

<C�>�
E
>
; 5.184d

where Z> denotes the partition function of the fast components,

Z> �

Z
D Œ�>� e�SSLLŒ�

>� ; 5.185

and h�i> is the expectation value with respect to the corresponding SLL fixed point
action. With this, we can define the effective action

SeffŒ�
<� � SSLLŒ�

<� � ln
D
e�"SOŒ�

<C�>�
E
>

5.186

which describes the physics of long wavelengths completely. Indeed, if O D O.�</,
one finds

hO.�</i D Z�1
ƒ

Z
D Œ��O.�</ e�SŒ�� 5.187a

D Z>Z�1
ƒ

Z
D Œ�<�O.�</ e�SeffŒ�

<� 5.187b

D
Z>Zeff

Zƒ
hO.�</ieff : 5.187c

Since "� 1, we can expand the exponent up to first order

SeffŒ�
<� D SSLLŒ�

<� � ln
˚
1 � " hSOŒ�

<
C �>�i> CO."2/

	
5.188a

D SSLLŒ�
<�C " hSOŒ�

<
C �>�i> CO."2/ : 5.188b

As our perturbations (5.176) are of the form O.�/ D eiX.�/, we can write

hSOŒ�
<
C �>�i> D

Z
d�
Z

dx
D
eiX.�/

E
>

5.189a

D

Z
d�
Z

dx
D
eiX.�

>/
E
>
eiX.�

</ ; 5.189b
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where we used that X (in our case) is a linear function of the fields, and therefore
additive in the slow and fast field components. Using Wick’s theorem, we can get
rid of the exponential:D

eiX.�
>/
E
>
D e� 1

2
hX2.�>/i> D 1 �

1

2
hX2.�>/i> C : : : : 5.190

(Recall that h�i describes a non-Gaussian expectation value whereas h�i> is
evaluated at the Gaussian SLL fixed point; then, Wick’s theorem applies since X is
linear in the fields [255].) From (5.190) we only keep the first term quadratic in X

since we are interested in infinitesimal momentum shells ƒ �ƒ0 [see Eq. (5.220b)
below].

For the perturbations (5.176) we have

X.n/
CDW D 2.�j � �jCn/ 5.191a

XL2 D 'j � 'jC1 � 2.�j C �jC1/ ; 5.191b

so that we need to evaluate correlators of the formD�
�>j .r/˙ �

>
jCn.r/

�2E
>

and
˝
�>j .r/�

>
jCn.r/

˛
>

5.192

with the shorthand notation � D ' and ' D � . To this end, we refer to the defining
path integral formulation („ D 1):

hO.�.x; t//i �

R
D Œ��O.�/ ei

QSSLLŒ��R
D Œ�� ei QSSLLŒ��

5.193a

Wick rotation
H)

.t 7!�i�/
hO.�.x; �//i D

R
D Œ��O.�/ e�SSLLŒ��R

D Œ�� e�SSLLŒ��
: 5.193b

To derive the (Minkowski) action QSSLL, we use the SLL Hamiltonian

HSLL D
v

2�

X
n

Z
j

�
.@x�j /M� .n/ .@x�jCn/C .@x'j /M'.n/ .@x'jCn/

�
5.194

in combination with the canonical commutation relation Œ'j .x/; @x0�j 0.x0/=�� D
iıjj 0ı.x � x0/. We can write down the action in real time t

QSSLLŒ'; �� D

NX
jD1

Z T

0

dt
Z L

0

dx

�

8̂̂<̂
:̂

.@x�j =�/.@t'j /

�
v

2�

N�1X
nD0

"
.@x�j /M� .n/ .@x�jCn/

C.@x'j /M'.n/ .@x'jCn/

#9>>=>>;

5.195
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with the canonical momentum …j .x/ D @x�j .x/=� . Then, the Wick rotation
t 7! �i� yields the (Euclidean) action SSLL in imaginary time � ,

SSLLŒ'; ��

D �

NX
jD1

Z ˇ

0

d�
Z L

0

dx

8̂̂<̂
:̂

.@x�j =�/.i@�'j /

�
v

2�

N�1X
nD0

"
.@x�j /M� .n/ .@x�jCn/

C.@x'j /M'.n/ .@x'jCn/

#9>>=>>; 5.196a

D

NX
jD1

Z vˇ

0

d´
v

Z L

0

dx
�

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�iv.@x�j /.@´'j /„ ƒ‚ …
(A)

C
v

2

N�1X
nD0

266664
.@x�j /M� .n/ .@x�jCn/„ ƒ‚ …

(B)

C .@x'j /M'.n/ .@x'jCn/„ ƒ‚ …
(C)

377775

9>>>>>>>>>=>>>>>>>>>;
5.196b

with ' D f'j g, � D f�j g and ´ D v� .
Now we expand the fields in their Fourier coefficients �.Q/,

�j .r/ D
X
Q

�.Q/ ei.qrCqyja/ ; 5.197

to find

@x�j .r/ D
X
Q

.iqx/ �.Q/ e
i.qrCqyja/ 5.198a

@´�j .r/ D
X
Q

.i!=v/ �.Q/ ei.qrCqyja/ : 5.198b

Thus we get for the three terms in the action (5.196b):

(A) The canonical coupling yields

� i

NX
jD1

Z vˇ

0

d´
Z L

0

dx v.@x�j /.@´'j /

D � i
X

Q;Q0

NX
jD1

Z vˇ

0

d´
Z L

0

dx .iqx/.i!
0/ �.Q/'.Q0/

� eiŒ.qCq0/rC.qyCq0
y/ja�

5.199a

D
V

a

X
Q

.�iqx!/ �.Q/'.�Q/ : 5.199b

450



COUPLED LUTTINGER LIQUIDS

(B) The second term reads

v

2

NX
jD1

N�1X
nD0

Z vˇ

0

d´
Z L

0

dx .@x�j /M� .n/ .@x�jCn/ 5.200a

D
v

2

X
Q;Q0

NX
jD1

Z vˇ

0

d´
Z L

0

dx .iqx/.iq
0
x/ �.Q/�.Q

0/

� eiŒ.qCq0/rC.qyCq0
y/ja�

�

N�1X
nD0

M� .n/ e
iq0

yna

5.200b

D
vV

2a

X
Q

.qx/
2 �.Q/�.�Q/ QM� .qy/ ; 5.200c

where we introduced the transverse Fourier transform ofM�.n/ as

QM�.qy/ �

N�1X
nD0

M�.n/ e
�iqyna : 5.201

(C) And finally,

v

2

NX
jD1

N�1X
nD0

Z vˇ

0

d´
Z L

0

dx .@x'j /M'.n/ .@x'jCn/ 5.202a

D
vV

2a

X
Q

.qx/
2 '.Q/'.�Q/ QM'.qy/ : 5.202b

Note that the reality of �j .r/ implies ��.Q/ D �.�Q/. Similarly, sinceM�.n/ is
both real and symmetric, we have QM�.�qy/ D QM �

� .qy/ D
QM�.qy/.

Combining our results for the action in Fourier space yields

SSLLŒ'; �� D
V

�av

X
Q

8̂<̂
:

.�iqx!/ �.Q/'
�.Q/

C.vq2x=2/ �.Q/�
�.Q/ QM�.qy/

C.vq2x=2/ '.Q/'
�.Q/ QM'.qy/

9>=>; : 5.203

We stress that there are components that drop from the action completely. Namely
all Q-components with qx D 0 and/or QM'.qy/ QM�.qy/ D 0 D !. While the latter
condition depends on the chain couplings encoded in QM�.qy/ and can be avoided
by conditioning the couplings so that QM'.qy/ QM�.qy/ ¤ 0 for all qy 2 Œ��=a; �=a�,
the first one is generic and a consequence of the sliding symmetry that is eponymous
for the SLL. Hence we implicitly assume in the following that qx ¤ 0 in all
expressions (and that the fields � and ' have no zero-momentum components along
the wires in x-direction).
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The action (5.203) can be written more compactly as

SSLLŒ'; �� D

V

�av

X
Q>0

�
��.Q/ '�.Q/

� �vq2x QM� .qy/ �iqx!

�iqx! vq2x
QM'.qy/

� �
�.Q/

'.Q/

�
5.204

where Q > 0 indicates a sum over the half 3D Brillouin zone; this is convenient
because Q and �Q are indices of the same complex field coefficient: �.�Q/ D

��.Q/. We define the coupling matrix as

M �
V

�av

M
Q>0

�
vq2x
QM�.qy/ �iqx!

�iqx! vq2x
QM'.qy/

�
5.205

with inverse

M�1
D
�av

V

M
Q>0

�
vq2x
QM� �iqx!

�iqx! vq2x
QM'

��1

5.206a

D
�av

Vq2x

1

v2q2x
QM�
QM' C !2

M
Q>0

�
vq2x
QM' iqx!

iqx! vq2x
QM�

�
: 5.206b

To evaluate the two-point correlators

h��
1.Q1/ �2.Q2/i D

R
D Œ'; �� ��

1.Q1/ �2.Q2/ e
�SSLLŒ';��R

D Œ'; �� e�SSLLŒ';��
5.207a

D

R
D Œˆ;ˆ�� ��

1.Q1/ �2.Q2/ e
�SSLLŒˆ;ˆ

��R
D Œˆ;ˆ�� e�SSLLŒˆ;ˆ��

; 5.207b

we use the Gaussian integral formula [255]

hˆ�
i ĵ iM �

R
D Œˆ;ˆ�� ˆ�

i ĵ exp
�
�
P
i;j ˆ

�
iMij ĵ

�
R

D Œˆ;ˆ�� exp
�
�
P
i;j ˆ

�
iMij ĵ

� DM�1
ij 5.208

with the functional integral measureZ
D Œˆ;ˆ�� �

Y
i

Z
dˆidˆ�

i

2�i
: 5.209

Note that in momentum space our complex degrees of freedom are ˆ D �.Q/ and
ˆ D '.Q/ for Q > 0. Furthermore, it is SSLLŒˆ;ˆ

�� D SSLLŒ'; �� since .ˆ;ˆ�/

and .'; �/ are just different encodings of the same functions.
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We use Eq. (5.208) and Eq. (5.206b) to derive the correlators

h��.Q1/ �.Q2/i D
�av

V

ıQ1;Q2

vq2x
QM�
QM' C !2=v

� QM' 5.210a

h'�.Q1/ '.Q2/i D
�av

V

ıQ1;Q2

vq2x
QM�
QM' C !2=v

� QM� 5.210b

h'�.Q1/ �.Q2/i D
�av

V

ıQ1;Q2

vq2x
QM�
QM' C !2=v

�
i!=v

qx
5.210c

(remember that those are only valid for Q with qx ¤ 0). With these results, we can
now evaluate the correlators in Eq. (5.192):

1

2

��
�>j .r/˙ �

>
jCn.r/

�2�
>

5.211a

D
1

2

ƒ0:::ƒX
Q;Q0

*
�.Q/

h
ei.qrCqyja/ ˙ ei.qrCqy.jCn/a/

i
� �.Q0/

h
ei.q

0rCq0
yja/ ˙ ei.q

0rCq0
y.jCn/a/

i+
>

5.211b

D
1

2

ƒ0:::ƒX
Q;Q0

h�.Q/�.Q0/i> � e
iŒ.qCq0/rC.qyCq0

y/ja�

�

h
1˙ eiq

0
yna ˙ eiqyna C ei.qyCq0

y/na
i
:

5.211c

If we recall the shorthand notation � D ' and ' D � and use ��.Q/ D �.�Q/,
this expression can be evaluated with (5.210a) and (5.210b):

1

2

��
�>j .r/˙ �

>
jCn.r/

�2�
>

5.212a

D
�av

2V

ƒ0:::ƒX
Q;Q0

QM� ı�Q1;Q2

vq2x
QM�
QM' C !2=v

� eiŒ.qCq0/rC.qyCq0
y/ja�

�

h
1˙ eiq

0
yna ˙ eiqyna C ei.qyCq0

y/na
i 5.212b

D
�av

2V

ƒ0:::ƒX
Q

QM�

vq2x
QM�
QM' C !2=v

h
1˙ e�iqyna ˙ eiqyna C 1

i
5.212c

D
�av

V

ƒ0:::ƒX
Q

QM�

vq2x
QM�
QM' C !2=v

�
1˙ cos.qyna/

�
: 5.212d

In the thermodynamic limit (L;ˇ;N ! 1) we can approximate this sum by a
Riemann integral,

1

2

��
�>j .r/˙ �

>
jCn.r/

�2�
>

D �av

Z ƒ

ƒ0

d3Q
.2�/3

QM�

vq2x
QM�
QM' C !2=v

�
1˙ cos.qyna/

� 5.213
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where we used 1=V ! d3Q=.2�/3. The integration has to be understood in the
sense Z ƒ

ƒ0

d3Q
.2�/3

�

Z
ƒ0<jqj<ƒ

d2q
.2�/2

Z �=a

��=a

dqy
2�

5.214

where the UV-cutoff ƒ <1 regularizes the logarithmic divergence of the Green’s
function. Define now

�.qy/ �

q
QM' � QM� and �.qy/ �

q
QM�= QM' : 5.215

Then

1

2

8̂̂<̂
:̂
��
�>j .r/˙ �

>
jCn.r/

�2�
>��

'>j .r/˙ '
>
jCn.r/

�2�
>

9>>=>>;
D

Z ƒ

ƒ0

d3Q
.2�/3

�av

vq2x�
2.qy/C !2=v

�
�.qy/=�.qy/

�.qy/ � �.qy/

� �
1˙ cos.qyna/

�
: 5.216

The q-integral over the ƒ0-ƒ-ring readsZ ƒ

ƒ0

d2q
.2�/2

�av

vq2x�
2.qy/C !2=v

D

Z 2�

0

d�
2�

Z ƒ

ƒ0

d�
2�

�
�av

vq2x�
2.qy/C !2=v

5.217

with the momentum coordinates q D .qx; !=v/ D .� cos�; � sin�/. We evaluateZ 2�

0

d�
2�

Z ƒ

ƒ0

d�
2�

1

�

�av

v�2.qy/ cos2 � C v sin
2
�
D

adl
2�.qy/

; 5.218

where defined the scale variation dl � ln ƒ
ƒ0 and usedZ 2�

0

d�
2�

1

�2.qy/ cos2 � C sin2 �
D

1

�.qy/
: 5.219

If we insert this in Eq. (5.216), the expression simplifies to

1

2

8̂̂<̂
:̂
��
�>j .r/˙ �

>
jCn.r/

�2�
>��

'>j .r/˙ '
>
jCn.r/

�2�
>

9>>=>>;
D
adl
2

Z �=a

��=a

dqy
2�

�
1=�.qy/

�.qy/

� �
1˙ cos.qyna/

�
5.220a

D
dl
2

Z �

��

dq
2�

�
1=�.q/

�.q/

�
Œ1˙ cos.qn/� 5.220b

where we substituted q D aqy and implicitly redefined �.q/ with a D 1.
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This result tells us that
˝
eiX.�

>/
˛
>
in (5.189b) does not depend on the spatio-

temporal coordinate r and we can write for the effective action

SeffŒ�
<� D SSLLŒ�

<�C "
D
eiX.�

>/
E
>

Z
d�
Z

dx eiX.�
</ 5.221a

D SSLLŒ�
<�C "

D
eiX.�

>/
E
>
SOŒ�

<� 5.221b

[combine (5.188b) and (5.189b)]. If we use the expansion (5.190) and write
1=2 hX2.�>/i> � dl �X , this reads

SeffŒ�
<� D SSLLŒ�

<�C "

�
1 �

1

2
hX2.�>/i>

�
SOŒ�

<� 5.222a

D SSLLŒ�
<�C " .1 � dl�X/ SOŒ�

<� : 5.222b

We can compare this to the original perturbed action (5.181),

SŒ�� D SSLLŒ��C " SOŒ�� ; 5.223

only if we rescale the momentum cutoff ƒ0 in SeffŒ�
<� back to the original cutoff ƒ

in SŒ��:

q 0
�
ƒ

ƒ0
q , r 0

�
ƒ0

ƒ
r : 5.224

With this coordinate transformation, the integrals and derivatives in the action
transform as

d�dx D
�
ƒ

ƒ0

�2
d� 0dx0 and @� D

ƒ0

ƒ
@� 0 ; @x D

ƒ0

ƒ
@x0 : 5.225

If we define the new fields

�0.r 0/ � �<
�
ƒ

ƒ0
r 0

�
D �<.r/ ; 5.226

the Gaussian SLL action remains invariant, SSLLŒ�
<� D SSLLŒ�

0�, sinceZ
d�
Z

dx
�
@x�

<
1 .r/

� �
@x�

<
2 .r/

�
D

Z
d� 0

Z
dx0

�
@x0�0

1.r
0/
� �
@x0�0

2.r
0/
�
; 5.227

as it is right and proper for an RG fixed point action (or a conformal field theory).
Note that

�0.r 0/ D �<
�
ƒ

ƒ0
r 0

�
/

Z ƒ0

0

d2q �.q/ ei.ƒ=ƒ
0 q/�r 0

5.228a

D

Z ƒ

0

d2q0 �0.q 0/ eiq
0�r 0

5.228b
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with rescaled momentum components

�0.q 0/ �

�
ƒ0

ƒ

�2
�

�
ƒ0

ƒ
q 0

�
: 5.229

Therefore, in the new coordinates r 0 and q 0, the field �0 includes again momentum
components up to the initial UV-cutoff ƒ.

In contrast to the Gaussian action, the perturbation is not scale-invariant and
transforms as

SOŒ�
<� D

�
ƒ

ƒ0

�2
SOŒ�

0� ; 5.230

which follows immediately from (5.182) with (5.225) and O.'; �/ D eiX.';�/.
In summary, the effective action reads

SeffŒ�
0� D SSLLŒ�

0�C " .1 � dl�X/

�
ƒ

ƒ0

�2
SOŒ�

0� : 5.231

To be consistent, we have to expand

ƒ

ƒ0
D elnƒ=ƒ

0

D edl D 1C dl CO.dl2/ 5.232

and linearize the effective action in dl :

SeffŒ�
0� D SSLLŒ�

0�C " Œ1C .D ��X/dl � SOŒ�
0� 5.233a

� SSLLŒ�
0�C "0 SOŒ�

0� : 5.233b

Here we introduced the spacetime dimensionD D 1C 1 D 2 to highlight its role
as critical value for the scaling dimension �X .

We conclude that integrating out an infinitesimal momentum shellƒ�ƒ0 leaves
the perturbed action S invariant up to a rescaling of the perturbative coupling ":

"0
D " Œ1C .2 ��X/dl � ,

d"
dl
D
"0 � "

dl
D .2 ��X/" 5.234a

) ".l/ D ".0/ e.2��X/l : 5.234b

The perturbation O.'; �/ D eiX.';�/ is relevant (flows to strong coupling) if
�X < 2; it is marginal for �X D 2 and irrelevant for �X > 2. Note that a
marginal or irrelevant perturbation may still renormalize other couplings if the
renormalization flow is evaluated in higher order, i.e., if the expansion (5.188b) is
not truncated after the linear term. With this, we are now ready to evaluate the
scaling dimensions of the two operators in Eq. (5.176):
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→ For the CDW couplings O
.n/
CDW, we can directly apply Eq. (5.220b) with

X D 2.�j � �jCn/ and �X D
1
2
hX2.�>/i>=dl :

�.n/CDW D 4 �
1

2

Z �

��

dq
2�

1

�.q/
Œ1 � cos.qn/� D 2K��

n 5.235

with the definitions

�˙
n �

Z �

��

dq
2�

1

�.q/
Œ1˙ cos.qn/� and �.q/ � K�.q/ : 5.236

This matches previous results derived in Refs. [388, 389]. Note that
[Eq. (5.166b)]

�.q/ D
p
1C �1 cos.q/C �2 cos.2q/ ; 5.237

so that �˙
n depends parametrically on .�1; �2/.

→ For the Laughlin term OL2 we have XL2 D 'j � 'jC1 � 2.�j C �jC1/. The
scaling dimension is

�L2 dl D
1

2

D�
'j � 'jC1 � 2.�j C �jC1/

�2E
5.238a

D
1

2

D�
'j � 'jC1

�2E
C 2

D�
�j C �jC1

�2E
�2

˝�
.'j � 'jC1/.�j C �jC1/

�˛ 5.238b

where we omit the labels “>” to lighten the notation. The first two terms
follow directly from Eq. (5.220b):D�

'j � 'jC1

�2E
D dl

Z �

��

dq
2�

�.q/ Œ1 � cos.q/� D
dl
K
��
1 5.239aD�

�j C �jC1

�2E
D dl

Z �

��

dq
2�

1

�.q/
Œ1C cos.q/� D dlK�C

1 5.239b

where we defined

�˙
n �

Z �

��

dq
2�

�.q/ Œ1˙ cos.qn/� : 5.240

As we will argue below, the last term in (5.238b) can be ignored and one ends
up with the scaling dimension

�L2 D
1

2K
��
1 C 2K �

C
1 : 5.241

The expressions for the scaling dimensions �.n/CDW in (5.235) and �L2 in (5.241) are
the main results of the RG analysis; they determine the relevance/irrelevance of the
perturbations (5.176) via the RG flow (5.234b) (see below).
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Cross correlator — We conclude this subsubsection with a rather technical discussion
of the cross correlator˝

.'j � 'jC1/.�j C �jC1/
˛
D
˝
'j �j

˛
�
˝
'jC1�j

˛
C
˝
'j �jC1

˛
�
˝
'jC1�jC1

˛
5.242

that we neglected above. Thus we are interested in correlators of the form

˝
'j .r/�jCn.r/

˛
D

ƒ0:::ƒX
Q;Q0

h'.Q/�.Q0/i eiŒ.qCq0/rC.qyCq0
y/ja� eiq

0
yna ; 5.243

where we recall Eq. (5.210c):

h'�.Q1/ �.Q2/i D
�av

V

ıQ1;Q2

vq2x
QM�
QM' C !2=v

�
i!=v

qx
5.244

for qx ¤ 0. Then a straightforward calculation yields

˝
'j .r/�jCn.r/

˛
/

ƒ0:::ƒX
Q;Q0

ı�Q;Q0

vq2x
QM�
QM' C !2=v

i!=v

qx

� eiŒ.qCq0/rC.qyCq0
y/ja� eiq

0
yna

5.245a

D

ƒ0:::ƒX
Q

1

vq2x
QM�
QM' C !2=v

i!=v

qx
e�iqyna 5.245b

D

ƒ0:::ƒX
Q;qx>0

1

vq2x
QM�
QM' C !2=v

i!=v

qx
e�iqyna

C

ƒ0:::ƒX
Q;qx<0

1

vq2x
QM�
QM' C !2=v

i!=v

qx
e�iqyna

5.245c

D

ƒ0:::ƒX
Q;qx>0

1

vq2x
QM�
QM' C !2=v

i!=v

qx
e�iqyna

�

ƒ0:::ƒX
Q;qx>0

1

vq2x
QM�
QM' C !2=v

i!=v

qx
e�iqyna

5.245d

D 0 5.245e

so that the cross correlators can be safely ignored.

Conditions on Parameters

Here we discuss the conditions on the Luttinger parameter K to drive the
system into the fractional quantum Hall regime in dependence of the nearest- and
next–nearest-neighbor couplings �1 and �2. In addition, we derive the domain
where the SLL is stable against transversal CDW order.
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Strict Condition

The system is driven safely into the gapped Laughlin state whenever the Laughlin
term OL2 is the only relevant perturbation. Here we translate the conditions for a
relevant Laughlin term and irrelevant CDW terms,

8n W �
.n/
CDW > 2 and �L2 < 2 ; 5.246

into intervals for the Luttinger parameter K. Note that there may be other
competing perturbations; a systematic treatment of such within RG is an interesting
topic for future studies.

With �.n/CDW D 2K�
�
n it follows immediately that

K 2K
.N/

CDW �

\
n�N

�
1=��

n ;1
�

5.247

if we require CDW perturbations O
.n/
CDW to be irrelevant up to N th-nearest-neighbors.

Then we use �L2 D
1
2K
��
1 C 2K �

C
1 to determine the bounds K˙ above and below

which the Laughlin term becomes irrelevant:

1

2K
��
1 C 2K �

C
1 D 2 , 4�C

1 K
2
� 4K C ��

1 D 0 5.248a

) K˙
D

1

2�C
1

�
1˙

q
1 � �C

1 �
�
1

�
: 5.248b

With the reality condition K 2 RC, this yields the interval

K 2KL2 � .K
�; KC/ 5.249

D

 
1

2�C
1

�
1 � Re

q
1 � �C

1 �
�
1

�
;
1

2�C
1

�
1C Re

q
1 � �C

1 �
�
1

�!
where OL2 becomes relevant.

Relaxed Condition

Depending on the relative strength of microscopic couplings and the RG flow
beyond linear order, it might be sufficient for the Laughlin term to be the most
relevant perturbation to “defeat” relevant competing terms.

Restricted to CDW order as the only competitor, this condition reads

�L2 < min
n�1
f2;�.n/CDWg : 5.250
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The required relevance of OL2 leads to the same interval (5.249) as for the strict
condition: K 2 KL2. For the Laughlin term to be more relevant than O

.n/
CDW up to

distance N , we require

1

2K
��
1 C 2K �

C
1 < 2K �

�
n ,

1

K2
< 4

��
n � �

C
1

��
1

: 5.251

In the case ��
n � �

C
1 � 0 there are no solutions for K 2 RC since ��

1 > 0. In the
case ��

n � �
C
1 > 0 we have

K >
1

2

s
��
1

��
n � �

C
1

: 5.252

If we define .1;1� D ; and 1=0 D1, we can combine both cases and define the
interval

K 2K.N/
L2<CDW �

\
n�N

0B@ p
��
1

2Re
q
��
n � �

C
1

;1

375 ; 5.253

where the intersection of sets corresponds to the logical conjunction of conditions
up to distance N . Note that if there exists an n� � N with ��

n� � �C
1 , it is

K
.N/
L2<CDW D ;.

Transversal CDW Stability

Here we derive the admissible parameter regime of �1 and �2 where the SLL is
stable against transversal CDW order [388]. We are looking for the domain � � R2

of pairs .�1; �2/ where

�.q/ D
p
1C �1 cos.q/C �2 cos.2q/ ¤ 0 8 q 2 Œ��; �� : 5.254

It is easier to characterize the complement �c � R2 where

9 q�
2 Œ��; �� W 1C �1 cos.q�/C �2 cos.2q�/ D 0 : 5.255

Note that �.q�/ D 0 , QM�.q
�/ D 0. The Hamiltonian HSLL (5.194), with a

partial Fourier transform of the fields in y-direction, reveals that this corresponds
to a transversal mode q� of the SLL with diverging compressibility (indicating
an instability towards transversal CDW order). The condition (5.255) therefore
characterizes the parameter domain that is unstable against this competing order.

Using cos.2q/ D 2 cos2.q/ � 1 and the substitution u D cos.q/, we find

1C �1uC �2.2u
2
� 1/ D 0 5.256a

, 2�2u
2
C �1uC .1 � �2/ D 0 5.256b
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with solutions for �2 ¤ 0

u˙
D

1

4�2

�
��1 ˙

q
�21 � 8�2.1 � �2/

�
5.257

and u0 D �1=�1 for �2 D 0 and �1 ¤ 0 (for �1 D 0 D �2 there is clearly no
solution and the SLL is stable). Solutions for q 2 R require u˙; u0 2 R and
ju˙j; ju0j � 1. For �2 D 0, both conditions are satisfied for j�1j � 1 and the
SLL is stable on the segment �1 2 .�1; 1/ with �2 D 0. For �2 ¤ 0, the reality
condition demands �21 � 8�2.1 � �2/ � 0. This parameter domain is parametrized
by its boundary

j�1j D 2
p
2�2.1 � �2/ for 0 < �2 � 1 : 5.258

Within this region, there is no real solution q� for which �.q�/ D 0 and the SLL is
stable against formation of transversal CDW order.

In the complement of this region there are real solutions for u that correspond
to solutions for q iff ju˙j � 1 for C and/or �. Note that we can set �1 � 0

w.l.o.g. since ju˙.�1; �2/j D ju
�.��1; �2/j: If �1 < 0 allows for a solution

juC.�1; �2/j � 1, ��1 > 0 allows for a solution ju�.��1; �2/j � 1 (and vice versa).
The SLL is stable if juCj > 1 and ju�j > 1, which translates intoˇ̌̌̌

��1 ˙

q
�21 � 8�2.1 � �2/

ˇ̌̌̌
> 4j�2j : 5.259

We have to consider several cases separately:

1 Let �2 > 1. We have j�2j D �2 and
p
�21 � 8�2.1 � �2/ > �1; therefore

��1 C

q
�21 � 8�2.1 � �2/ > 4�2

,

q
�21 � 8�2.1 � �2/ > 4�2 C �1 5.260a

and C�1 C

q
�21 � 8�2.1 � �2/ > 4�2

,

q
�21 � 8�2.1 � �2/ > 4�2 � �1 : 5.260b

Since both terms in the first case are positive, we can square them:

�21 C 8�
2
2 � 8�2 > 16�

2
2 C 8�1�2 C �

2
1 5.261a

, 0 > �22 C �1�2 C �2 : 5.261b

Under the given assumptions (�1 � 0 and �2 > 1), this inequality has no
solution. Thus there is always a real solution q� for �2 > 1 and we find no
stable SLL above �2 D 1.
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2 Let 0 < �2 � 1. We have j�2j D �2 and
p
�21 � 8�2.1 � �2/ � �1; therefore

C�1 �

q
�21 � 8�2.1 � �2/ > 4�2

,

q
�21 � 8�2.1 � �2/ < �4�2 C �1 5.262a

and C�1 C

q
�21 � 8�2.1 � �2/ > 4�2

,

q
�21 � 8�2.1 � �2/ > 4�2 � �1 : 5.262b

Assume �1 > 4�2. Then the second inequality is trivially satisfied and the
first one reads after squaring (�2 ¤ 0)

�21 C 8�
2
2 � 8�2 < 16�

2
2 � 8�1�2 C �

2
1 5.263a

, 0 < �22 � �1�2 C �2 5.263b

, �1 < �2 C 1 : 5.263c

We find therefore stable SLL parameters for 4�2 < �1 < �2 C 1 in the range
0 < �2 < 1=3 � 1 (here we used that for 4�2 D �2 C 1, �2 D 1=3 the
lower and upper bound are equal).

Now assume �1 � 4�2. Then the first inequality is trivially violated
since �4�2 C �1 � 0. Hence we find no additional stable parameters for
0 < �2 � 1.

3 Let �2 < 0. We have j�2j D ��2 and
p
�21 � 8�2.1 � �2/ > �1; therefore

��1 C

q
�21 � 8�2.1 � �2/ > �4�2

,

q
�21 � 8�2.1 � �2/ > �4�2 C �1 5.264a

and C�1 C

q
�21 � 8�2.1 � �2/ > �4�2

,

q
�21 � 8�2.1 � �2/ > �4�2 � �1 : 5.264b

Squaring the first inequality yields (�2 ¤ 0)

�21 C 8�
2
2 � 8�2 > 16�

2
2 � 8�1�2 C �

2
1 5.265a

, 0 > �22 � �1�2 C �2 5.265b

, �1 < �2 C 1 5.265c

with solutions for �1 < �2 < 0 since �1 � 0. Since �4�2C�1 � �4�2��1
for �1 � 0, there is no additional constraint from the second inequality.
Therefore the SLL is stable in the range �1 < �2 < 0 for 0 � �1 < �2 C 1.
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Figure 5.8 • Parameter domain for SLL. The union of all colored regions makes up the param-
eters � for which the SLL is stable against the formation of transversal CDW order. In the yellow
region there are no real-valued solutions: u˙ … R. In the blue and red regions the solutions
are real but ju˙j > 1 for bothC and �, precluding solutions for �.q�/ D 0. The role of the
dashed curves/lines is discussed in the text.

If we combine our findings, the domain of stable SLL parameters due to the
constraint ju˙j; ju0j > 1 is given by

0< �2 < 1=3 and 4�2 < �1 < �2 C 1 5.266a

�2 D 0 and 0 � �1 < 1 5.266b

�1< �2 < 0 and 0 � �1 < �2 C 1 : 5.266c

This set must be joined with the solutions obtained from the reality condition above:

0 < �2 < 1 and 0 � �1 < 2
p
2�2.1 � �2/ : 5.267

The combination of (5.266) and (5.267) with the symmetry �1 $ ��1 yields
the complete set of allowed parameters for which u˙ … R and/or ju˙j; ju0j > 1,
i.e., for which the SLL is stable against transversal CDW order:

� D
n
.�1; �2/ 2 R2

ˇ̌̌
j�1j < 2

p
2�2.1 � �2/ ^ 1=3 � �2 < 1

o
[˚

.�1; �2/ 2 R2
ˇ̌
j�1j < �2 C 1 ^ �1 < �2 < 1=3

	
:

5.268
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This set is illustrated in Figure 5.8 together with all relevant subsets and boundaries.
Note that for �2 D 1=3 it is 4�2 D �2 C 1 D 2

p
2�2.1 � �2/ D 4=3 and all three

boundaries intersect. This domain can also be found graphically in Ref. [388] and in
the Figures 5.6 and 5.7 (a) above.
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5.3 On Apples and Oranges

This section is a “spin-off” from Ref. [2] on “Topological networks for quantum
communication between distant qubits” (which is discussed in Chapter 3). What
follows is the unpolished159 product of two to three days pondering the question
what it means if a setup is claimed to be better suited for a given task than its
competitors. In Ref. [2] we proposed a system with topological band structure for the
task of quantum state transfer, and compared its performance with a topologically
trivial competitor. In this context, it is a delicate question whether (and if so, in
which sense) the comparison is fair. On the following pages, I outline the proposal
for a framework that formalizes the concept of fair (and meaningful) comparisons.

This framework may be of use for future projects that make contact with the
rising field of machine learning. For instance, it could be combined with generative
models of artificial intelligence (like evolutionary algorithms, or the approach taken
in [393]) to challenge the topological setup of Ref. [2] in a well-defined arena of
admissible solutions. In any case, developing the framework cleared my mind and
satisfied my craving for conceptual rigidity.

Finally, let me point out that the framework draws inspiration from David
Deutsch’s constructor theory [394]—although the relation of both frameworks is only
superficial: Both seek to formalize concepts that commonly elude formalization.

5.3.1 Motivation

Are apples better than oranges? From a personal point of view, there might be
an answer to this provocative question, though it seems hopeless if one demands
objectivity (which usually is a good idea in science). So is there any way of sensibly
comparing apples and oranges? Well, of course there is. Think of the function

�.X/ � Water content of X 5.269

and now ask the above question again with respect to �. Clearly oranges are �-better
than apples if we mean by “�-better” that

�.Oranges/ > �.Apples/ : 5.270

A lesson to learn is that this notion of “better” clearly depends on our choice of the
comparison function. E.g., with

'.X/ � Skin smoothness of X 5.271

we conclude that now apples are probably a bit '-better than oranges as '.Apples/ >
'.Oranges/.

159Be warned!
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The bottom line is that one can sensibly compare almost anything as long as
there is a shared property among the candidates—and whether this property is
useful depends on the context or the task given. For instance, if we are interested
in storing water most efficiently, � (and not ') seems to be the means of choice to
compare possible candidates (and oranges are clearly better for storing water than
apples).

For most real-life applications, however, the degree to which a task is solved
(here quantified by �)—despite being a pivotal number of merit—would have to
compete with another, “inverse” quantifier: the costs  . Unfortunately (at least
where I come from), oranges are much more expensive than apples:

.Oranges/ > .Apples/ : 5.272

The competition between performance � and costs  complicates the decision about
which solution is “better” and depends on the specific choices of � and  : “better”
now refers to the “stored water per costs”-ratio,

�.Apples/
.Apples/

‹
�.Oranges/
.Oranges/

; 5.273

which cannot be determined unless more is known about � and  .
One should stress that in a general framework of solving tasks (here: storing

water) by given elements (here: oranges and apples), “costs” not necessarily refer to
monetary values, contrary to the terms primary meaning, but should be interpreted
as a generic quantifier that reflects the bounded availability of resources (e.g.,
negative environmental hazards). In our economy-based societies though, these
“true” costs are then often mapped to monetary costs (as money seems to be the
least common denominator for almost everything).

Now comes the big question: Why for all the world are we using oranges
(or apples) to store water? Somehow this reminds on a viable solution on
Discworld—but certainly not on our spherical one. Well, the reason is that so far
the set of available elements (or building blocks) is rather sparse, namely

A D fApples;Orangesg ; 5.274

such that the set of all contraptions hAi (our universe) we can make up to solve the
water-storing–task is restricted to whatever one can build from apples and oranges
only. If the set of available elements is extended by, say, water balloons,

A D fApples;Oranges;Balloonsg ; 5.275

a whole new world hAi of potential water-storing–solutions unfolds: Since

�.Balloons/ > �.Oranges/ > �.Apples/ 5.276
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(where we think of a filled water balloon), and usually

.Oranges/ > .Apples/ > .Balloons/ ; 5.277

we can conclude that

�.Balloons/
.Balloons/

>
�.Apples/
.Apples/

‹
�.Oranges/
.Oranges/

: 5.278

This is just a formal way to express the fact that water balloons are way better suited
for storing water than apples and oranges. Of course balloons are also much smoother
than apples and oranges,

'.Balloons/ > '.Apples/ > '.Oranges/ : 5.279

However, we already identified this as an irrelevant property of the available
elements for the given task of storing water. It should therefore not enter our
assessment of possible solutions (it might be relevant for other tasks, though).

There are a few points to be emphasized:

→ Meaningful comparisons of different solutions (or setups) require a common
universe hAi spanned by all contraptions based on a fixed set of elementary,
indivisible elements or atoms a 2 A each of which is assigned a fixed cost
value .a/.

→ Comparing solutions to a given task quantitatively requires at least one
quantifier � that measures how “good” the proposed solution is—and one
inverse quantifier  that measures the costs of the total setup.

→ The possible “best” solution depends on both the costs of available elements
and the available elements themselves. A larger set of building blocks A often
allows for much better solutions, although the benefits of new elements might
be mitigated by their higher costs.

In what follows, we use these insights for the development of a formal framework to
assess and compare physical setups as solutions to specified tasks.

5.3.2 General Concept & Notation

To construct a formal framework for the comparison of physical setups, we take a
bottom-up approach and start with the smallest parts of any physical setup. We will
call them atoms and denote their set as A. The most prominent property of atoms is
their indivisibility. We all know that the Greek origin of the word “atom” translates
to “indivisible”—and we all know that this is certainly not true for real atoms given
the energies involved are high enough. Nevertheless there are frameworks, primarily
characterized by their energy scale, in which it is perfectly valid to think of real
atoms as indivisible entities: chemistry, for instance.
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In the more general framework we envision, comparing and gauging setups build
from atoms also requires a fixed “periodic table” of available elements which are
considered indivisible for the problem at hand. Think of electronic components such
as resistors and capacitors as atoms for an electrical engineer defining his universe
of possible contraptions (he calls them circuits). Clearly a capacitor is not indivisible:
it can be decomposed into its electrolyte, metal package etc. But this is not the
framework an electrical engineer lives in. The same is true for an experimental
physicist working in quantum optics where beam splitters, lasers, oscilloscopes and
function generators can be though of as indivisible atoms of any experimental setup
he or she might come up with in the laboratory. In the electrical engineer’s universe,
however, the oscilloscope is not an atom but a setup designed to solve specific tasks
most efficiently; it is built from his atoms: resistors, capacitors, etc. Thus it is of
fundamental importance to clearly state what the available fundamental building
blocks are to solve a given task. This is a necessary preliminary step to allow for
well-defined assessments and avoid “comparing apples and oranges” (here used
idiomatically).

Formal Framework

In the following, square brackets Œ: : :� denote multisets (elements may occur more
than once) and curly brackets f: : :g denote sets (with unique elements). jAj of a
(multi-) set A denotes the number of elements.

Generally, a setup is built from a finite multiset of atoms. Here “multiset” is
important since the atoms in A actually denote types of elementary building blocks;
instances of a type can be used more than once in a setup—just as the periodic table
lists types of (real) atoms which can occur multiple times in complex molecules. A
formal setup S is constructed from a finite (multi-) set of atoms Œa1; : : : ; aMS

� via an
assembler S, we write

S D .S ! Œa1; : : : ; aMS
�/ : 5.280

For short, let ŒS� be the multiset of atoms and fSg be the derived set of atom types
that are used in S . The size of a setup is its number of atomic elements, jŒS�j. A
setup is finite if its size is finite.

It is illustrative to think of ŒS� as a box of electronic elements (resistors,
capacitors, etc.) while S corresponds to a circuit diagram that tells us how to
combine these elements to form a physical circuit S which performs some envisaged
task.

We denote the set of all conceivable finite setups over a given atomic set
A D fa1; : : : g as hAi and, paralleling our notion of atoms, call it the universe
spanned by A. For the sake of brevity, define hSi � hfSgi as the smallest universe
containing the setup S and hS1; S2; : : : i � hfS1g [ fS2g [ : : : i as the smallest
universe containing the setups S1; S2; : : : . The latter becomes important if the
setups S1; S2; : : : are to be compared with respect to a given task.
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A concept that follows naturally is that of a sub-universe, denoted as hBi � hAi,
and spanned by a finite subset of the super-universe hAi:

B D fb1; : : : g � hAi with jBj <1 : 5.281

The idea is that the universe hBi is constructed from a selection of setups in hAi
which are considered indivisible in hBi. For a setup S 2 hBi:

S D .SS ! Œb1; : : : ; bMS
�/ : 5.282

The same setup as seen from hAi reads

S D
�
SS !

h�
Sb1

! Œa1; : : : �
�
; : : : ;

�
SbMS

! Œa1; : : : �
�i�

5.283a

D
�
S0
S ! Œa1; : : : �

�
5.283b

where
S0
S �

�
SS !

�
Sb1

; : : : ;SbMS

��
5.284

is a modular assembler.
These concepts can be immediately applied to the previously given universes of

an electrical engineer and an experimental physicist: Let S be some experimental
setup contrived by the experimentalist according to some theoreticians dreams
in form of a proposal given as a description SS . The building blocks are the
experimentalist’s bread and butter tools:

b1 D Beam splitter
b2 D Laser
b3 D Oscilloscope
:::

The electrical engineer, however, sees “into” the devices and perceives them as
setups built from his atoms, namely

a1 D Resistor
a2 D Capacitor
a3 D Coil
:::

and the oscilloscope, for example, is given by

Oscilloscope D .Sb3
! ŒResistor;Capacitor; : : : �/ 5.285

with a circuit diagram Sb3
as sub-assembler of the extremely complex modular

assembler S0
S that describes the experimental setup in terms of its electronic

constituents (and not on the functional level of devices). S0
S may be way to
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complicated for a human being to come up with—which is why the electrical
engineer is done and satisfied with the construction of an oscilloscope and leaves
the design of an optical atomic clock to the experimental physicist, who, in turn, is
quite thankful that oscilloscopes can be bought off-the-shelf.

Templates

In physics, tasks and their corresponding solutions/systems often include a parame-
ter that encodes the system size L. That is, both the stated tasks and the proposed
solutions are actually given as a family of instances of growing size L. If a setup is
part of such a family, we mark the latter by a hat and call it a template, defined as
mapping

OS W N ! hAi ; L 7! OS.L/ � SL 5.286

with monotonically increasing size, jŒ OS.L C 1/�j > jŒ OS.L/�j, but fixed building
blocks, f OS.LC 1/g D f OS.L/g. Note that this induces a sequence of assemblers

OS W N ! A� ; L 7! OS.L/ � SL 5.287

where we introduced the notation S� to denote the assembler of a setup S and
extended this definition to denote the set of all assemblers over an atomic set A

by A�. The complexity to compute an assembler SL for a given size L (which is
best thought of as a construction plan or program) can impose restrictions on the
realizability of the setups SL.

Payday

We already motivated that the assessment of a proposed setup that performs a
given task should not only be based on a quantification of how “good” the task is
solved, but also take into account the “costs” of the solution, which, in turn, may
reflect both quantity and quality of the elements used. We expect that the combined
problem of optimizing the performance and simultaneously minimizing the costs
leads to non-trivial “optimal” solutions, a situation faced often in applications.

As an input to a well-posed comparison and optimization problem, one has to
assign costs to the indivisible elements of the considered universe, that is, a function

 W A! RC
0 ; a 7! .a/ 5.288

which assigns a price .a/ to all atomic elements a 2 A. As the notion of “costs”
implies additivity, it is obvious to define the costs of a multiset A of atoms as

.A/ �
X
a2A

.a/ 5.289

and then the costs of a setup S as .S/ � .ŒS�/.
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In a nutshell: The costs of a setup are given by the sum of the costs of its
elements, neglecting any synergetic effects. This is the most straightforward way
of assigning a price tag to a given setup. In some situations it can be necessary to
extend the notion of costs to incorporate the assembly procedure described by S
to get a more realistic assessment of the costs. Take again the oscilloscope as an
example: If .Oscilloscope/ were the off-the-shelf price of the device (and we take
the electrical engineers universe as reference), it is to be expected that the price tag
of the oscilloscope is more than the sum of price tags of its electronic components.

ANote on Atoms

So far, we were a bit sloppy with our description of atomic elements. Again in the
electrical engineer’s universe, we exemplified the notion of atoms by

a1 D Resistor 5.290

which is, admittedly, not quite correct. So see why, imagine the reaction of an
electrical engineer if you ask him to construct a device based on a circuit diagram of
your making where all the component-specific symbols (little boxes, zig-zag lines,
etc.) are just labeled by “Resistor,”“Capacitor,” and so on.

To get a notion of what the real atomic elements are (characterized by their
properties), it is useful to think of what one can buy in the corresponding field and
how these entities are described in a sales catalogue. Then, our resistor-atom would
rather be given as

a1 D Carbon composition resistor with ...
resistance of 300�
tolerance of 5%
voltage rating of 150V ;

and another atomic element in A might read

a2 D Carbon composition resistor with ...
resistance of 300�
tolerance of 1%
voltage rating of 100V

which is close to a1 but still a different indivisible element if one considers tolerance
and voltage rating as distinctive features. As one can easily imagine, a2-atoms are
more expensive than a1-atoms,

.a2/ > .a1/ : 5.291
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Given a setup S which uses a1-atoms, substituting the latter by a2-atoms,

S 0
D Sfa1 7! a2g ; 5.292

in most cases will not disable the setup to perform a specified task. By contrast, the
reverse substitution might severely impact its performance if S is fragile towards
perturbations of this particular type of resistors.

To complicate things further (and due to cost additivity), it follows that

.S 0/ > .S/ 5.293

which makes the reverse substitution a2 7! a1 favorable. Depending on the
construction of S , this might or might not be detrimental to the performance of
the setup. To proceed, a precise and quantitative definition of the performance is
therefore essential.

ANote on Physical Theories

To quantify how well a setup solves a task, rigorous descriptions of both the task
and its solutions are mandatory. This requires a specification of the physical theory
that is used to describe the task (as a desired state transformation) and its solutions
(a dynamical evolution of some sort).

A prevalent concept in physics is that of (1) a state space which describes the
state of a physical system, augmented by (2) a universally valid dynamical law and
(3) a system-specific entity describing the dynamics on the state space by following
the dynamical law. In classical mechanics, these are (1) the phase space, (2) the
Hamiltonian equations of motion, and (3) the Hamiltonian function. In quantum
mechanics, the list reads: (1) the Hilbert space, (2) the Schrödinger equation, and
(3) the Hamiltonian operator. Similarly, in electrodynamics we have (1) the space of
real vector fields, (2) the Maxwell equations, and (3) external charge- and current
distributions.

The specific description of a universe in terms of its atoms and the way they
can be combined as well as the definition of a task in general and the assessment
of its solutions all crucially depend on the governing field of physics (classical
mechanics, quantum mechanics, electrodynamics, etc.). In the following, we focus
on models described by classical mechanics for pedagogical reasons (despite our
quantum mechanical motivation [2]).

Note — The translation to quantum systems is then straightforward due to structural
similarities between both theories. For instance, consider a finite collection
of systems S1; : : : ; SN , each described by a state space X1; : : : ; XN . In both
classical and quantum mechanics, the total state space of a combined system
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S D .S1; : : : ; SN / is given by a product of subsystem state spaces:

XS D

(
�NiD1 Xi classical ;NN

iD1 Xi quantum :
5.294

In classical physics, state spaces are combined by Cartesian products whereas
quantum mechanics requires the tensor product. Thus it seems reasonable that a
framework that describes the composition of classical subsystems can be lifted (with
some modifications) to the quantum realm.

5.3.3 Specialization to Classical Mechanics

We start with our more specific treatment of the general concepts from above by
fixing the realm to classical mechanics described by the Hamiltonian formalism.
This fixes the generic state space for a system with finite number K of real degrees
of freedom (d.o.f.) to the phase space R2K with generalized coordinates qi and
conjugate momenta pi for i D 1; : : : ; K.

The concept we propose reads as follows: Each atom a 2 A is a (usually
small) Hamiltonian system described by its state space Xa D R2Ka , its Hamiltonian
Ha.fqig; fpig; f�ig/ with parameter set f�ig, and featured submultisets DOF.a/ �
fqi ; pig and PAR.a/ � f�ig that describe the externally available d.o.f. and
parameters (with possible multiplicity). The Hamiltonian may be augmented by a
set of additional (usually holonomic) constraints CST.a/ D fg1; g2; : : : g imposed
on the generalized coordinates.

Pictorially, we can illustrate this concept as follows:

Here, the compact left-hand notation hides all (for the construction of setups)
unnecessary internal structure and shows only externally available d.o.f. and
parameters. The data visible in this notation is termed external data; we use lower
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Greek letters to denote parameters and numbers for d.o.f. Note that only a selection
(red) of parameters PAR.a/ and d.o.f. (blue) DOF.a/ are available externally to
connect to other atoms. The additional data shown in the right-hand sketch [Xa,
Ha and CST.a/] is termed internal data. The position where DOF and PAR ports
are attached to the square is arbitrary:

Note that it is also valid to omit available DOF and PAR ports (which corresponds
to vanishing coupling and internal fixing of parameters, respectively). Splicing an
existing DOF port is not allowed per definition; the rightmost atom is therefore
distinct from the others.

We illustrate these concepts with an example:

Example 5.1: Springs and pendula

As an example, we introduce three atoms that will be of use in the course of our discussion:
The spring s, the pendulum p, and the lever arm l . Pictorially:

Formally, the spring s is given by the set of data

Xs D R2
�R2 5.295a

Hs.q1; q2I k/ D
fs.k/

2
.q1 � q2 C l0/

2 5.295b

DOF.s/ D fq1 7! 1; q2 7! 2g 5.295c

PAR.s/ D fkg 5.295d

CST.s/ D f g ; 5.295e

where q1 7! 1 indicates that the generalized coordinate q1 is accessible via port 1. The
spring constant is given as a function of k

fs.k/ D Œk � kmax� kmax C Œkmax > k > kmin� k C Œkmin � k� kmin 5.296

where kmin and kmax denote the minimal and maximal adjustable spring constants. Here,
Œx� D 1 if x is true and Œx� D 0 otherwise; Œ�� is known as Iverson bracket. The
bounding of accessible spring constants ensures that the spring becomes a bit more
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realistic. Note that this is already a rather sophisticated mechanical atom as the spring
constant can be adjusted within certain bounds. A probably much cheaper spring s0 with
fixed spring constant would be characterized by PAR.s0/ D f g.

The pendulum p is specified by

Xp D R2 5.297a

Hp.q1; p1I!/ D
p21
2m
C
fp.!/

2
q21 5.297b

DOF.p/ D fq1 7! 1; q1 7! 2g 5.297c

PAR.p/ D f!g 5.297d

CST.p/ D f g 5.297e

with another restricted spring constant fp.!/. Note that we exposed the single d.o.f.
q1 twice. Physically, one can imagine a pendulum with two hooks at the mass to attach
other equipment.

The lever arm l is given by

Xl D R2
�R2 5.298a

Hl D 0 5.298b

DOF.l/ D fq1 7! 1; q2 7! 2g 5.298c

PAR.l/ D f g 5.298d

CST.l/ D fq1 C q2 D 0g 5.298e

where the holonomic constraint ensures q1 D �q2. Here we neglect the mass of the
lever arm by setting the Hamiltonian to zero.

We are now ready to put things together. Note that, in principle, there is no
difference between atoms and setups (built from atoms)—except that the former are
indivisible. The general term element refers to both atoms and setups: Indivisible
elements are atoms and divisible elements are setups. Since their outer structure is
the same, an element x is depicted as

with adjustable parameters PAR.x/ and d.o.f. DOF.x/.
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The formal definition of elements is constructive and given recursively:

Definition 5.1: Syntactic elements

Given an atomic set A, the universe hAi is the set of all elements constructed as follows:

1 Every atom is an element.

2 Given two elements x and y and a compliant binary assembler S (see below), then
the setup

´ D xSy � .S ! Œx; y�/ 5.299

is an element.

Let x and y be two elements, specified by their external data

x D .DOF.x/;PAR.x// 5.300a

y D .DOF.y/;PAR.y// ; 5.300b

then a compliant binary assembler S is a tuple .C ;DOF;PAR; g/ defined as follows:

→ The connector C is a subset

C � ŒDOF.x; y/ �DOF.x; y/� [ ŒDOF.x; y/ � PAR.x; y/� 5.301

connecting DOF with DOF or DOF with PAR ports (connecting parameters among
each other is not allowed). Here we introduced the shorthand notation for a generic,
set-valued function: X.a; b; : : : / � X.a/ [X.b/ [ : : : .

If C connects only DOF ports,

C � DOF.x; y/ �DOF.x; y/ ; 5.302

we call S pure assembler.

→ The new sets of d.o.f. DOF � DOF.x; y/ n CDOF and parameters PAR �
PAR.x; y/ nCPAR are the subsets of the available DOF and PAR ports that are not
used by the connector (CDOF/PAR denotes the set of DOF/PAR ports that are used by
the connector).

→ Whereas DOF that occur neither in the connector nor in the new set of exposed DOF
ports can be left floating, parameters that are neither exposed nor connected to aDOF
port must be fixed. This is done by the function

g W PAR.x; y/ n ŒPAR[CPAR� ! R ; � 7! g.�/ 5.303

which assigns fixed parameters g.�/ to all floating parameters � of the setup.
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The external data of the element ´ D xSy with S D .C ;DOF;PAR; g/ is then given as

´ D .DOF;PAR/ : 5.304

Although these rules are technical if stated formally, their pictorial representation
is much simpler:

Note that all these transformations only determine the external data included in the
pictorial representation. This already allows for a formally correct construction of
setups based on a given set of atoms A—just as knowledge of German grammar
rules allows for the construction of well-formed sentences of the German language.
In linguistics and mathematics, such rules are commonly referred to as syntax.

The knowledge that a sentence is grammatically (i.e., syntactically) correct Ger-
man does not imply anything about its meaning. Assigning meaning to syntactically
correct statements is what semantics is about. And we are still missing a bunch of it
if we want to interpret our assembled setups in terms of classical mechanics. To
this end, we have to define how a given (syntactically valid) setup in combination
with the atomic internal data (which we ignored so far) condenses into a complete
Hamiltonian description of the total setup (which then has meaning as a system of
classical mechanics).

In the following, we focus on setups constructed via pure assemblers only. (Note
that the pictorial example above is not pure as there is a connection between a DOF
port of y and a PAR port of x.) Pure assemblers construct Hamiltonian systems
from Hamiltonian systems, as the following definition of the intended physical
semantics shows:

Definition 5.2: Semantic elements from pure assemblers

Let x and y be elements that are combined via the compliant binary pure assembler S to
´ D xSy. Assume that the physical semantics of x and y is described by their internal
data

x D .Xx;Hx;CST.x// 5.305a

y D
�
Xy;Hy;CST.y/

�
5.305b

which qualifies them as Hamiltonian systems.
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Then, the setup ´ is again a Hamiltonian system

´ D .X´;H´;CST.´// 5.306

with

→ the state spaceX´ D Xx �Xy,

→ the Hamiltonian functionH´ D Hx CHy,

→ and the constraints CST.´/ D CST.x; y/ [ CST.C/.

Here,
CST.C/ �

˚
q � q0

D 0 j .q; q0/ 2 C
	

5.307

is an additional set of holonomic constraints equating d.o.f. connected by C .

This definition gives rise to a well-defined physical interpretation of any
syntactically correct setup together with the internal data of the atoms. The
interaction between atoms is encoded by connected d.o.f. that are to be set equal in
the sum of atomic Hamiltonians. Note that the set of all constraints of a given setup,
CST.S/, singles out a submanifold XS of the state space XS as valid, physical
states. The Hamiltonian equations of motions (EOMs) then describe a flow on this
submanifold. If there are no internal constraints on the atoms, the total manifold

XS D �
a2ŒS�

Xa 5.308

describes the physics of the free setup over the atomic elements ŒS�

free.ŒS�/ � .1 ! ŒS�/ 5.309

given by the free assembler 1. Pictorially, this corresponds to drawing all atoms in
ŒS� side by side without any connections between them. Physically, think of a blank
sheet as circuit diagram (1), throw a given set of electronic components into a box
(ŒS�), and then call the box a “trivial device.”

Before we can finally start to think about what we set out for—defining tasks and
quantifying how successful a setup solves them—a short detour on notation is in
order. So far we only worked with binary assemblers: Given two elements x and y, a
binary assembler S constructs a new element ´ by combining them, we write xSy.
Since x and/or y can be setups (divisible elements) themselves, recursion allows for
arbitrary complex setups S built from many atoms. Previously we introduced the
formal notation

S D .S ! Œa1; a2; : : : �/ 5.310

to indicate such a complex construction from more than two atoms (where S is
clearly not a binary assembler). With our new tools, we can now give a formal
definition of such assemblers in terms of a recursive, binary construction process:

.S ! Œa1; a2; : : : �/ �
�
aMS

SMS
: : : .a3S3 .a2S2a1// : : :

�
: 5.311
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The assemblers Si are binary and attach step by step atomic elements ai to a
growing composite element which finally becomes the desired setup S . If we
consider an object of the form xS as a partial160 map

xS W hAi ! hAi ; y 7! xSy ; 5.312

we can omit the parentheses and write

.S ! Œa1; a2; : : : �/ D aMS
SMS

: : : a3 S3 a2 S2 a1 : 5.313

This is a kind of currying known from functional programming.
This recursive representation with binary elementary construction steps comes

actually quite close to what really happens if one follows a construction plan S
(given as some construction manual in the widest sense): Usually an ordered
sequence of simple instructions is given of how to attach elementary building blocks
to a growing setup. These correspond to the binary assemblers Si that specify how
to attach the i th atom.

However, if the only statement is that a setup S can be constructed from a set
of elementary building blocks someway (but we are not particularly interested in
how this construction works), it is more convenient to stick to the original notation
S D .S ! Œa1; a2; : : : �/.

160A partial map can be undefined on some elements of its domain. For xSy, y 2 hAi, this occurs
whenever S is not compliant with y.
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Tasks

The ultimate goal and original motivation is an evaluation of the potential of a
setup to complete a predefined task and thereby obtain a well-defined method for
comparing different setups with respect to a common task.

The crucial point here is “common”: An objective and fair assessment requires
some fixed frame which encodes the task in the beginning and the solution
afterwards. Competing setups then couple to this common framing setup to receive
their task and deposit their solution when finished. This can be illustrated as
follows:

Squares denote atomic elements where filling color encodes their type and boundary
color describes their state. The framing setup F encodes the posed task in its state
(red boundary) and is augmented by two competing setups S and S 0 to form the
intermediate setups FS and FS 0. Protocols P and P 0 running on their respective
setups lead to an effective transformation of the framing state into a possible solution
of the task. These solutions are then compared by a yet undefined weighting
function � .

This motivates the following definition:

Definition 5.3: Tasks and framing setups

Given an atomic set A of building blocks and a setupF 2 hAiwith physical state spaceXF .
Let

� W Ham
�
XF

�
! Œ0; 1� ; f 7! � Œf � 5.314

be a function assigning a real number between 0 and 1 to a given Hamiltonian symplectomor-
phism (“canonical map”). Here,Ham

�
XF

�
denotes the group of all symplectomorphisms

onXF generated by Hamiltonian vector fields (i.e., time evolutions generated by a Hamilto-
nian flow on phase space). F is termed framing setup with assigned weighting function� .
The pair t � .F; �/ is called a task in the universe hAi, write t 2 hAi�.
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Let us dwell a moment on this rather abstract definition: The essential part
of any physical task can be encoded in a desired class of transformations161 on the
phase space of a given setup. This motivates both the setup F and the assigned
weighting function � : As we deal with physical systems (which may be exposed
to perturbations), we cannot expect such transformations to be perfect. To allow
for a proper assessment of such imperfect transformations, the weighting function
� is required. It “grades” a proposed canonical transformation f by assigning
(discrete or continuous) numbers from 0 (“fail”) to 1 (“success”). This grading
is not universal—on the contrary: it defines the task to some extent. Often the
succeeding transformations with �Œf � D 1 are not unique because not all properties
of the global phase space transformation may be relevant for the given task.

Now that a task has been defined, it begs the question how the transformations
f (graded by �) enter the stage. The basic idea is to extend the framing setup F
by a dedicated setup S (the “solution”) from the same universe hAi to achieve
the required transformations as “�-accurate” as possible. This gives rise to an
augmented setup

FS D .SFS ! ŒF; a1; a2; : : : �/ 5.315a

D
�
SF jS ! ŒF; .SS ! Œa1; a2; : : : �/�

�
5.315b

which combines a (finite) multiset of atoms Œa1; a2; : : : � via the assembler SFS

with the framing setup F . Note that the total assembler SFS D SF jSSS can be
decomposed into SS describing the construction of S which then is connected to
F by the binary assembler SF jS .

Constraints on Phase Space

The physical state space of the total setup FS is XFS D XF �XS which, in
most cases, differs from the free product XF �XS due to non-trivial connections
introduced by SF jS :

XFS D XF �XS � XF �XS : 5.316

In many cases, the task t demands two sets of F -states to be accessible: The initial
states T1 � XF and the target states T2 � XF . In these cases, the weighting
function � quantifies how well a given phase space transformation f maps T1 onto
T2 (possibly with additional constraints). This gives rise to a minimum requirement
on allowed assemblers SF jS , namely

8ˆF 2 T1 [ T2 9‰S 2 XS W ˆF �‰S 2 XFS ; 5.317

161These transformations must be generated by some Hamiltonian time evolution, i.e., they must
be Hamiltonian symplectomorphisms.
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where we use the notation ˆF �‰S � .ˆF ; ‰S/. If this condition is not met, the
envisaged task cannot be achieved by S as at least one initial or target state of F is
not compatible with the augmented setup FS .

We may even be more demanding and require the augmentation to obey

9‰0 2 XS 8ˆF 2 T1 [ T2 W ˆF �‰0 2 XFS : 5.318

Whereas requirement (5.317) allows the compatible state ‰S of S to depend on the
framing state ˆF of F , requirement (5.318) demands the existence of a common
“default” state ‰0 of S that is compatible with all initial and target states ˆF . We
adopt this condition in the following since it emphasizes the notion of S as being a
“substrate” or a “tool” for the completion of a task—just as the same screwdriver
can be used to assemble a variety of different furniture. To complete this picture,
we will be even more restrictive and demand that the task must be achieved with
the boundary condition that S starts in such a “default” state ‰0 and returns to the
very same state after completion of the task,

ˆF �‰0
Do something
�������!

withFS
f .ˆF / �‰0 ; 5.319

where f encodes the transformation performed by FS (see below). Here we borrow
vocabulary from constructor theory [394] (which, in turn, borrows it from chemistry)
and call such transformations catalytic: The system S in state ‰0 operates as
a catalyst—just as the screwdriver operates as a catalyst in the production of
furniture162.

Protocols

The comparison of two solutions (given as setups S and S 0 with default states ‰0
and ‰0

0) starts with an application of the aspirants to the task,

ˆF �‰0
Do something
�������!

withFS
f .ˆF / �‰0 5.320a

ˆF �‰
0
0

Do something else
���������!

withFS 0
f 0.ˆF / �‰

0
0 ; 5.320b

and concludes with a comparison of their transformations,

�Œf � � �Œf 0� or �Œf 0� � �Œf � ; 5.321

and costs,
.S/ � .S 0/ or .S 0/ � .S/ : 5.322

What remains to be discussed is the “do something with FS .”

162As in chemistry, going without a screwdriver does not ultimately prohibit the construction of
your cupboard, though it definitely slows down the construction process considerably.
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Definition 5.4: Protocols

Let S 2 hAi be an element (composite or atomic) with physical state spaceXS and parame-
ters PAR.S/, described by a Hamiltonian functionHS .

→ The variability of S is the number of tunable parameters: VarS � jPAR.S/j.

→ A protocol P is a (sufficiently smooth) function

P W Œ0; 1� ! RVarS ; t 7! �.t/ 5.323

describing the driving of the VarS parameters of S .

→ Let‰0 D .fqig; fpig/ 2 XS be a physical state of S . The Hamiltonian

H.fqig; fpig; t / � HS.fqig; fpig;�.t// 5.324

defines a Hamiltonian flow on XS and its integral curves X.t/ (solutions to the
Hamiltonian equations of motion) induce a mapping

SP W XS ! XS ; ‰0 7! ‰1

with X.0/ D ‰0; X.1/ D ‰1
5.325

which describes the transformation of an initial state‰0 into a final state‰1 under
the driving of protocol P on S .

A protocol P allows us to control the unfixed parameters of an element S
(usually a composite setup) freely within the normalized time interval Œ0; 1�. For
example, think of an experimental setup with coupled pendula, some of which
are driven by motors that are controlled by a computer. In this case, the protocol
can be identified with the program that controls the driving of these pendula. In
other situations, one might control the eigenfrequencies (e.g., spring constants)
of mechanical oscillators to some extent. The important point is that the time-
dependent parameters of S are no dynamical d.o.f. but externally controlled variables
with no relevant back action on the controller.

We illustrate the application of a protocol as follows:
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Here we omit possible DOF ports if there is no plan to extend the setup further.
Note that it is perfectly valid for a protocol to assign constant values to all parameters
of a setup. In this case, the state transformation is determined by an undriven
Hamiltonian evolution.

Quantifying Success

The various protocols that may be applied to a given setup can vary in complexity—
and this might demand for an additional cost function. However, if a computer
controls the setup, this seems to be a less important issue and we do not assign
protocol-dependent costs in the following: Protocols are “free of charge.”

What clearly must be taken into account as an additional cost factor is the
variability VarS of the final setup: The number of required freely controllable
parameters often has significant impact on the realizability, complexity, and thereby
costs of a setup. For instance, in the framework of circuits a function generator
may be employed as controller with a restricted set of applicable protocols (waves of
specified period and amplitude). But the available number of independent output
channels of such a generator is unfavorably correlated with its (monetary) costs.
Thus we arrive at the following quantification of success:

Definition 5.5: Quantification of success

Let hAi be a universe, t D .F; �/ 2 hAi� a task,S 2 hAi a setup to solve t, and P a
protocol compatible with S . We call .S; P / an aspirant to solve t. The success of .S; P /
with respect to t is quantified by three numbers of merit:

→ The costs of the setup, .S/.

→ The variability of the setup, VarS .

→ The success of the protocol,�
�
FSP

�
.

The total setup for evaluating the success can then be depicted as follows:

Be aware of the two-step procedure involved in the solution of a task: First, a
compatible setup has to be contrived. Second, a protocol for this setup is applied.
The protocol depends on the setup and optimizing the success is thus a highly
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complex task of choosing the optimal setup equipped with the optimal protocol.
The second part (the choice of an efficient protocol for a given, fixed setup) is the
subject of optimal control theory [395]. The first part (the choice of a promising
setup) is usually a product of theoretical proposals and the experience of gifted
experimentalists.

Spatial Embeddings

We need a last concept that extends our notion of setups before we can apply the
framework to real-world problems. To see why, consider the following task t:

Given are two pendula as framing setup F and the weighting function � defines
a perfect mode transfer between these two oscillators as success163. That is, starting
with one of the framing pendula oscillating (and the other one at rest), an aspirant
.S; P / is required to transform the state of both pendula such that, after completing
the protocol, the states of both pendula are exchanged. This is the described framing
setup:

And this is one of the simplest setups S1 that can complete the task (equipped with
an appropriate protocol P1):

Another, more complex (and more expensive) setup S2 is the following:

(Again combined with an appropriate protocol P2.) It is clear that .S1/� .S2/

so that S1 is presumably better suited for the task than S2.
The point is that the given framing setup lacks a property inherent to almost

every physical system: a spatial configuration. Remember that a generic setup
S so far was defined by an assembler S which determined the logical or physical

163This is essentially the classical counterpart of the state transfer in Chapter 3 and Ref. [2].
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connections between atomic elements. We did not make any statements about the
placement of these elements in space, the length of connections etc. This missing
aspect of physical setups allows for the very different solutions above. Although
spatial constraints may not be necessary for all tasks, the situation encountered
in Chapter 3 and Ref. [2] clearly demands for a notion of locality to construct an
adequate abstraction of physical reality.

Therefore we require some kind of “breadboard” on which atomic elements are
placed and connected. If the connections of DOF ports obey a locality constraint
induced by the metric of the breadboard, this gives rise to an embedding of a given
setup and, most importantly, prohibits the realization of (sequences of ) setups that
violate locality. In addition, tasks can be augmented by prescribed embeddings for
their framing setups. For example:

Here, one atomic element per site is allowed and DOF connections may only
traverse a single edge (to enforce locality). This embedded framing setup realizes
the same task t as above but can no longer be solved by the single-spring setup S1
while respecting the locality of DOF connections. By contrast, the chain-setup S2
still solves the task. This motivates the following definition:

Definition 5.6: Embeddings

Let S be a setup in the universe hAi with components ŒS� and pure assembler S.

→ Let ES � ŒS�2 be the set of edges between atomic elements with connected DOF
ports (the interaction graph of the setup).

An injective function

E W ŒS� ! ZD ; x 7! E.x/ 5.326

is called D-dimensional embedding of S with radius ı if for all pairs of connected
elements .x1; x2/ 2 ES it holds kE.x1/ � E.x2/k � ı (where k � k denotes the
Euclidean norm on ZD).

→ We call a setup S equipped with an embedding E embedded setup (or just setup if
it is clear that an embedding is implied) and write SE .

→ A task based on an embedded framing setup FE is called embedded task, tE D

.FE ; �/. Aspirants are assumed to be embedded in the same dimension and extend
the embedding of the framing setup.
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(a)

(b)

A1

A2

Description

Pendulum, one hook, fixed ! D 1

Pendulum, two hooks, fixed ! D 1

Pendulum, two hooks, variable !

Spring, fixed k D 1

Spring, variable k

Symbol Cost

1

1

2

1

2

Pendulum, one hook, fixed ! D 1

Pendulum, two hooks, fixed ! D 1

Pendulum, two hooks, variable !

Spring, fixed k D 1, variance�k1

Spring, variable k, variance�k2

1

1

2

1

2

Table 5.1 • Example: Two atomic sets. Atomic sets for clean (A1) and disordered (A2)
mode transfer in (a) and (b), respectively. Perfect atoms (without production tolerances) are
symbolized by squares; atoms that are drawn from a distribution with finite variance of their
parameters (here: spring constants) are symbolized by circles. Atoms with variable parameters
are more expensive than comparable elements with fixed parameters; apart from this, the costs
are chosen arbitrary.

If not noted otherwise, we assume ı D 1. Getting rid of the somehow arbitrary
“interaction radius” ı is only possible if either it is fixed by a specific implementation
or if one considers setup templates OSE.L/ and demands a finite interaction radius for
L!1 (see Appendix E of Ref. [129] for more information on the embedding of
templates).

The concept of embedded tasks formalizes the vague notion conveyed by the
sketch on page 480: A task is encoded in a spatially distributed (framing) setup and
must be solved by a spatially distributed setup arranged around and connected to
the former.
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Example

A rigorous application of this framework is beyond the scope of this thesis (recall
that this is only a side track of Chapter 3). However, let us sketch a possible
application of the so far abstract concepts to the task of mode transfer between
spatially separate oscillators. As already mentioned, this is the classical analogue
of the quantum state transfer discussed in Chapter 3 and Ref. [2]. The following
connections are easily identified:

→ The classical analogue of the bosonic modes in Chapter 3 are pendula with
eigenfrequency !; the mode couplings are then realized by springs with spring
constant k. The parameters of both elements can either be fixed or variable
(which affects their costs ). This set of atoms is denoted by A1 and listed in
Table 5.1 (a). In Chapter 3, we also consider disordered systems that respect
the protecting symmetry (see Subsection 3.3.5). A corresponding set of atoms
A2 is listed in Table 5.1 (b) where the spring constants of coupling springs
are drawn from a distribution with finite variance. Note that a comparison of
setups makes only sense within either hA1i or hA2i.

→ In Chapter 3, we first compare three setups without disorder as aspirants
for the task of state transfer. Their classical analogues in hA1i are shown
in Figure 5.9: (a) the topological “SSH chain” setup SSSH with alternating
tunable coupling springs, (b) the trivial “Barrier” setup SB with a tunneling
barrier of oscillators with tunable eigenfrequency, and (c) the trivial “Propaga-
tion” setup SP with uniformly tunable coupling springs. Note that all three
setups have the same variability VarS� D 1. In Chapter 3, the single tunable
parameter is controlled by the function F .t/ D sin2.�t=�/ which can be
used to define all three protocols P�. Combined, this gives three aspirants
.S�; P�/ for the embedded task of mode transfer.

→ The common embedded framing setup FE is given by the two black oscillators
(Figure 5.9). Actually we define a template of embedded framing setups
OFE.L/ parametrized by their horizontal distance L (since we are interested in
the scaling of properties for L!1). In Chapter 3, the performance of an
aspirant is measured by, inter alia, the overlap O. A similar measure allows in
the classical case to define the weighting function � which then specifies the
embedded task (template) OtE.L/ D . OFE.L/; �/ for mode transfer completely.

→ Finally, we compare the topological “SSH chain” setup with the trivial
“Barrier” setup in the presence of symmetric disorder (Subsection 3.3.5). On
the classical side, this corresponds to a comparison of the two setups S 0

SSH
and S 0

B in Figure 5.9 (d) and (e) in the universe hA2i where the coupling
springs are subject to disorder. Note that the framing setup is contained in
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(a) SSSH

(b) SB

(c) SP

(d) S 0
SSH

(e) S 0
B

Figure 5.9 • Example: Setups for classical mode transfer. Three setups (a,b,c) from the clean
universe hA1i and two (d,e) from the disordered universe hA2i to solve the embedded task of
classical mode transfer between the two black oscillators (framing setup). The protocol P of
each setup controls a single, time-dependent parameter. The atoms A1 and A2 are described in
Table 5.1; details are given in the text.
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both universes, hA1i and hA2i, so that solutions to the same task can be
constructed in either of them. However, fair comparisons of solutions are only
possible within a common universe.

The upshot of this discussion is the following (valid for both classical and
quantum setups): If we compare the topological “SSH chain” setup with the trivial
“Barrier” setup in the clean universe hA1i, both allow for nearly perfect mode
transfer with appropriate protocols P�. In that sense, the topological setup does not
beat the trivial one. However, in the disordered universe hA2i, the topological setup
performs better than the trivial one since the disorder respects the symmetry that
protects the topological band structure of S 0

SSH. Thus, fundamentally it is symmetry
that is responsible for the superior transfer characteristics of the topological setup.
The crucial point is that the trivial setup is constructed from the same (symmetric)
elements without benefit for mode transfer. In that sense, the topological setup is
superior to the trivial one in that the former converts the symmetry into something
useful (namely, mode transfer) whereas the latter does not.

We conclude with a suggestion: Fix the framing setup and the universe. Now
fire up your favorite generative machine learning algorithm (e.g., a genetic algorithm)
to invent setups within this universe and evaluate their performance as solutions of
the mode transfer task. Does it eventually come up with the topological one? Are
there approaches that are even better?
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5.4 Deep Convolutional Neural
Networks for Topological Quantum
Error Correction

In this section, we present the prelude of Chapter 4 and Ref. [3]. Whereas the topic
of Chapter 4 is“Topological quantum error correction with [...] cellular automata”, here
we replace the cellular automaton by a convolutional neural network (a particular class
of artificial neural networks) to decode the Majorana chain quantum code.

5.4.1 Motivation

Everything starts with the seminal work of Silver et al. [396] early in 2016 who
shattered the supremacy of mankind in the complex game of Go. Their combination
of reinforcement learning, Monte Carlo tree search, and deep convolutional neural
networks culminated in a program named AlphaGo that defeated, for the first time, a
human professional player in the game of Go. At the same time, the paper served as
a beacon for the field of machine learning (ML) in general and deep convolutional
neural networks (CNN) in particular. This beacon was strong enough to permeate
the physics community and spark a wealth of ML-related projects in various fields
such as condensed matter physics and quantum information theory (see Ref. [397]
and references therein). Let me illustrate what I mean:

Visit the Web of Science164 and query the database with

TS=(”artificial intelligence” OR ”machine learning” OR ”neural network*”)

AND SU=(PHYSICS)

for publications in the research area of physics with a topic related to the keywords
given. In a second query, focus on the subclass of publications that address
convolutional neural networks:

TS=(”convolutional neural network*”) AND SU=(PHYSICS)

(This yields a subset of the first query.) If we extract from the results the numbers
of publications per year and subtract the data points of the second query from the
first query, we obtain the following plot165:

164https://clarivate.com/products/web-of-science/
165Data as of 25 September 2018.
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Separated by a one-year gap from AlphaGo, the number of physics papers that
somehow relate to “artificial intelligence” (AI), “machine learning” (ML), or
“neural networks” (NN) skyrocketed. At the same time, the rather special concept
of convolutional neural networks (CNN) appeared for the first time in physics
papers. It is standing to reason that the avalanche166 of papers in 2017 was, at least
in part, initiated by AlphaGo.

The results in this section are part of this avalanche, although they never
directly led to a paper (indirectly they did [3]; but only after I switched gears and
replaced the neural networks by cellular automata which are a more comprehensive
framework and, for that matter, better suited for rigorous treatment). The idea
is to use convolutional neural networks to decode topological quantum memories.
Here we use the one-dimensional Majorana chain (see Subsection 1.2.2) as a simple
example. The purpose of the CNN is to translate the error syndromes into matching
correction operations.

The application of (not necessarily convolutional) neural networks as decoders
of topological quantum codes suggests itself if one relates the two-dimensional
patterns of Go positions in Ref. [396] with the two-dimensional syndrome patterns
of, e.g., the toric code [45]. Hence it is not surprising that this has been discussed in
the AlphaGo-avalanche as well [398–403].

166In physics, an avalanche of papers is indicative of lots of low-hanging fruit that are just waiting to
drop into the basket of some physicist strolling by.
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5.4.2 Artificial Neural Networks

To make this section self-contained, we give a very brief introduction to the concept
of artificial neural networks. For a more complete and in-depth review, we refer the
reader to one of the many primers on the topic (e.g., [404,405]).

General Concept

Artificial neural networks are a very crude abstraction of the biological tissue of
the brain. The latter consists of interconnected neurons that integrate electrical
potentials from other neurons via their dendrites. Each dendrite weights the
incoming potential differently, and the gradual adjustment of these weights accounts
for the plasticity of the brain and plays a fundamental role for learning. Once the
integrated potential of all dendrites reaches a threshold, the neuron fires a sequence
of potential spikes along its axon that, in turn, connects to many dendrites of other
neurons.

This elementary process of information integration and transmission is mimicked
by artificial neurons which are nothing but a special class of mathematical functions
that map many inputs xi 2 R, i D 1; : : : ;D, (the “dendrite potentials”) to a single
output y 2 R (the “axon potential”). The output is given by the weighted sum of
the inputs (with weights ai 2 R and bias b 2 R), followed by a nonlinear function
� W R! R. Pictorially:

Formally, we have

y D �

 
DX
iD1

aixi C b

!
D �.ax C b/ 5.327

with activation function � . There are various activation functions possible; prevalent
ones are the rectifier

�1.x/ D maxf0; xg 5.328

and the Heaviside step function

�2.x/ D

(
1 if x > 0 ;

0 if x � 0 :
5.329
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Artificial neurons with � D �1 are called rectified linear unit (ReLU), neurons with
� D �2 are called perceptron. The latter are useful if the neuron’s output is to
be interpreted as a binary decision. The crucial point is that � is nonlinear; its
particular form is often not decisive for the performance of the network.

The classification capabilities of a single (artificial) neuron are quite restricted
(the perceptron, for instance, is a simple linear classifier). Due to the nonlinearity
� , the connection of multiple neurons to an artificial neural network allows for
the construction of functions that go beyond that of simple linear classifiers. An
artificial neural network is then a function that takes many inputs and produces
many outputs (for classifiers, the number of outputs is typically much less than the
number of inputs; but this is not the case in general, see below). This function is
constructed from the elementary function (5.327) by using the output of one neuron
as input of other neurons.

An example for a simple (yet common) structure is the following:

Input

Layer 1

Layer 2

Layer 3

Output

This network (or function) maps many input variables (black squares at the top) to
a single output variable (black square at the bottom) via three intermediate layers
of neurons. As the input of each layer is given by the output of the preceding
one, there are no cycles and information flows only in one direction: from top to
bottom; this is called a feedforward network. Note that the yellow and blue neurons
are connected to all neurons of the preceding layer; such layers are called fully
connected or dense. This is not necessary: For instance, the red neurons of the first
layer connect only to few adjacent inputs.

How does such an artificial neural network operate? What shall we do with
it? Recall that the network/function depends on the weights aki and the bias bk

(these parameters can be different for each neuron k). Thus the network sketched
above actually represents a family of functions with fixed input-output structure,
parametrized by many parameters faki ; b

kg.
A common application of feedforward networks is image classification. Assume

that we want an automatic procedure to decide whether an image depicts a cat or
not. If we interpret the color values of each pixel as an input variable, we ask for
a function that takes the image as input and outputs a single (binary) value: 0 for
“there is no cat” and 1 for “there is a cat.” The idea is to use the family of functions
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described by the neural network and (numerically) optimize the parameters faki ; b
kg

to find such a function. This optimization is referred to as (supervised) training of
the artificial neural network and works as follows:

Assume that we are given a set of 50 pictures that depict a cat and another set
of 50 pictures that do not. In total, we have a set of 100 pictures each with a label:
0 for “without cat” and 1 for “with cat.” This set will be our training set167. We
initialize our network with random values for faki ; b

kg and evaluate the function
that is described by the network on all 100 pictures. Then we compare the output
of this (random) function with the given labels of the pictures. This yields a single
figure of merit for the evaluation on the whole training set, namely the percentage
of pictures that are correctly classified by the network (recall that we know which
pictures depict a cat and which do not). Mathematically, this evaluation corresponds
to a function that maps a set of parameters faki ; b

kg to the interval Œ0; 1�. Our goal
is to find values for faki ; b

kg such that this function yields 1. The corresponding
network/function then classifies all 100 training pictures correctly (although this
does not necessarily imply that the network recognizes cats on other, unknown
pictures).

The popularity of artificial neural networks nowadays is mainly rooted in the
development of efficient algorithms (and the availability of hardware to run them
on) that vary the initially random parameters faki ; b

kg iteratively to optimize the
performance on a given training set. When the performance is good enough168,
the training can be stopped and the resulting parameters faki ; b

kg saved for later
applications of the network. If the training set is not biased (e.g., includes cats of
all fur colors and not just black ones), the training can produce parameters that
encode characteristic features of cats such that the network recognizes them even
on pictures that were not part of the training set. This ability—to generalize beyond
the training set—is a crucial feature of neural networks.

Now we can answer our previous question: There are two things we can do
with an artificial neural network. First, we can train it by adjusting its parameters
to optimize its performance on a given training set. This is the computationally
expensive part. However, training has to be done only once (often on dedicated
hardware like graphics cards). The result is an optimized set of parameters that
specifies the network. The second step is then to evaluate the network with these
parameters on data that goes beyond the training set. Since its evaluation reduces
basically to linear algebra, it is computationally cheap and can be done on almost
any platform (smartphones, surveillance cameras, etc.). The evaluation is where we
really use the neural network productively. Training is a preliminary step to make it
usable.

167Often the labeling of the training set has to be done by hand. Large training sets of high quality
are therefore valuable resources for machine learning.

168It is not guaranteed that the training set can be classified perfectly—this depends on the network
topology and the used optimization algorithm.
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Convolutional Neural Networks

Since training is computationally expensive, optimization is important. It is clear
that the time needed to optimize the parameters faki ; b

kg depends on how many
there are: Less parameters lead to faster optimization and thereby allow for the
evaluation of larger training sets. However, less parameters also make the family of
functions that can be encoded by the network less diverse which can have negative
effects on the performance of the network.

Fortunately, there are many applications where the number of parameters can
be cut to a fraction without detrimental effects. Recall the “cat-classifier” from
above: We asked for a classifier that recognizes cats in pictures. Whether the cat
is located in the center of the picture or in the upper right corner is not relevant.
In an abstract sense, the problem is translational invariant and we can expect the
network to be translationally invariant as well. The idea is to replace the low-lying
dense layers (the layers that are close to the inputs) by sparse layers with only local
connections and the same weights all over the layer. Pictorially:

copy

Networks with this structure are called convolutional neural networks (CNN) because
their mathematical description as a map from one layer to the next is given by
the (discrete) convolution of the input layer with a kernel function that encodes
the weights. Networks that stack multiple convolutional layers are sometimes
referred to as deep convolutional neural networks. CNNs are translationally invariant
by construction and each layer is specified by a (small) set of weights that describe
the local connections (the kernel, a�1; a0; aC1 above). Due to this reduced number
of weights, they can be optimized efficiently. Furthermore, their translational
invariance makes them scalable: the width of the layers can be changed without
adjusting the weights of the kernel.

Convolutional layers are often followed by so called pooling layers to reduce the
number of parameters further and to get rid of irrelevant information. A typical
pooling layer groups the outputs of the previous layer into “pools” and drops all
outputs except for the maximum of each pool.

For applications like image classification, one typically stacks several convolu-
tional layers with interjacent pooling layers. The last convolutional layer is followed
by few dense layers that condense all information into a fixed number of output
neurons. Hence the whole network has a funnel-like structure:
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pooling

pooling

convolutional

convolutional

dense

dense

Input

Output

The convolutional layers typically use ReLU neurons whereas the final layer uses
perceptrons (their binary outputs then encode the decision of the network).

Local Neural Networks

The most prominent application of artificial neural networks is image classification
(recall the “cat-classifier”). Such networks are characterized by many inputs (the
pixels of an image) that are condensed to few outputs (a fixed number of classes).
This leads to the funnel-shaped structure above.

But this is just one application of many. Another one is the following: Imagine
you want to train your neural network to play a board game like Go [396]. The input
would be an “image” of the current state of the board (with three states per “pixel”:
empty, white, black); as output we would like the position of the next stone to be
placed on the board. Thus we need one (binary) output neuron per site of the board
and the network could look like this:

convolutional

convolutional

dense

Input

Output

The rectangular shape characterizes a function with as many outputs as inputs. Just
as before, we can stack any combination of convolutional, pooling, and dense layers
between the input and output layers. Note that whenever the action described by
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the output depends on global features of the input pattern (as it is to be expected for
complex games like Go), it is advisable to include at least one dense layer to enable
information flow between remote neurons.

In other situations, this might not be necessary or technically unfeasible. Then
we can use only convolutional (and pooling) layers:

convolutional

convolutional

convolutional

Input

Output

We call networks with this structure local neural networks. They are scalable in width
and do not require communication between neurons that are far apart (as there is no
dense layer). This can be an important feature if the network is to be implemented
in hardware (for instance, on neuromorphic chips [406,407]). Below we describe
how such local networks can be used—not to play games—but to decode topological
quantum memories.

5.4.3 Decoding the Majorana Chain

Here we ask whether local convolutional neural networks (henceforth referred to as
CNN) can be used to decode the Majorana chain quantum code (MCQC). For a
discussion of the latter, see Subsection 4.2.1.

For the implementation, we use TensorFlow (v0.8) [408] with CUDA on a
Nvidia GeForce GTX 1070 graphics card169. The topology of the CNN is shown
in Figure 5.10 and described in the following:

1 Weighted copy (ReLU): The first (red) layer is essentially a convolutional layer
with ReLU neurons. If the Majorana chain has L sites, there are L � 1
syndrome measurements (we use L D 101 for training and L D 31 for
the evaluation). Each syndrome measurement (a single bit) is fed into 100
neurons with weights and biases faki ; b

kgI. Thus there are 100C 100 D 200
parameters associated with this layer in Figure 5.10.

2 Split, Pad & Recombine: We need a network topology that takes L � 1
binary inputs (the syndromes) and yields L binary outputs (the corrections).
Therefore we have to pad the network at some point by one site. To this

169Now I can justify my purchase with science (gaming is just a nice side-effect).
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Weighted copy (ReLU)

Measure syndromes TensorFlow

Split

Pad

Recombine

10 x
ReLU convolve

Linear convolve

Threshold

Apply corrections

100

100

100

1

100

50

50

conv2d,relu

conv2d,relu

conv2d,relu

conv2d

greater

depth_to_space

pad

space_to_depth

Figure 5.10 • MCQC decoding with a CNN—Setup. Structure of the convolutional neural
network used to decode the Majorana chain quantum code. The functional role of each layer
is described on the left-hand side, the key function(s) to realize this layer with TensorFlow on
the right-hand side. The colored neurons are convolutional layers with weights faki ; b

kgI (red),
faki ; b

kgII (blue), and faki ; b
kgIII (green). Except for the last (green) layer, all convolutions are

realized by ReLU neurons. Gray discs denote copied values of preceding layers. Stacks of disks
denote multiple neurons. Details are discussed in the text.

end, we first split the L � 1 stacks of 100 neurons (more precisely: their
outputs) into 2.L � 1/ stacks of 50 neurons each. Then we pad the network
symmetrically by two stacks of 50 neurons on the boundaries (their output
is set to zero) and subsequently recombine pairs of stacks into L stacks of
100 neurons each. Note that the output values of the neurons in the first
(red) layer remain unchanged—they are just rearranged and augmented by
additional zero outputs.

3 ReLU convolve: The layer of L sites with 100 neurons per site is followed by
a convolutional layer of the same size (blue). Each of the 100 neurons per
site of the convolutional layer takes inputs from all neurons of the 5 nearest
sites of the preceding layer (bold black edges in Figure 5.10). Thus there
are 100 � .5 � 100/C 100 D 50100 (weight and bias) parameters faki ; b

kgII

associated with this layer. This convolution is appliedD times in total (we set

499



MISCELLANEOUS

D D 10). Importantly, the same parameters faki ; b
kgII are reused for each of

these layers so that the number of parameters is independent ofD. The idea
is to adapt the depth D of the CNN to its width L to allow for corrections
of large error clusters. Note that due to the locality of the CNN, there is a
“light cone constraint” in that corrections of sites that are far apart cannot be
correlated if the depth the network is too shallow (see Section 4.2).

4 Linear convolve: The last of the D convolutional layers outputs 100 values
per site. In the end, we are interested in a single, binary output per site
which determines the application of corrections. Therefore we apply a last
convolutional layer (green) with one (linear) neuron per site. Each of these
neurons takes inputs from all 100 neurons of the preceding convolutional
layer (blue). Thus there are 100C 1 D 101 parameters faki ; b

kgIII associated
with this layer. It outputs a single real number per site which we call the
output potential (sometimes referred to as logits).

5 Threshold: To decide where corrections must be applied, the CNN is
completed by a threshold layer that sets output potentials below (above) some
threshold r to zero (one). In our simulations, we set r D 0. The result
is a string of L bits that we want to encode the most likely error pattern
compatible with the syndromes.

The performance of decoders for quantum codes depends on the noise model
that afflicts the physical qubits, and decoders that exploit characteristic correlations
of a particular noise model outperform generic decoders. However, if the noise
model that describes an environment is not known (or changes uncontrollably over
time), it may be impossible to tailor appropriate decoders. Using neural networks
has the advantage that their plasticity allows for adaptive decoding algorithms by
training the network in the presence of a given environment. Detailed knowledge
of the noise model is not necessary because the only quantity of relevance is the
coherence time of the quantum memory (which can be measured without knowledge
of the environment). Even if the environment changes over time, the network can
be adjusted by additional training iterations.

Here we use a simple, uncorrelated noise model where errors are applied with
probability p to all sites independently. For fixed length L D 101 and probability
p D 0:2 we sample from this distribution N D 105 error patterns as training
set. We then use the Adam optimization algorithm [409] (AdamOptimizer in
TensorFlow) to train the network. To this end, we compute a loss function that
quantifies for each application of the network the number of deviations from the
true error pattern (recall that a perfect decoder reconstructs the error pattern
that gives rise to the measured syndrome). The optimization algorithm tries
to minimize this loss function on the training set by iterative variations of the
200C 50100C 101 D 50401 parameters that specify the network. Note that we
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Figure 5.11 •MCQC decoding with a CNN—Results. We show four error patterns (red bars)
on a chain of length L D 31 with measured syndromes (black bars), the output potential (black
bullets), and the suggested correction operations (green bars). (a) Single minority island of
errors; all errors are successfully corrected. (b) Single majority island of errors; the majority vote
is performed correctly such that a logical error is introduced. (c) Two minority islands at opposite
ends of the chain; themajority vote is performed correctly and the errors are canceled successfully.
(d) Two close-by minority islands. The majority vote is performed almost correctly, but the
right-hand cluster is not completely eliminated due to three erroneous correction operations.
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train a network of width L D 101 and use the resulting weights for a network of
width L D 31 to illustrate its performance (see below). This scalability is a feature
of the convolutional structure of the network.

We do not provide quantitative results for the performance of the CNN as
decoder of the MCQC; instead we show exemplary evaluations for some error
patterns in Figure 5.11. They demonstrate that the training was successful in that
the CNN applies essentially (an approximate version of ) majority voting—at least
for small error clusters as in Figure 5.11 (a). Even multiple clusters can be erased
successfully if they are well-separated, Figure 5.11 (c). However, adjacent clusters
tend to confuse the network and lead to correction errors, Figure 5.11 (d). Note
that due to the error probability p D 0:2 < 0:5 used for the construction of the
training set, the CNN learned to expect a minority of error-afflicted sites that match
the syndrome; its decision in Figure 5.11 (b) is therefore correct in that it removes
all syndromes but introduces a logical error. We checked that the CNN operates in
the same fashion for arbitrary code sizes L � 101 (it even performs reasonably well
for L > 101 if L is not too large).

In conclusion, the CNN seems to implement the following two rules: First,
the output potential changes sign at the position of syndromes. And second, small
intervals between syndromes favor positive output potentials. In many cases (and for
small error rates), this leads to a successful decoding of the MCQC.

5.4.4 Majority Voting in Two Dimensions

If the one-dimensional CNN in Figure 5.10 can perform majority voting, is this also
possible in a two-dimensional setup? Note that a two-dimensional square lattice
of binary sites with syndromes on the edges (given by the sum modulo-2 of the
two adjacent sites) and the two syndrome-free states in which all sites are either
0 or 1, does not map to a quantum code but to the classical (repetition) code that
can be identified with the two ground states of the 2D Ising model. Accordingly,
syndromes are identified with “domain walls” that separate clusters of opposite
“spins.”

The implementation of this two-dimensional setup was originally intended as
preliminary step towards a neural decoder for the toric code (where syndromes are
not string- but point-like [45]). Since the focus then shifted to Chapter 4 and Ref. [3],
such a decoder was never realized. As the toric code is most conveniently realized
on a square lattice with periodic boundary conditions (a torus), we came up with a
periodic CNN for the classical repetition code above. Periodic network topologies
seem to be uncommon170 and their realization with TensorFlow is cumbersome (but
possible). However, once the system of binary sites is placed on a lattice without
boundaries, the rather technical padding in Figure 5.10 is no longer necessary.

170This is reasonable as most images are not periodic.
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Figure 5.12 • 2D majority voting with a CNN—Examples. Three examples (columns) of
two-dimensional error patterns: (I) a single small cluster, (II) a single large cluster, and (III) two
small clusters. From top to bottom are shown: the errors (red fields), the syndrome pattern (red
lines), the output potential (logits), the corrective actions (green fields), and the result of the
correction (black fields).
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Figure 5.13 • 2Dmajority votingwith aCNN—Corner erosion. Shown is the output potential
(logits) color-coded at the corner of a rectangular domain of errors (red area). The domain
wall is projected onto the bar graph (black line). The CNN applies corrections when the output
potential becomes positive. The CNN learned to perform corner erosion and applies corrective
actions on the convex side of the corner; on the concave side, the output potential is strongly
suppressed. Note how the CNN becomes critical close to straight domain walls where the output
potential approaches zero from below.

Indeed, whereas before we had to map L � 1 inputs to L outputs, now we have to
map 2L2 inputs to L2 outputs (for a lattice of L�L sites) because there are exactly
two edges per site (the ones coming from north and east, for instance).

The input of the new CNN is therefore a L � L array of two binary variables
per site. The topology of the network is then essentially a two-dimensional version
of Figure 5.10: First, we spread these two values per site onto 100 ReLU neurons
with a convolutional layer. Then we apply D ReLU convolutions with the same
structure of connections as before. Finally, we condense the 100 neurons per site
with a linear convolution to a single real number, the output potential. The decision
of the network for each site is then determined by comparison of this potential with
the threshold r D 0.

We train the network again with a training set of N D 105 error patterns drawn
from an uncorrelated Bernoulli distribution with p D 0:2 on a 25� 25 square lattice.
Here we focus on a shallow network with onlyD D 2 convolutional layers. Since
p D 0:2 < 0:5, we expect the network to suggest error patterns that satisfy the
syndrome and use a minimum number of errors. However, due to the shallow
structure of the network with only local connections, this must fail for large clusters
(because true majority voting is a global operation).

Figure 5.12 shows three exemplary evaluations of the CNN. For each example,
the panels show (1) the error pattern, (2) the input of the network (the syndrome),
(3) the output potential (the logits), (4) the correction produced by the threshold,
and (5) the error pattern after the application of the correction. As expected, the
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small cluster in Example I is completely erased, in accordance with majority voting.
The larger clusters of Examples II and III reveal the locality of the network, though:
Deep within the error clusters the network does not apply corrections because
it cannot be aware of the domain walls that are too far away. Nevertheless, the
suggested corrections reduce the numbers of errors in both examples by eroding the
error clusters at the corners. Although the CNN is not capable of “single-shot”
corrections of large clusters, applying the network repeatedly erodes the clusters
and cleans the system eventually.

The rule found by the CNN that makes this possible is simple: The curvature
of domain walls is used locally to clean convex clusters of errors by eroding
corners; iterative application of this local rule implements a global majority vote.
In Figure 5.13 we plot the output potential in the vicinity of the corner of an extended
error cluster. We notice that the potential is strongly suppressed everywhere except
close to domain walls where it approaches the threshold from below. If the domain
wall is straight, the potential stays there and no corrections are applied as the
network cannot decide which side represents the minority. When the domain wall is
curved, the potential decreases on the concave side and increases (above the threshold)
on the convex side. The applied corrections then reduce the curvature of the domain
wall by eroding the corner.
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5.5 Aperiodic Stabilizers

This section is unrelated to the main part of this thesis and originates from the
author’s interest in topological quantum codes. Its primary result is the construction
of an aperiodic stabilizer code derived from Wang tilings—aperiodic tilings of
Euclidean space that preceded the discovery of quasicrystals such as, for instance,
the iconic Penrose tiling. The approach taken may also serve as a recipe for the
construction of systems that break translational invariance in a systematic way.

In addition, the complexity of these “Wang stabilizers” serves as entry point
of Section 5.6. In the current section, familiarity with the stabilizer formalism for
quantum codes is recommended, see Chapter 10.5 of Ref. [264] for a thorough
introduction.

5.5.1 Motivation

The stabilizer framework is a powerful algebraic tool to describe a restricted but
interesting class of quantum codes [410–412], see also Ref. [264] for an introduction.
Here, a quantum code that encodes k logical qubits into n physical qubits is simply
a 2k-dimensional linear subspace C of the n-qubit Hilbert space H D

Nn
iD1 C2.

The general idea of quantum codes is to tailor the states in C so that (sparse) errors
on the physical qubits can be detected and corrected by a specific set of projective
measurements and unitary gates, see Section 4.2 in Chapter 4 for an example. An
intensively studied class of codes/subspaces can be described by stabilizer groups:
Let P denote the Pauli group on n qubits, i.e., the group generated by arbitrary
products of Pauli matrices �˛i for ˛ 2 fx; y; ´g and i D 1; : : : ; n. A stabilizer
(group) S is an abelian subgroup of P that does not contain �1. Its corresponding
quantum (stabilizer) code is defined as the linear subspace

P S D f j‰i 2 H j 8S 2 S W S j‰i D j‰i g ; 5.330

i.e., the subspace of all states that are invariant under the action of all operators in
the stabilizer group S . The idea is to describe the states in P S (which can be highly
non-trivial and strongly entangled) indirectly by their stabilizing operators in S .

A particularly interesting and pedagogically useful example of a stabilizer code is
the famous toric code [45]. For its construction, one envisages physical qubits placed
on the edges of a two-dimensional square lattice that is embedded into a torus. The
stabilizer S of the toric code is then generated by star operators As D

Q
e2s �

x
e on

sites s and plaquette operators Bp D
Q
e2p �

´
e on faces p [where e 2 s (e 2 p)

denotes the four edges that emanate from site s (border face p)]. The stabilizer
formalism reveals that the corresponding codespace P S is four-dimensional and
encodes two logical qubits.
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To bridge the gap between quantum information theory and condensed matter
physics, one can consider the Hamiltonian

HTC D �
X

all sites s

As �
X

all faces p

Bp 5.331

and its ground states on the mentioned lattice of qubits (or spins). It is easy
to see that the ground state space of HTC is identical to the codespace P S .
Thus the abstract concept of a quantum code is realized as ground state space
of a Hamiltonian: one can encode quantum information into the ground states ofHTC.
Following this line of thought, one finds that the abstract errors on the quantum code
translate into local excitations of the HamiltonianHTC. This leads to an intriguing
idea: If one implements HTC and stores quantum information in its ground state
space, the energy necessary to create errors might be enough to prevent them from
accumulating even at finite temperature. This would render the active measurement
and correction of errors obsolete: the implementation withHTC is self-correcting.

Unfortunately it can be shown that this approach fails for the toric code in two
dimensions [311, 413,414] (see also Ref. [50] and references therein). This thermal
fragility is due to the existence of deconfined point-like excitations (or, equivalently,
string-like logical operators) that can be used to implement gates on the encoded
qubits with finite energy penalty171. Ever since, the quest for a truly self-correcting
quantum memory in three dimensions or less became an active area of research, see
Refs. [50, 174, 303] for a review.

By now, several no-go theorems in two [415] and three [416–418] dimensions
are known which preclude the existence of self-correcting quantum memories under
various assumptions (see Ref. [50] for a review). While in two dimensions the
existence of self-correcting stabilizer codes is essentially precluded [311,415], in three
dimensions there are practicable loop holes to sidestep all (known) no-go theorems:
In Ref. [416] it is shown that translationally invariant codes with a size-independent
number of logical qubits have constant energy barriers. In Ref. [417] the energy
barrier is proven to be at most logarithmically divergent for translationally invariant
systems (without restrictions on the codespace dimension), and the results of
Ref. [418] show that codes with locality-preserving non-Clifford gates cannot have
diverging energy barriers.

If we focus exclusively on the storage of quantum information, Ref. [417] suggests
that truly self-correcting stabilizer codes in three dimensions—if they exist—break
translational invariance. Indeed, several codes are known that sidestep these no-go
theorems and exhibit diverging energy barriers. Haah’s cubic code [307, 419] is
translational invariant with a growing number of logical qubits; consistent with
Refs. [416,417], it features a logarithmically divergent energy barrier. The welded code
proposed by Michnicki [308] and the fractal code of Brell [309] break translational
invariance and feature polynomially growing energy barriers (which shows that

171The energy barrier that needs to be overcome for gates on logical qubits that are implemented by
a sequence of local operations does not increase with the system size.
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translational invariance is a crucial ingredient for the no-go theorem of Ref. [417]).
For various reasons, none of these codes is proven to be self-correcting in the strict
sense (which means that the lifetime of the encoded qubits grows exponentially with
the system size L!1).

The fact that aperiodic stabilizers differ fundamentally from their periodic
cousins makes the former interesting to study. In this section, we present a
method to derive such stabilizers from aperiodic tilings known as Wang tilings [420,
421]. Although we are ultimately interested in three-dimensional codes, here
we demonstrate the approach in two dimensions for the sake of simplicity. A
generalization to three dimensions is possible but cumbersome.

Note — We want to emphasize that the concept of self-correcting quantum memories
is not only interesting for their potential application as “quantum hard drives.”
The very existence of a truly self-correcting Hamiltonian in three dimensions had
profound implications for the quantum-to-classical transition in that it blurs the
border between the realms of quantum mechanics and classical physics to an extent
that goes beyond any “quantum weirdness” witnessed so far. Figuratively speaking,
the existence of such systems entails the possibility that when you go hiking and
pick up a chunk of rock, this piece of thermalized matter could host—despite its
classical appearance—a bunch of qubits that hid coherently in delocalized degrees of
freedom for the last ten thousand years. (It is amusing that on the classical level, this
situation is realized in nature: There are minerals that can store a single bit—the
direction of earth’s magnetic field—for geologic timescales.) Finally, we point out
that it has been argued that the existence of self-correcting quantum memories
might conflict with the laws of thermodynamics [422].

5.5.2 General Setup

Let us first describe the general setup and fix the notation. We consider infinite,
D-dimensional cubic lattices L D ZD (in Subsection 5.5.3 we focus on D D 2)
and associate a local Hilbert space Hx D

NK
iD1 Hxi D

�
C2
�˝K of K qubits with

each site x D .x1; : : : ; xD/ 2 L. Thus we have H D
N

x2L Hx for the total state
space of the systems under consideration. The local standard basis is written as
jqx1; : : : ; qxKi for x 2 L and qxi 2 f0; 1g. Let P , Px, and Pxi denote the Pauli
groups acting on the global state space H D

N
x Hx, the site-local state spaces

Hx D ˝iHxi , and the single-qubit state spaces Hxi D C2, respectively.
We are interested in locally generated stabilizer groups S < P , i.e., abelian

subgroups of P that do not contain �1 and are generated by a (possibly finite) set
of L-local operators An 2 P , write S D hA1; A2; : : : i. The S -invariant subspace
P S < H , with j‰i 2 P S , S j‰i D j‰i for all S 2 S , is called protected
subspace and completely described by S .
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To describe the structure of the generators An, we need additional notation.
Let p D .p1; : : : ; pD/ 2 .ZC

1
2
/D � L0 describe the center of aD-hypercube in

L (squares for D D 2, cubes for D D 3). We write pŒ˛1; : : : ; ˛D� for arbitrary
d � D-dimensional hypercubic faces of p where ˛i 2 f�;C;�g defines the
constraints on points in the i th direction: � D no constraint,˙ D in or against the
orientation of the i -axis. For instance, in D D 2, p D .p1; p2/ denotes a square
and pŒC; �� denotes its right-hand edge. The entire square is pŒ�; �� and the upper
right corner can be addressed by pŒC;C�. In general, the 2D corners x of p, write
x 2 p for short, can be addressed by x D pŒ˙; : : : ;˙�.

The stabilizers we are interested in are generated by two distinct types of
generators, denoted as T and G. The former are called (stabilizer) tiles and are
associated with a specific D-dimensional hypercube p, acting non-trivially on its
corner Hilbert space

N
x2p Hx only:

T .k/p D

Y
˛

KY
iD1

�
t

.k/
p .˛Ii/

pŒ˛�i
: 5.332

Here, t .k/p .˛I i/ 2 f0; x; y; ´g encodes the tile with Pauli matrices �x;y;´xi and
�0xi � 1xi . The first product

Q
˛ is shorthand for

Q
˛1D˙

� � �
Q
˛DD˙

and the index
k labels different tiles that can be placed on the same hypercube p.

The other generators (G) are called gauge constraints and are of technical
importance only (but not crucial for the construction that follows): Their job is to
“freeze out” site-local excess degrees of freedom. Therefore they act on sites x and
are of the form

G.k/x D

KY
iD1

�
g

.k/
x .i/

xi ; 5.333

where k indicates the possibility of more than one gauge constraint per site. Again,
g
.k/
x .i/ 2 f0; x; y; ´g encodes the action of G.k/x in terms of Pauli matrices.

The generic structure of stabilizers S that will be of interest in the following
is that of a tiling of a (possibly finite) patch M � L by stabilizer tiles T .k/p , in
addition with a site-local completion by gauge constraints G.k/x that depends on
the tiling T .k/p . If k D 1; : : : ;M , we refer to the tiling asM -layered. To describe
such structures more conveniently, we need a bit more notational fine-tuning: If ei
denotes the unit vector in the i th direction, the 2D adjacentD-hypercubes of p can
be described by p0 D p ˙ ei . The common boundary .D � 1/-hypercube is given
by pŒ: : : ; �; ˛i ; �; : : : � with ˛i D ˙, we write pŒ˛i � D pŒ˙i � for short. Then we
can address the .D � 1/-dimensional boundary components of the stabilizer tiles as

T
.k/

pŒˇd �
D

Y̨
˛d Dˇd

KY
iD1

�
t

.k/
p .˛Ii/

pŒ˛�i
: 5.334

509



MISCELLANEOUS

If we ignore the gauge constraints for the time being, for S to be a stabilizer,
it is necessary (but not sufficient) that for all p and ˙ei adjacent tiles commute:
ŒT
.k/
p ; T

.l/
p˙ei

� D 0 for i D 1; : : : ;D and k; l 2 f1; : : : ;M g. With the notation

above, this condition can be written as ŒT .k/
pŒ˙i �

; T
.l/

p˙ei Œ�i �
� D 0 since the commu-

tativity of adjacent tiles imposes only restrictions on their contiguous boundary
components. In general, there are similar restrictive conditions on all pairs of
stabilizer tiles that touch at d -dimensional hypercubes for all d D 0; : : : ;D � 1. If
the tiling is multi-layered (M > 1), one has an additional constraint ŒT .k/p ; T

.l/
p � D 0

for d D D.
Conventional, translationally invariant stabilizers are given by generators that

do not depend on position, i.e., t .k/p .˛I i/ � t .k/.˛I i/ for all p 2 L0 (the same
for gauge constraints). A non-trivial example in D D 2 is the toric code [45] for
which K D 1, t .˙1;˙2I i D 1/ D x and t .˙1;�2I i D 1/ D ´ (without gauge
constraints)172. Since this stabilizer is single-layered (M D 1), we can drop the
index k. Another example inD D 3 is the cubic code [419] with K D 2 qubits per
site andM D 2 layers of tiles T .1/p and T .2/p (again without gauge constraints).

In this section, we are interested in tilings of L that systematically break
translational invariance, i.e., t .k/p .˛I i/ depends explicitly on p but nevertheless is
chosen from a small set T D ft1; : : : ; tN g of N � 4K2

D (stabilizer) templates173 tn.
For simplicity, we focus on single-layered tilings in the following (M D 1). Then, a
(stabilizer) tiling is a function � W L0 ! f1; : : : ; N g that assigns one of N templates
to each D-hypercube of L via tp � t�.p/ such that the corresponding tiles Tp

commute pairwise. � is translationally invariant in the i th direction if there is
an integer ai such that �.p/ D �.p C aiei/ for all p. Here we are interested in
template sets T and stabilizer tilings � that break translational invariance in allD
directions while still being deterministic (i.e., we do not consider random ensembles
of tilings).

In addition, we demand that there is an efficient algorithm to “grow” the tiling
� successively if one starts from an arbitrary “seed hypercube” p0. I.e., given �.p/,
there is an efficient algorithm to compute �.p˙ ei/ for all i and p. This ensures
that the construction of the stabilizer (or Hamiltonian) is not rendered impossible
by computational complexity (we stress that the evaluation of its properties can be
intractable nevertheless).

172We use a representation of the toric code with a single type of generators and qubits on sites
(instead of edges); it is unitarily equivalent to the conventional representation with two types of
generators (viz., plaquette and star operators).

173Note the difference between templates and stabilizer tiles: The latter are operators that act on a
specified subset of qubits on the lattice. Templates are mere“construction plans” for such operators
without any reference to a particular hypercube p.
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(a) (b)

Figure 5.14 • Culik tiles. The instance of aperiodic Wang tiles used for the construction of
stabilizers in this section. (a) Tile set TCulik of 13 tiles with 5 colors from Ref. [423] dubbed Culik
tiles. The orientation of the tiles is fixed. (b) Exemplary patch of a valid tiling. The patch can be
extended to infinity in all directions without periodicity.

Note — The latter constraint actually leads to a more general, conceptual question:
Which properties qualify a Hamiltonian174 as “physically realistic”? If we focus
on Hamiltonians defined on a lattice in D � 3 dimensions, a common answer is
locality, i.e., the Hamiltonian is required to be a sum of terms that act non-trivially
only on bounded regions of space. For translational invariant Hamiltonians, this
seems to be sufficient. But once translational invariance is dropped, one might
encounter local Hamiltonians the mere construction of which is computationally
intractable. This prevents not only the numerical simulation of such systems—even
their implementation in nature is impossible if we assume that “intractable” refers
to arbitrary physical systems as computational frameworks. Such Hamiltonians
describe systems that are unphysical from an operational point of view: We can
neither simulate nor experimentally study them.

5.5.3 Wang Stabilizers

Wang Tiles

Wang tiles are (abstract) square tiles with colored edges that can be placed on
the two-dimensional, infinite square lattice Z2, see Figure 5.14 for an example. A
(possibly finite) tiling of this kind is called valid if contiguous edges have the same
color, Figure 5.14 (b). The set of Wang tiles T D ft1; : : : ; tN g is fixed and each
tile ti can be used infinitely often to tile the plane Z2. Rotating the tiles in T is
not allowed (this is not a fundamental restriction as one can extend T by rotated
versions of tiles if desired).

174With“Hamiltonian”we actually refer to a sequence .HL/L2N of Hamiltonians which is necessary
for the concept of a thermodynamic limit L!1.
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This construction was proposed by Hao Wang [420]. The tile set T determines
whether a tiling of the entire plane Z2 is possible. For example, if T contains a
single tile with all edges the same color, such a tiling is clearly possible. However,
if this single tile is blue on the left and top but red on the right and bottom, one
cannot even place two of them side by side without violating the rule that colors
must match up. Wang conjectured [420] that a given tile set T can tile the entire
plane if and only if there exists a periodic tiling. This conjecture was disproved by
Berger [421] with an ingenious application of results from computability theory
(namely, the undecidability of the halting problem). It follows that there exist tile
sets which allow for tilings of the plane none of which is periodic (such tile sets are
called aperiodic). This remarkable result kick-started the research that eventually led
to the discovery of quasicrystals, first in theory and later in real materials.

Over the years, aperiodic tile sets with fewer and fewer tiles (and colors) were
constructed. Here we use the tile set TCulik with 13 tiles and 5 colors introduced by
Culik [423] and shown in Figure 5.14 (a). We refer to this particular set of Wang tiles
as Culik tiles. Culik proved that it allows for tilings that are necessarily aperiodic; a
small patch is shown in Figure 5.14 (b). In the following, we demonstrate how to
construct a stabilizer group that is generated by 13 templates, and that realizes this
aperiodic tiling in a sense to be defined next.

Colorability of Stabilizer Templates

The idea is simple: We aim at a set T D ft1; : : : ; t13g of stabilizer templates that
act on a D D 2-dimensional square lattice with K qubits per site, such that there
is a one-to-one correspondence between templates ti and Culik tiles ti : Placing
tile ti adjacent to tile tj is allowed if and only if the operators ti and tj commute
for the same placement. If we can find a template set T with this property for
all combinations and placements of tiles, aperiodic tilings of the Culik tiles can be
read as construction plans for aperiodic stabilizer groups. Most importantly, these
stabilizers can be grown deterministically in all directions to cover the entire two-
dimensional lattice without any periodicity (thus the limit L!1 is well-defined).

To achieve this, we have to construct stabilizer templates ti that can be labeled
by colors on their four edges so that stabilizer tiles of equal (different) colors on
contiguous edges commute (anticommute). Since we are not allowed to rotate
tiles, the problem decomposes into two subproblems, namely the placement in x-
and y-direction, respectively. In Figure 5.15 we illustrate both cases by drawing
schematic tiles in two columns/rows to form the vertices of a bipartite graph. For
a given template set T , we can now probe the commutativity of all operators
in the first column (row) with the operators in the second column (row) for the
shown orientation of tiles. Whenever two operators commute, we connect their
corresponding boxes in the graph by an edge. This yields, for each direction, a
bipartite graph that is typically not connected (i.e., decomposes into disconnected
subgraphs).
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right

top

bottom

incompletecomplete

left
(a) (b)

Figure 5.15 • Requirements for colorability. Edges connecting templates ti with tj indicate
commutativity with respect to the shown placement of tiles. For placements in x- (a) and y-di-
rection (b), this gives rise to separate, bipartite commutativity-graphs (which are not necessarily
connected). If and only if all connected components are complete bipartite graphs, the tile set
T is colorable and each connected component corresponds to a distinct color.

Is there a way to label the edges of stabilizer templates by colors such that
they commute if and only if the colors are equal on contiguous edges? The
generic answer is “No” for a simple reason: “Having the same color” is clearly an
equivalence relation; in particular, it is transitive. For instance [see Figure 5.15 (b)],
if the bottom-color of t1 equals the top-color of t2 which equals the bottom-color
of t2 which equals the top-color of t1, we can conclude that top- and bottom-color
of t1 are identical. However, if we have four operators A;B;C;D with a chain of
commutation relations

ŒA; B� D 0 and ŒB; C � D 0 and ŒC;D� D 0 ; 5.335

we cannot conclude that ŒA;D� D 0 since commutativity is not a transitive relation
(e.g., set A D �´, B D C D 1 andD D �x). In Figure 5.15 (b) this is illustrated by
a missing link between the bottom of t1 and the top of t1.

We conclude that coloring is only consistent when the commutation relations of
top/bottom- and left/right-pairs of operators are transitive. In the graph-theoretic
description of Figure 5.15, this condition is met whenever all connected components
of the commutativity-graphs are complete bipartite175 subgraphs [as in Figure 5.15 (a)].
A set of stabilizer templates T that satisfies this condition is called colorable, and
each connected component of the commutativity-graphs is identified with a distinct
color (where colors used for top/bottom edges can be reused for left/right edges as

175A complete bipartite graph has vertices of two colors such that all pairs with different colors are
connected by an edge and there is no edge connecting vertices of the same color.
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rotation of tiles is forbidden). Here we are interested in colorable sets T that can be
assigned the color scheme of Culik tiles in Figure 5.14 (a). The question is whether
this is possible and, if so, how many qubits K per site are necessary.

Solving for Stabilizer Templates

Here we describe a method to construct a set of stabilizer templates T from a given
tile set T . We do not claim that this method is the only and/or most efficient one.
However, we demonstrate its viability by constructing a colorable set of N D 13

stabilizer templates that realize the Culik tiles with K D 9 qubits per site. We show
that, for this particular tile set and the applied constructive procedure, there are no
solutions with fewer qubits.

We start with a convenient notation for the stabilizer templates T D ft1; : : : ; tN g
on a square lattice. Their elementary factors are on-site corner templates
tTL
i ; t

TR
i ; t

BL
i ; t

BR
i (acting on K qubits each) that can be combined to edge templates

tL
i ; t

R
i ; t

T
i ; t

B
i ; schematically we can write

ti D
�
tL
i tR

i

�
D

�
tT
i

tB
i

�
D

�
tTL
i tTR

i

tBL
i tBR

i

�
; 5.336

where formally
ti D tTL

i � t
TR
i„ƒ‚…

tT
i

� tBL
i � t

BR
i„ƒ‚…

tB
i

D tTL
i � t

BL
i„ƒ‚…

tL
i

� tTR
i � t

BR
i„ƒ‚…

tR
i

: 5.337

In total, there are QN D 4N corner templates txi , x 2 fTL; TR; BL; BRg, and our
first step is to derive (anti)commutation relations between all QN 2 pairs of corner
templates .txi ; t

y
j / from the given tile set T . The result will be a symmetric QN � QN

matrix R over F2 with Rix;jy D 0 , Œtxi ; t
y
j � D 0 and Rix;jy D 1 , ft

x
i ; t

y
j g D

0. We construct R in three steps:

1 Wang tilings restrict the placement of tiles only by their edge colors. Thus the
diagonal placement of tiles with a single common corner is never restricted.
To ensure this on the level of stabilizer templates, we demand that all pairs of
templates commute when placed on faces with a single common corner. This
is equivalent to the two relations�

tTL
i ; t

BR
j

� Š
D 0 , RiTLjj BR D 0 5.338a�

tTR
i ; t

BL
j

� Š
D 0 , RiTRjj BL D 0 5.338b

for all i; j D 1; : : : ; N . Here, we introduced the shorthand notation
RiTRjj BL D 0 for RiTR;j BL D 0 ^ Rj BL;iTR D 0. This fixes 2 of the 10 D
.4 � 3/=2C 4 unordered pairs of corner labels.
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2 The colored tiles in T determine which stabilizer templates in T can be placed
side by side. If we identify ti with ti , this determines the (anti)commutation
relations of all pairs of edge templates .tL

i ; t
R
j / and .t

T
i ; t

B
j /, namely

t Ri D t
L
j ,

�
tR
i ; t

L
j

� Š
D 0 5.339a

tTi D t
B
j ,

�
tT
i ; t

B
j

� Š
D 0 5.339b

where txi denotes the color of tile i on the edge x 2 fT; B; L; Rg.

These relations do not determine the relations of involved corner operators
uniquely. For instance, ŒtR

i ; t
L
j � D 0 can be realized either by ŒtTR

i ; t
TL
j � D 0 and

ŒtBR
i ; t

BL
j � D 0, or by ft

TR
i ; t

TL
j g D 0 and ftBR

i ; t
BL
j g D 0.

Here, for example, we fix˚
tBR
i ; t

BL
j

	 Š
D 0 , RiBRjj BL D 1 5.340a˚

tTR
i ; t

BR
j

	 Š
D 0 , RiTRjj BR D 1 ; 5.340b

and then implement the edge relations via

t Ri D t
L
j ,

˚
tTR
i ; t

TL
j

	 Š
D 0 , RiTRjjTL D 1 5.341a

tTi D t
B
j ,

˚
tTL
i ; t

BL
j

	 Š
D 0 , RiTLjj BL D 1 5.341b

for all i; j D 1; : : : ; N .

Note that this construction automatically leads to colorable sets of templates
as their (anti)commutation relations derive from an equivalence relation. This
step fixes 4 of the 10 combinations of corner labels.

3 To determine R completely, we have to fix the (anti)commutation relations
for pairs of templates that are placed on the same face. It is natural (but
not necessary) to impose commutativity. This is only crucial for multi-
layered (M > 1) stabilizer tilings; for single-layered stabilizers, arbitrary
relations are valid. (For the construction of Culik stabilizers, we require
commutativity for the sake of simplicity.) There are many possibilities to
enforce face-commutativity via relations between corner templates.

Here we choose the simplest one, namely commutativity of the corner
templates themselves:�

txi ; t
x
j

� Š
D 0 , Rixjjx D 0 5.342

for all i; j D 1; : : : ; N and x 2 fTL; TR; BL; BRg. (Note that for i D j ,
Rix;ix D 0 is strictly implied.) This step fixes the last 4 combinations of
corner labels.
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We stress that the construction of R is not unique due to the freedom in corner
relations for the realization of edge relations and face relations. For Wang stabilizers,
the prescribed edge relations leave one corner relation per edge undetermined.
Furthermore, single-layered stabilizers with undetermined face relations leave four
corner relations per face undetermined (even for prescribed face relations, only one
of the four corner relations is fixed). Exploiting this “gauge freedom” of R might
be useful to reduce the number K of qubits per site (see below).

The construction of N stabilizer templates ti that match the coloring of
tiles ti is now reduced to the construction of QN corner templates txi with the
(anti)commutation relations encoded in R. To cast this problem into algebraic
terms, we encode each corner template txi as a binary row vector txi D .xxi ; ´

x
i /

with xxi ; ´
x
i 2 FK2 . Then,

txi D

KY
kD1

�
�xk
�.xx

i
/k
�

KY
kD1

�
�´
k

�.´x
i
/k
: 5.343

This allows for an efficient encoding of arbitrary operators in the Pauli group
on K qubits (modulo phases ˙1 and ˙i , which are irrelevant for commutation
relations) [264]. If we define the matrix

S D

�
0 1

1 0

�
5.344

with 0 the K �K zero matrix and 1 the K �K identity matrix, it is easy to see that
two templates commute (anticommute) if and only if the symplectic product

hhtxi jt
y
j ii � txi � S �

�
t
y
j

�T
5.345

equals 0 (1) in F2.
With this notation, our problem reduces to the set of QN 2 equations hhtxi jt

y
j ii D

Rix;jy . If we introduce the QN � 2K-matrix

X �

26664
tTL
1

tTR
1
:::

tBR
N

37775 ; 5.346

these equations are equivalent to the nonlinear matrix equation

XSXT
D R 5.347

over the binary field F2. Since rank .R/ D rank
�
XSXT

�
� rank .S/ D 2K, we

can conclude that K � rank .R/ =2 is a necessary condition for the solvability of
Eq. (5.347). Remarkably, the number of solutions of Eq. (5.347) can be counted [424].
To apply the (quite complicated) result of Ref. [424], one has to use that both S and
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R are symmetric with only zeros on their diagonal, and that S has full rank. Then,
Theorem 4.2 in Ref. [424] gives an explicit expression for the number of solutions
in dependence of K and the rank of B.

Construction of Culik templates — If we construct B for the Culik tiles TCulik according
to the above procedure, we find rank .BCulik/ D 18 and therebyK � 9. The result of
Ref. [424] shows that this inequality is sharp, i.e., the minimal number of qubits to
solve Eq. (5.347) is K D 9. We note that lowering the rank of BCulik (and thereby K)
might be possible by using the “gauge freedom” discussed above. What remains to
be done is to find an explicit solution X of Eq. (5.347) (which need not be unique).

To this end, we restrict the class of solutions to templates with ´TL
i D 0 D ´BR

i

and xTR
i D 0 D xBL

i . This structure derives from the toric code and satisfies the
imposed corner- and face-commutativity per construction while still being flexible
enough to realize arbitrary (anti)commutation relations on the edges. As a first
step, we shrink R! R0 by removing duplicate columns and their corresponding
rows since corner templates that share the same relations to all other templates can
be identified. For the particular case of RCulik with size . QN D 52/ � 52 we find
the reduced 20 � 20-matrix R0

Culik. This symmetric matrix encodes an undirected
graph with corner templates as vertices where edges symbolize anticommutation
relations. In addition, we construct the adjacency matrix AK of a graph with 2� 2K

vertices that encode all possible templates with either x D 0 or ´ D 0 and edges
that connect anticommuting templates. Solutions of Eq. (5.347) can then be found
by searching for subgraphs of AK that are isomorphic to R0

Culik (for which there are
optimized algorithms available in, e.g., Mathematica).

Our implementation yields solutions only for K � 9, consistent with the
analytical arguments above. In particular, we find the optimal solution TCulik with
K D 9 qubits depicted in Figure 5.16 (a). In Figure 5.16 (b-c), we show an exemplary
4 � 4 patch of an aperiodic stabilizer tiling that can be constructed from these
templates. It is straightforward to check that all stabilizer tiles commute if their
edge colors match up (and anticommute if not). The proven aperiodicity of Culik
tiles now carries over to the constructed set of 13 stabilizer templates TCulik: they
can be used to construct a stabilizer with one generator per face that covers the
entire plane—but this stabilizer is necessarily aperiodic.

5.5.4 What to Do Next?

The purpose of this section was to introduce the general concept of Wang stabilizers
and present the construction of Culik stabilizers as an example. These results
provide several starting points for further studies:

→ The proposed construction of Culik stabilizers SCulik assigns a single (inde-
pendent) generator to each face of the square lattice. However, there are
K D 9 qubits per face (9 � 4 � 1

4
) and we expect � 8 degrees of freedom
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(a)

Figure 5.16 • Culik templates & Stabilizer. (a) Colorable set TCulik of N D 13 stabilizer
templates ti with K D 9 qubits per site and 5 edge colors in total (red, blue, green, yellow,
gray). The templates realize the abstract Culik tiles in Figure 5.14 (a). The four squares in
each template specify the operators �xi (blue squares) and �´i (red squares) that act on the
corresponding 9 corner qubits. Adjacent templates commute if and only if the edges that touch
carry the same color (and anticommute otherwise). Note that templates that touch at a corner
(or occupy the same face) commute per construction. (b) Finite patch of the aperiodic stabilizer
that can be constructed from the 13 templates. Only operators with matching edge colors can
be placed side by side to ensure commutativity. Since Culik tiles can cover the entire plane
only aperiodically, this construction gives rise to an aperiodic stabilizer group with well-defined
thermodynamic limit. (c) TheK D 9 qubits jqx1; : : : ; qx9i (black bullets) are placed on the
sites x of the square lattice L (black squares). Four adjacent stabilizer tiles act on the same
qubits with �xxi (blue) or �

´
xi (red).

to remain unfixed by the stabilizer group such that dimP SCulik � 2
.K�1/F

grows extensively with the number of faces F [264]. If we view the stabilizer
SCulik (generated by a finite patch of Culik tiles) as description of a quantum
code, the Pauli operators that are not in SCulik but commute with all stabilizer
generators describe logical operations on the codespace P SCulik. To reduce
the size of dimP SCulik, one can add, in a first step, site-local logical operators
as gauge constraints G.k/x to the stabilizer. This “freezes out” logical qubits
that are localized on single sites x. Since potential gauge constraints G.k/x
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(b)

(c)
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must commute with all four Culik tiles that are adjacent to x, in general
there are less then K � 1 D 8 independent, commuting gauge constraints
on a single site; hence there are logical qubits that cannot be fixed on-site
but delocalize between sites. Then, the crucial (and non-trivial) question is
whether an augmentation S 0

Culik by quasilocal generators176 exists that “freezes
out” all logical qubits, dimP S 0

Culik D 1. Only if this is not possible, subspaces
in P SCulik may exist that are robust against local errors. The intricate structure
of SCulik makes it hard to answer this question right away, which, in turn, is
the starting point of Section 5.6 (where we formalize but do not answer this
question).

→ Our original motivation was the construction of aperiodic stabilizer codes to
sidestep no-go theorems for self-correcting quantum memories. As discussed
in Subsection 5.5.1, in two dimensions even aperiodic stabilizers cannot be self-
correcting due to string-like logical operators. Thus the two-dimensional Culik
stabilizer is not a promising candidate and we have to generalize the concept
of Wang stabilizers to three dimensions. For Wang tilings, this generalization
is known as Wang cubes [425] (cubes with colored faces that can be used to
tile Z3 aperiodically with matching colors on contiguous faces). The basic
structure in Subsection 5.5.2 was described for arbitrary dimensionsD so that
a generalization of Wang stabilizers to three dimensions is straightforward.
The construction given in Subsection 5.5.3 can be generalized accordingly:
face relations of stabilizer templates are determined by the tile colorings of the
chosen set of Wang cubes, corner- and edge relations enforce commutativity,
and volume relations are undetermined for single-layer stabilizers.

Aside: A Hidden Fractal Uncovered

We conclude this section with a construction that gives rise to the presumably fractal
set depicted in Figure 5.17. The fractal can be found as follows:

Recall that to find templates that satisfy all imposed corner relations, we
constructed the adjacency matrix AK of a graph with 2 � 2K vertices that encodes
the (anti)commutation relations of all K-qubit Pauli operators with either �x- or
�´-matrices. We find

AK D

�
0 AK
ATK 0

�
5.348

where 0 denotes the 2K � 2K zero matrix. Let nk 2 F2 denote the kth digit of
n 2 N in base-2, i.e., n D

P1

kD0 nk2
k. Then, the off-diagonal block AK is given

176Pauli operators that act non-trivially within discs of bounded radius.
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(a)
K D 6

(b)
K D 6

(c)
K D 7

(d)
K D 10

Figure 5.17 • A hidden fractal uncovered. (a) The complete commutator matrix AK for
K D 6. Black/white fields denote commuting/anticommuting operators. (b) The largest
connected cluster of the commutator matrix features wing-like structures on various length
scales. Clusters are defined in the sense of site percolation on the square lattice, i.e., each cell
has four neighbors. (c) The same (rescaled) cluster forK D 7. (d) The same (rescaled) cluster
forK D 10. The emerging pattern is self-similar, i.e., the set of black sites contains numerous
copies of itself on various length scales—the hallmark of a fractal set forK !1.

by theQ �Q-matrix

. QAQ/nm D

1M
kD0

nkmk for 0 � n;m < Q 5.349

with AK D QAQ forQ D 2K .
Here we are interested in the matrix QAQ for Q D 2K C 1. In Figure 5.17 (a)

we plot this matrix for K D 6 as Q �Q-array with black cells for . QAQ/nm D 0

and white cells for . QAQ/nm D 1. The structure of the plot is complex but not very
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aesthetic. This changes when we view the plot as assemblage of connected clusters
(where black cells are adjacent if they share a common edge). If we keep only the
largest cluster and erase all disconnected islands, we find the appealing structure in
Figure 5.17 (b) with self-similar features akin to the Sierpinski triangle. Rescaling
the array to the same size (e.g., the unit square) yields an increasingly porous subset
of the square Œ0; 1�2 for K !1, see Figure 5.17 (c-d). This set comprises multiple
copies of itself on various length scales, which is a characteristic feature of fractal
sets. We leave it as an open problem to determine the Hausdorff dimension of this
limiting set to check whether it is noninteger.
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5.6 Localization of Symmetries

This section can be seen as a follow-up on Section 5.5 where we present a two-
dimensional stabilizer that realizes aperiodic Wang tilings. The pertinent question
whether this complex stabilizer features extensive logical operators sparked the train
of thoughts that led to the following concepts and results. We assume that the
reader is familiar with the stabilizer formalism, see Section 5.5 for a brief review and
Ref. [264] (Chapter 10.5) for a thorough introduction.

5.6.1 Motivation

Prime examples of stabilizer codes with extensive code distance are topological
surface codes [49], the paradigmatic representative being the toric code [45] which
encodes two logical qubits. Here we use a plain patch of stabilizers S instead with
smooth (solid) and rough (dashed) boundaries [52]; the stabilized subspace P S of
this code is two-dimensional and encodes a single qubit via the following logical
string operators that realize the Pauli group on P S :

For our purposes, it is sufficient to know that the logical operators in the centralizer
of the stabilizer S are described by X -strings (blue) and Z-strings (red) that either
are closed loops or attached to the boundaries [where Z-(X -)strings can be attached
to rough (smooth) boundaries only]. X - and Z-strings with an odd number of
crossing points anticommute, and all strings square to the identity.

We can perforate this code by removing local clusters of stabilizer generators
from S ! S 0 to form holes with various combinations of boundaries. Since S 0

is smaller than S , its codespace P S 0 is larger than the two-dimensional P S , and
the removed stabilizer generators give rise to additional logical operators in the
centralizer of S 0.
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For example:

A

B

C

Such a perforated surface code describes, for instance, an imperfect implementation
with faulty stabilizers. Here we are interested in holes of bounded diameter O.1/

that are placed on a patch of linear size L!1. The above example encodes at
least four qubits in P S 0 which can be identified with the four pairs of independent
Pauli generators Xi ; Zi drawn as blue and red strings with a single crossing point
(black bullets).

Whether a (logical) qubit is topologically protected depends on the support
of its logical operators X and Z: Local (non-extensive) operators couple to local
environments and thereby decohere the qubit. In the example above, qubit A is
described by a local Z- and a non-local X -operator so that we expect it to dephase
quickly. Conversely, qubit B features a local X - and a non-local Z-operator—which
removes topological protection against depolarizing noise. Finally, qubit C is
controlled by local X - and Z-operators, and is therefore completely unprotected.
Note that the qubit defined by the outer boundaries is topologically protected
because both X - and Z-strings are extensive.

This is not the complete story, though. What complicates the assessment of the
locality of logical operators is the gauge structure of the codespace:

(Henceforth S and P S denote stabilizer and codespace of this geometry.) Whereas
for the environment the operators in the left-hand and right-hand panel are distinct,
on the codespace their action is indistinguishable as they differ only by elements of
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S (which act as the identity on P S). For surface codes, this “dressing” of logical
operators with stabilizers allows for arbitrary deformations of the strings as well
as sliding of their endpoints along boundaries of the respective type. Since the
environment couples at representatives of the gauge equivalence classes that describe
logical operators, it is the representative with the smallest support that decides
whether a logical operator is local or non-local. This is illustrated above: Whereas
the support of Z1 scales inevitably with O.L/, the loop Z2 can be contracted to the
circumference of the hole with constant size O.1/. Thus Z1 is non-local and Z2 is
local (despite the existence of non-local representatives).

We conclude that for the assessment of the localization of logical operators, the
gauge structure on P S can be a severe obstacle177. Unfortunately, the problem is
even worse. Consider again the patch with a single hole:

The strings in both panels provide valid representations of a two-qubit Pauli
group—and there is no reason to prefer one over the other. (Note that the operators
on the right-hand side can be expressed as products of their left-hand counterparts
and vice versa.) This is a graphic representation of two different factorizations of the
same codespace,

H1 ˝H2 Š P S Š QH1 ˝
QH2 : 5.350

In contrast to the gauge structure, this feature is not limited to stabilizer codes P S

but comes in general with Hilbert spaces of nonprime dimension [302].
The important point is that there are different ways to factorize a given

Hilbert space into (qubit) subsystems, and there is no distinguished one from the
mathematical perspective a priori. However, once a local environment couples to
the quantum code, this may change. In our example above, there is a relevant
difference between the two factorizations: Whereas the second qubit of the left-hand
factorization H1 ˝H2 is local (due to the locality of Z2), there is no local qubit in
the right-hand factorization QH1˝

QH2 because none of the operators QZ1; QX1; QZ2; QX2
can be made L-independent by gauge transformations.

But this is awkward: Had we chosen the right-hand factorization without
thinking about the left-hand alternative, we might have concluded that there are
two topologically protected qubits—in contradiction to the left-hand factorization.

177The structure of stabilizers is rarely as intuitive (i.e., graphic) as for surface codes.
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The hitch is that for two qubits to be topologically protected, all operators of the
two-qubit Pauli group must be non-local, extensive generators are not enough. But
this is not true for the factorization QH1 ˝

QH2 where, e.g., QZ1 QX2 D Z2 is a local
operator that acts non-trivially on the codespace. The difference between the two
factorizations is that for H1 ˝H2 decoherence is limited to a particular subsystem
(the second qubit) whereas for QH1 ˝

QH2 coherences between the subsystems are
susceptible to local perturbations. Thus the two factorizations provide different
perspectives on the same physical process.

We conclude that whether a given stabilizer code harbors delocalized (i.e.,
topological) qubits not only requires an exhaustive search over gauge classes but
over Hilbert space factorizations as well: If there exists a factorization with logical
operators such that the Pauli group of each qubit features at least one operator with
bounded support, then a local noise process can decohere the complete codespace.

The search for local representations of a (gauged) multi-qubit Pauli group (or
the proof that there is none) is a complex combinatorial optimization problem that
becomes particularly daunting for stabilizers where the number of logical operators
grows with the system size. Stabilizers like the perforated surface code with a
finite density of holes can “hide” potential topological qubits by mixing them with
local “garbage” qubits178. The interesting question is whether there is an efficient
algorithm to strip a given stabilizer from these localized “garbage” qubits to probe
for the existence of protected, delocalized qubits. Such an algorithm would be
particularly useful for the automated generation of useful stabilizer codes [415, 419].

Here we will not provide an answer to this question. Instead, we focus on a
simpler, classical analogue of the problem (which we dub “symmetry localization”)
and discuss several interesting aspects thereof.

Example: Hilbert Space Factorization

We conclude this subsection with an explicit example to illustrate the concept
of Hilbert space factorization. To this end, consider a two-qubit Hilbert space
H D H1 ˝H2 with H1;2 Š C2 and basis B D fj00i; j01i; j10i; j11ig. Unitaries
on H are generated by (tensor products of ) Pauli matrices, the two-dimensional
representations of the angular momentum algebra Œ�a

k
; �b
l
� D 2iıkl

P
c "abc�

c
k
.

Now define a new algebra

Q�´1 � �
´
1�

´
2 ; Q�´2 � �

x
1 �

x
2 ; 5.351a

Q�x1 � �
x
2 ; Q�x2 � �

´
1 ; 5.351b

Q�
y
1 � �

´
1�

y
2 ; Q�

y
2 � ��

y
1 �

x
2 ; 5.351c

which is easily verified to realize the same algebra, namely Œ Q�a
k
; Q�b
l
� D 2iıklP

c "abc Q�
c
k
.

178The partition of logical qubits into useful topological and useless “garbage” qubits relates to the
concept of subsystem codes [174, 426].
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On H , it acts naturally on the (unnormalized) Bell basis

Qj00i � j00i C j11i 5.352a

Qj01i � j00i � j11i 5.352b

Qj10i � j01i C j10i 5.352c

Qj11i � j01i � j10i 5.352d

with Q�´1 Qjxyi D .�1/
x Qjxyi, Q�´2 Qjxyi D .�1/

y Qjxyi, etc. This defines an alternative
factorization of the Hilbert space H Š QH1 ˝

QH2 with QH1;2 Š C2 and basis
QB D f Qj00i; Qj01i; Qj10i; Qj11ig.

Note that the concept of entanglement crucially depends on the decomposition
of a Hilbert space into subsystems. Whether a state is entangled or not is therefore
only defined with respect to a given Hilbert space factorization [302]. This fact
is often ignored when there is a distinguished factorization given by the physical
constituents of the system.

5.6.2 The Classical Problem

The problem to decide whether a logical multi-qubit Pauli group can be completely
localized is complicated by the presence of anticommuting operators. The encoding
of a stabilizer S on a binary vector space (which is the appropriate framework
for combinatorics) demands for a symplectic structure to keep track of the (anti-
)commutation relations [264]. This adds additional clutter to an already non-trivial
problem.

To get rid of these complications, we restrict the allowed stabilizer generators to
products of �´-matrices. As a consequence, P S is no longer a quantum code as
dephasing errors cannot be detected (note that arbitrary products of �´ belong to the
centralizer of S). The only non-trivial logical operators are products of �x-matrices
in the centralizer of S (these can then be “dressed” with arbitrary products of
�´-matrices to construct other logical operators). Due to the unprotected phases,
the codespace P S reduces to a classical linear (binary) code; if the generators in
S are operators with bounded support (possibly local with respect to some lattice
L), this construction gives rise to low-density parity-check (LDPC) codes [427]. The
non-trivial logical X -operators perform classical flips of the encoded bits as they
map code words to code words.

Let us translate this setting into a language that is more closely related to physics.
Consider aD-dimensional lattice L with one spin xs 2 f";#g per site s 2 L. We
are interested in the ground state(s) of local Hamiltonians of the form

H D �
X
i

Pi 5.353
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Figure 5.18 • Local parity-check Hamiltonian. Schematic structure of a (two-dimensional)
local parity-check Hamiltonian. Spins are denoted by circles placed on a regular lattice L. The
Hamiltonian H is a sum of quasilocal parity-check operators Pi with support on a bounded
regionUı.si / around their center site si . Note that adjacent parity-check operators can overlap.

with local “parity-check” operators

Pi D P.pi/ D
Y
s2L

�
�´s
�ps

i 5.354

that are described by binary vectors pi 2 F
jLj

2 . Locality of H demands that pi is
zero on all sites outside of a ball Uı.si/ of radius ı > 0 centered on some lattice site
si 2 L, see Figure 5.18. This locality constraint is physically motivated and might
be relevant for a more specialized treatment of the problem discussed below. For
the sake of simplicity, we ignore it so that the conclusions that follow do not exploit
the local structure ofH .

The ground states of H are given by spin configurations that satisfy all
local parity-checks: Pi jxi D jxi for all i . The set of all ground states can be
identified with a classical LDPC code as described above; the abelian group P D

hfPigi generated by the parity-check operators corresponds to the stabilizer. [For
convenience, we still use the quantum formalism although the Hamiltonian (5.353)
is clearly classical.]

Given a Hamiltonian, one of the first things to do is a classification of its
symmetries. For Hamiltonians of the form (5.353), the symmetry group G D hfGkgi

with ŒH;Gk� D 0 is generated by operators

Gk D G.gk/ D
Y
s2L

�
�xs
�gs

k 5.355
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that are again described by binary vectors gk 2 F
jLj

2 . The elements of G describe
correlated spin-flips that do not violate the parity-checks Pi (they map ground
states to ground states). The symmetry group G can be identified with the logical
X -operators of the restricted stabilizer introduced above.

Each element of the groups P and G can be identified with a binary vector
in the linear F2-subspaces VP � hfpigi and VG � hfgkgi, respectively. This
follows since P.p1/P.p2/ D P.p1 ˚ p2/ and G.g1/G.g2/ D G.g1 ˚ g2/, i.e.,
the multiplicative (abelian) groups P and G are isomorphic to the additive (abelian)
groups VP and VG . Here, ˚ denotes the binary addition in F

jLj

2 . It is now easy
to see that a vanishing commutator of a parity-check operator with a symmetry
operator translates into orthogonality of their respective vectors:

ŒP.p/; G.g/� D 0 , p � g D 0 for p;g 2 F
jLj

2 : 5.356

(This is where a symplectic inner product enters the stage for P and G that contain
mixtures of �x- and �´-matrices; the simple relation p � g D

L
s p

sgs is a feature
of classical setups.)

Since the symmetry generators Gk are defined such that ŒPi ; Gk� D 0 for all i
(this follows from ŒH;Gk� D 0), the vectors gk must be orthogonal to all vectors
pi

179. Hence, the symmetry group is described by the orthogonal complement180

VG D V
?
P D

n
x 2 F

jLj

2 j 8i W x � pi D 0
o
: 5.357

For a given Hamiltonian H , the derivation of its symmetry group G is then
equivalent to the construction of V ?

P which is a matter of straightforward linear
algebra (Gaussian elimination).

In the parlance of coding theory, the Hamiltonian vectors pi define the rows of
the check matrix of the linear code VG and are, at the same time, the generators of
the dual code VP D V ?

G . Conversely, the symmetry vectors gk are the generators
of the linear code VG and define the check matrix of the dual code VP . (For an
introduction, we refer the reader to one of the many primers on coding theory,
e.g. [428].)

Let us focus on the “symmetry code” VG and define the Hamming weight
of a vector x 2 F

jLj

2 as the number of non-zero entries, kxk D
PjLj

iD1 xi . A
characteristic quantity of the code VG is its distance:

d D min
x¤x02VG

kx � x0
k D min

0¤x2VG

kxk : 5.358

179We stress that ŒPi ; Pj � D 0 or ŒGk ; Gl � D 0 does not imply pi � pj D 0 or gk � gl D 0! A
description of bothZ- andX -operators in the same framework is only possible on a doubled vector
space F

jLj

2 ˚ F
jLj

2 with symplectic inner product [264].
180Onfinite fields, the orthogonal“complement”V ? is not a true complement in thatV \V ? © f0g

in general. For instance, non-zero vectors can be self-orthogonal: x � x D 0.
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The distance d is the minimum number of bit-flips needed to change one valid code
word into another; due to the linearity of the code, it equals the minimum Hamming
weight of all (non-zero) code words in VG . It is known that finding the code distance
of a binary linear code is NP-hard [429]; thus there exists (presumably) no efficient
algorithm to compute the code distance without exploiting specific structures of the
code.

The question is whether this should bother us in the context where the code
VG describes the symmetry of a local Hamiltonian H . The answer is “no” for
two reasons181: First, the code distance is not a useful quantity for our scenario
because it measures the size of the support of the smallest (non-trivial) symmetry
operator ofH . This seems not like a relevant quantity if we are interested in robust
properties of H and its ground state phase. (Note that d can be made artificially
small by adding a single uncoupled spin with local symmetries—which should not
affect the properties of a phase.) The second reason is that for quantum stabilizer
codes with extensive codespace, d corresponds to the weight of the smallest logical
operator—which might just describes a local “garbage” qubit. The original question
was rather whether there is anything left if we get rid of all these local logical
operators.

The analogous question in the context of (classical) Hamiltonians is whether
its symmetry group is generated by local operators or whether additional global
generators are required. Given the fundamentally different roles played by local and
global symmetries in the context of spontaneous symmetry breaking [430], this is a
question that merits consideration.

In Figure 5.19 we show three examples to illustrate the concept. The local parity-
check operators are denoted by gray edges (two spins) and triangular faces (three
spins). Symmetry generators are indicated by colored loops encircling the flipped
spins; local (non-local) generators are drawn blue (red) and generate the groups
Glocal (Gglobal). Figure 5.19 (a) shows the Ising chain as prototypical example for
systems with finite (L-independent) symmetry group; the only non-trivial symmetry
is a global spin-flip. Figure 5.19 (b) shows a rather artificial Z2 gauge theory of
separate spin pairs coupled by Ising interactions; the symmetry group is extensive
and generated by local flips of spin pairs. To be sure, the symmetry group contains
global operators—but these can be constructed from local generators. The most
interesting example is shown in Figure 5.19 (c): A strip of spins with parity-checks
of three spins on each gray triangle. There is an extensive number of local symmetry
generators given by simultaneous spin-flips along the blue squares. The non-local
spin-flip along one edge (red) is an additional symmetry that cannot be constructed
from the local generators. This leads to a partition of the total symmetry group
G D Glocal � Gglobal into the subgroups Glocal (which is locally generated) and Gglobal

(which is not). Notice that the non-local spin-flip along both edges can be generated
from the local symmetries.

181The complete answer is “not at this point,” see below.
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(a) G D Gglobal

(b) G D Glocal

(c) G D Glocal � Gglobal

Figure 5.19 • Global and local symmetry generators (Examples). Three examples of local,
one-dimensional parity-check Hamiltonians. Gray edges/faces denote parity-check operators
Pi defined as product of the adjacent spins (two for edges, three for triangular faces). Global
(local) symmetry generatorsGk are highlighted by red (blue) loops encircling the flipped spins.
(a) Ising chain with a global spin-flip symmetry (red). (b) Z2 gauge theory with local spin-flip
symmetries (blue). (c) Stripe with three-spin parity-checks (gray triangles). There are local
(four-spin) symmetry generators (blue); in addition, the global spin-flip along one side (red) is
an independent generator that cannot be constructed from the local symmetries.

In the light of these examples, the problem we are interested in can be stated as
follows:

Definition 5.7: Symmetry localization

Assume we are given a symmetry group G in terms of O.L/ generators fGkg. Find an
equivalent set of generators that minimizes the maximum size of its elements. If the support of
the largest generator in this set grows withL (is constant), the symmetry group is non-locally
(locally) generated.

We call this the problem of symmetry localization and seek either for an efficient
algorithm to solve it or a proof that such an algorithm cannot (or is unlikely) to exist.
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For an abstract description of symmetry localization, we need the following
quantities that seem to be rarely considered in coding theory:

Definition 5.8: Minimum-weight and minimum–maximum-weight bases

Given anM -dimensional linear subspace V � FL2 and a basisB D fb1; : : : ;bM g with
V D span fBg. For x 2 V , let kxk D

P
i xi denote the Hamming weight. Define the

following two quantities:

Weight of B W †.B/ �
X
b2B

kbk 5.359a

Maximum weight of B W �.B/ � max
b2B
kbk 5.359b

→ We callB a minimum-weight basis (MWB) if it minimizes the weight†.B/, i.e.,
†.B/ � †. QB/ for all bases QB that span V . The minimum-weight†.V / of V is
the weight of an MWB that spans V .

→ We call B a minimum–maximum-weight basis (MMWB) if it minimizes the
maximum weight �.B/, i.e., �.B/ � �. QB/ for all bases QB that span V . The
minimum–maximum-weight �.V / of V is the maximum weight of an MMWB that
spans V .

The idea behind the definition of a minimum–maximum-weight basis is clear:
Via the isomorphism between G and VG it formalizes the problem of symmetry
localization since non-locally/locally generated symmetry groups are characterized
by �.VG/ D O.L/ and �.VG/ D O.1/, respectively. The concept of a minimum-
weight basis is not directly related to a meaningful physical concept (at least it is
not obvious why the accumulated size of all symmetry generators should be an
interesting quantity). However, relations between MW- and MMW-bases have been
studied before; in particular, an MWB is also an MMWB (but not vice versa) [431].

To illustrate the two concepts and highlight their differences, we show two
examples in Figure 5.20: In (a) the defining basis B of 6-dimensional vectors
spans the entire space V D F62 . An MWB (and therefore an MMWB) is the
standard basis QB with minimum-weight †. QB/ D 6 and minimum–maximum-weight
�. QB/ D 1. The second example in (b) defines a 6-dimensional subspace V of F82
with minimum-weight †. QB/ D 8 and minimum–maximum-weight �. QB/ D 3. In
the last column of Figure 5.20 (b) we demonstrate that an MMWB is not necessarily
an MWB (whereas the converse is true).

As a final step in this subsection, we formalize the problem of symmetry
localization as the problem of finding an MMWB for a given binary subspace. It is
customary to cast such a problem into three slightly different versions:
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MWB and MMWBDefining basis MMWB (no MWB)

33 / 8 8 / 3 9 / 3

21 / 6 6 / 1

(a)

(b)

Figure 5.20 •MW- andMMW-bases (Examples). BasesB D fb1; : : : ;bM g as lists of binary
column vectors where filled circles denote components bi

k
D 1. Basis vectors with maximum

Hamming weight kbkk are highlighted yellow. Below the bases we list †.�/=�.�/. (a) Set
V D F62 (the complete space). The chosen defining basis has weight†.B/ D 21 and maximum
weight �.B/ D 6. A possible MWB (which is also an MMWB, see Ref. [431]) is the standard
basis with minimum-weight†. QB/ D 6 D dim.V / and minimum–maximum-weight �. QB/ D 1.
(b) Set V < F82 with dim.V / D 6. A possible MWB/MMWB has minimum-weight†. QB/ D 8
and minimum–maximum-weight �. QB/ D 3. The last column shows an MMWB B 0 that is not
an MWB since†.B 0/ D 9 > 8 D †. QB/ is not minimal.

Definition 5.9: The problem MMWB

Given a binary basisB D fb1; : : : ;bM g � FL2 .

→ Decision version: MMWB-DEC
Given a positive integer C 2 N.
Is there a basis QB with h QBi D hBi such that �. QB/ � C ? (Answer: YES/NO)

→ Search version: MMWB-SEARCH
Given a positive integer C 2 N.
Find a basis QB with h QBi D hBi such that �. QB/ � C if it exists. (Answer: QB/NO)

→ Optimization version: MMWB-OPT
Find a basis QB with h QBi D hBi such that �. QB/ is the minimum of all bases.
(Answer: QB)
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It is clear that an efficient algorithm for the optimization version implies one
for the search- and the decision version. Conversely, an efficient algorithm for
the search version yields one for the optimization version by lowering C until the
minimum is reached. However, an efficient algorithm for the decision version can
only be used to construct an efficient algorithm that computes �.hBi/ (by lowering
C successively). Note that such an algorithm does not output an MMWB QB with
�. QB/ D �.hBi/. Therefore the optimization version MMWB-OPT is at least as hard as
the decision version MMWB-DEC182.

As our original motivation was to find non-local logical operators of a quantum
stabilizer code, we are interested the optimization version MMWB-OPT. This also
makes sense in the context of symmetry localization: We are not only interested in
whether or not a symmetry group is non-locally generated but also in the generators
themselves.

5.6.3 Directions to Proceed

The results presented so far were conceptualized during a few days of brainstorming
and literature research. For a lack of time (cf. Chapter 2, 3 and 4), there are no
presentable (or even publishable) results that complete the story. However, there are
several interesting questions and links to earlier results in the literature that deserve
a closer look:

→ The most pressing question is clearly whether there are efficient algorithms to
solve any of the MMWB-versions defined above. If we focus on MMWB-OPT, there
are two possibilities: Either there is an algorithm that generates an MMWB
with a runtime polynomial in the subspace dimension, or there is not. Betting
on the latter, one could try to prove that MMWB-OPT is NP-hard by finding a
reduction from a known NP-hard problem to MMWB-OPT. One approach may be
the following chain of arguments:

1 It is known that finding the code distance of a binary linear code is
NP-hard [429]. This implies that finding a minimum-weight vector x� of
a linear subspace, kx�k D min0¤x2V kxk, is NP-hard.

2 Each MWB includes a minimum-weight vector [431]. Therefore finding
an MWB of a linear subspace (MWB-OPT) is NP-hard.

3 A (Turing) reduction from MWB-OPT to MMWB-OPT would prove the
NP-hardness of MMWB-OPT. To this end, one could try to construct an
algorithm that produces an MWB using only a polynomial number of
calls to a given subroutine that returns an MMWB.

182If an efficient algorithm for MMWB-DEC can be used to construct one for MMWB-OPT, the problem is
called self-reducible. Here we make no claims about this property.
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Note that it may very well be that the construction of an MWB is strictly more
complex than that of an MMWB such that the third step is bound to fail. This
possibility is underpinned by the fact that every MWB is an MMWB whereas
there are many MMW-bases that are not MW-bases, recall Figure 5.20.

→ It seems that the problem MMWB for generic bases/subspaces has not been
studied before (at least the author is not aware of any results). However,
Ref. [431] studied MMWB for a restricted family of subspaces called cycle spaces.

Cycle spaces C are linear subspaces of F
jE j

2 that can be constructed from
graphs G with edge set E by encoding all Eulerian183 subgraphs G 0 of G as
binary vectors x with xe D 1 if edge e belongs to G 0. The set C of such
subgraphs is closed under vector addition in F

jE j

2 because the symmetric
difference of two Eulerian subgraphs yields another Eulerian subgraph. (For
an introduction to graph theory, we refer the reader to one of the many
primers on the topic, e.g. [432].)

The results of Ref. [431] were later extended in Ref. [433] where also the
NP-hardness of the problem has been shown if one imposes additional, graph-
theoretic constraints on the bases. In both references, it has been noted that
Horton’s algorithm [434] can be used to construct MMW-bases efficiently for
cycle spaces by constructing MW-bases instead184. Thus there are efficient
algorithms to solve MMWB-OPT if the subspaces are restricted to cycle spaces.
Interestingly, for several physically motivated models with gauge structures
this condition is met naturally:

For example, if we consider the toric code [45] on the eponymous toroidal
square lattice and forget about the star operators As D

Q
e2s �

x
e , we end

up with a classical Z2 lattice gauge theory [436, 437]. Its symmetry group
is generated by said star operators (except for one) and two additional,
homologously non-trivial and inequivalent loops around the torus (the logical
X -operators of the code). But this is a cycle basis of the graph defined by
the dual (square) lattice; hence Horton’s algorithm can be used to solve this
MMWB-OPT instance efficiently (which is not very useful as we know the answer
already).

Finally, we note that one can decide efficiently whether a given linear subspace
is the cycle space of some graph by means of Tutte’s algorithm [438] (which
hints at possibly fruitful connections to matroid theory).

→ An instance of MMWB-OPT is given by an arbitrary basis of binary vectors. In the
context of symmetry localization, however, we start from a local Hamiltonian
defined on a lattice of specified dimension. Can one exploit the locality of

183A graph is called Eulerian if all vertices have even degree.
184The construction of MW-bases for cycle spaces has received much more attention due to vari-

ous applications in electrical engineering (circuit design), chemistry and surface reconstruction, see
Ref. [435] and references therein.
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the Hamiltonian for the solution of the corresponding MMWB-OPT-instance?
More precisely: are instances of MMWB-OPT that derive as symmetries from
local Hamiltonians simpler than generic ones? If so, does this depend on the
dimensionality of the lattice?

→ Essentially, MMWB-OPT asks whether a given binary subspace allows for a basis
that is completely localized. Is there any relation to the localizability of
Wannier bases which is known to be obstructed by topological invariants [117,
118]? Are there similar (combinatorial?) invariants that herald obstructions to
completely localize a given basis in F

jLj

2 ?

→ Irrespective of the worst-case complexity of MMWB-OPT, the question whether
there are useful heuristic approaches to find an MMWB (or bases that are
close to an MMWB) is certainly interesting. Note that to discard quantum
codes as local, it is enough to find bases with bounded maximum weight—it
has not to be minimal.

→ And finally, how do results for the classical problem (MMWB-OPT) fare in the
quantum realm where the symplectic structure and the gauge structure of
stabilizer codes must be taken into account? Can the full quantum version of
MMWB-OPT be reduced to MMWB-OPT, or are there fundamental differences?
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