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Secondary Corrector

Prof. Dr. U. Seifert





Statutory Declaration

I herewith formally declare that I have written the submitted thesis independently. I did not use

any outside support except for the quoted literature and other sources mentioned in the paper.

I clearly marked and separately listed all of the literature and all of the other sources which I

employed when producing this academic work, either literally or in content.

Stuttgart, October 14, 2013 Nicolai Lang





Abstract

One of the most fascinating phenomena in nature surely is the emergence of long range

order in initially disordered systems caused by simple local interactions. Transitions between

such qualitatively distinct phases are often accompanied by sharp changes in particular quan-

tities of the system when specific parameters are varied. Such collective phenomena that can

be triggered by small changes of the system’s configuration are usually referred to as phase

transitions.

Whereas statistical physics accounts for the latter in the general framework of classical me-

chanics, there has also been intense interest in the emergence of phase transitions in quantum

mechanical systems. There the critical fluctuations that are responsible for the appearance of col-

lective order can be caused by quantum fluctuations only — at zero temperature! In this context

one speaks of quantum phases and quantum phase transitions.

In recent years it was realised by the scientific community that there are quantum phases

that elude a characterisation by local properties. There the order is “hidden” in more intricate

structures that are features of the incredible complexity that characterises various sectors of the

system Hilbert spaces. Such systems are referred to as topologically ordered.

Another aspect of topology that has found broad acceptance in condensed matter physics is

concerned with systems that exhibit a remarkable resilience about local disorder. Their ground

states feature long range entanglement and their Hamiltonians are characterised by topological

invariants that account for the aforementioned stability. This outlines the field of topological

phases which has been (and is still) a vivid area of research.

A few years ago it was realised that both — topologically ordered systems and topological

phases — may be applicable to the great quest of quantum engineering, namely the search

for scalable and stable quantum memories that prevent coherent states from decoherence. The

emergence of topological quantum memories bridged the domains of quantum information theory

and condensed matter physics.

All these concepts are usually treated as part of the Hamiltonian framework of closed quantum

systems. Originally promoted by the quantum optics community, the mathematical description

and physical investigation of open quantum systems has seen considerable progress in the last

decades. Only lately physicists started to think about combining features of dissipatively driven

systems and topology related properties [1].

This thesis is concerned with various topics, all of which relate to the outlined subject matters

above. The major structure is two-part: In the first and most comprehensive part, constituted by

Chapter 2 and 3, we deal with quantum phases and their dissipative counterparts. In particular,

we construct dissipative versions of the paradigmatic transverse field Ising model and a more

sophisticated instance, the Z2-Gauge-Higgs model [2] which is related to topological order.

In the additional second part, namely Chapter 4 and 5, we deal once more with the dis-

sipative counterpart of a well-known Hamiltonian theory: the Majorana chain [3] which is a

paradigmatic example for a topological phase. We discuss and criticise recent results [1] regard-

ing the dissipative realisation of the Majorana chain and subsequently investigate a possible

dissipatively driven, self-correcting quantum memory. We conclude that the straightforward dissi-

pative implementation of the Majorana chain does not yield a self-stabilising quantum memory.





Zusammenfassung

Eines der faszinierendsten Phänomene in der Natur ist sicher das Auftreten von langreich-

weitiger Ordnung in vormals ungeordneten Systemen auf Grund einfacher lokaler Wechsel-

wirkungen. Diese Übergänge zwischen qualitativ unterschiedlichen Phasen werden oft von

deutlichen Änderungen bestimmter Größen begleitet. Solche kollektiven Phänomene, die durch

kleine Veränderungen der Systemparameter ausgelöst werden können, werden als Phasenüber-

gänge bezeichnet.

Die statistische Physik befasst sich mit solchen Übergängen im Rahmen der klassischen

Mechanik. Es ist aber auch äußerst interessant das Auftreten von Phasenübergängen in quanten-

mechanischen Systemen zu betrachten. Am absoluten Nullpunkt werden die für den Übergang

zur kollektiven Ordnung charakteristischen kritischen Fluktuationen ausschließlich durch Quan-

tenfluktuationen hervorgerufen. Solche Systeme werden durch Quantenphasen und Quantenphasen-

übergänge charakterisiert.

In den letzten Jahren hat man erkannt, dass die Theorie Quantenphasen erlaubt, die sich

der Identifikation durch lokale Eigenschaften entziehen. In solchen Phasen ist die vorhandene

Ordnung in komplizierteren Strukturen der Zustände “versteckt”. Die dafür nötige Komplexität

der Zustände wird von den oft unanschaulichen Eigenschaften des Hilbertraums ermöglicht der

das System beschreibt. Solche Systeme bezeichnet man als topologisch geordnet.

Eine andere Anwendung der Topologie, die im Bereich der kondensierten Materie mit Begeis-

terung begrüßt wurde, betrifft Systeme die eine erstaunliche Robustheit gegen lokale Unord-

nung aufweisen. Deren Grundzustände sind durch langreichweitige Verschränkungen charakter-

isiert und ihre Beschreibung mittels Hamiltonoperatoren erlaubt die Definition topologischer In-

varianten die wiederum eine Erklärung für die genannte Stabilität liefern. Solche Systeme wer-

den weithin als topologische Phasen bezeichnet und sind bis zum heutigen Tag ein Feld intensiver

Forschung.

Vor einigen Jahren hat man erkannt, dass beide Konzepte — topologisch geordnete Sys-

teme und topologische Phasen — auf eines der drängendsten Probleme von Quantencomputern

angewandt werden können: Skalierbare und stabile Quantenspeicher sollen die zur Dekohärenz

neigende Quanteninformation schützen, konnten aber bis heute nicht im benötigten Umfang

realisiert werden. Der neue Ansatz topologischer Quantenspeicher verspricht mögliche Lösungen

dieses Problems und schlägt eine Brücke zwischen Physik der kondensierten Materie und Quan-

teninformationstheorie.

Alle zuvor angerissenen Konzepte werden normalerweise im Rahmen abgeschlossener Quan-

tensysteme behandelt, deren Dynamik üblicherweise durch Hamiltonoperatoren beschrieben

wird. Das ursprünglich von der Quantenoptik vorangetriebene Feld offener Quantensysteme hat

in den letzten Jahrzehnten große Fortschritte erfahren, sowohl im Rahmen der mathematischen

Beschreibung als auch im Hinblick auf die zugrunde liegende Physik. Es ist allerdings noch

nicht allzu lange her, dass versucht wurde die Möglichkeiten dissipativer Systeme mit den oben

erwähnten, faszinierenden topologischen Eigenschaften zu kombinieren [1].



Diese Masterarbeit behandelt verschiedene Themen, die alle im ein oder anderen Zusammen-

hang mit den oben erläuterten Konzepten stehen. Sie besteht aus zwei Teilen: Im ersten und

größten Abschnitt, der von den Kapiteln 2 und 3 gebildet wird, befassen wir uns mit Quanten-

phasen und ihren dissipativen Gegenstücken. Dort konstruieren wir eine dissipative Version des

paradigmatischen Ising-Modells mit transversalem Magnetfeld. Als Beispiel für eine weitaus

komplexere Theorie übersetzen wir die Z2-Gittereichtheorie mit gekoppeltem Higgs-Feld [2] in ihr

dissipatives Analogon. Letztere steht im Zusammenhang mit topologisch geordneten Systemen.

Im zusätzlichen, zweiten Teil dieser Arbeit, d.h. in Kapitel 4 und 5, untersuchen wir ein weit-

eres dissipatives Gegenstück zu einem bekannten Modell: Kitaevs Majorana Kette [3], die man

als Paradebeispiel einer topologischen Phase betrachten kann. Wir diskutieren und üben Kri-

tik an neueren Resultaten [1] die auf eine dissipative Realisierung der Majorana Kette abzielen.

Anschließend untersuchen wir einen möglichen dissipativen, selbst korrigierenden Quantenspeicher

und kommen zu dem Schluss, dass die direkte dissipative Implementierung der Majorana Kette

nicht als selbst korrigierender Quantenspeicher genutzt werden kann.
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Preface

This is a work on physics; on theoretical physics, to be precise. But there are other realms

of expertise within the vast field of modern physics which are of equal significance, both, in a

practical and a philosophical perception.

Until quite recently the footing of physics was twofold: Knowledge about nature entered

the stage by experiments, intricate instruments and ingenious setups opened windows to the

smallest and largest structures of our world. This knowledge was condensed by theoreticians

into creations of mathematical beauty, formulas and calculi describing all facets of nature with-

out the misleading connotations of natural languages. Once in a while theories called for effects

which have never been observed or been expected before; and if they proved real, one could not

avoid the impression that truth has been found: It is not remarkable that one could fit a smooth

curve through any given number of points, but it is truly intriguing when all future points fall

onto the very same curve.

This circle of experiment, condensation and prediction lies at the very heart of physics (and

any other natural science) for it is the origin of scientific insight. While theories where simple,

condensation and prediction where both subsumed under the term theoretical physics. However,

it is much simpler to contrive an elegant theory than expanding it into concrete predictions

which are, evidently, crucial for scientific verification. Consequently, called forth by the pro-

liferating complexity of theoretical constructs, a new pillar of physics emerged to bridge the

imminent chasm ripping apart theory and experiment: Computational physics.

The advent of computers changed the way physicists work fundamentally – how they deal

with theories and their implications: On the one hand, powerful computers allow for predictions

based on highly complex theories which could have never been derived by hand. On the other

hand, simulating theories on a chip is much less demanding than doing experiments in the lab.

Hence one is tempted to supersede the hard and often unrewarding work in the lab by computer

experiments.

It is crucial to be fully aware of the epistemological implications, for computer experiments

do not probe nature but theories. In a nutshell, there is one and only one way to gain knowledge

of our world: By doing experiments. And there is just one way to gain insight into our world:

By contriving theories.

| 13



This is the big picture I want the reader to be aware of; especially in the context of this

purely theoretical and computational piece of work. There are a few other aspects which I deem

important in general and which give direction to the contentual structure and layout of this

thesis.

There are two prevalent reasons for writing scientific literature: The first is documentation.

This aspect is based upon the requirement of verifiability. Good documentation demands for

detailed explanations, calculations and results. At this point I want to stress that there is no

justification whatsoever for omitting details in documentations of scientific endeavours – except

one intends to conceal inconsistencies deliberately or prevent fellow scientists to catch up and

raise inconvenient questions.

The second reason is didactics. Unfortunately a great number of scientific papers (at least in

the physics community) seem to propagate a notion of “didactics-free science” where explaining

the physics and gauging its relevance with respect to the big picture is considered beneath the

scientists dignity. But explaining physics is not a mere side issue – it is the crux of the scientific

endeavour in its entirety. Failing in teaching physics means failing in doing physics, for there is

no sense in the gain of knowledge and insight if it cannot be passed on.

Nicolai Lang

Stuttgart, October 2013
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Chapter 1
Theoretical basics

“Ordinary language is totally unsuited for expressing what

physics really asserts, since the words of everyday life are

not sufficiently abstract. Only mathematics and mathemati-

cal logic can say as little as the physicist means to say. ”

Bertrand Russell

This is a work on theoretical physics. As such there is a considerable amount of mathematics

involved. This preliminary section is not dedicated to this mathematical framework of physics,

though there are some remarks in this regard. To make use of the discussions and calculations

that are described in the following, the reader is assumed to be familiar with the fundamental

concepts of analysis, linear algebra and abstract algebra as well as notions from condensed

matter physics and quantum information theory.

I tried hard to explain my findings and concepts as comprehensibly as possible, with enough

details to provide eager readers with the tools for recalculations. To set the scene for these expla-

nations, this preliminary chapter is mainly focused on two models and their analysis, namely

the Majorana chain and the Z2-Gauge-Higgs model. I want to stress that these discussions are

a bit more than mere outlines of well-known facts: They represent my own learning progress at

the beginning of my master studies and are based on the results I computed during this period.

The main purpose is to convey the knowledge I accumulated in a condensed form, in the hope

that it might be useful for one or two who seek for understanding of this special subject.

This preliminary chapter is structured as follows. In Section 1.1 we start with some remarks

on the mathematical framework of quantum physics and open quantum systems. In particular,

we introduce the Lindblad equation and its interpretation in terms of quantum trajectories in

Subsection 1.1.2 and illustrate the latter by means of a simple example. In Section 1.2 we review

shortly the field of quantum phases and phase transitions with asides on non-equilibrium phase

transitions. In Section 1.3 follows a brief review of quantum error correction. We use this as

an opportunity to give a detailed analysis of the Majorana chain, both as a topological quantum

phase and as a quantum memory. In Section 1.4 follows a detailed discussion of the Z2-Gauge-

Higgs model, the second pivotal theory of this thesis. We conclude this chapter in Section 1.5

with an outline of the various relations between the aforementioned models to provide an overall

picture.

| 19



Chapter1 Theoretical basics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 A short note on the mathematical framework
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us start this chapter with some brief remarks on the mathematical framework of quantum

theory. First we address the description of quantum states and their transformations. Subse-

quently we introduce the Lindblad master equation as an effective description of open quantum

systems with Markovian coupling to the environment. Since the Lindbladian evolution of quan-

tum systems is applied throughout this thesis, we provide a detailed discussion of a simple

example to illustrate the time evolution and the quantum trajectory interpretation.

1.1.1 Quantum states and their transformations

Here we outline the mathematical framework of quantum theory to smooth the way for Lind-

bladian superoperators or the like. Quantum mechanical systems in pure quantum states are

described by a system Hilbert space H. For the spin- 1
2 systems that we consider in Chapter 2

and 3 this is just the tensor product H =
⊗N

i=1 C2
i for N spins with (complex) dimension 2N . For

the fermionic systems in Chapter 4 and 5 this is an antisymmetric Fock space F
(a)
N which can be

thought of as a direct sum of antisymmetrised tensor products of single particle Hilbert spaces.

In the framework of second quantisation, this definition is usually omitted in favour of a direct

introduction as the abstract Hilbert space spanned by the fermionic number states |n1, . . . , nL〉
where L denotes the number of fermionic sites in the system.

Physical operations and quantities are then described by bounded operators1 B (H) on the

Hilbert space. The latter forms a non-abelian operator algebra via composition and addition of

the linear operators. For finite systems we may always think of complex matrices (provided the

basis is evident).

Physical observables are required to yield real expectation values and therefore identified with

self-adjoint or Hermitian operators O(H) =
{

A ∈ B(H) | A† = A
}

. The expectation value of an

observable A in a state describe by the state vector |Ψ〉 ∈ H is then given by 〈A〉 = 〈Ψ| A |Ψ〉
where the Bra-Ket notation 〈•| |•〉 = 〈•|•〉 is motivated by the Riesz representation theorem. Let

us stress that O(H) is not an algebra with respect to composition of operators since (AB)† =

BA 6= AB in general (it becomes an algebra if one chooses the anticommutator {•, •} as product,

though).

The above framework (observables as operators, states as vectors of a Hilbert space) is not the

most general one as it not suited to describe ensembles of quantum states, that is mixed quantum

states. To this end it is enlightening to consider the expectation value 〈A〉 = 〈Ψ| A |Ψ〉 as a linear

functional on the observable space O(H). This can be achieved by the introduction of the (pure)

density matrix ρΨ ≡ |Ψ〉 〈Ψ| (which is a bounded, Hermitian trace class operator with trace one)

and defining a state ρ̂Ψ as

ρ̂Ψ : O(H)→ R , A 7→ ρ̂Ψ[A] := Tr [ρΨ A] = 〈Ψ| A |Ψ〉 . (1.1)

In this perception a quantum state is represented by a positive linear functional with norm one, that

is ρ̂Ψ[1] = 1 which corresponds to the statement that the density matrix ρΨ itself has trace one

and is positive-semidefinite. The benefit from this algebraic and more general point of view is

that it accounts for a more general class of states than the above mentioned pure states. Since

1As we consider only finite dimensional spin-systems and fermionic theories in this thesis, it is reasonable to restrict
this discussion to bounded operators.
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the only requirements for a density matrix ρ (which defines a state ρ̂ via ρ̂[•] = Tr [ρ•]) are

(1) (semi)positivity, (2) Hermiticity and (3) the normalisation constraint Tr [ρ] = 1, there is a

(non-unique) orthonormal basis {|n〉} so that the spectral decomposition of the density matrix

reads

ρ = ∑
n

pn |n〉 〈n| (1.2)

with the additional constraints 0 ≤ pn ≤ 1 and ∑n pn = 1 due to (1) and (3). Then observables

can be computed via

ρ̂[A] = Tr [ρA] = ∑
n

pn Tr [|n〉 〈n| A] = ∑
n

pn 〈n| A |n〉 (1.3)

which illustrates the interpretation of ρ as a classical mixture of states {|n〉} with probabilities

{pn}. However note that ρ does not describe a classical probability density on H as it is not

normalised on the whole Hilbert space but on a orthonormal subset. This relates to the fact that

the decomposition of a density matrix is not unique and thus the interpretation as a mixture of

distinct quantum states is somewhat misleading.

Before we conclude with some remarks on the transformations of density matrices (and there-

with, states) let us point out that the family of all density operators in B(H) constitutes a convex

set. This is easy to see since any two given density matrices ρ1 and ρ2 can be combined via

ρt = t · ρ1 + (1− t) · ρ2 where 0 ≤ t ≤ 1 (1.4)

to form a new state ρt which is the convex combination of ρ1 and ρ2. To show that ρt is a valid

density matrix recall that (1) the real linear combination of Hermitian operators is Hermitian,

(2) the sum of positive operators remains positive, and (3) the normalisation is preserved due to

the convex combination. This is used, for instance, in Section 2.5 where we solve the dissipative

dynamics of a two-spin system analytically.

The quantum mechanics of pure states describes the coherent transformation of quantum

states by unitary operations U, U ∈ B(H) and U†U = 1 = UU†, as they correspond to rotations

in complex Hilbert spaces and therefore preserve the normalisation of states: 〈Ψ|U†U |Ψ〉 =
〈Ψ|Ψ〉 = 1. In the more general framework of (potentially) mixed states, described by density

matrices ρ, the requirements for the most general description of physical transformations read

differently: Let Φ : B(H) → B(H) be a linear superoperator on the set of bounded operators. If

Φ describes a physical transformation, we have to demand that Φ maps the convex set D(H) of

density matrices into itself, i.e. the restriction

Φ : D(H) → D(H) (1.5)

has to be well defined. This is implied by the following requirements: (1) Φ has to be linear

and Hermiticity preserving; (2) it has to preserve the positivity of density matrices, that is, it has

to be a positive map; (3) it has to preserve the normalisation of density matrices, meaning it has

to be trace preserving; (4) if one adds an arbitrary finite dimensional ancilla system described

by Ha, the tensor product 1a ⊗ Φ must remain a positive map on the enlarged Hilbert space

Ha⊗H. Maps with this property are termed completely positive. Requirement (4) has a physically

motivated origin: The description of a physical operation must not be influenced by any non-

interacting ancilla system Ha.
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Superoperators Φ that satisfy these four properties map density matrices to density matrices

and are consequently considered a description of physical operations. Such superoperators are

called completely positive trace preserving (CPTP) maps. In the realm of quantum information,

CPTP maps are often referred to as quantum channels.

This was a very brief outline of the algebraic foundations of quantum physics. For more

detailed discussions and definitions I refer the reader to one of the many textbooks on algebraic

quantum theory. A comprehensive review of the topic is given in the lecture notes by Wolf [4].

1.1.2 Open quantum systems: The Lindblad equation

Here we review important mathematical tools that will be used throughout this thesis. The

unitary time evolution of pure quantum states is described by the Schrödinger equation

i∂t |Ψ〉 = H |Ψ〉 (1.6)

where H denotes the system Hamiltonian and the reduced Planck constant h̄ is set to 1. In

the previous paragraph, we generalised pure states to density matrices who describe the very

same state. This generalisation must be parallelized by a new equation which describes the time

evolution of the Schrödinger equation in the framework of density matrices. This equation is

called Von Neumann equation and reads

∂tρ = −i [H, ρ] (1.7)

which is, in fact, equivalent to Eq. (1.6). The formal time evolution is then easily derived and

one finds ρ(t) = e−iHtρ0eiHt. This describes a unitary time evolution and may be considered as

a parametrised family of superoperators (quantum channels), meaning U (t)[•] = e−iHt • eiHt is

a CPTP map for each t ∈ R. Unitary evolution describes quantum systems that interact only

coherently with their environment (if at all). Open quantum systems are much harder to describe

due to the multitude of possible interactions with the environment. In this thesis we consider

systems that interact incoherently with Markovian environments (termed baths henceforth).

The most general time-homogeneous evolution of a density matrix that describes a system

which is coupled to a Markovian environment in terms of a master equation is given by the

Lindblad equation2 [5]:

∂tρ = −i [H, ρ] + ∑
i,j

κ̃i,j

(
L̃iρL̃†

j −
1

2

{
L̃†

j L̃i, ρ
})

(1.8)

which clearly generalises the time evolution described by Eq. (1.7). The Hamiltonian H describes

the unitary evolution of the system whereas the jump operators {L̃i} describe the incoherent op-

erations of the environment on the system; the matrix κ̃i,j describes the dissipative dynamics

and must be positive (see below). There are various derivations of the Lindblad master equa-

tion [6–8]. It requires several approximations to infer the Lindbladian jump operators {L̃i} from

a microscopic model. This thesis is not concerned with such derivations. Here we consider the

jump operators as mere “mathematical degrees of freedom”. The jump operators that we are

concerned with are nevertheless physically motivated. This becomes clear in Chapter 2 where we

contrive reasonable jump operators for a dissipative transverse field Ising model.

2Equivalent terms are “Master equation in Lindblad form” and “Lindblad master equation”.
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Eq. (1.8) is the most general form of the Lindblad master equation. Since κ̃i,j is required to be

positive, there is always a unitary transformation which yields the diagonal form of the Lindblad

equation:

∂tρ = −i [H, ρ] + ∑
i

κi

(
LiρL†

i −
1

2

{
L†

i Li, ρ
})

(1.9)

Here the new jump operators {Li} and the new couplings κi are related to {L̃i} and κ̃i,j via a

unitary transformation. This is the most common form of the Lindblad equation and in the

following only such diagonal Lindblad equations are considered.

The mathematics of the Lindblad equation is quite interesting but goes beyond the scope of

this thesis. To cut the matter short: The right-hand side of Eq. (1.9) is obviously linear in the

density matrix ρ. It is then straightforward to see that the right-hand side can be considered

a superoperator L[ρ] on the convex set of density matrices D(H). The curious structure of the

Lindblad equation is responsible for the fact that the superoperator exp [Lt] is a CPTP map

(that is, a quantum channel) for 0 ≤ t ≤ ∞. The latter describes the time evolution described by

Eq. (1.9). This is formally derived in the next section by means of an appropriate vectorisation

in the superoperator language. Since exp [Lt1] · exp [Lt2] = exp [L(t1 + t2)] remains a CPTP

map for non-negative t1 and t1, we are lead to the conclusion that the set {exp [Lt]} features

the structure of a semigroup (actually, a monoid). Hence we ended up in the realm of quantum

dynamical semigroups. In this reading, the Lindblad superoperator L is the generator of a quantum

dynamical semigroup, that is a continuous family of quantum channels.

For further information regarding Lindblad master equations and quantum dynamical semi-

groups I refer the reader to [9] and [10]. In the next subsection we recast the Lindblad equation

in a more convenient form by a vectorisation of density matrices.

1.1.3 The quantum trajectory approach to Markovian dynamics

Here we recast the Lindblad master equation in a vectorised form: Density matrices (operators)

become vectors and superoperators become matrices that act on these vectors. In this framework

the formal solution of the Lindblad equation along the lines of U (t)[•] = e−iHt • eiHt (see the

previous discussions) becomes trivial.

Vectorisation and the superoperator formalism
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let H be a Hilbert space and B(H) the C∗-algebra of bounded (trace class) operators on H. We

will adopt the following notation: Symbols with hats, e.g. ρ̂, denote abstract operators on H
whereas hat-less symbols, e.g. ρ, denote matrices, i.e. basis-dependent representations of an

abstract operator. By a slight abuse of notation, we will nevertheless write ρ ∈ B(H). Consider

now the well-known operation of vectorisation defined via

vec : C
n×m → C

nm A =
[

a1 a2 . . . am

]
7→ vec (A) =




a1

a2
...

am




. (1.10)
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There are some well-known relations which will be useful in the following:

vec(ABC) = (CT ⊗ A) vec(B) (1.11a)

vec(AB) = (1⊗ A) vec(B) = (BT ⊗ 1) vec(A) (1.11b)

Furthermore it is straightforward to show that Tr
[
A†B

]
= 〈vec(A)| vec(B)〉where 〈•|•〉 denotes

the usual complex inner product.

We proceed with the following notation

|O〉〉 ≡ vec(O) and write |O〉〉 ∈ B(H) (1.12)

which is just an extension of the common Dirac notation to the more general framework of C∗-
algebraic quantum mechanics [11]. An isomorphism between B(H) and its dual space B∗(H)

is established via the Hilbert-Schmidt inner product, i.e. for Ô ∈ B(H) we define the linear

functional Ô
∗
[•] ≡ Tr

[
Ô

†•
]
. In combination with the notation introduced above this yields the

appealing notation

|O〉〉 ∈ B(H) ⇒ 〈〈O| = |O〉〉† ∈ B∗(H) (1.13)

for dual operators and, consistently, we find

Tr
[

A†B
]
= 〈〈A|B〉〉 Hilbert-Schmidt inner product (1.14a)

Tr [A] = 〈〈1|A〉〉 Trace (1.14b)

γ[ρ] = 〈〈ρ|ρ〉〉 Purity (1.14c)

where ρ denotes a density operator. �

The quantum trajectory approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Lindblad equation (1.9) describes the time evolution of a density matrix ρ = ρ(t). As in

the case of unitary dynamics, described by the Von Neumann equation (1.7), there are different

approaches to evolve states in time. The formal solution U (t)[•] for unitary dynamics propa-

gates states in time. It is well-known that this propagation can be unravelled by a Dyson series

and interpreted in terms of Feynman diagrams. A similar method can be applied to the time

evolution of a dissipative system that is governed by a Lindblad master equation. This method

expands the time evolution superoperator in terms of quantum trajectories.

In the next paragraphs we first derive the formal time evolution superoperator and subse-

quently expand it by means of a Dyson series to end up with the quantum trajectory interpreta-

tion of Lindbladian dynamics. We start with the master equation in Lindblad form

∂tρ = −i [H, ρ] + ∑
j

[
LjρL†

j −
1

2

{
L†

j Lj, ρ
}]
≡ H[ρ] +D[ρ] ≡ L[ρ] (1.15)
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where H describes the unitary evolution and the jump operators {Lj} describe the effective

coupling to the environment via the dissipator D. Application of the vectorisation |•〉〉 on both

sides yields

∂t |ρ〉〉 = −i [ |Hρ〉〉 − |ρH〉〉] + ∑
j

∣∣∣LjρL†
j

〉〉
− 1

2
[ |HPρ〉〉+ |ρHP〉〉]

where we introduced the parent Hamiltonian HP = ∑j L†
j Lj. Application of the rules in (1.11)

yields

∂t |ρ〉〉 = −i
[
1⊗ H − H ⊗ 1

]
|ρ〉〉+ ∑

j

Lj ⊗ Lj |ρ〉〉 −
1

2

[
1⊗ HP + HP ⊗ 1

]
|ρ〉〉 .

If we now introduce the quantum jump matrices Lj ≡ Lj ⊗ Lj, L ≡ ∑j Lj and the effective

(non-Hermitian) Hamiltonian Heff ≡ H − i
2 HP, the master equation takes the form

∂t |ρ〉〉 = −i
[
1⊗ Heff − Heff ⊗ 1

]
|ρ〉〉+ L |ρ〉〉 = (Heff + L) |ρ〉〉 = L |ρ〉〉

where we introduced Heff ≡ −i
[
1⊗ Heff − Heff ⊗ 1

]
and L ≡ Heff + L.

That is, in this framework the Lindblad master equation reads

∂t |ρ〉〉 = L |ρ〉〉 ⇔ ∂t 〈〈ρ| = 〈〈ρ| L∗ (1.16)

where L∗ denotes the adjoint Lindbladian. The formal solution is then clearly

|ρ(t)〉〉 = exp (Lt) |ρ0〉〉 ⇔ 〈〈ρ(t)| = 〈〈ρ0| exp (L∗t) (1.17)

and the Heisenberg picture is easily derived since 〈O〉(t) = 〈〈ρ(t)|O〉〉 = 〈〈ρ0|eL
∗t|O〉〉 =

〈〈ρ0|O(t)〉〉, thus |O(t)〉〉 = exp (L∗t) |O0〉〉. Therefore the time evolution of operators in the

Heisenberg picture is governed by the adjoint master equation

∂t |O〉〉 = L∗ |O〉〉 ⇔ ∂tO = i [H,O] + ∑
j

[
L†

jOLj −
1

2

{
L†

j Lj,O
}]

. (1.18)

Non-equilibrium steady states (NESS) are characterised by

L |NESS〉〉 = 0 or 〈〈NESS| L∗ = 0 (1.19)

whereas, due to the non-Hermiticity of the Lindbladian, the left-vacuum is not the dual of a

NESS but rather encodes the trace-preserving property of the semi-group evolution, meaning

〈〈1| L = 0 which states just that ∂t Tr [ρ] = ∂t 〈〈1|ρ〉〉 = 0 under ∂t |ρ〉〉 = L |ρ〉〉.
In order to obtain an unravelling of the time evolution superoperator exp (Lt) in terms of

quantum jumps {Lj} (or rather {Lj}), one defines the superoperators

A ≡ e(Heff+L)t and B ≡ e−HefftA . (1.20)
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It follows easily ∂tB = −Heffe
−HefftA + e−Hefft (Heff + L)A = e−HefftLeHefftB. If we take into

account that B(0) = 1, we can write

B(t) = 1+

t∫

0

∂sB(s)ds = 1+

t∫

0

e−HeffsLeHeffsB(s)ds (1.21)

and consequently

exp (Lt) = A(t) = eHefft + eHefft

t∫

0

e−HeffsLeHeffsB(s)ds . (1.22)

Reinserting Eq. (1.21) recursively yields a Dyson series

exp (Lt) =
∞

∑
m=0

t∫

0

dtm

tm∫

0

dtm−1 . . .

t2∫

0

dt1

{
eHeff(t−tm)LeHeff(tm−tm−1)L . . . LeHefft1

}
(1.23)

If we introduce the functional integral

∫

[0,t],{Lj}
D [L] • =

∞

∑
m=0

∑
j1

· · ·∑
jm

t∫

0

dtm

tm∫

0

dtm−1 . . .

t2∫

0

dt1 • (1.24)

and the short-hand notation

∏
l∈L

l ≡ Lj1(t1) . . . Ljm(tm) , (1.25)

and recall that the time-ordering operator T [12] yields the intermittence by time labeled quan-

tum jumps, meaning

T
[

exp (Hefft)∏
l∈L

l

]
= eHeff(t−tm)Ljm eHeff(tm−tm−1)Ljm−1

. . . Lj1 eHeff(t1−0) , (1.26)

we can write the dissipative time evolution operator in a compact form as

exp (Lt) =
∫

[0,t],{Lj}
D [L] T

[
exp (Hefft)∏

l∈L

l

]
. (1.27)

Let now the system be in initial state |ρ0〉〉. If we define the probability density

P[L; t] ≡ 〈〈1| T
[

exp (Hefft)∏
l∈L

l

]
|ρ0〉〉 (1.28)

= 〈〈1| eHeff(t−tm)Ljm eHeff(tm−tm−1)Ljm−1
. . . Lj1 eHeff(t1−0) |ρ0〉〉 (1.29)
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and the conditioned density matrix

|ρc[L; t]〉〉 ≡ (P[L; t])−1 T
[

exp (Hefft)∏
l∈L

l

]
|ρ0〉〉 (1.30)

one can write for the unravelling of the dissipative dynamics (starting from |ρ0〉〉)

|ρ(t)〉〉 = exp (Lt) |ρ0〉〉 =
∫

[0,t],{Lj}
D [L] P[L; t] |ρc[L; t]〉〉 . (1.31)

That is, the state at time t is given as convex combination of all possible quantum jump trajecto-

ries L weighted with homogeneous coordinates P[L; t] which determine the probability for L to

occur. Note that the trace-preserving property of the quantum-dynamical semigroup reads

∫

[0,t],{Lj}
D [L] P[L; t] = 1 for all 0 ≤ t ≤ ∞ (1.32)

in this perception.

A straightforward expansion of the time evolution superoperator exp (Lt) is in terms of

jump trajectories EN(τ) with fixed number of jumps N. I.e. define the fixed number functional

integral
∫

[0,t],{Lj}
DN [L] • = ∑

j1

· · ·∑
jN

t∫

0

dtN

tN∫

0

dtN−1 . . .

t2∫

0

dt1 • (1.33)

and the fixed number channel

EN(t) :=
∫

[0,t],{Lj}
DN [L] T

[
exp (Hefft)∏

l∈L

l

]
(1.34)

which describes all possible trajectories between 0 and t with exactly N jumps occurring. The

complete evolution is then given by

exp (Lt) =
∞

∑
N=0

EN(t) . (1.35)

We will give an example of this expansion in the next subsection. �
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Example: Unravelling of the Lindblad equation
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To convey a sense of the insights we gained in the former subsection, let us unravel the dynamics

of a very simple system in terms of quantum jump trajectories.

� A simple system & Exact solution

Consider a single spin described by H = C2 and coupled to two competing baths

A =
√

a σ+
x =

√
a

2
(σz − iσy) and B =

√
b σ+

z =

√
b

2
(σx + iσy) (1.36)

with bath strengths a and b. In the following we consider the parameters (a, b) = (t, 1 − t)

for t ∈ [0, 1]. Clearly the dark state for t = 0 (t = 1) is the completely z-polarised state |↑〉
(completely x-polarised state |+〉). For 0 < t < 1 we do not expect a pure steady state.

In this special case we find

HP = a σ−x σ+
x + b σ−z σ+

z =
1

2

[
a −a

−a a + 2b

]
(1.37)

and consequently

Hheff =
1

4




−2a a a 0

a −2(a + b) 0 a

a 0 −2(a + b) a

0 a a −2a− 4b


 . (1.38)

For the jumps follows

L = a σ+
x ⊗ σ+

x + b σ+
z ⊗ σ+

z =
1

4




a −a −a a + 4b

a −a −a a

a −a −a a

a −a −a a


 (1.39)

which leads us to the Lindblad superoperator

L = Heff + L =
1

4




−a 0 0 a + 4b

2a −3a− 2b −a 2a

2a −a −3a− 2b 2a

a 0 0 −a− 4b


 . (1.40)

It is straightforward to calculate the spectrum and the eigenvectors of L which yields a single

vanishing eigenvalue (for a · b 6= 0). The corresponding (devectorised) eigenvector reads

ρNESS =

[
1
2 + b

2b+a
a

b+2a
a

b+2a
1
2 · a

2b+a

]
=

[
3
2 − 1

2−t
t

1+t
t

1+t
1
2 · t

2−t

]
(1.41)
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� Figure 1.1: Cross-sections of the Bloch sphere in the ax-az-plane at ay = 0. Physical states are described
by points in the white regions; pure states lie on the (thick grey) border and mixed ones inside the Bloch
sphere. The stream lines illustrate the vector field ȧ(ax, ay, az) which describes the dynamics of a state
coupled to bath A and B with relative strength t. There is a unique steady state for all parameters which
becomes a (pure) dark state for t = 0 (|↑〉) and t = 1 (|+〉). Note that in-between these two limiting cases
the steady states is (slightly) mixed as highlighted by the orange box. The “path” of the steady state for
0 ≤ t ≤ 1 is depicted as thick blue line whereas the steady state for the shown vector field is marked as
blue dot.

where we inserted (a, b) = (t, 1− t). Note that one has to normalise the eigenvector so that

Tr [ρNESS] = 1. This is the non-equilibrium steady state of the Lindblad equation ρ̇ = L[ρ] in

dependence of the bath couplings a and b. As a consistency check we point out that ρNESS(t =

0) = |↑〉 〈↑| and ρNESS(t = 1) = |+〉 〈+|.
Since our system comprises a single spin, it is advantageous to describe its (mixed) states

as points on and in the Bloch sphere. Therefore parametrise the density matrix ρ = 1
2 (1+ aσ)

with the Bloch vector a = [ax, ay, az]T ∈ R3, |a| ≤ 1. By using ai = Tr
[
σiρ
]

the Lindblad

equation can be recast in the form

ȧi = ȧ(ax, ay, az) ≡ Tr

[
σiL

[
1

2
(1+ aσ)

]]
for i = x, y, z (1.42)

which describes a dynamical system in R3 with the vector field ȧ(ax, ay, az). In the superoperator

framework this reads

ȧi = 〈〈1|
[
σ0 ⊗ σi

]
L |1/2 (1+ aσ)〉〉 for i = x, y, z . (1.43)

For our system this yields

ȧx = t− 1 + t

2
ax

ȧy = −1

2
ay

ȧz = 1− t +
t− 2

2
az

and the corresponding steady state clearly reads aNESS,x = 2t
1+t , aNESS,y = 0 and aNESS,z = 2t−2

t−2

which is consistent with our findings above. The vector field ȧ(ax, ay, az) and the steady states

are illustrated in Fig. 1.1 for three parameters t = 0, 0.5, 1. Note that the vector field flows

invariably into the Bloch sphere which is a consequence of the fact that exp (Lτ) is a CPTP map
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for all 0 ≤ τ ≤ ∞. The time evolution – which is formally given as ρ(τ) = exp (Lτ) ρ0 – can

now be obtained by solving the dynamical system above. One finds

ax(τ) =
2t

1 + t
+

(
ax(0)−

2t

1 + t

)
e−

1+t
2 τ (1.44a)

ay(τ) = ay(0) e−
1
2 τ (1.44b)

az(τ) =
2t− 2

t− 2
+

(
az(0)−

2t− 2

t− 2

)
e−

2−t
2 τ (1.44c)

with the initial state ρ0 = 1
2 (1+ a(0)σ).

� Approximation by jump histories

To get a sense of the previously derived unravelling of exp (Lt) in terms of quantum jump

trajectories (see Eq. (1.27)), we calculate the contributions for fixed jump numbers as given in

Eq. (1.35). To this end we summon the operator norm

‖A‖ := max
x 6=0

‖Ax‖2

‖x‖2
for A ∈ C

n×n (1.45)

(which equals the spectral norm of A). Here ‖ • ‖2 denotes the Euclidean norm on Rn. To get a

feeling for the importance of each channel at a given time t we compute the relative norm

∆N(t) :=
‖EN(t)‖
‖eLt‖ (1.46)

for each channel EN(t) where ‖ • ‖ denotes the operator norm as introduced above. To quantify

the deviation of a fixed number expansion up to Nmax jumps from the steady state, we introduce

the relative norm deviation

δNmax [ρNESS] (t) :=
‖∑

Nmax
N=0 EN(t)− limτ→∞ eLτ‖
‖ limτ→∞ eLτ‖ . (1.47)

Analogously, the deviation from the current evolution operator is given by

δNmax [ρ(t)] (t) :=
‖∑

Nmax
N=0 EN(t)− eLt‖
‖eLt‖ . (1.48)

Recall the recursive structure of the Dyson series which becomes apparent in Eq. (1.21) and (1.22).

This structure suggest the following computation scheme:

Ẽ0(t) := 1 and ẼN+1(t) :=

t∫

0

e−HeffsLeHeffsẼN(s)ds (1.49)

Where the channels for fixed jump numbers can be retrieved via

EN(t) = eHefftẼN(t) . (1.50)
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N = 0 N = 1 N = 2

t1

t2

t3

t4

t5

N = 3

� Figure 1.2: Contributions of finite jump trajectories to the time evolution channel exp (Lτ) over time
τ. The norm contributions ∆Nmax

for the N = 0, 1, 2, 3 jump channels EN(τ) are shown for five relative
couplings (t1, t2, t3, t4, t5) = (0, 0.25, 0.50, 0.75− 0.05, 1.00− 0.05). Note that for the case of a pure steady
state (t1 = 0 with dark state |↑〉) the only contributions stem from the zero- and one-jump trajectories
whereas for mixed systems (0 < t < 1) channels with more jumps become important at specific times
depending on the relative coupling t. The closer the system’s steady state is to a pure dark state the lower
is the frequency of jumps; as a consequence, trajectories with large number of jumps become important at
later times. See t5 for instance.

This recursion can easily be computed by Mathematica analytically up to N = 3 jumps. The

results are shown in Fig. 1.2 and Fig. 1.3. There are some remarks in order:

Consider the four plots of Fig. 1.2. The plots show the rescaled norm of EN(τ), namely

∆Nmax(τ), in dependence of time τ for N = 0, 1, 2, 3 and different parameters (t1, t2, t3, t4, t5)

= (0, 0.25, 0.50, 0.75− 0.05, 1.00− 0.05). If there is a pure steady state (dark state) – which

is the case for t1 = 0, namely |↑〉 – there are only contributions from zero- and one-jump

trajectories. The zero-jump trajectory dominates in the beginning but becomes less impor-

tant for later times. This is easy to understand since in our simple system there are only

two possible ways to reach the pure steady state |↑〉: Either the initial state is already the

dark state – then there is no jump necessary. Or the state differs from the dark state – then

a single jump B is sufficient to reach |↑〉. At the beginning the probability that this single

jump already occurred is low; thus the zero-jump channel E0 dominates this region. At

later times the probability that the single jump occurred converges to 1 and consequently

the one-jump channel E1 contributes significantly.

If the steady state is mixed (which is the case for the remaining parameters) we cannot

expect the jumps to cease at some finite time since the steady state is a true (classical)

ensemble of quantum states. The system is therefore characterised by a t-dependent jump

rate in ρNESS. So we expect EN(τ) be important for times τ after which one expects N

jumps (on average) – which certainly depends on the t-dependent jump rate. This can

be observed in the diagrams for N = 1, 2, 3 where the maximum is shifted towards later

times for increasing N. Furthermore note that the system with parameter t5 has a nearly

pure steady state close to |+〉. The jump frequency is quite low which causes the large

shift of the N = 2 and N = 3 channels to the right. The E0 channel becomes unimportant

for mixed steady states at late times since the probability that no jump occurred vanishes.

Clearly this is not true for dark states where the bath decouples completely from the

system once a dark state is reached.

Consider the plots in the upper row of Fig. 1.3. The plots show the rescaled norm of ∑
Nmax
N=0 EN(τ)

− lims→∞ eLs, namely δNmax [ρNESS] (τ), in dependence of the time τ for the same param-
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Nmax = 0 Nmax = 1 Nmax = 2

t1

t2

t3

t4

t5

Nmax = 3

Nmax = 0 Nmax = 1 Nmax = 2

t1

t2

t3

t4

t5

Nmax = 3

� Figure 1.3: Relative deviations of finite number jump trajectories from exact steady state solutions
and dynamical states. In the upper row the normalised deviations δNmax

[ρNESS] from the steady state are
plotted for expansion with contributions of up to Nmax = 0, 1, 2, 3 jumps over the time τ. The evolutions
are shown for five relative couplings (t1, t2, t3, t4, t5) = (0, 0.25, 0.50, 0.75− 0.05, 1.00− 0.05). Note that for
the case t1 = 0 the steady state is the dark state |↑〉. In this case the sum of zero- and one-jump trajectories
is sufficient to end up at the steady state projector |ρNESS〉〉 〈〈1| . For the other couplings the steady state
is mixed and thus finite jump trajectories approximate the steady state best in a time interval which is
determined by the coupling strength t. Note that the minimum of δNmax

[ρNESS] shifts to larger times τ if
more jumps are included. In the lower row the normalised deviations δNmax

[ρ(τ)] from the current state
are plotted for the same expansions and parameters. For t1 the contributions of zero and one jumps are
sufficient to get the full evolution operator exp (Lτ). Depending on the purity of the current state, more
jumps are needed to provide a reasonable approximation for exp (Lτ).

eters as above. If the steady state is unique (as in our case), one can write lims→∞ eLs =

|ρNESS〉〉 〈〈1| where |ρNESS〉〉 〈〈1| maps any initial state to the steady state |ρNESS〉〉. There-

fore the plots quantify an approximation of the steady state superoperator |ρNESS〉〉 〈〈1|
(which is a quantum channel) by partial sums of the fixed number channels EN(τ) at fi-

nite times τ. As expected, the dark state superoperator ||↑〉 〈↑|〉〉 〈〈1| for t1 = 0 can be

expressed exactly for τ → ∞ in terms of zero- and one-jump channels. For mixed steady

states an approximation by finite sums of channels EN(τ) cannot be expected for τ → ∞.

However, there is a chance of an intermediate time interval where, on the one hand, the

number of jumps is low enough such that a finite partial sum of fixed number channels

provides a reasonable approximation for exp (Lτ), and, on the other hand, the time evo-

lution is already close to the steady state |ρNESS〉〉 〈〈1| . Then one indeed ends up with

an approximation for the steady state superoperator in terms of fixed number channels.

These time intervals can be identified as pronounced minima in the plots. Note that the

minima are smaller and occur later for larger Nmax.

Consider the plots in the lower row of Fig. 1.3. The plots show the rescaled norm of ∑
Nmax
N=0 EN(τ)−

eLτ , namely δNmax [ρ(τ)] (τ), in dependence of the time τ for the same parameters. For the

parameter t1 = 0 with pure steady state the sum of E0(τ) and E1(τ) equals the time evolu-
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tion superoperator exp (Lτ) for all times. This is due to the arguments we mounted in part

(i). For mixed steady states with non-vanishing jump rate for all times the approximation

with small numbers of fixed number channels is only valid at the beginning. At late times

the contributions to exp (Lτ) are shifted towards channels with increasing numbers of

jumps which manifests itself in the positive slope of the curves for parameters 0 < t < 1.

We conclude that for generic cases (where the steady state is mixed) it is not possible to

approximate either the time evolution superoperator or the steady state by finite sums of fixed

number channels – although they occur as the canonical contributors in the Dyson series. How-

ever, for systems where the only steady states are dark states, finite sums can be sufficient if

the number of concatenated jumps is bounded from above. We will see later that this not

true in general, e.g. if jump operators generate free trajectories of charges. We note that there

are ingenious resummation techniques for the quantum trajectory representation of Markovian

quantum systems which lead to reasonable approximations for some systems, see Ref. [13] for

details.
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In this section we present a brief outline of the wide field of quantum phases and phase tran-

sitions, as well as their extensions to dynamical phase transitions by driven dissipation. For

further details I refer the reader to the given references and the two textbooks [14] by Sachdev

and [15] by Wen.

1.2.1 Quantum phases in Hamiltonian systems

Quantum phases and phase transitions describe order phenomena at zero temperature that are

purely quantum mechanical in origin. The critical fluctuations that are responsible for the phase

transition are due to quantum fluctuations and not driven by thermal fluctuations as in the case

of classical phase transitions.

The paradigmatic example for a quantum phase transition is the Ising model in a trans-

verse magnetic field [14] with a symmetric paramagnetic phase for strong magnetic field and a

symmetry-broken ferromagnetic phase for strong spin-spin couplings. See paragraph 1.3.4 for

an analytical solution of the one-dimensional model by means of a Jordan-Wigner transforma-

tion and the additional remarks in Section 2.1 where we introduce our dissipative model.

The classification of quantum phases is closely related to the concept of topological phases and

both a young and active field of research [16–21]. Introductions and comprehensible explana-

tions for the concept of quantum phases can be found in [19, 22]. Let me sketch the basic idea:

The classification comprises only gapped quantum phases which are characterised as ground

states of gapped quasilocal Hamiltonians. As an example for a gapped quantum phase, con-

sider the ground state manifold of Kitaev’s Majorana chain which is discussed in Subsec. 1.3.4.

Then it is reasonable to introduce an equivalence relation on the set of all states of a given sys-

tem that are ground states of some gapped Hamiltonian. Two states are termed equivalent if

there is a smooth path in the space of Hamiltonians (think of varying parameters) such that (1)

the Hamiltonians remain gapped along the path and (2) the two states correspond to the ground

states at the endpoints of this path in the operator space. According to this definition the set of all

gapped quantum phases separates into a union of disjoint equivalence classes. These classes are

called quantum phases. The motivation for the above definition is the following: Quantum phase

transitions of one gapped phase to another are indicated by a vanishing gap at the phase bound-

ary. If two phases can in principle be connected by a deformation of their Hamiltonians without

a vanishing gap, there are no fundamental differences between observables to be expected since

there is no non-analytical behaviour present.

This is the formal definition — however, it is not a very handy one. To this end the authors

of [22] show that the equivalence relation is closely related to the concept of quasilocal unitary

equivalence. To cut the matter short: They apply facts known from quantum information theory

to show that the definition above in terms of Hamiltonians can be probed by the existence of

quantum circuits with constant depth. Meaning, there is an equivalent but operationally more

convenient method to check whether two ground states belong to the same quantum phase or

not. From this point of view, the classification of quantum phases becomes a classification of

long range entanglement. To find representatives for each quantum phase, the technique of quan-

tum state renormalisation [22–24] can be applied which drives the quantum state under scrutiny
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towards a renormalisation fixed point (i.e. another quantum state) in the same phase. Two states

that are driven towards the same fixed point belong to the same phase.

Note that the equivalence relation can be tightened by requiring the Hamiltonians to obey

specific symmetries. If one allows only for Hamiltonian paths with prescribed symmetries, this

restricts the set of possible paths and “fractionalises” the equivalence classes further.

Let us conclude this brief review of quantum phases by a definition of topological phases.

As stated above, quantum phases are characterised by their pattern of long range entangle-

ment. Phases that can be transformed to trivial, unentangled product states are termed topolog-

ically trivial. They do not feature patterns of long range entanglement that cannot be resolved

by quasilocal unitary operations. Topological phases comprise all remaining phases, namely all

phases that feature non-trivial long range entanglement that cannot be destroyed by quasilocal

unitaries. If one inflicts additional symmetries on the classification, this yields the concept of

symmetry protected topological phases. Such phases cannot be transformed to trivial product states

by quasilocal unitaries given the latter obey the prescribed symmetries. For instance, fermionic

systems require parity symmetry due to superselection (see paragraph 1.3.4); it is therefore rea-

sonable to classify fermionic topological phases (such as the Majorana chain, see 1.3.4) with the

additional constraint of parity symmetry.

1.2.2 Quantum phases in dissipatively driven systems

The above discussion related to pure quantum phases. At finite temperature T > 0 the density

matrix is in thermal equilibrium and given by ρ = Z−1 exp(−βH) with the partition function

Z = Tr [exp(−βH)]. Classical phase transitions (driven by thermal fluctuations) can be trig-

gered by variations of the (inverse) temperature β (in the thermodynamic limit). But there are

other possibilities to drive phase transitions actively by Markovian environments which com-

pete either with a given Hamiltonian dynamics or with other dissipative baths. The states ρ of

such dissipative phases are generally mixed. However, these states are not in thermal equilibrium

and one speaks of non-equilibrium phase transitions.

As of this writing, the field of dissipatively driven and dynamical phase transitions is an

active area of research [12, 25–35]. In this thesis we contribute to this field by the introduction

of a purely dissipative transverse field Ising model and a purely dissipative Z2-Gauge-Higgs

model. We point out that dissipatively driven versions of the quantum Ising model have been

scrutinised quite recently [12, 30]. However, to the best of my knowledge, our proposed jump

operators (see Chapter 2) have not been considered before. Furthermore, we are not aware of

any dissipative counterpart of a lattice gauge theory as introduced in Chapter 3.

This concludes our review of quantum phases and dissipatively driven phase transitions.

Further references and remarks are given throughout the thesis — whenever they are required.

The next section leaves the realm of pure condensed matter physics and approaches the interest-

ing field of quantum information theory in general and quantum error correction in particular.
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Quantum error correction is, as the term suggests, the quantum mechanical analogue of classical

error correction techniques. One of the most crucial components for any computing machine

is its memory; usually divided into volatile and non-volatile components. Classical comput-

ers use their Random Access Memory (RAM) as volatile and a hard disc drive (HDD) or solid

state drive (SSD) as non-volatile components. Independent of the type, none of the mentioned

memory devices would be usable if there was not a sophisticated machinery of error correc-

tion procedures running all the time to keep track of errors and launch countermeasures. The

necessity for error correction is mainly caused by a noisy environment at finite temperatures.

As quantum states are notoriously unstable in the presence of unknown interactions due to the

environment and tend to decohere rapidly, the need for quantum error correction is at the heart

of the whole endeavour to build a universal and scalable quantum computer. Without scalable

quantum memories of high fidelity, there will be no full-fledged quantum computer.

1.3.1 Quantum error correction codes

The groundbreaking result by Peter Shor showed that quantum error correction is possible in

principle [36]. The Shor Code provided a paradigmatic example how to store a logical qubit in

the subspace C (the code space) of a larger Hilbert space spanned by the states of several physical

qubits. Today there is a variety of quantum codes that allow for the correction of arbitrary bit-

flip (σx) and phase errors (σz). A mathematical framework that proved hugely useful for the

work with and classification of quantum codes is the so called stabiliser formalism. We will use

this framework now and then and I assume that the reader is familiar with its basic aspects. If

not: detailed explanations can be found in [37] and a nice review of its application to quantum

codes in the preliminaries of [38]. A comprehensive review of quantum codes and the stabiliser

formalism is given in [39].

Ever since the invention of the Shor Code, new and more sophisticated concepts of quantum

error correction were contrived. For instance, it was realised that there are quantum mechanical

systems with subspaces in their Hilbert space that are decoupled from non-unitary interactions

with the environment (that is, noise), so called decoherence free subspaces [40]. There is also

research to exploit such subspaces for fault tolerant quantum operations [41].

A more general notion than encoding quantum information in subspaces of a Hilbert space

is subsumed under the term subsystem codes. Subsystem codes encode quantum information

in a subsystem Hilbert space C where H = (C ⊗ P) ⊕ E is the full Hilbert space. A good

explanation is given in the preliminaries of [42]. The stabiliser formalism can also be applied in

this generalised notion if one introduces gauge degrees of freedom [43].

Although it is now a well established fact that stable quantum memories are possible in

theory, it remains one of the most demanding fields of quantum engineering to actually tailor

systems that can be controlled with a high fidelity; which usually is required for quantum error

correction schemes that are based on active algorithms. This creates the impression that nature

“tries to prevent” coherent quantum information from being stored reliably. This fragility inher-

ent to quantum information spurred the investigation of various concepts that relate quantum

memories to much more fundamental properties [44–47].
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Another subdomain of quantum error correction is currently one of the most vibrant areas

of research in the realm of quantum information theory and condensed matter physics; it may

be tagged by the terms self-correcting quantum memories and topological quantum memories [38, 48–

69]. Let us have a closer look at this fascinating concept to protect quantum information from

decoherence.

1.3.2 Self-correcting and topological quantum memories

The central idea of self-correcting quantum memories is to encode the information in code spaces

which can be realised as the ground state space of a Hamiltonian with logical operators that

are energetically penalised by the latter. To put it in another way: One tries to merge the

concepts of abstract quantum codes with the features of condensed matter systems to get rid

of active quantum error correction schemes (which usually include complex measurement and

correction processes). One aims at Hamiltonian theories that protect quantum information by

simple, local interactions without active error correction.

Today it is believed that there is a close relation between the existence of topological order

at finite temperatures and self-correcting quantum memories [54, 57]. Typical candidates for

self-correcting quantum memories are systems with topological ordered phases [49–51, 60, 64–67]

such as the toric code [70] that we discuss in the next paragraph. But there are also topological

phases that yield potentially stable quantum memories due to their topological properties and

additional symmetries. The paradigmatic example for a system with topologically protected

code space is the Majorana wire [3] and generalisations thereof [52, 53]. We give a detailed

discussion of the Majorana wire in the course of this section.

But even in the field of self-correcting systems, it remains notoriously hard to contrive Hamil-

tonians that retain both their topological order and their ability for error self-correction [48].

However, there are some promising results that suggest that topological order and self-correction

may be realised in three dimensional systems [50, 64].

Instead of talking about some abstract concepts, let us review two simple but paradigmatic

topological quantum memories: We start with the toric code that features a topologically ordered

phase with an underlying string-net structure of its ground states. Subsequently we proceed

with the Majorana chain as a prototypical example for a topological phase with a topologically

(and symmetry) protected ground state space.

1.3.3 The Toric Code model

We start with the paradigmatic example of topological quantum error correction and topologi-

cally ordered phases, namely the Toric Code Model (TCM) as proposed by Kitaev in [70]. What

follows is a brief outline of the important facts. For a more detailed discussion we refer the

reader to the original proposal [70] or the review [51]. We do not deal with the toric code ex-

plicitly in this thesis. However, there are multiple references in context of the Z2-Gauge-Higgs

model (see Section 1.4 and Chapter 3) and even in Appendix E. This short introduction pro-

vides the basis for these references. We assume that the reader is familiar with the stabiliser

formalism, a comprehensible introduction of which can be found in [37].

Start with a two-dimensional square lattice with L× L faces and periodic boundary condi-

tions (that is, embedded into the torus). Attach a spin- 1
2 to each edge e ∈ E and define the

system Hilbert space as HTCM ≡
⊗

e∈E C2
e . To define a quantum code space, we have to provide

its stabilising operators.
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For the toric code these read

As = ∏
e∈s

σx
e and Bp = ∏

e∈p

σz
e (1.51)

where e ∈ s and e ∈ p denotes the edges e adjacent to site s or plaquette p. As and Bp are termed

star and plaquette operators, respectively. Their non-trivial support is illustrated by the left plot

in Fig. 1.4. It is easy to see that all star and plaquette operators commute and therefore they

define a stabiliser group

S := span
{

As, Bp | s ∈ S, p ∈ P
}

(1.52)

which is an abelian subgroup of the Pauli group. Here S and P denotes the sets of sites and

faces, respectively. The code space, that is, the toric code, is defined as the S-invariant linear

subspace

PS := {|Ψ〉 ∈ HTCM | S |Ψ〉 = |Ψ〉} (1.53)

which is characterised by all states in HTCM that are invariant with respect to all star and

plaquette operators. Stabiliser theory provides a simple method to determine the dimension of

PS : It holds dimPS = 2N−S where N = 2L2 denotes the number of spins (i.e. number of

edges) and S is the rank of the stabiliser group S , that is, the number of independent generators.

There are L2 star operators and L2 plaquette operators. However, the products of all star and

plaquette operators read

∏
s∈S

As = 1 and ∏
p∈P

Bp = 1 . (1.54)

Hence there are only 2L2− 2 independent generators of S which yields for its dimension dimPS =

22L2−2L2+2 = 22 = 4. We conclude that the stabiliser subspace PS encodes two logical qubits. The

dimension of the code space is actually dependent on the genus g (the number of “holes”) of

the compact and orientable 2-manifold on which the system lives. An application of Euler’s

formula for graph embeddings yields a general dimension of dimPS = 22g = 4g, meaning

there are two logical qubits encoded per hole of the underlying manifold.

Let Cs,t and C ′p,q denote two paths on the lattice and the dual lattice with endpoints on sites

s,t and plaquettes p,q, respectively. Then define the string operators

Z [Cs,t] := ∏
e∈Cs,t

σx
e and X

[
C ′p,q

]
:= ∏

e′∈C ′p,q

σx
e′ (1.55)

where edges e and dual edges e′ refer to the same spins, see Fig. 1.4. It is easy to see that all

stabilisers commute with the strings except for their endpoints: Star operators anticommute with

σz-endpoints on the lattice and plaquette operators anticommute with σx-endpoints on the dual

lattice. This is illustrated on the centred lattice of Fig. 1.4. Note that closed string operators,

termed loop operators, with loops that are homologeously trivial3 act trivially on the code space S
as they equal products of plaquettes (loops) and star operators (dual loops). Two such trivial

loop operators are shown in Fig. 1.4 close to the open strings.

The question is now how one operates on the logical qubits stored in PS . To this end con-

sider the four closed but homologeously non-trivial loops depicted on the left lattice of Fig. 1.4.

3A loop (dual loop) is homologeously trivial if it is the boundary of a set of faces (dual faces).
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� Figure 1.4: Setup for the toric code as proposed by Kitaev. We show a two-dimensional square lattice
with periodic boundary conditions. They dual lattice is illustrated by grey edges. Spins are attached to the
edges. On the left-hand side we illustrate the action of the star As and plaquette operators Bp as described
in the text (see the key to the right). The logical string operators are drawn with red and cyan lines. The
crossing of corresponding logical operators which is responsible for their (anti)commutation relations is
bicoloured. The centred lattice illustrates (1) topologically trivial loops of σx (red) and σz operators (cyan)
that act trivially on the code space and (2) pairs of electric charges and magnetic vortices with
possible (topologically hidden) strings connecting them.

Denote the vertical loop (dual loop) by C2 (C ′1) and the horizontal loop (dual loop) by C1 (C ′2).

The corresponding loop operators are labeled as follows

Xi ≡ X
[
C ′i
]

and Zi ≡ Z [Ci] (1.56)

where i = 1, 2. It is easily seen that these operators obey the Pauli algebra of two qubits, that is

[
Zi, Xj

]
= 0, {Zi, Xi} = 0,

[
Xi, Xj

]
= 0,

[
Zi, Zj

]
= 0 (1.57)

where i 6= j. The reason for the anticommutation relation between X and Z operators of the

same index is the topologically unavoidable odd number of intersections of the corresponding

string and dual string. These intersections are bicoloured in Fig. 1.4 (left lattice).

We are almost done. Recall that all star and plaquette operators together with two loop

(dual loop) operators of the same type commute with each other. Consequently they can be

diagonalised simultaneously with eigenvalues ±1 since all operators are given as products of

Pauli matrices. We chose an eigenbasis for the two Z-loop operators in the protected space PS
(which is the +1-eigenspace of all star and plaquette operators after all) and label them by the

eigenvalues of Z1 and Z2: |v1, v2〉 with topological quantum numbers v1, v2 ∈ {−1,+1}. Due to

the Pauli algebra of the four loop operators we immediately find

Zj |v1, v2〉 = vj |v1, v2〉 and X1 |v1, v2〉 = |−v1, v2〉 , X2 |v1, v2〉 = |v1,−v2〉 . (1.58)

We conclude that the logical qubits of the quantum code are labeled by topological quantum

numbers v1 and v2 and the non-local loop operator algebra span {X1, X2, Z1, Z2} yields a four

dimensional representation of the Pauli algebra on the code space

PS = span {|v1, v2〉 | v1, v2 ∈ {−1,+1}} . (1.59)

This is a paradigmatic example for both a topological code and a stabiliser code. Note that logical

operations require non-trivial operations on O(L) physical spins and therefore are protected
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against local and uncorrelated noise, at least in principle. Local σx-errors (bit-flip errors) and

σz-errors (phase errors) correspond to open and closed string operators, depending on their

distribution. As long as they do not form closed strings that wind around the torus, they

cannot cause logical errors. Trivial closed strings are no errors at all as mentioned above. Open

strings have endpoints that can be detected either by star or by plaquette operators. Such a

measurement does not destroy the encoded quantum information and is called an error syndrome.

The subsequent error correction uses minimum-weight perfect matching algorithms to pair the

endpoints of strings (detected by stabilisers with eigenvalue −1) with appropriately chosen

string operators to form closed loops that map the state back to the protected code space PS . A

similar error correction scheme will be discussed in paragraph 1.3.4 for the Majorana chain.

To conclude this discussion of the toric code, let us introduce the Hamiltonian

HTCM = −JA ∑
s∈S

As − JB ∑
p∈P

Bp (1.60)

with the parameters JA, JB ≥ 0. This is a frustration free Hamiltonian with ground state space

PS . The ground state space of HTCM is a quantum code! Elementary excitations correspond to single

sites s with As = −1 and faces p with Bp = −1. Their excitation energy is obviously 2JA and

2JB. In the above context this reads: The endpoints of error chains carry energetically penalised

excitations of the toric code Hamiltonian HTCM. Sites with As = −1 are termed electric charges

whereas faces with Bp = −1 are called magnetic vortices. This bridges between the abstract

quantum code that we introduced above and a condensed matter realisation as the ground state

space of a gapped Hamiltonian. That the occurrence of errors is energetically penalised is the

basic concept of self-correcting quantum memories. Unfortunately, the toric code does not penalise

the diffusion of excitations. This leads to the conclusion that the toric code is completely unsta-

ble at finite temperatures in two spatial dimensions [71, 72]. A generalisation becomes partially

stable in three dimensions [73] and the four-dimensional toric code is completely stable at finite

temperatures [49]. In contrast, for finite magnetic fields the topologically ordered phase — which

makes error correction possible — remains stable [74]. This aspect provides a link to lattice

gauge theories, namely the Z2-Gauge-Higgs model that we discuss in Subsec. 1.4.2. Let us now

finish this treatment of a topologically ordered phase and quantum memory and proceed with

a topological phase which can also be used as a quantum memory, namely the Majorana chain.
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1.3.4 The Majorana chain

Majorana fermions are well known to particle physicists as, for instance, neutrinos may be

fermions of this type. However, their recurrent appearance in condensed matter physics made

it seem more convenient to probe Majorana fermions in solid state setups than in high energy

physics [75]. Their peculiar properties will become clear in the following.

Basic properties of the model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Majorana chain was introduced by Kitaev in [3] as a toy model for unpaired Majorana

modes in superconducting quantum wires and is arguably the simplest model with this proper-

ties. The Hamiltonian for the Majorana chain reads

H = −
L−1

∑
i=1

[
wa†

i ai+1 − ∆aiai+1 + h.c.
]
− µ

L

∑
i=1

(
a†

i ai −
1

2

)
(1.61)

with the chemical potential µ ∈ R, the hopping amplitude w ∈ R and the superconducting gap

∆ = |∆|eiθ ∈ C, where θ ∈ [0, 2π) denotes the superconducting phase. ai and a†
i are the usual

fermionic annihilation and creation operators. The setup can be thought of as a linear chain of L

fermionic sites as depicted in the upper part of Fig. 1.5. The Hamiltonian in Eq. (1.61) describes

a system with open boundary conditions (OBC) as can be seen from the fact that the first sum

runs from 1 to L− 1.

To analyse the Hamiltonian in Eq. (1.61) for certain parameter configurations it proves useful

to write it in terms of so called Majorana operators or modes:

◮ Definition 1.1: Majorana operators

Let FL be the fermionic algebra generated by creation and annihilation operators{
ai, a†

i | i = 1, . . . , L
}

and characterised by the anticommutation relations

{
ai, aj

}
= 0 =

{
a†

i , a†
j

}
and

{
ai, a†

j

}
= δi,j for all i, j = 1, . . . , L . (1.62)

Splitting the fermionic degrees of freedom into real and imaginary parts yields the Majorana

operators

c2i−1 ≡ ai + a†
i and c2i ≡ i

(
a†

i − ai

)
for i = 1, . . . , L (1.63)

which obey the Clifford algebra

{cl , cm} = 2δl,m for l, m = 1, . . . , 2L (1.64)

and are self-adjoint, i.e. cl = c†
l .

We adopt the notation introduced in [3] for the sake of consistency. Note that by some

authors the Majorana operators are denoted as γL,i and γR,i where the L refers to the left-hand

mode c2i−1 of physical site i and R to the right-hand mode c2i. In figure 1.5 the left and right hand

modes are depicted as and , respectively.
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� Figure 1.5: The Majorana chain as proposed by Kitaev in [3]. In the upper part the original chain
with physical sites (grey rectangles) is shown. Each physical fermion, described by ai and a†

i , can be split

into two independent Majorana modes c2i−1 and c2i denoted by and . At the distinct parameter
combination |∆| = w and µ = 0 the Hamiltonian (1.61) reduces to (1.71) where the Majorana modes are
regrouped to fermionic quasiparticles described by ãi and ã†

i . Due to this regrouping the utter left and

right Majorana modes cL and cR, denoted by and , remain unpaired. They correspond to a highly
delocalised quasiparticle located at the ends of the wire.

The Majorana modes cl are often termed Majorana fermions although they do not obey fermionic

statistics but (non-abelian) anyonic statistics – which makes them potentially useful for topolog-

ical quantum computation. However, we will use the terms “Majorana mode” and “Majorana

fermion” synonymously and ask the reader to keep this subtlety in mind.

A distinctive feature is the fact that Majorana fermions are their own antiparticles since

cl = c†
l (which is more or less their defining property). Another point of view is that Majorana

fermions (as defined above) constitute “half a fermion” as two of them can be recombined to

form a purely fermionic mode

ai =
1

2
(c2i−1 + ic2i) and a†

i =
1

2
(c2i−1 − ic2i) . (1.65)

Note the resemblance of this procedure to the decomposition of complex numbers into real and

imaginary parts. Therefore Majorana modes may be considered as real (c2i−1) and imaginary

(c2i) parts of fermions. The reality condition on real and imaginary parts corresponds in this

case to the Majorana condition cl = c†
l .

It is now straightforward to recast Eq. (1.61) in terms of Majorana modes. However, to get rid

of any complex coefficients in the Hamiltonian (namely the superconducting gap ∆ = |∆|eiθ ∈ C)

it is useful to perform a simple unitary transformation of the fermionic modes

aj −→ âj = eiθ/2aj and a†
j −→ â†

j = e−iθ/2a†
j . (1.66)

Note that on the level of the Fock space (which is a module or representation of the fermionic

and Majorana algebra) this corresponds to a unitary transformation of the number state basis

where each number state is multiplied by a phase factor depending on its occupancy. Physically

nothing interesting happened up to this point – we just changed the basis of the underlying

Fock space.

In this new basis the Hamiltonian reads

H = −
L−1

∑
i=1

[
wâ†

i âi+1 − |∆|âi âi+1 + h.c.
]
− µ

L

∑
i=1

(
â†

i âi −
1

2

)
(1.67)

where we got rid of the complex phase of the superconducting gap. For the sake of simplicity

we do not write the hat in the following, i.e. âi → ai.
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Inserting the Majorana operators as defined in Def. 1.1 yields

H =
i

2

L−1

∑
i=1

[(|∆|+ w)c2ic2i+1 + (|∆| − w)c2i−1c2i+2]− µ
i

2

L

∑
i=1

c2i−1c2i (1.68)

where the left most mode is c2·1−1 = c1 = cL and the right most mode is c2·(L−1)+2 = c2L = cR,

denoted by and in Fig. 1.5.

There are two special cases which correspond to perfect pairings of Majorana modes, as

shown in Fig. 1.5:

◮ w = 0 = |∆| and µ < 0

In this case the Hamiltonian reads

H = −µ
i

2

L

∑
i=1

c2i−1c2i = −µ
L

∑
i=1

(
a†

i ai −
1

2

)
(1.69)

where we used the relation

ni ≡ a†
i ai =

1

2
(1+ ic2i−1c2i) (1.70)

for the number operator ni. The elementary excitations therefore are just original fermions a†
i

on the physical site i, i.e. the Majorana modes are paired on physical sites as shown in the upper

part of Fig. 1.5. Thus there are no non-local elementary excitations – each fermion is located on

a single physical site. ◭

◮ w = |∆| > 0 and µ = 0

This is the most interesting case, and we will shortly see why. Now the Hamiltonian takes the

form

H = (|∆|+ w)
i

2

L−1

∑
i=1

c2ic2i+1 = iw
L−1

∑
i=1

c2ic2i+1 (1.71)

where it is important to realise that c2i and c2i+1 belong to different physical sites (namely, i

and i + 1). We already realised that one can re-pair Majorana modes to “full-fledged fermions”.

From a purely algebraic point of view, there is no difference between, say, c2i and c2j or c2i−1 and

c2j. Therefore we can pair any two Majorana modes to get a valid fermionic mode. However,

in most of the cases the resulting fermions (called quasiparticles since they do not correspond to

physical fermions) are highly delocalised with respect to the spatial meta-structure of the Fock

space (which stemmed from the original physical fermionic modes).

Nonetheless there is a straightforward way to create fermionic quasiparticles that remain (up

to one exception) quasilocal:

ãi ≡
1

2
(c2i + ic2i+1) and ã†

i ≡
1

2
(c2i − ic2i+1) . (1.72)
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It is straightforward to show that ãi and ã†
i obey a fermionic algebra and thus represent valid

fermionic modes. To see that they do not correspond to physical fermions rewrite them in the

original fermion operators by inserting the definitions of the Majorana operators:

ãi =
i

2

(
a†

i − ai + ai+1 + a†
i+1

)
and ã†

i =
i

2

(
a†

i − ai − a†
i+1 − ai+1

)
(1.73)

So the new quasiparticles correspond to quasilocal superpositions of physical fermions. It is

now easy to show that

ñi ≡ ã†
i ãi =

1

2
(1+ ic2ic2i+1) (1.74)

and consequently we find for the Hamiltonian in the new quasiparticle basis

H = 2w
L−1

∑
i=1

(
ã†

i ãi −
1

2

)
. (1.75)

That is, in this parameter regime the elementary excitations are no longer physical fermions but

quasiparticles which are localised “between” two physical sites. This situation is depicted in the

lower part of Fig. 1.5. However, there is a crucial difference between Eq. (1.75) and Eq. (1.69): In

the quasiparticle Hamiltonian only L− 1 fermionic degrees of freedom show up whereas in the

other case all L fermionic degrees of freedom are part of the Hamiltonian.

Clearly, in Eq. (1.75) the fermionic mode

b ≡ ãL =
1

2
(c2L + ic1) =

1

2
(cR + icL) (1.76)

is missing. It is formed out of the two remaining unpaired Majorana modes at the endpoints of

the chain, denoted by and in Fig. 1.5. If we imposed periodic boundary conditions (PBC),

this would just be another local quasiparticle. But due to the open boundary conditions, this

fermionic mode represents a macroscopically delocalised fermion. One “half” sitting on the left

boundary, the other “half” on the right boundary of the wire. Since this mode is not probed by

the Hamiltonian in Eq. (1.75), its ground state space is two-fold degenerate

∣∣0̃
〉
=

L

∏
i=1

ãi |0〉 and
∣∣1̃
〉
= b†

∣∣0̃
〉

(1.77)

where
∣∣1̃
〉

and
∣∣0̃
〉

denote the ground states4 with and without occupied boundary mode b. ◭

Exact solution for OBC: Diagonalisation of the Hamiltonian
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We aim at an exact diagonalisation of the Hamiltonian in Eq. (1.61) for arbitrary values of ω, ∆

and µ.

4Note that the quasiparticle vacuum |0̃〉 (defined by ãi

∣∣0̃
〉
= 0 for all i = 1, . . . , L) is not the same as the physical vacuum

|0〉 (defined by ai |0〉 = 0 for all i = 1, . . . , L). They do not even have the same parity!
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� General treatment

To this end, we start with a general treatment of quadratic fermionic Hamiltonians of the most

generic form (up to some constant)

H =
L

∑
i,j=1

[
a†

i Aijaj +
1

2

(
a†

i Bija
†
j + h.c.

)]
(1.78)

where Aij ∈ C is an element of the Hermitian matrix A and Bij ∈ C of the skew-symmetric

matrix B, that is

Aij = Aji and Bij = −Bji (1.79)

which is necessary5 to be consistent with the fermionic algebra of ai and a†
i . Now express the

fermionic operators in real Majorana modes, i.e.

H =
1

4

L

∑
i,j=1

[
(c2i−1 − ic2i) Aij

(
c2j−1 + ic2j

)
+

1

2

(
(c2i−1 − ic2i) Bij

(
c2j−1 − ic2j

)
+ h.c.

)]
(1.80)

and regroup the Majorana modes so that (dropping constants)

H =
i

4

2L

∑
l,m=1

clΛlmcm =
i

4
c†

Λc (1.81)

where c = [c1, c2, . . . , c2L]
T is a column vector of Majorana modes. Hermiticity of H demands

that Λ is a real, skew-symmetric matrix, i.e. Λlm = −Λml and Λlm = Λml . Now recall the

following statement from basic linear algebra:

◮ Lemma 1.1: Spectral theory of skew-symmetric matrices

Let Λ ∈ R2L×2L be a real, 2L by 2L skew-symmetric matrix. Then there is a real, orthogonal

matrix Ξ = [ξ1, . . . , ξ2L]
T ∈ R2L×2L such that

ΞΛΞ
T = Γ =




ε1 0 · · · 0

0 ε2 · · · 0
...

...
. . .

...

0 0 · · · εL




(1.82)

where 0 is the 2× 2 zero matrix and

εi =

[
0 εi

−εi 0

]
(1.83)

is a real (εi ∈ R) 2× 2 block matrix. The eigenvalues are purely imaginary and given by

±iε j for j = 1, . . . , L.

Proof. See any basic linear algebra textbook. �

5Actually, the requirement for B is not necessary since any symmetric part of B would just drop out.
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So let us apply this transformation to our Hamiltonian

H =
i

4
c†

Ξ
T

ΞΛΞ
T

Ξc =
i

4
d†

Γd (1.84)

where we introduced new Majorana operators d = Ξc. Indeed, we find

di = Ξijcj ⇒ d†
i = Ξijc

†
j = Ξijcj = di (1.85)

⇒
{

di, dj

}
= ΞilΞjm {cl , cm} = 2ΞilΞjmδlm = 2ΞimΞjm = 2δij (1.86)

where we used Einstein’s convention and the fact that Ξ is real and orthogonal. Due to the block

diagonal form of Γ the Hamiltonian expands to

H =
i

4
d†

Γd =
i

4

L

∑
i=1

εi [d2i−1d2i − d2id2i−1] =
i

2

L

∑
i=1

εid2i−1d2i (1.87)

and if we introduce the new fermionic quasiparticles

ãj ≡
1

2

(
d2j−1 + id2j

)
and ã†

j ≡
1

2

(
d2j−1 − id2j

)
(1.88)

and use the relation ã†
i ãi =

1
2 (1+ id2i−1d2i) we finally end up with

H =
i

2

L

∑
i=1

εid2i−1d2i =
L

∑
i=1

εi

(
ã†

i ãi −
1

2

)
. (1.89)

Finally, we are lead to the question how to get by the transformation matrix Ξ. As introduced

above the columns of Ξ
T are real vectors ξl of size 2L. Clearly these are no eigenvectors of Λ.

However, they are closely related to the latter via

ξ2i−1 =
1

2
(Φi + Ψi) (1.90)

ξ2i =
1

2i
(Φi −Ψi) (1.91)

where ΛΦi = iεiΦi and ΛΨi = −iεiΨi are the eigenvectors of Λ. Conversely we find

Φi = ξ2i−1 + iξ2i (1.92)

Ψi = ξ2i−1 − iξ2i (1.93)

which is nothing else than the coordinate version of Eq. (1.65). In this sense the ξl correspond

to Majorana modes whereas Ψi corresponds to fermionic holes (ãi) and Ψi to the fermions

themselves (ã†
i ). Note that ξl ∈ R2L but Ψi, Φi ∈ C2L. The relations above can be proved easily

ΛΦi = Ξ
T

ΞΛΞ
T

ΞΦi = Ξ
T

Γ (e2i−1 + ie2i) = iεi Ξ
T (e2i−1 + ie2i) = iεi

(
ξ2i−1 + iξ2i

)
= iεi Φi

where el denotes the lth standard basis vector.
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In the end we find the following expressions for the new quasiparticles in Majorana representa-

tion

ã†
i =

1

2
Ψ

T
i c , ãi =

1

2
Φ

T
i c and dl = ξT

l c . (1.94)

Let us now express the modes in the original (physical) fermionic degrees of freedom. To this

end, recall that c2i−1 = ai + a†
i and c2i = i(a†

i − ai). Therefore

ã†
i =

1

2
Ψ

T
i c

=
1

2

[
Ψ

2j−1
i c2j−1 + Ψ

2j
i c2j

]

=
1

2

[
Ψ

2j−1
i (aj + a†

j ) + iΨ
2j
i (a†

j − aj)
]

=
1

2

[
Ψ

2j−1
i − iΨ

2j
i

]
aj +

1

2

[
Ψ

2j−1
i + iΨ

2j
i

]
a†

j

= η−i,jaj + η+
i,ja

†
j

where we introduced the new matrices

η−i,j ≡
1

2

[
Ψ

2j−1
i − iΨ

2j
i

]
and η+

i,j ≡
1

2

[
Ψ

2j−1
i + iΨ

2j
i

]
(1.95)

that describe the quasiparticles in terms of physical fermions. To get a feeling for the new

quasiparticles, let us plot the probability of finding a physical fermion (hole) on site l provided

the ith quasiparticle is present in the system. That is, we calculate

〈0| ãia
†
l al ã

†
i |0〉 = 〈0|

(
η−i,ja

†
j + η+

i,jaj

)
a†

l al

(
η−i,kak + η+

i,ka†
k

)
|0〉 = η+

i,jη
+
i,k 〈0| aja

†
l al a

†
k |0〉 =

∣∣∣η+
i,l

∣∣∣
2

.

for fermions and

〈L| ãiala
†
l ã†

i |L〉 = 〈L|
(

η−i,ja
†
j + η+

i,jaj

)
ala

†
l

(
η−i,kak + η+

i,ka†
k

)
|L〉 = η−i,jη

−
i,k 〈L| a†

j al a
†
l ak |L〉 =

∣∣∣η−i,l
∣∣∣
2

.

for holes. Here |0〉 denotes the physical vacuum and |L〉 = |1, . . . , 1〉 the completely filled state.

To point out the central result:

◮ Result 1.1: Quasiparticles

The distribution of physical fermions (holes) of the ith quasiparticle is given by

Fermions:
∣∣∣η+

i,l

∣∣∣
2
=

1

4

∣∣∣Ψ2l−1
i + iΨ2l

i

∣∣∣
2

(1.96)

Holes:
∣∣∣η−i,l

∣∣∣
2
=

1

4

∣∣∣Ψ2l−1
i − iΨ2l

i

∣∣∣
2

(1.97)

where l runs over all physical sites l = 1, . . . , L.

This concludes our general treatment. �
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� Application to the Majorana chain

Let us now apply our findings of the previous paragraph to the Majorana chain. To this end,

recall the Hamiltonian in Majorana representation:

H =
i

2

L−1

∑
i=1

[(|∆|+ w)c2ic2i+1 + (|∆| − w)c2i−1c2i+2]− µ
i

2

L

∑
i=1

c2i−1c2i (1.98)

So here the Λ-matrix reads

Λl,m =





|∆|+ w for l = 2i ∧m = 2i + 1

−|∆| − w for m = 2i ∧ l = 2i + 1

|∆| − w for l = 2i− 1∧m = 2i + 2

−|∆|+ w for m = 2i− 1∧ l = 2i + 2

−µ for l = 2j− 1∧m = 2j

µ for m = 2j− 1∧ l = 2j

0 otherwise

(1.99)

where i = 1, . . . , L− 1 and j = 1, . . . , L. Note that we chose the matrix skew-symmetric, which is

always possible and necessary for our former calculations to apply.

This matrix can easily be implemented by means of a CAS such as Mathematica. Diago-

nalisation yields the spectrum εi as well as the eigenvectors Ψi and Φi. There are some points

worth mentioning:

◮ Localisation of Majorana modes

In Fig. 1.6 we illustrate the fermion density |η+
i,l |2 (bars) and the hole density |η−i,l |2 (points) as

a function of site l for some characteristic modes i and a chain with L = 100 sites. At the ideal

point ∆ = ω and µ = 0 the fermionic quasiparticles are localised on the lattice of physical

fermions and each bulk mode ãi, i = 1, . . . , L− 1, occupies two physical sites, this can be seen in

plot (E). The edge mode ãL however is macroscopically delocalised between the two endpoints

of the chain, see also (E).

Away from the critical point, this “splitting” of a physical fermion into one “half” fermion

at the leftmost and the other “half” at the rightmost site becomes less clear as the sequence

of plots (A)-(D) illustrates. There we set ∆ = 0.1 and ω = 1 and vary the chemical potential

from µ = −0.1 (A) to µ = −1.99 (B); please note that the topological phase transition occurs

at µ = 2 since ω = 1. We observe that the formerly localised boundary modes leak into the

bulk the stronger the chemical potential gets. As we will see below, this lifts the degeneracy of

states with and without occupied edge mode as the leftmost and rightmost Majoranas interact

(in finite systems). In contrast to the ideal point ∆ = ω and µ = 0 were the bulk modes are

strictly localised (E), a slight deviation of the chemical potential results in strongly delocalised

bulk modes, as can bee seen in (F) were we show a characteristic mode for ∆ = 1 = ω and

µ = 0.1.
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µ = −0.10

µ = −1.00

µ = −1.90

µ = −1.99

Bulk mode (η+)
Edge mode (η+)
Bulk mode (η−)
Edge mode (η−)

Edge mode

Bulk mode

Bulk η+ Bulk η−

A

B

C

D

E

F

� Figure 1.6: We show spatial distributions of fermion (|η+
i,l |2, denoted by bars) and hole densities (|η−i,l |2,

denoted by points) for some characteristic modes i and a Majorana chain with L = 100 sites. The horizontal
axes represent the spatial extension of the chain for l = 1, 2, . . . , 100. (A)-(D) illustrate the edge mode for
fixed gap ∆ = 0.1 and tunneling amplitude ω = 1 and varying chemical potential µ. At the ideal point
∆ = ω and µ = 0 all bulk modes are localised on two adjacent physical fermionic sites. Only the edge
mode corresponds to a physical fermion which is macroscopically delocalised between the two endpoints
of the chain, see (E). For increasing chemical potential |µ|, the localised edge mode (E) starts leaking into
the bulk of the chain, see (A)-(D). In contrast to the localised modes at the ideal point (E) for µ = 0, typical
bulk modes for µ = 0.1 look like (F).

◮ Spectrum of Majorana modes

In Fig. 1.7 we show the spectrum of a Majorana chain with L = 50 sites, that is the spectrum of

the corresponding matrix Λ. More precisely, the imaginary part of its spectrum; which is purely

imaginary as we pointed out earlier. The double structure of the spectrum is related to the

skew-symmetry of Λ which implies that there are L pairs of eigenvalues ±iεk, k = 1, . . . , L. The

eigenvalues are indexed by i with decreasing absolute values where i runs from 1 to 2L = 100.

This gives rise to the characteristic double spectrum in (A). The spectra shown were computed

for ∆ = 1 = ω and varying chemical potential µ = 0,−1,−2,−3. The highlighted region in (A)

is shown in (B) to emphasise the zero modes marked by red arrows. Away from the topological

phase transition at |µ| = 2 the spectrum is gapped. For |µ| → 2 the gap closes — a typical

feature of a quantum phase transition. As (B) reveals, there are two Majorana modes with zero

energy in the (topological) phase for |µ| < 2. Both of them gain finite energy in the (trivial)

phase for |µ| > 2. We conclude that in the topological phase the fermionic boundary mode ãL

(which is constructed from the two Majorana zero modes) is not penalised by the Hamiltonian.

The ground state is two-fold degenerate: The boundary mode may be occupied or unoccupied.

This is no longer true in the trivial phase were there is no fermionic zero mode and the ground

state is the unique quasiparticle vacuum.

If one examines the two highlighted “zero” modes in Fig. 1.7 (B) in detail, it turns out that

their energy is not exact zero. This is only true in the thermodynamic limit as Fig. 1.8 reveals:
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� Figure 1.7: We show the spectrum of a Majorana chain with L = 50 sites for fixed parameters ∆ = 1 = ω
and varying chemical potential µ. Details of the grey region in (A) are illustrated in (B). Please note that
the spectrum is gapped away from the topological phase transition at µ = 2. As (B) reveals, there are two
zero energy modes in the topological phase |µ| < 2. These modes are no longer zero energy modes in
the trivial phase for |µ| > 2. In the topological phase, the shown degeneracy is resilient with respect to
spatially varying parameters, see Fig. 1.9.

There we plot the minimum of the absolute values {εi} (which is the zero mode energy) as a

function of the system size L for varying chemical potentials µ = −0.25,−0.50,−1,−2. In the

topological phase (|µ| < 2), the zero mode energy vanishes exponentially with L. This decrease

becomes slower the closer the system is to the phase transition at |µ| = 2. In the trivial phase

for |µ| > 2 the energy no longer goes to zero as there are no zero modes left. This finite energy

lifts the degeneracy of the occupied and unoccupied edge mode in finite systems and away from

the ideal point. It is caused by the aforementioned interaction of the two delocalised Majorana

modes which manifests in the leakage of the modes into the bulk as observed in Fig. 1.6 (A)-(D).

It becomes clear from the fermion density distribution in (A) that the overlap between leftmost

and rightmost Majorana mode is already negligible for the shown L = 100 chain and vanishes

in the thermodynamic limit L → ∞ completely. Therefore the two edge Majorana modes are

usually referred to as Majorana zero modes even though the system is not exactly degenerate for

finite chains (away from the ideal point).
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� Figure 1.8: We show the ground
state energy of the Majorana edge
modes for fixed parameters ∆ = 1 = ω
and varying chemical potential µ with
respect to the system size L. In the topo-
logical phase for µ < 2, the edge mode
energy vanishes exponentially with the
system size. This changes at the topo-
logical phase transition µ = 2 beyond
which these modes no longer have zero
energy. The non-vanishing energy for
finite systems at non-ideal parameter
points µ 6= 0 is a consequence of the
overlap (and thus interaction) of the
two left and right boundary Majorana
modes, see Fig. 1.6 (A)-(D).
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� Figure 1.9: We show the spectrum of
a Majorana chain with L = 50 sites for
static disorder and varying chemical po-
tential µ. Here the parameters are chosen
site-dependent, that is ∆l = ∆ + p∆

l · δ∆

(analogously for ω and µ) where p
∆,ω,µ
l

is a uniformly distributed random vari-
ate in U (−1, 1) and we set ∆ = 1 = ω,
δ∆ = δω = δµ = 0.5. Note that the
degeneracy of the zero modes (grey re-
gion) in the topological phase for µ = 0
remains unaffected by the disorder. Com-
pare these results with the unperturbed
ones in Fig. 1.7.

◮ Stability of Majorana modes

Let us now have a look at one of the most striking features that characterise Hamiltonians with

a hidden topological invariant (we come to that later, see 1.3.4). In Fig. 1.9 we show the same

spectrum as in Fig. 1.7 (A) for an L = 50 site chain. In contrast to the previous systems, we

introduced static disorder in the form of site dependent parameters

∆l = ∆ + p∆
l · δ∆

ωl = ω + pω
l · δω

µl = µ + p
µ
l · δµ

with the mean values ∆ = 1, ω = 1, µ = 0,−4 and the disorder parameters δ∆ = δω = δµ = 0.5.

p
∆,ω,µ
l are uniformly distributed random variables in U (−1, 1) for all l = 1, . . . , L. The spectrum

of these disordered systems is depicted in Fig. 1.9. As a result of the disorder, the spectrum

is no longer smooth but features dents and jags, cf. Fig. 1.7 (A). The crucial point is, that the

Majorana zero modes in the topological phase (µ = 0 < 2) seem to be completely unaffected by

the perturbations. Their energy is not lifted and the ground state degeneracy is conserved. This

is a characteristic feature of topological phases: The ground state degeneracy is resilient against

local perturbations of the system.

In Fig. 1.10 we demonstrate this startling phenomenon in a different way: Both plots show

the edge mode energy of disordered systems as a function of µ (we set δµ = 0 but δ∆ = 0.5 =

δω). Obviously the gap closes for |µ| → 2 were the phase transition occurs. But this is not the

point. The point is, that we used different parameter sets {∆l , ωl , µl} for each value of µ. In the

trivial phase, the effect is not really surprising: The points scatter around an average value that

depends on µ and ∆ = 0, 1, 2 (we set ω = 1). But the moment the system enters the topological

phase, the effect of the disorder ceases almost completely for the larger system with L = 100

and becomes smaller for the short chain with L = 10. The edge mode energy does not “know”

about the disorder in the bulk if the system is in the topological phase. This statement becomes

exact in the thermodynamic limit. That this effect is non-trivial becomes evident in the phase

for |µ| > 2 where such resilience against disorder cannot be observed. ◭

6In the topological phase, the system is gapped as well. The gap closes at the topological phase transition. However,
there are no zero energy modes in the trivial phase which explains the behaviour of the energy shown in the plots.
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� Figure 1.10: We show the edge mode energy of Majorana chains with L = 10 (A) and L = 100 (B) sites
as a function of the chemical potential. For each value of µ we chose an independent, random parameter
set {∆l , ωl , µl} for δ∆ = 0.5 = δω and δµ = 0, see the caption of Fig. 1.9, and computed the ground state
energy. We set ω = 1 and ∆ = 0, 1, 2. Whereas in the trivial phase for |µ| > 2 the system is gapped and the
gap6itself depends on both the mean value ∆ and the static disorder, in the topological phase for |µ| < 2
(grey region) this dependence ceases almost completely for large systems (B). This independence with
respect to spatial disorder and the mean values of the parameters becomes exact in the thermodynamic
limit and characterises the topological phase.

Exact solution for PBC: Bogoliubov-de Gennes transformation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following we are going to derive the exact spectrum of the Majorana chain for arbitrary

parameters µ, w and ∆ by a Bogoliubov-de Gennes transformation in momentum space. The

result was originally derived by Kitaev in [3] and can be “reused” for the exact diagonalisation

of the transverse field Ising model (see 1.3.4).

A Bogoliubov-de Gennes transformation can be thought of as an algebra isomorphism

mapping the representation of some fermionic (Dirac) algebra over a given Fock space onto an

isomorphic representation over the same Fock space. The original representations are usually

referred to as physical fermions whereas the new representations are called quasiparticles. These

are the fundamental excitations of the theory under investigation and the Hamiltonian becomes

diagonal in terms of the new fermionic degrees of freedom.

Let us recall the Majorana chain Hamiltonian in terms of fermionic modes (see Eq. 1.61):

HOBC = −
L−1

∑
i=1

[
wa†

i ai+1 − ∆aiai+1 + h.c.
]
− µ

L

∑
i=1

(
a†

i ai −
1

2

)
(1.100)

Since we are interested in the Bulk properties of the theory there is no point in demanding open

boundary conditions. Thus we close the chain by adding the missing summands which connect

sites 1 and L and end up with

HPBC = −
L

∑
i=1

[
wa†

i ai+1 − ∆aiai+1 + h.c. + µ

(
a†

i ai −
1

2

)]
(1.101)

where all indices are integers modulo L (for convenience i runs from 1 to L and not from 0 to

L− 1).
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The Hamiltonian with periodic boundary conditions can now be efficiently written in terms of

momentum degrees of freedom. Therefore introduce

âm :=
1√
L

L

∑
j=1

aj e−i 2π
L m·j where m ∈ {1, . . . , L} (1.102a)

aj =
1√
L

L

∑
m=1

âm ei 2π
L m·j where j ∈ {1, . . . , L} (1.102b)

For the sake of simplicity write ak ≡ âm with k = 2π
L m and define the abbreviation ∑k ≡

∑
2π
k= 2π

L
= ∑

L
m=1. It is easy to show that ak is another representation of the Dirac algebra, meaning

they satisfy the fermionic anticommutation relations. Expressing HPBC in k-modes yields

HPBC = −
L

∑
j=1

[
w

1

L ∑
k

∑
q

a†
k aq e−ikjeiq(j+1) − ∆

1

L ∑
k

∑
q

akaq eikjeiq(j+1) + h.c.

+µ

(
1

L ∑
k

∑
q

a†
k aq e−ikjeiqj − 1

2

)]

= −∑
k

[
weik a†

k ak − ∆e−ik aka−k + h.c. + µ a†
k ak

]
+

µL

2

where we used the orthogonality relation ∑
L
j=1 e−ikjeiqj = Lδk=q mod 2π . We subtract the constant

offset
µL
2 to the other side and find

H̃PBC = −∑
k

[
2w cos k a†

k ak + µ a†
k ak − ∆

(
e−ik aka−k + eik a†

−ka†
k

)]

where we introduced H̃PBC = HPBC − µL
2 . The substitutions aka−k = 1

2 (aka−k − a−kak) and

a†
−ka†

k = 1
2

(
a†
−ka†

k − a†
k a†
−k

)
yields

H̃PBC = −∑
k

[
2w cos k a†

k ak + µ a†
k ak −

∆

2

(
e−ik aka−k − e−ika−kak + eik a†

−ka†
k − eik a†

k a†
−k

)]

= −∑
k

[
2w cos k a†

k ak + µ a†
k ak −

∆

2

(
e−ik aka−k − eikaka−k + eik a†

−ka†
k − e−ik a†

−ka†
k

)]

= −∑
k

[
2w cos k a†

k ak + µ a†
k ak +

i∆

2i

(
eik − e−ik

)
aka−k −

i∆

2i

(
eik − e−ik

)
a†
−ka†

k

]

Where we used that the substitution k → −k can be applied to each summand separately since

the summation over the full Brillouin zone can be shifted by any multiple of 2π
L . Therefore the

Hamiltonian takes the simple form

H̃PBC = ∑
k

[
−2w cos k a†

k ak − µ a†
k ak − i∆ sin k aka−k + i∆ sin k a†

−ka†
k

]
. (1.103)
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Let us expand this Hamiltonian by the substitution a†
k ak → 1

2

(
a†

k ak + a†
−ka−k

)
in the sum (note

that cosine is an even function!):

H̃PBC =
1

2 ∑
k

[
−(2w cos k + µ) a†

k ak − (2w cos k + µ) a†
−ka−k − i2∆ sin k aka−k + i2∆ sin k a†

−ka†
k

]
.

If we apply the relations a†
−ka−k = 1− a−ka†

−k and ∑k(2w cos k + µ) = Lµ, the constant
µL
2 drops

out and we find

HPBC =
1

2 ∑
k

[
−(2w cos k + µ) a†

k ak + (2w cos k + µ) a−ka†
−k − i2∆ sin k aka−k + i2∆ sin k a†

−ka†
k

]
.

Now introduce the Nambu spinor Ψk :=
[

ak, a†
−k

]T
; then this Hamiltonian can be rewritten as

HPBC =
1

2 ∑
k

Ψ
†
k HkΨk where Hk :=

[
−(2w cos k + µ) −2∆i sin k

2∆i sin k (2w cos k + µ)

]
. (1.104)

� Spectrum

We note that Hk is Hermitian, H†
k = Hk, and thus can be diagonalised by a unitary transforma-

tion T . To this end, let us calculate the spectrum of Hk via det [Hk − ε(k)1]
!
= 0 which is easily

evaluated to

ε(k) = ±
√
(2w cos k + µ)2 + 4∆2 sin2 k (1.105)

which is Eq. (13) in Ref. [3]. The only possibilities for a gapless spectrum (∆ 6= 0) are k = 0, π:

ε(0) = ± |±2w + µ| !
= 0 ⇒ 2|w| = |µ| (1.106)

We therefore expect a quantum phase transition at 2|w| = |µ| and two distinct quantum phases

in the parameter regimes 2|w| > |µ| and 2|w| < |µ|, respectively. Fig. 1.11 illustrates these

findings. Note that we already found two representatives of these phases: The parameters

w = |∆| > 0 and µ = 0 with H = 2w ∑
L−1
i=1

(
ã†

i ãi − 1/2
)

represent the first phase since 2|w| > |µ|
and the parameters w = 0 = |∆| and µ < 0 with H = −µ ∑

L
i=1

(
a†

i ai − 1/2
)

represent the

second phase since 2|w| < |µ|. We furthermore found that the first phase is characterised by a

degenerate ground state manifold in the thermodynamic limit L → ∞ whereas the second phase

has as unique ground state the fermion vacuum. This hints at a quantum phase transition where

the spectral gap of H closes – exactly what we found above for 2|w| = |µ|. �

� Bogoliubov quasiparticles

To complete this analysis, let us calculate the eigenvectors of Hk which determine the Bogoliubov

quasiparticles of the theory. We will restrict ourselves to the ideal case w = |∆| and µ = 0 in
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� Figure 1.11: We illustrate the spectrum (A) and the gap (B) of the Majorana chain as derived in the text,
see Eq. 1.105. In (A) the spectrum is shown in k-space for ∆ = 1 = ω and varying µ. The system is gapped
for all parameters but µ = 2 where the topological phase transition occurs. Then the gap closes at k = 0
and the discrete topological invariant jumps discontinuously, see Fig. 1.13. In (B) we illustrate the gap ε at
k = 0, π colour-coded in the µ-ω-plane. The upper and lower blue regions denote the topological phase
for |µ| < 2|ω| whereas the trivial phase corresponds to the blue regions on the left and right hand side.
The topological phase transition occurs in the black regions where the gap vanishes.

the topological phase since then one can expect nice solutions in momentum space as well as in

real space. The Hamiltonian matrix in the Nambu basis reads

Hk := 2w

[
− cos k −i sin k

i sin k cos k

]
(1.107)

and the eigenvectors are easily derived

g1(k) = φ1

[
−i sin k

2

cos k
2

]
, g2(k) = φ2

[
i cos k

2

sin k
2

]
and Tk =

[
−iφ1 sin k

2 iφ2 cos k
2

φ1 cos k
2 φ2 sin k

2

]
(1.108)

where Tk is the unitary transformation matrix such that T†
k HkTk = diag [ε(k),−ε(k)]. Here

we used the trigonometric identities cos2 k
2 = 1

2 (1 + cos k), sin2 k
2 = 1

2 (1− cos k) and sin k =

2 sin k
2 cos k

2 . We kept the phases φ1 ≡ φ1(k) = eiϕ1(k) and φ2 ≡ φ2(k) = eiϕ2(k) as a free

parameters since they cannot be determined at this stage and we need them to obtain a new

Dirac algebra (see below). Now calculate

Ψ
†
k HkΨk = Ψ

†
k TkT†

k HkTkT†
k Ψk ≡ Ψ̃

†
k diag [ε(k),−ε(k)] Ψ̃k (1.109)

where we introduced the new spinors

Ψ̃k ≡
[

ãk

ã†
−k

]
:= T†

k Ψk =

[
iφ∗1 sin k

2 φ∗1 cos k
2

−iφ∗2 cos k
2 φ∗2 sin k

2

]
·
[

ak

a†
−k

]
=

[
iφ∗1 sin k

2 ak + φ∗1 cos k
2 a†
−k

−iφ∗2 cos k
2 ak + φ∗2 sin k

2 a†
−k

]

which describe the quasiparticles of the theory. Clearly, to recover a consistent Dirac algebra it

is necessary (but not sufficient) to choose φ2(k) = −iφ∗1 (−k), i.e.
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Ψ̃k =

[
ãk

ã†
−k

]
=

[
iφ∗1 (k) sin k

2 ak + φ∗1 (k) cos k
2 a†
−k

φ1(−k) cos k
2 ak + iφ1(−k) sin k

2 a†
−k

]
. (1.110)

Choose now φ1(k) = e−i k
2 . That the ãk and ã†

k indeed obey a fermionic algebra and thus represent

fermionic quasiparticles can easily be checked:

{
ãk, ãq

}
= ie

i
2 (k+q) sin

k

2
cos

q

2

{
ak, a†

−q

}
+ ie

i
2 (k+q) sin

q

2
cos

k

2

{
a†
−k, aq

}

= ie
i
2 (k+q) sin

k

2
cos

q

2
δk=−q mod 2π + ie

i
2 (k+q) sin

q

2
cos

k

2
δ−k=q mod 2π

= ieiπm sin
k

2
(−1)m cos

k

2
δk=−q mod 2π − ieiπm(−1)m sin

k

2
cos

k

2
δ−k=q mod 2π

= i sin
k

2
cos

k

2

(
δk=−q mod 2π − δ−k=q mod 2π

)
= 0

Here we set k = −q+ 2πm⇔ −k = q− 2πm for some m ∈ Z.
{

ã†
k , ã†

q

}
= 0 follows immediately.

Similarly we show

{
ãk, ã†

q

}
= e

i
2 (k−q) sin

k

2
sin

q

2

{
ak, a†

q

}
+ e

i
2 (k−q) cos

q

2
cos

k

2

{
a†
−k, a−q

}

= e
i
2 (k−q) sin

k

2
sin

q

2
δk=q mod 2π + e

i
2 (k−q) cos

q

2
cos

k

2
δ−k=−q mod 2π

= eiπm sin
k

2
(−1)m sin

k

2
δk=q mod 2π + eiπm(−1)m cos

k

2
cos

k

2
δ−k=−q mod 2π

= sin2 k

2
δk=q mod 2π + cos2 k

2
δ−k=−q mod 2π = δk=q mod 2π .

We conclude that T†
k (due to our choice of φ1 and φ2) preserves the Dirac algebra which makes

it a canonical transformation. Note that if we chose ϕ1(k) = 1 this would lead us to
{

ãk, ã†
k+2π

}
=

−1 which certainly is not consistent with a Dirac algebra! The eigenmodes in momentum space

therefore read

ãk = iei k
2 sin

k

2
ak + ei k

2 cos
k

2
a†
−k . (1.111)

The Hamiltonian is diagonal in this modes and reads

HPBC =
1

2 ∑
k

Ψ̃
†
k diag [ε(k),−ε(k)] Ψ̃k =

1

2 ∑
k

(
ε(k) ã†

k ãk − ε(k) ã−k ã†
−k

)
(1.112)

Note that ε(−k) = ε(k) and ã−k ã†
−k = 1− ã†

−k ã−k which leads to

HPBC = ∑
k

ε(k)

(
ã†

k ãk −
1

2

)
. (1.113)
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To close the circle, let us recast the modes and the Hamiltonian in real space:

ãj =
1√
L

∑
k

eikj ãk =
1√
L

∑
k

eikj

[
iei k

2 sin
k

2
ak + ei k

2 cos
k

2
a†
−k

]

=
1

2
√

L
∑
k

eikj
[
eik ak − ak + eik a†

−k + a†
−k

]

=
1

2

[
aj+1 − aj + a†

j+1 + a†
j

]

And we find the localised quasiparticles

ãj =
1

2

(
aj+1 − aj + a†

j+1 + a†
j

)
(1.114)

which we already derived (up to a global phase) in the previous analysis of this special case.

Recall that for w = |∆| and µ = 0 we have ε(k) = 2w and thus by Parseval’s theorem HPBC =

2w ∑j

(
a†

j aj − 1
2

)
. �

� Dynamics of quasiparticles for non-ideal parameters

Up to now we mostly were concerned with the ideal Majorana chain, i.e. the parameters

|∆| = w > 0 and µ = 0, where the Hamiltonian takes a simple form in terms of localised

quasiparticles with flat spectrum, ε(k) = 2w. Due to this band structure there is no dynamics

for the elementary excitations ã†
j . In an experiment this ideal case cannot be prepared exactly,

meaning there will inevitably be small perturbations due to |∆| ≈ w > 0 and µ ≈ 0.

To get an intuition for the effect of such perturbations on the quasiparticles it is enlightening

to express the full Hamiltonian (see Eq. (1.61))

H = −
L−1

∑
i=1

[
wa†

i ai+1 − ∆aiai+1 + h.c.
]
− µ

L

∑
i=1

(
a†

i ai −
1

2

)
(1.115)

in terms of quasiparticle operators ãj and ã†
j . To this end, recall that the Hamiltonian can be

recast in Majorana modes

H =
i

2

L−1

∑
i=1

[(|∆|+ w)c2ic2i+1 + (|∆| − w)c2i−1c2i+2]− µ
i

2

L

∑
i=1

c2i−1c2i (1.116)

(see Eq. (1.68)). This is some kind of universal form from which the Majorana modes can now be

repaired arbitrarily to yield fermionic degrees of freedom. Clearly, we combine them according

to

ãi =
1

2
(c2i + ic2i+1) and ã†

i =
1

2
(c2i − ic2i+1) . (1.117)

We already derived the form of the first part in these modes. If we introduce J = w + |∆| the

Hamiltonian reads

H = J
L−1

∑
j=1

(
ã†

j ãj −
1

2

)
+ (|∆| − w)

i

2

L−1

∑
i=1

c2i−1c2i+2 − µ
i

2

L

∑
i=1

c2i−1c2i (1.118)
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where the part proportional to J describes the ideal Majorana chain and the subsequent parts are

perturbations proportional to |∆| − w and µ, respectively. A cumbersome but straightforward

calculation yields

i

2

L−1

∑
i=1

c2i−1c2i+2 = HNNN,BND + HNNN,BLK and
i

2

L

∑
i=1

c2i−1c2i = HNN,BND + HNN,BLK .

The perturbation in |∆| − w gives rise to the next-nearest neighbour (NNN) dynamics for

quasiparticles in the bulk (BLK)

HNNN,BLK =
1

2

L−2

∑
j=2

(
ãj−1 ã†

j+1 − ã†
j−1 ã†

j+1

)
+ h.c. (1.119)

and the coupling of the boundary (BND) mode b̃ ≡ ãL to the bulk via

HNNN,BND =
1

2

(
ã†

2 b̃† + ã2b̃† + b̃† ã†
L−2 + ãL−2b̃†

)
+ h.c. . (1.120)

HNNN,BLK leads to next-nearest neighbour hopping and pair creation & annihilation of quasi-

particles in the bulk. Hence the quasiparticles obtain a non-trivial dynamics which lets them

diffuse coherently through the system. Note that although the number of quasiparticles is not

conserved, their parity is. This is true since it was true for the physical fermions a†
i in the original

formulation of the theory. The most interesting novelty is due to HNNN,BND which couples the

delocalised (!) boundary mode to the excitations of the bulk. Namely, excitations from the bulk

can hop into the boundary mode or pairs of quasiparticles can be created where one partner is

directly inserted into the boundary mode.

Analogously, the perturbation in µ gives rise to the nearest neighbour (NN) dynamics for

quasiparticles in the bulk

HNN,BLK =
1

2

L−1

∑
j=2

(
ãj−1 ã†

j − ã†
j−1 ã†

j

)
+ h.c. (1.121)

and the coupling of the boundary mode to the bulk via

HNN,BND =
1

2

(
ã†

1 b̃† + ã1b̃† + b̃† ã†
L−1 + ãL−1b̃†

)
+ h.c. . (1.122)

The effects of HNN,BLK and HNN,BND are comparable to the ones discussed above – besides

the fact that the hopping and pair creation & annihilation affects nearest-neighbour sites. It is

important to realise that the hopping into the boundary mode provides quasiparticles with a

tunnelling mechanism between the two ends of the chain – which are macroscopically far apart!

This leads to new, macroscopically delocalised eigenmodes of the system, as can be seen for

example in Fig. 1.6 (c).
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� Figure 1.12: Emergent dynamics for quasiparticles away from the ideal Majorana chain at |∆| = w > 0,
µ = 0. The ideal Majorana chain features a flat band structure ε(k) = J = |∆| + w. As a consequence,
elementary excitations remain stationary and do not show any dynamics. This behaviour changes for
|∆| 6= w and µ 6= 0 as can be formally seen in Eq. (1.123). In the bulk, |∆| 6= w leads to next-nearest
neighbour (NNN) hopping (ãj−1 ã†

j+1) and pair creation & annihilation (ã†
j−1 ã†

j+1) of quasiparticles. Simi-

larly µ 6= 0 induces nearest-neighbour (NN) hopping (ãj−1 ã†
j ) and pair creation & annihilation (ã†

j−1 ã†
j ) of

quasiparticles. It is important to realise that now the delocalised boundary mode b̃ = ãL shows up in the
perturbations which is a result of the leakage of the edge modes into the bulk. The bulk couples via hop-
ping (ã2b̃†,ãL−2b̃†,ã1b̃†,ãL−1b̃†) and pair creation & annihilation (ã†

2 b̃†,ã†
L−2b̃†,b̃† ã†

2 ,b̃† ã†
L−2) to the boundary

mode. Note that the interaction with the boundary mode is symmetric between both ends of the chain
(albeit the figure suggests otherwise) as b̃ is delocalised.

To conclude, one finally ends up with

HOBC = HMJ + (|∆| − w) [HNNN,BND + HNNN,BLK]− µ [HNN,BND + HNN,BLK] . (1.123)

where HMJ = J ∑
L−1
j=1

(
ã†

j ãj − 1/2
)

describes the ideal Majorana chain with localised quasiparti-

cles as fundamental excitations whereas the additional terms impose non-trivial dynamics and

pair creation & annihilation on these excitations. As a consequence, the disturbed ground state

is not void of quasiparticles anymore. We illustrate our findings in Fig. 1.12.

�

Topological invariants: The Majorana chain as a topological phase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us now derive one of the most intriguing properties of the Majorana chain which is, by

the way, responsible for the very existence and stability of the edge modes with respect to

static disorder. The basic idea is to define a partial7, continuous functional ϕ on the space H of

Hamiltonians (which feature certain symmetries) that maps on a space with discrete topology,

usually some subset of Z. By construction, these functionals often have a topological character

since they are defined as a topological invariant of (continuous) mappings from the Brillouin

zone (which is a smooth, compact manifold after all) into some other topological space.

As a paradigmatic example let H = {H(µ, w, ∆) | µ, w, ∆ ∈ R} be the set of Majorana chain

Hamiltonians H(µ, w, ∆) which can be identified with R3. Then all considered Hamiltonians

can be cast in the Nambu representation of Eq. (1.104). Note that Hk is Hermitian and traceless

7The domain is usually a proper subset of H. I.e. there are Hamiltonians H in H such that ϕ(H) is undefined. In
most cases, ϕ is well defined on Hamiltonians with spectral gap in the thermodynamic limit.
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and thus can be written as Hk = hkσ where σ is a column vector of Pauli matrices. More

precisely:

Hk =

[
−(2w cos k + µ) −2∆i sin k

2∆i sin k (2w cos k + µ)

]
= −(2w cos k + µ)σz + 2∆ sin kσy (1.124)

and therefore

hk =




0

2∆ sin k

−(2w cos k + µ)


 . (1.125)

The norm of hk is given by the energy spectrum ε(k). That is, as long as H(µ, w, ∆) is gapped,

hk can be normalised to ĥk := ε(k)−1hk for all k ∈ [0, 2π). If we drop the vanishing x-component

and consider ĥk as a vector in S1 =
{

x ∈ R2 | |x| = 1
}

we can write

ĥk : [0, 2π) −→ S1; k 7→ ĥk . (1.126)

Note that due to the periodicity of ĥk the domain [0, 2π) can be equipped with the topology of

a circle8 while preserving the continuity of ĥk. So we actually get a continuous mapping of the

form

ĥk : S1 −→ S1; k 7→ ĥk (1.127)

whose homotopy classes are described by the homotopy group π1

(
S1
) ∼= Z. If we denote by

Γ
[

ĥk

]
the winding number of ĥk with respect to the origin (which is just a label for the homotopy

classes in π1

(
S1
)
) we end up with the following continuous functional

ϕ : H −→ Z; H 7→ Γ
[

ĥk

]
(1.128)

which classifies our Hamiltonians by topological numbers ϕ[H] ∈ Z. Since ϕ[H] is constant on

connected components of H as long as the Hamiltonian remains gapped, it can only change when

the spectral gap closes; this is the signature of a topological phase transition.

As it turns out, in the present case the winding numbers are restricted to 0 and 1. Thus ϕ is

called a Z2-topological invariant. In Fig. 1.13 the behaviour of hk and ĥk is illustrated.

Clearly Γ [hk] = Γ
[

ĥk

]
since normalisation does not effect winding numbers. A decomposi-

tion of hk reads

hk =

[
h

y
k

hz
k

]
= 2

[
∆ sin k

−w cos k

]
+

[
0

−µ

]
. (1.129)

It is therefore trivial to see that

ϕ[H(µ, w, ∆)] = Γ
[

ĥk

]
=





0 for 2|w| < |µ|
undef. for 2|w| = |µ|
1 for 2|w| > |µ|

(1.130)

8Which is math speak for the physicists notion of a Brillouin zone in one dimension.
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� Figure 1.13: Illustration of the winding number Γ as topological invariant of the Majorana chain in the
trivial (Γ = 0) and topological phase (Γ = 1). In (A) we show the path of hk in the y-z-plane as 0 ≤ k < 2π
runs through the Brillouin zone. We set ∆ = 1 and ω = 0.5. In the trivial phase for µ = −1.5 the path of hk

does not enclose the origin and the winding number is Γ = 0. However, in the topological phase for µ = 0
the path encloses the origin and we find Γ = 1. In (B) and (C) we show the normalised vector ĥk for both
cases separately. There the winding numbers Γ = 0 (B) and Γ = 1 (C) become evident. Note that for both
shown systems the spectrum is gapped as the paths do not cross the origin. Hence the winding numbers
are well defined.

which tells us that there is a topological phase transition at 2|w| = |µ| for ∆ 6= 0. In Fig. 1.13

these two cases are shown for ∆ = 1 and w = 0.5. Thus the critical chemical potential is

µc = −2w = −1. Note how the winding numbers differ for µ = 0 and µ = −1.5.

Note that Kitaev’s original work employs another functional ϕ′ to characterise the topological

phase transition. In [3] the Majorana number defined in terms of the Pfaffian Pf[Λ] is introduced

as an algebraic property of the Hamiltonian H. The equivalence of these two approaches is a

well-known fact [76].

Jordan-Wigner transformation: We just solved the 1D Ising model in transverse field
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As we will be concerned with a dissipative version of the Ising model in transverse field (see

Chapter 2), let us elaborate a nice connection between the topological phase transition we found

above and the exemplary quantum phase transition of the one dimensional quantum Ising

chain with transverse magnetic field. What follows exemplifies the power of formal mappings

between seemingly different theories in general and the usefulness of the famous Jordan-Wigner

transformation in this particular case [14, 77].

The basic idea behind the Jordan-Wigner transformation (JWT) is to find a representation

of the Dirac algebra FL (describing a system of spinless fermions) on the Hilbert space of L

spin- 1
2 degrees of freedom HL =

⊗L
i=1 C2

i . Usually the JWT is applied to systems in one spatial

dimension since then it is possible to map quasilocal fermionic theories on quasilocal theories

with spin degrees of freedom. In higher dimensions the JWT can be applied formally as well –

however, if the interactions of one system are truly high-dimensional, the transformed system

will exhibit non-local interactions; which is considered not only unphysical but (in most cases)

does not help from a mathematical point of view whatsoever.
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To define the algebra representation of FL consider HL =
⊗L

i=1 C2
i with the standard basis

{|↑〉 , |↓〉} for each spin. Within this basis, the representation ρL reads

ρL : FL −→ EndHL
∼= Mat

(
C, 2L

)
(1.131a)

aj 7→ ρL

(
aj

)
=

[
j−1

∏
k=1

σz
k

]
σ+

j (1.131b)

a†
j 7→ ρL

(
a†

j

)
=

[
j−1

∏
k=1

σz
k

]
σ−j (1.131c)

which is easily confirmed to carry the Dirac algebra. Here σ± = 1
2 (σ

x ± iσy) denote the usual

ladder operators for spin- 1
2 representations of su(2). It is important to realise that the original

local fermionic operators ai and a†
i are mapped to non-local string-operators in the spin-system

where the strings are responsible for the Fermi statistics9.

Now let us start from the Majorana chain Hamiltonian with the restriction that |∆| = w

(µ ∈ R is arbitrary):

HMJ = −w
L−1

∑
i=1

[
a†

i ai+1 − aiai+1 + h.c.
]
− µ

L

∑
i=1

(
a†

i ai −
1

2

)

= w
L−1

∑
i=1

(
ai − a†

i

) (
ai+1 + a†

i+1

)
− µ

L

∑
i=1

(
a†

i ai −
1

2

)

By means of Eq. (1.131) it follows easily

ρL

(
a†

i ai

)
= σ−i σ+

i =
1

2
(1− σz

i ) (1.132a)

ρL

(
ai − a†

i

)
=

[
i−1

∏
k=1

σz
k

]
iσ

y
i (1.132b)

ρL

(
ai+1 + a†

i+1

)
=

[
i

∏
k=1

σz
k

]
σx

i+1 (1.132c)

and subsequently

ρL

(
HMJ

)
= w

L−1

∑
i=1

iσ
y
i σz

i σx
i+1 +

µ

2

L

∑
i=1

σz
i = −w

L−1

∑
i=1

σx
i σx

i+1 +
µ

2

L

∑
i=1

σz
i . (1.133)

An additional unitary −π/2-rotation U = ∏j exp
(

i π
4 σ

y
j

)
about the y-axis yields UσzU† = −σx

and UσxU† = σz and therefore

HTIM = UρL

(
HMJ

)
U† = −w

L−1

∑
i=1

σz
i σz

i+1 −
µ

2

L

∑
i=1

σx
i (1.134)

which is just the Ising model in a transverse magnetic field with open boundary conditions.

9Whereas in this case the strings are mere formal artefacts, there are two dimensional systems where strings or
string-nets give rise to emergent fermions or even anyons [78, 79]. An example would be the toric code in 1.3.3.
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So we conclude

◮ Result 1.2: Majorana chain and transverse field Ising model

The one dimensional quantum Ising model with transverse magnetic field is mathematically

equivalent to the Majorana chain with open boundary conditions and restriction ∆ = w. The

corresponding parameters are

w =̂ J and µ =̂ 2hx (1.135)

with the nearest-neighbour (ferromagnetic) interaction J and the x-magnetic field hx.

One can use this mapping to derive the exact spectrum of the transverse field Ising model in one

spatial dimension. However, be aware that we used open boundary conditions to avoid non-local

interactions and to end up with an exact mapping to the TIM. Indeed, if the Majorana chain is

closed, the JWT of the additional hopping and pairing terms yield

ρL

((
aL − a†

L

) (
a1 + a†

1

))
=

[
L−1

∏
k=1

σz
k

]
iσ

y
Lσx

1 = −σ
y
1

[

∏
1<k<L

σz
k

]
σ

y
L (1.136)

which is a highly non-local interaction and thus unphysical (additionally it destroys the exact

equivalence connecting the two models!).

Note on superselection rules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Majorana chain Hamiltonian features only contributions with an even numbers of fermionic

creation and annihilation operators (if we count creation operators as +1 and annihilation op-

erators on the same site as −1). This is equivalent to say that HMJ preserves the fermionic parity

P = ∏j(−1)
a†

j aj . This parity conservation proves crucial in the application of the Majorana

chain as a quantum memory, see the following paragraph 1.3.4. Moreover, the existence of the

Majorana edge modes is closely related to the parity conservation of the theory.

The prototypical realisation of the Majorana chain is based on superconductor-semiconductor

hybrid structures where the proximity of a semiconducting nanowire to a superconducting bulk

induces pairing of electrons in the wire. Cooper pairs can tunnel from the wire into the bulk

and vice versa; but this interaction preserves the parity of the wire [3, 80]. It is a well-known

experimental fact that the parity of a system can be preserved reasonably well — in contrast to

many other quantities.

It seems that parity is a particularly “strong” symmetry of nature. Such “strong” symmetries

are called superselection rules. Superselection rules were first introduced by Wick, Wightman and

Wigner for the parity of elementary particles [81]; a historical review on superselection rules can

be found in [82]. The basic idea of superselection is that the Hilbert space of physically realisable

states decays into disjoint parts called superselection sectors. States from different superselection

sectors cannot form coherent superpositions. To put it more algebraically: Not all self-adjoint

operators in B(H) correspond to physically realisable observables. That is, there is no physical

observable that detects the relative phase between two states from different superselection sec-

tors. There are various reasons for superselection rules and some of them are just empirically

motivated.
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For instance, parity superselection expresses the fact that there are no stable coherent super-

positions of states with different (fermionic) parities. If one tried to do so, the prepared state

would immediately decohere into a mixture of parity eigenstates. This accounts for the em-

pirical fact that all observable states in nature are parity eigenstates. Therefore all the coherent

physics of fermions takes place in one of the two (even or odd) parity superselection sectors. As

Hamiltonians describe the unitary (that is, coherent) evolution of physical systems, fermionic

Hamiltonians are only considered a description of the latter if they are parity conserving; then

any coherent evolution takes place in a parity superselection sector.

As stated above, the reasons for superselection are various and their discussion is way be-

yond the scope of this thesis. Let me give just a few references for this intriguing topic: Another

important superselection rule was discussed by Aharonov in [83], namely charge superselection

which expresses the impossibility of superimposing states with different electrical charge. An

algebraic treatment of superselection is given in [84] and in the introductory paragraphs of [85].

There are also abstract arguments involving measurement theory to define the concept of su-

perselection more precisely [86]. Superselection is also an important concept in quantum in-

formation theory [85]. In this connection, one of the most fascinating approaches is to view

superselection as lack of “reference frames”, see Ref. [87] for an illuminating review.

Let us now return to the Majorana chain and its application as quantum error correction

code; but keep in mind that there is a lot more to it than meets the eye if we claim that parity is

conserved.

The Majorana chain as a quantum error correction code
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following we are going to review the algorithmic error correction procedure along the

lines of [52]. To this end, the two-fold degenerate ground state space of the Hamiltonian

H = iw
L−1

∑
j=1

c2jc2j+1 , (1.137)

which is Kitaev’s Majorana chain for ideal parameters |∆| = w > 0 and µ = 0, is reformulated

as a quantum code within a (generalised) stabiliser framework. If we define

Sj ≡ −ic2jc2j+1 Stabiliser

Ej ≡ −ic2j−1c2j Elementary (phase) error

the Hamiltonian reads H = −w ∑
L−1
j=1 Sj. Since S†

j = Sj, S2
j = 1 and

[
Si, Sj

]
= 0, the ground state

space is the protected space of the stabiliser S = span
{

Sj | 1 ≤ j ≤ L− 1
}

, that is

PS = {|Ψ〉 ∈ H | S |Ψ〉 = |Ψ〉} . (1.138)

Since there are L fermionic sites but only L − 1 independent stabiliser generators Sj, we find

dimPS = 2L−(L−1) = 2, which corresponds to the degeneracy due to the boundary mode.

Note that Sj = −ic2jc2j+1 = 1− 2ã†
j ãj = (−1)

ã†
j ãj measures the fermionic parity (or occupancy)

of quasiparticle site j. In contrast, the elementary error Ej = −ic2j−1c2j = 1− 2a†
j aj = (−1)

a†
j aj
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measures the fermionic parity on the physical site j. It is easy to see that [El , Em] = 0 and[
Ei, Sj

]
= 0 if i 6= j ∧ i 6= j + 1 but

{
Ei, Sj

}
= 0 iff i = j ∨ i = j + 1 . (1.139)

Thus the boundaries of error strings Ei1 . . . Ein carry elementary excitations of the Hamiltonian

H. The latter occur in pairs due to the even number of fermionic modes in Ej, i.e. Ej =

ã†
j ãj−1 + ãj ãj−1 + ã†

j−1 ã†
j + ã†

j−1 ãj conserves the quasiparticle parity.

To point out which errors can be corrected (and which not) it is convenient to recast the

code in terms of spin- 1
2 operators

{
σx

i , σ
y
i , σz

i

}
, i.e. Pauli matrices. This can be done by the

Jordan-Wigner transformation

ρ(c2j) =

[
j−1

∏
i=1

σz
i

]
σ

y
j and ρ(c2j−1) =

[
j−1

∏
i=1

σz
i

]
σx

j (1 ≤ j ≤ L) (1.140)

which yields a representation ρ of the Majorana algebra on HL =
⊗L

i=1 C2
i .

In this representation we find

Sj = −iσ
y
j σz

j σx
j+1 = σx

j σx
j+1 Stabiliser

Ej = −iσx
j σ

y
j = σz

j Elementary (phase) error .

If we consider the system as L qubit register, it is now obvious that Ej acts as single-qubit

phase flip error whereas Sj represents the product of two adjacent bit-flip errors. Now consider

an arbitrary error E = ExEz where Ex is an even combination of bit-flip errors σx
j and Ez is an

arbitrary combination of phase errors σz
j

10. Then it is clear that E may be written as product of

elementary errors Ej and stabilisers Sj (up to a global phase).

Before we proceed with the correction of E, we should explain why the assumption that Ex

is an even product of bit-flip errors is legit. To this end recall that the parity operator can be

written as

P =
L

∏
j=1

(−1)
a†

j aj =
L

∏
j=1

(
−ic2j−1c2j

)
= −

L−1

∏
j=1

(
−ic2jc2j+1

)
· (−ic2Lc1) = −

L

∏
j=1

(−1)
ã†

j ãj =
L

∏
j=1

σz
j .

Please note that the quasiparticle vacuum |Vac〉 obeys ∏
L
j=1(−1)

ã†
j ãj |Vac〉 = |Vac〉 and therefore

has odd parity! The superselection rule for fermionic parity demands that [P, A] = 0 for any

admissible observable A, that is, any physically realisable error E commutes with the parity

operator P. This is only possible if Ex contains an even number of bit-flip errors.

Therefore it is legit to claim that E = ExEz contains an even number of bit-flip errors and

consequently can be written in the form

E ∝ Ei1 . . . Ein Sj1 . . . Sjm (1.141)

10Due to linearity, this is a sufficient condition for the correctability of arbitrary single-qubit errors with even bit-flip
operators.
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where the proportionality takes account of the global phase due to (potential) reordering. If we

start from a logical state in the code space, |Ψ〉 ∈ PS , the corrupted state reads

|Ψ〉E = Ei1 . . . Ein Sj1 . . . Sjm |Ψ〉 = Ei1 . . . Ein |Ψ〉 (1.142)

and we can just ignore the bit-flip errors completely! To correct this error we have to perform

a syndrome measurement, that is, we measure all stabilisers Sj and obtain for each (dual) site j

an eigenvalue sj = ±1. These measurements cause projections of the corrupted state on Sj-

eigenspaces, namely

|Ψ〉E [{sj}] ∝
L−1

∏
j=1

[
1

2

(
1+ sj · Sj

)]
|Ψ〉E . (1.143)

The crucial point of a quantum error correction code is that such syndrome measurements can-

not destroy logical coherences. To map |Ψ〉E [{sj}] back to the code space PS (which corresponds

to the error syndrome sj = 1 for all j), the elementary error Ei1 . . . Ein must be reverted. The

problem is that we cannot infer {i1, . . . in} from the error syndrome {sj} with certainty since Sj

detects only endpoints of error chains. Then it is clear that there are exactly two complementary

operators that map |Ψ〉E [{sj}] back to the code space: C[{sj}] and C[{sj}] are complementary

chains of error strings
{

Eki

}
such that their ends coincide with the (dual) sites where sj = −1.

It is easy to see that there are exactly two of these strings and that it follows

C[{sj}] |Ψ〉E [{sj}] = |Ψ〉 and C[{sj}] |Ψ〉E [{sj}] =
L

∏
j=1

Ej |Ψ〉 = P |Ψ〉 (1.144)

or vice versa. In both cases we find that C[{sj}] |Ψ〉E [{sj}] ∈ PS and C[{sj}] |Ψ〉E [{sj}] ∈ PS .

How to choose the correct operator? Usually one assumes that the error rate is small; hence

the error chain with a minimum number of elementary errors is the correct choice in most cases.

This is called minimum weight decoding as we choose the correction operator with the smaller total

length of the error chain. If we can ensure that there occurred at most ⌊ L−1
2 ⌋ errors, then the

above procedure yields the correct result |Ψ〉 with certainty. If there are more than ⌊ L−1
2 ⌋ errors,

the above procedure fails as we choose the complementary error string and thereby introduce a

logical phase error P. This pairing of excitations (sj = −1 denotes a site where a quasiparticle ã†
j

resides) is typical for topological quantum error correction codes; recall the pairing of anyons

during the correction procedure of the toric code in that regard.

Here we considered the ideal Majorana chain with parameters |∆| = ω and µ = 0. In the

last paragraph of 1.3.4 we showed that |∆| 6= ω causes next-nearest neighbour tunnelling and

pair creation & annihilation of quasiparticles ã†
j and µ 6= 0 is responsible for nearest-neighbour

hopping and pair creation & annihilation. In the language of the quantum code this reads: Away

from the ideal point, pairs of errors are created & annihilated coherently and their dispersion is

non-trivial, that is, they diffuse through the system. This diffusion causes logical errors whenever

a pair of excitations is created and the partners reach different ends of the chain.

To sum it up: The abstract quantum code cannot correct odd bit-flip errors. However, due

to the implementation as the ground state space of a fermionic Hamiltonian, parity superselec-

tion inhibits potentially uncorrectable errors. In this sense, the Majorana chain is a full-fledged

quantum error correction code. There are two additional points worth mentioning: First, the Ma-

jorana chain is often called a topological quantum memory. Where is the topology? It is important

to distinguish between topological quantum memories such as the toric code which are based
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on topologically ordered phases with a topology dependent ground state degeneracy, and topolog-

ical quantum memories such as the Majorana chain which are basically “non-topological” error

correction codes that can be implemented as the ground state space of a Hamiltonian which is

protected by a topological invariant (i.e. a winding number). In a nutshell: The existence of the

code space and its resilience against disorder in the chain is based on topological effects. The

error correction code makes use of this topologically protected code space and of parity super-

selection to provide a single logical qubit which can be restored by an active error correction

scheme.

The second point is that a single Majorana chain cannot be used as a quantum memory for

the same reason that there cannot occur odd bit-flip errors: The two logical qubit states
∣∣0̃
〉

(quasiparticle vacuum) and
∣∣1̃
〉
= b†

∣∣0̃
〉

(occupied boundary mode) clearly belong to different

superselection sectors. It is therefore physically impossible to create coherent superpositions of

these states, which after all is the whole point of a quantum memory. An actual implementation

would require a reference system which compensates for the parity change so that the total

parity of the chain and the reference system remains unaltered. Usually one thinks of a second,

parallel Majorana chain as this reference system so one can use four unpaired Majorana modes

to create two fermionic zero modes. Then a logical bit-flip corresponds to an even parity opera-

tion on both modes. In most cases it is nevertheless possible to think of a single chain and allow

coherent superpositions of the occupied and unoccupied edge mode without complications; we

just have to keep in mind that actual implementations require more sophisticated setups.

Experimental realisations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So far the Majorana chain was presented as a purely theoretical model that supports unpaired

Majorana fermions at the edges of a quantum wire. There are two main reasons why there have

been tremendous efforts towards experimental realisations in last years after Kitaev’s ground

breaking proposal [3]: First, Majorana fermions have been proposed to play a crucial role in

high energy physics, namely in neutrino physics. Unless there are convincing experimental

results that support the neutrinoless double beta decay (or related effects), there is no evidence

that Majorana fermions actually exist in nature — at least as fundamental particles. With the

Majorana chain as a starting point, condensed matter physicists may be the first to see actual

Majorana fermions in the lab. Even though the Majoranas in condensed matter systems are not

fundamental in the perception of particle physicists (they are quasiparticles after all), its remains

an intriguing task to create and observe these bizarre particles.

The second reason was given in the previous paragraph: The Majorana chain is a quantum

memory that combines topological protection with protection by superselection, that is, par-

ity conservation. Furthermore, the Majoranas exhibit non-abelian braiding statistics (they are

non-abelian anyons) which makes them possible constituents of a topological quantum com-

puter [88].

Mostly driven by the promising applications to quantum information11, there has been a

variety of proposals for the implementation and detection of unpaired Majorana fermions in

quantum wires. See e.g. Refs. [89–92] for some of the most recent publications. There were

also proposals to extend the notion of Majorana wires to higher spatial dimensions in terms of

11At least it is well received by the public audience if one claims to “built a quantum computer”. To tell people that
one badly wants to see a “fermion that is its own antiparticle” usually doesn’t produce the same effect.
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“Majorana fermion codes” [52] or to improve the resilience of the stored quantum information

by static disorder [53].

This is all theory about experimental realisations. As of this writing and to the best of my

knowledge there is no realisation of a working quantum memory based on Majorana fermions.

There are, however, most recent experiments that suggest the observation of signatures which

might be caused by Majorana fermions [80, 93]. Nevertheless, the experimental results merely

support the existence of these elusive particles; an unarguable verification remains to be done.
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1.4 Lattice gauge theories and Higgs fields
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section we introduce two paradigmatic examples of lattice gauge theories in condensed

matter physics as we will be concerned with the second one in Chapter 3. A comprehensible

outline of such theories can be found in Kogut’s review [94] and Wen’s textbook on quantum

field theory of many body systems [15]. We start our discussions below with the pure Z2-

Ising gauge theory originally introduced by Wegner in [95] and comprehensibly discussed by

Fradkin and Susskind in [96]. This is done mainly due to didactical purposes and in view of

the subsequent discussion of the more complex Z2-Gauge-Higgs model which was originally

introduced by Fradkin and Shenker in [2].

1.4.1 The Z2-Ising gauge theory

To convey a feeling for quantum lattice gauge theories we start with a paradigmatic model that

already played its part in this thesis: The Ising model in a transverse magnetic field which

we mimicked dissipatively in chapter 2. This is not a gauge theory as it describes an ordinary

quantum mechanical many-body system on a lattice in D dimensions with a global Z2 symmetry

and equal numbers of physical and mathematical degrees of freedom12. The Hamiltonian reads

HTIM = −J ∑
〈i,j〉

σz
i σz

j − h ∑
i

σx
i = J


−∑

〈i,j〉
σz

i σz
j − g ∑

i

σx
i


 (1.145)

with the ferromagnetic spin-spin coupling J ∈ R
+
0 and the transverse magnetic field h ∈ R.

Usually one rescales time and introduces the parameter g ≡ h
J . We consider a two-dimensional

system on a square lattice in the following. Then for g → 0 the system is in a symmetry-

broken ferromagnetic phase with degenerate ground state space, for g → ∞ the symmetric

(paramagnetic) phase is restored. There is a quantum phase transition at the critical point

0 < gc < ∞ for T = 0 which survives for T > 0 in two and more spatial dimensions. In

the ferromagnetic phase at g = 0 the (gapped) Hamiltonian reads HTIM = −∑〈i,j〉 σz
i σz

j where

elementary excitations can be created by a local spin-flip σx
i which is encircled by a domain wall

on the dual lattice (i.e. the four bonds with its nearest neighbours with negative correlation).

Clusters of such excitations yield domains of flipped spins. The interior of the domain itself

gets not punished by the Hamiltonian though — only the boundary costs energy. That is, the

systems configuration (and hence its energy) can be described completely in terms of its domain

boundaries on the dual lattice (up to the global Z2 symmetry). The family of all domain walls

constitutes a set of closed strings or loops on the dual lattice. Such a loop configuration is static for

g = 0 but starts to fluctuate coherently if the magnetic field is switched on as gσx
i creates and

annihilates elementary excitations. In a certain sense it seems more natural to think of those

closed strings as the fundamental entities of the model than its actual constituents, the spins

living on the sites. At least this is a completely equivalent way of describing the theory.

The Z2-Ising gauge theory emerges naturally if we try to reformulate the TIM in terms of

domain walls or loops. The basic idea is to switch to the dual lattice and place new spins on its

12This will become clear in the course of the discussion below. But the crucial point is that the full Jordan algebra
O(H) of bounded self-adjoint operators on the system Hilbert space H is identified with observables.
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boundaries (which coincide with the boundaries of the original lattice) and encode the existence

of a domain wall in the original theory by a flipped spin in the x-basis, say |−〉:

In this sense we can map any state of the TIM to its corresponding domain wall configuration

encoded in the boundary spins of the dual lattice. No information is lost by this procedure but

the global spin orientation! That is, we map all 2(L+1)2
basis states of the TIM onto 2(l+1)2−1 new

basis states in some new Hilbert space H̃Z2
. But there is too much information encoded in the

new system as the original system comprised N = (L+ 1)2 spins if we consider a lattice of L× L

faces without periodic boundary conditions, its Hilbert space therefore read HTIM =
⊗

s∈S C2
s

with one spin for each of the (L + 1)2 sites s ∈ S. The new system comprises one spin per

bond of the dual lattice (which is itself a square lattice of the same dimensions). There are

2L(L + 1) = 2L2 + 2L bonds and the Hilbert space reads H̃
Z2 =

⊗
e′∈E′ C

2
e′ with one spin for

all 2L2 + 2L dual edges e′ ∈ E′. So the “loop state space” H̃
Z2 has more dimensions than the

original Hilbert space HTIM and, in this sense, encodes more information. The reason for this

growth in encoding capacity is evidently that not every state in H̃
Z2 can be mapped back to or

interpreted as a loop configuration of the original TIM:

In other words: If we define a theory, that is a Hamiltonian, on this enlarged Hilbert space

which describes the physics of the original model, namely the TIM, there are more mathematical

degrees of freedom available as there are physical degrees to describe. The physical degrees of

freedom being the (L+ 1)2 original spins which could all be manipulated and set independently

by physical means. We have to get rid of the 2L2 + 2L− [(L + 1)2 − 1] = L2 superfluous degrees

of freedom which we cannot interpret in terms of physical entities in the original model13. They

key is that we have to distinguish between physical and unphysical states in H̃
Z2 : The physical

ones are those states that can be interpreted as closed loop- or domain configurations (see figure

above). It is easy to see that the global requirement of a closed string net can be enforced locally

by demanding that there is an even number of adjacent flipped spins at each site (each vertex of

the “flipped-spin-graph” must be of even degree). To formalise this requirement, let us denote

13The additional −1 in [(L + 1)2 − 1] is due to the lost Z2 symmetry of the mapping. That is, the loop representation
cannot distinguish between a state and its global spin-flipped counterpart. This global symmetry of the TIM is a single
degree of freedom which is not present in the Hilbert space of loop states. Consequently we should not subtract it in
the above calculation.
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the basis of H̃
Z2 by |x〉 where x ∈ {+,−}E′ . We call a dual edge e′ in the state |−〉e′ occupied by

a string and unoccupied otherwise. Define the operator

As′ := ∏
e′∈s′

τx
e′ (1.146)

for each vertex s′ ∈ S′ of the dual lattice which multiplies the occupancies of its adjacent spins.

Note that τ
x,y,z
e′ denotes the spin- 1

2 representations of SU(2) acting on H̃
Z2 whereas σ

x,y,z
s denotes

the corresponding representation on HTIM. For short: The Pauli matrices τ and σ act on dual

edges and original sites, respectively. Then the requirement of a basis state |x〉 to be physical

reads

As′ |x〉 = |x〉 (1.147)

which is called gauge condition or Gauss’s law. It is easily verified that there are exactly (L+ 1)2−
1 = L2 + 2L basis states which satisfy this condition which is exactly the number of physical

degrees of freedom in the original theory minus the lost Z2 symmetry. This is the base-two

logarithm of the dimension of the physical subspace

HZ2
:= span

{
|Ψ〉 ∈ H̃Z2

| ∀s′∈S′ : As′ |Ψ〉 = |Ψ〉
}

< H̃Z2
(1.148)

which can be computed formally by well-known facts about the stabiliser formalism, see [37]

for an introduction: First note that HZ2
is a stabiliser subspace PS with stabiliser

S = span
{

As′ | s′ ∈ S
′} . (1.149)

Then it can be shown that dimHZ2
= 2n−k where n is the total number of spins in the system,

here n = 2L2 + 2L, and k denotes the number of independent stabiliser generators, here the

number of sites of the dual lattice minus one14 k = L2 + 1− 1 = L2. This results in n − k =

2L2 + 2L− L2 = L2 + 2L = (L + 1)2 − 1 which is the number of required physical degrees of

freedom.

This discussion demonstrates that the new spins on the dual edges are not physical degrees

of freedom on their own. There are physical degrees of freedom hidden in the Hilbert space

H̃
Z2 but they are not local in the sense that each physical degree of freedom corresponds to

a single spin one some dual edge. The new spins are just the mathematical substrate beneath

the physical entities — which are closed strings. To put it differently: We did not ask for the

spins on the dual edges. But as long as we lack mathematical tools that are more convenient to

represent closed strings, we have to put up with them and contrive a method to throw away the

additional degrees of freedom that come along; namely the the local gauge condition.

So far we found a representation of the original Hilbert space HTIM (modulo a global spin-

flip) in the larger Hilbert space H̃
Z2 and called it H

Z2 . What are the counterparts of physical

operations described by bounded operators in B (HTIM) and observables in O (HTIM)? As a

physical operation maps physical states onto physical states we have to restrict ourselves to

bounded operators B in B
(
H̃

Z2

)
such that BH

Z2 ≤ HZ2 (that is, endomorphisms on H
Z2).

For observables one additionally demands Hermiticity. For any original operator B ∈ B (HTIM)

there is a corresponding operator B′ ∈ B
(
H̃

Z2

)
which preserves physical states. This mapping

is not one-to-one due to the trivialisation of the global spin-flip X = ∏s σx
s , that is, the corre-

14There are L2 dual sites “inside” the original lattice and an additional one in the surrounding area. So this gives a
total of L2 + 1 dual sites. Inspection shows that the gauge condition Aa for the exterior site a can be expressed by the
product of all other gauge conditions. Therefore we find L2 + 1− 1 independent gauge conditions As.
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sponding operator of X is the identity 1 on H̃
Z2 as a global spin-flip does not change the loop

structure of the domain boundaries. Note that to check whether BH
Z2 ≤ HZ2 it is sufficient to

show that B is consistent with the gauge conditions, i.e. [B, As] = 0 for all dual sites s.

The scene is set. But where are the actors? We originally aimed at a translation of the TIM,

defined by its Hamiltonian HTIM, into the “loop language”. Therefore we have to translate HTIM

to a new Hamiltonian H
Z2 on H̃

Z2 which has a physical interpretation. We saw that this is

equivalent to claim [As′ , H
Z2 ] = 0 for all dual sites s′ ∈ S′. This condition is automatically

satisfied if we carefully translate the summands of HTIM to their counterparts of H
Z2 :

We identified a domain wall with a spin in state |−〉 on the corresponding dual edge.

Algebraically this implies the mapping

σz
i σz

j 7→ τx
e′=(ij) for i ∈ Nj (1.150)

between subalgebras of B (HTIM) and B
(
H̃

Z2

)
. A domain wall between sites i and j is

characterised by σz
i σz

j = −1 in the original model and by τx
e′=(ij)

= −1 in the loop model.

Note that the gauge condition is built into this mapping as a multiplication of correlations

σz
i σz

j along a closed path reveals.

The magnetic field creates elementary excitations in the original model, that is, flips spins.

In the loop model the corresponding elementary excitations are minimal loops of four

edges that surround the flipped spin on the original lattice. This suggests the mapping

σx
i 7→ Bp′ ≡ ∏

e′∈p′=i

τz
e′ (1.151)

where p′ = i denotes the face (or plaquette) of the dual lattice that corresponds to site i

on the original lattice. Indeed, Bp′ flips the dual spins on the perimeter of the dual face p′.

Note that
[

As′ , Bp′
]
= 0 for all dual sites s′ and faces p′ which tells us that Bp′ is a physical

operator. This is to be expected as it represents a single spin flip in the original model,

which is a physical operation after all.

Note that we did neither define a full algebra homomorphism on B (HTIM) nor is this mapping

onto with respect to B
(
H̃

Z2

)
(not all mathematical operations on the new Hilbert space have

physical counterparts in the old theory). Application of this partial mapping yields the new

Hamiltonian

HZ2
= − ∑

e′∈E′
τx

e′ − g ∑
p′∈P′

∏
e′∈p′

τz
e′ = − ∑

e′∈E′
τx

e′ − g ∑
p′∈P′

Bp′ (1.152)

that describes the dynamics of the TIM up to its global Z2 symmetry on H̃Z2
. Since it commutes

with all gauge conditions, it is a physical operator according to our interpretation and thus an

endomorphism on the physical subspace HZ2
. We may therefore restrict HZ2

to HZ2
.

As we are now deep within the “dual world” it is convenient to switch perspective and drop

the “dual” altogether, along with the primes for sites, edges and faces. Let us have a look at the

symmetries of HZ2
. To this end consider an arbitrary binary mapping

η : S → {−1, 1} , s 7→ ηs (1.153)
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on the sites and define the induced algebra isomorphism

η̂ : B
(
H̃

Z2

)
→ B

(
H̃

Z2

)
,





τx
e 7→ τx

e

τz
e=(st)

7→ ηsτz
e=(st)

ηt

. (1.154)

It is easy to see that the plaquette operators Bp are invariant under this mapping since there is

always an even number of factors −1 involved in their transformation. As a consequence, the

Hamiltonian HZ2
remains invariant with respect to any choice η. Note that a representation of

η̂ can be given in terms of the gauge operators As, namely

η̂ : B
(
H̃

Z2

)
→ B

(
H̃

Z2

)
, B 7→

[

∏
s,ηs=−1

As

]
B

[

∏
s,ηs=−1

As

]
(1.155)

which is easily verified to be equivalent to definition (1.154). From this perspective, the symme-

tries of the Hamiltonian read
[
As, HZ2

]
= 0 for all sites s. In contrast to the global Z2 symmetry

of the TIM, these are local Z2 symmetries of our new theory which we shall henceforth refer to

as Z2 Ising gauge theory.

There is another crucial difference to the former global symmetry. The latter was represented

by the global spin flip X which is a physical operation that maps physically distinct states onto

each other, for instance X |↑ . . . ↑〉 = |↓ . . . ↓〉. As σz
i is a physical operator in the original TIM,

the two states |↑ . . . ↑〉 and |↓ . . . ↓〉 clearly represent different states. If we consider the local

symmetries As of the new theory, we have to keep in mind that the physical states obey the

gauge condition As |Ψ〉 = |Ψ〉 and the physical operators B have to be consistent with the latter,

that is, [B, As] = 0. We are led to the conclusion, that the symmetries As have no effect on any

physically relevant quantity and do not modify any physical state. In short: These are no physical

symmetries of the described theory but emergent symmetries of the underlying mathematical

machinery. They are a consequence of our attempt to embed a physical theory into a much

larger mathematical Hilbert space. This is the crucial point of gauge theories.

Speaking of symmetries is it natural to ask whether they can break spontaneously. For the

TIM the answer is clearly yes as we know that in the ferromagnetic phase there is a degenerate

ground state manifold which includes states that transform under some non-trivial representa-

tion of the global symmetry group. For a pure gauge symmetry, in our case As on each site s,

the answer must be no since states that break the gauge symmetry are unphysical by definition.

This subtlety is pointed out very clearly in Ref. [15] which is also a good starting point for the

Z2 Ising gauge theory. Note that the notion of gauge symmetries can be developed via another

route, starting from classical gauge theories defined in terms of actions which remain invariant

with respect to a local gauge group. In this framework there are no “unphysical states” a priori.

The statement that local gauge symmetries cannot break spontaneously remains true nonethe-

less. This, however, requires a non-trivial proof and is known as Elitzur’s theorem [97]15.

It is now interesting to ask in which sense the phase transition of the TIM survived the

mapping to the Ising gauge theory. As the local symmetries cannot break and there is no

15 The reader may be curious how this goes together with the creation of the weak gauge boson’s mass by means of
the Higgs mechanism. This is commonly presented as the “spontaneous breaking of the SU(2) gauge symmetry” which
should not be possible according to our understanding of gauge symmetries. There is indeed a a lot of confusion even
among scientists regarding this point. In contrast to many accounts given in literature, it remains true that local gauge
symmetries cannot be broken spontaneously. What can break are global residuals of the gauge symmetry after gauge fixing,
see e.g. [98]. In contrast to most pedagogical introductions, there are gauge invariant treatments of the SU(2) Higgs
model [99]. A nice discussion on this fascinating topic can be found in [100].
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remaining non-trivial global symmetry, the phase transition at gc cannot be detected by any

local order parameter. In particular, there is no physical state with finite τz-magnetisation since

〈Ψ| τz
e |Ψ〉 = 〈Ψ| Asτz

e |Ψ〉 = − 〈Ψ| τz
e As |Ψ〉 = − 〈Ψ| τz

e |Ψ〉 (1.156)

for s ∈ e and |Ψ〉 ∈ HZ2
. Thus there cannot be a magnetised phase and τz is no longer an

order parameter. Such phase transitions without spontaneous symmetry breaking that cannot

be detected by local order parameters were first introduced by Wegner in [95]. They are closely

related to topologically ordered phases as their fundamental physical constituents are string-like

objects (or branes in higher dimensions). The characterisation of the two different phases can

therefore be given in terms of closed strings and their behaviour. The basic idea is that for g = 0

the Hamiltonian reads

HZ2
= − ∑

e∈E

τx
e (1.157)

with unique gauge invariant ground state |+〉⊗N . Elementary (gauge invariant) excitations are

created by plaquette operators Bp and feature a closed loop of flipped spins around a plaquette

p. The gauge invariant eigenstates of this Hamiltonian are therefore nets of closed strings

where |+〉 denotes vacant edges and |−〉 denotes strings. For g → gc the second term in HZ2
,

i.e. −g ∑p∈P Bp, creates and annihilates closed strings and thus causes the loops to fluctuate.

Whereas in the confined phase for g → 0 stretching of loops is punished by an energy penalty

(there is a finite string tension), the fluctuations decrease the string tension until it vanishes at the

critical value g = gc; this marks the transition to the deconfined phase. There the loops traverse

the whole system and the loop net percolates. This subtle transition is indicated by a change in

the decay behaviour of loop correlations Z[C] ≡ ∏e∈C τz
e along closed loops16 C [96]:

〈Z[C]〉 R[C]→∞−−−−→
{

e−A[C] g < gc

e−P[C] g > gc

(1.158)

Here R[•] denotes the characteristic length of the loop C, say its diameter, A[•] denotes its

area and P[•] its perimeter, respectively. Note that for g > gc the correlation still vanishes

exponentially, so one cannot speak of an “ordered” phase as we did in the case of the TIM

for g < gc. For g < gc the decay of the Wilson loops C follows an area law, for g > gc it is

governed by a perimeter law. For further details the reader is referred to [96] where the 3 + 1-

dimensional quantum mechanical Z2 Ising gauge theory is derived by means of the well-known

quantum-classical correspondence [96, 101] from the classical Ising gauge theory in four spatial

dimensions.

16Note that unlike open strings of τz
e operators, loop operators Z[C] commute with all gauge operators As and therefore

describe physical quantities.
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1.4.2 The Z2-Gauge-Higgs model

In the previous paragraph we derived the Z2 Ising gauge theory by translating the D ≥ 2-

dimensional transverse field Ising model into its natural “loop language”. The new Hilbert

space featured more degrees of freedom than the original theory and we had to introduce a

local gauge condition to get rid of the superfluous, purely mathematical degrees of freedom. In

the end we found a theory of fluctuating closed strings or loops with a quantum phase transition

where the string net percolates.

Here we present a more complicated extension of the pure Ising gauge theory by introducing

additional spins on the sites of the lattice which are commonly referred to as Higgs field. As we

will see, this allows open strings (contrary to the pure Ising gauge theory) with charges attached

to their endpoints. In contrast to most introductions found in the literature, we are going to

construct this theory in 2 + 1 dimensions by means of the Toric Code Model (TCM) [70]. This

approach is motivated by Ref. [74].

� Derivation

Let us start with a two-dimensional square lattice and spins attached to its edges. This is the

structure of the Toric Code and we call its Hilbert space HTCM =
⊗

e∈E C2
e . The Toric Code

Hamiltonian with parallel magnetic field, hy = 0 and hx, hz ≥ 0, reads

HTCM = −hx ∑
e

τx
e − hz ∑

e

τz
e − JA ∑

s

As − JB ∑
p

Bp (1.159)

where As and Bp are defined as above and shall be termed star- and plaquette operators, respec-

tively. We restrict ourselves in the following to the special case hx = 1 = JA and hz ≡ λ, JB ≡ ω,

that is

HTCM = −∑
e

τx
e − λ ∑

e

τz
e −∑

s

As −ω ∑
p

Bp . (1.160)

Now attach one additional spin to each site s of the lattice and denote the spin- 1
2 representations

by σk
s , k = x, y, z. The new Hilbert space is H̃GHM =

⊗
s∈S C2

s ⊗
⊗

e∈E C2
e . On an L× L lattice

there are 2L(L + 1) τ-degrees of freedom on the edges and now (L + 1)2 additional σ-degrees of

freedom on the sites. We can transfer the Toric Code model to the new Hilbert space by setting

the additional spins to |+〉. Formally we consider the linear subspace

H̃TCM =
{
|Ψ〉 ∈ H̃GHM | ∀s∈S : σx

s |Ψ〉 = |Ψ〉
}

< H̃GHM (1.161)

and the natural extension

H̃TCM ≡ HTCM ⊗
⊗

s∈S

1s . (1.162)

If we consider the “dummy spins” on the sites as unphysical degrees of freedom — a purely for-

mal extension of the theory — then we should consider only bounded operators B ∈ B
(
H̃GHM

)

which satisfy [B, σx
s ] = 0 for all sites s as physical operators. It is trivial that the whole “physical

theory” of the Toric Code is now embedded in the mathematically larger Hilbert space H̃GHM.

To this end we have to impose restrictions on both, the physical Hilbert space and the physical

operators.
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This is basically the same as in the case of the pure Ising gauge theory with the subtle difference

that there is a representation of the theory (the current one) were the unphysical degrees of

freedom separate in the sense that there is a one-to-one correspondence between such degrees

of freedom and the spins on the sites. This sounds rather trivial (and up to now, it is). But

our theory now lives in a larger Hilbert space and we could use this new freedom to transform

the theory unitarily. The basic idea is to rotate the physical subspace H̃TCM unitarily into an

isomorphic subspace HGHM. Thereby the Hamiltonian H̃TCM, the gauge condition σx
s and the

physical observables transform accordingly. In the new subspace the theory looks different as the

physical entities are different; nevertheless it remains mathematically equivalent. Pictorially the

complete procedure reads

where the first step illustrates the extension by unphysical degrees of freedom and the second

one the unitary rotation which we shall describe now. A basis of H̃TCM is given by {|x, y〉}
where x ∈ {+,−}E and y ∈ {+}S. Note that we can consider each configuration of spins on

the edges as a net of open and closed strings (where edges in state |−〉 are occupied by a string).

Let us now term Higgs spins in state |+〉 as unoccupied and in state |−〉 as occupied by a charge.

The basis transformation we have in mind attaches a charge to each endpoint of an open string.

Formally this reads

T := ∏
e∈E

[
1eP+

e + ĨeP−e
]

(1.163)

with the projectors P±e = 1
2 (1e ± τx

e ) and the operator Ĩe=(st) ≡ σz
s σz

t which creates a pair of

charges17 on adjacent sites. It is straightforward to show that T† = T and T†T = 1 and easy

to see that T acts on the basis {|x, y〉} in the described fashion. What remains is the formal

transformation of the theory according to T. The new physical subspace is

HGHM ≡ TH̃TCM (1.164)

with a basis {T |x, y〉} of states that can be thought of as nets of open and closed strings living

on the gauge field τe and charges attached to the endpoints of open strings living on the Higgs

field σs. To transform the Hamiltonian and the gauge condition it proves useful to transform the

four spin representations

Tτz
e=(st)T

† = σz
s τz

e σz
t ≡ Ie (1.165a)

Tτx
e T† = τx

e (1.165b)

Tσz
s T† = σz

s (1.165c)

Tσx
s T† = σx

s As ≡ Âs (1.165d)

17Such pairs of charges are sometimes called mesons in the literature.
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as one checks by a short calculation. Hence the new gauge condition reads

Tσx
s T† |Ψ〉 = σx

s As |Ψ〉 = Âs |Ψ〉 = |Ψ〉 (1.166)

which is exactly the defining property of HGHM =
{
|Ψ〉 ∈ H̃GHM | ∀s∈S : Âs |Ψ〉 = |Ψ〉

}
. Now

it becomes clear that this new theory is an extension of the pure Ising gauge theory as the

gauge condition As is now augmented by the Higgs field σx
s . Note that the unphysical degrees

of freedom are now “hidden” in the Hilbert space HGHM and can no longer be identified with

a single spin as each local gauge condition Âs acts on multiple (adjacent) spins.

Finally an application of the unitary transformation T on the Toric Code Hamiltonian yields

HGHM ≡ TH̃TCMT† = −∑
e

Tτx
e T† − λ ∑

e

Tτz
e T† −∑

s

TAsT† −ω ∑
p

TBpT†

= −∑
e

τx
e − λ ∑

e

Ie −∑
s

As −ω ∑
p

Bp

= −∑
e

τx
e − λ ∑

e

Ie −∑
s

σx
s −ω ∑

p

Bp

where we used that σx
s = As on HGHM due to the gauge condition and TBpT† = Bp since the

operations σz
s on the Higgs field cancel.

This Hamiltonian

HGHM = −∑
e

τx
e −∑

s

σx
s − λ ∑

e

Ie −ω ∑
p

Bp (1.167)

is the quantum mechanical (2 + 1)-dimensional Z2-Gauge-Higgs model (GHM) introduced by

Fradkin and Shenker in [2]. It is now straightforward to generalise HGHM to arbitrary spatial

dimensions D ≥ 2 where Ie acts on the edges and Bp on all faces. The gauge condition reads in

D dimensions still σx
s As |Ψ〉 = |Ψ〉 where As denotes the product of all 2D operators τx

e adjacent

to site s.

� Phase structure

The Toric Code is analytically solvable for vanishing magnetic field but there is — to the best

of my knowledge — no known method to derive the exact phase structure if the magnetic field

is switched on. Thus we cannot expect analytical solutions for the (2 + 1)-dimensional GHM

either and this remains true for any other dimension D ≥ 2. Fradkin and Shenker provided a

qualitative structure of the phase diagram in the ω-λ-plane by perturbative arguments on the

axes and an analyticity result for an area connecting both axes via small-ω and large-λ regions,

see [2]. Other early approaches relied on mean field approximations [102, 103] which can be

improved [104] to reproduce most of the essential features of the phase diagram but nevertheless

remain qualitatively poor approximations. Another approach is to contrive a continuum field

theory in the vicinity of the critical point (see below) [105].

The more recent and most detailed results are based on quantum Monte Carlo (QMC) sim-

ulations [106, 107] and verify the perturbative results obtained before. Some of them [74] are

motivated by the equivalence to the Toric Code since the existence of a free-charge phase (see

below) implies the stability of the topologically ordered TCM phase against small magnetic
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� Figure 1.14: The qualitative phase diagram of the
(2 + 1)-dimensional Z2-Gauge-Higgs model. There
are three phases: The confined phase (A) with fi-
nite gauge string tension and confined pairs of
charges. The deconfined phase (B) of free charges
and monopoles which corresponds to the topologi-
cal phase of the toric code. And the Higgs phase
(C) where pairs of monopoles are confined by Higgs
excitations. The phases (A) and (C) are connected
by an analytic parameter region without phase tran-
sition and thus belong formally to the same phase.
The free charge phase (B) is separated by second or-
der phase transitions from the other phases. These
phase boundaries start on the axes and join at a mul-
ticritical point (blue circle) where a first order line
emerges. The latter ends at a critical point (red disc)
where the analytic regime begins. In (2 + 1) dimen-
sions the theory is self-dual which becomes manifest
by the (grey dotted) self-duality line.

fields. This motivated also other approximate approaches such as large spin analysis and per-

turbative expansions in [108] which can then be reinterpreted as results for the GHM.

Only recently the rapidly developing field of quantum simulation smoothed the way to

efficient realisations of lattice gauge theories in cold atomic setups [109] — at least in theory. This

is a promising approach which could outperform any QMC simulation on classical hardware

once scalable quantum simulators are available. All these results culminate in the qualitative

phase diagram of the GHM in (2 + 1) dimensions in Fig. 1.14. Although some of its details

cannot be understood in terms of simple arguments, the basic structure can be inferred by a

consideration of limiting cases:

Confined charge phase: The phase of confined charges is reached for ω → 0 and λ → 0.

There the dominant contributions in the Hamiltonian read

HGHM ≈ −∑
e

τx
e −∑

s

σx
s (1.168)

and the ground state is the unique x-polarised state |GSconf〉 = |+〉E |+〉S. Elementary

excitations must be gauge invariant and are described by the neglected summands of the

Hamiltonian, namely

Ie=(st) = σz
s τz

e σz
t Mesons

Bp = ∏
e∈p

τz
e Loops

which commute with all gauge conditions As. Ie creates two charges on adjacent sites

connected by a gauge string, i.e. |−〉s |−〉e |−〉t. This is commonly called a meson and

represents the elementary charge excitation of the theory in the confined charge phase.

Bp creates a closed string on the perimeter of the plaquette p without any charge. Note

that Ie |GSconf〉 is an excited eigenstate with +6 energy with respect to the ground state

and Bp |GSconf〉 costs total energy +8. Thus there is a mass gap in the thermodynamic

limit and the charges are massive particles. In this limit it is evident why the phase is
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characterised by confined charges: Particles/Charges occur only in pairs18 forming mesons

and are connected by gauge strings to their partner which is their antiparticle. But strings

are penalised by −∑e τx
e which causes an energetically induced string tension. This is the

same string tension we encountered before in the pure Ising gauge theory. But now this is

an open string with particles attached to its ends. The string tension contracts the strings

and keeps the particles close, they are confined. This is in fact one of the simplest models

which exhibits charge confinement in one of its phases; which was the original motivation

to study the model in the first place. It is much simpler (and still hard enough) to study the

confinement-deconfinement transition in such a toy-model than to scrutinise the complete

SU(3) Yang-Mills theory of quantum chromodynamics (QCD).

Free charge phase: The free charge or Coulomb phase is found for ω → ∞ and λ→ 0 where

the Hamiltonian reads approximately

HGHM = −∑
s

σx
s −ω ∑

p

Bp . (1.169)

This is a frustration-free Hamiltonian and the ground states are |GSfree〉 = |TCM, n〉 |+〉S
where |TCM, n〉 denotes the toric code ground state with the Z2 topological quantum

numbers n = (n1, . . . , n2g) ∈ {−1,+1}2g. As the dimension of the toric code ground

state depends on the genus g of the compact, closed 2-manifold into which the lattice is

embedded, there are 22g linearly independent ground states |TCM, n〉 each characterised

by its set of 2g topological quantum numbers. This translates in (2 + 1) dimensions into

the 22g-fold degeneracy of the above limiting Hamiltonian’s ground state manifold. Note

that the no-charge condition of the toric code, namely As |Ψ〉 = |Ψ〉, is enforced by the

gauge constraint which reads Âs = As on a completely x-polarised Higgs field.

As elementary excitations we find mesons Ie which raise the energy by +4 as the string in

between is no longer penalised. Dual strings of gauge fields τx
e do not affect the ground

states as they commute with the plaquette operators but open ones do: They create pairs of

monopoles Bp = −1 at their endpoints in two dimensions and strings of monopoles above

and below them in D > 2 dimensions. In any case there are free (massive) charges without

strings that keep them close, hence the term deconfined phase. In (2 + 1) dimensions the

“dual charges”, namely the monopoles, are deconfined as well. This is exactly the gauge

theory analogue of the topologically ordered phase that characterises the toric code.

Higgs phase: In (2+ 1) dimensions the Higgs phase is dual to the phase of confined charges.

This duality is based on the self-duality of the model and results in the symmetry of the

phase diagram with respect to a reflection about the grey dotted line in Fig. 1.14. The

Higgs phase is found around ω → ∞ and λ→ ∞ where the dominant contributions read

HGHM = −λ ∑
e

Ie −ω ∑
p

Bp . (1.170)

As this is a frustration-free Hamiltonian the ground state can be given in terms of the

stabiliser S = span
{

Ie, Bp, Âs | s ∈ S, e ∈ E, p ∈ P
}

. To see that it is unique return to the

toric code formulation by transformation via T†. There the Hamiltonian reads HGHM =

−λ ∑e τz
e − ω ∑p Bp with the trivial gauge constraint σx

s |Ψ〉 = |Ψ〉. It is now obvious

18Single particles cannot be created without violation of the gauge constraint.
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that the unique ground state reads
∣∣GSHiggs

〉′
= |↑〉E |+〉S = 1√

2
(|+〉+ |−〉)E |+〉S which

describes the equal-weighted superposition of all possible open and closed string configu-

rations on the gauge field. Transforming back to the GHM Hilbert space yields the unique

ground state
∣∣GSHiggs

〉
= T

∣∣GSHiggs

〉′
which is still the equal-weight superposition of all

possible string configurations of the confined charge phase (now with charges attached to

open strings).

Since it holds Ie

∣∣GSHiggs

〉
and Bp

∣∣GSHiggs

〉
for all edges and faces, it is clear that the

elementary excitations can be created by the gauge invariant operators σx
s and τx

e . The

former creates a dual string19 of Higgs excitations surrounding site s, the latter a pair of

monopoles on the adjacent dual sites with a Higgs excitation in between. Note that there is

a qualitative difference between D = 2 and D > 2 spatial dimensions: In two dimensions

an open string of τx
e operators creates two monopoles at its ends and the string itself

suffers no energy penalty. In higher dimensions the same string creates a closed loop of

monopoles that follows the string on both sides, thus the total energy depends on the

string length. For finite ω and λ the remaining summands of the Hamiltonian impose

a non-trivial dispersion on these excitations and cause them to fluctuate by creation and

annihilation processes.

It is evident that the whole description is dual to the one given above for the confined

charge phase. The duality refers to the identification

Meson ←→ Pair of monopoles connected by Higgs string

Gauge loop ←→ Dual Higgs loop

which can be formalised by consideration of the dual lattice with gauge fields τe′ on dual

edges and Higgs fields σp′ on dual sites20 and an algebra homomorphism defined via

τx
e 7→ Ie′=(p′,q′) = σz

p′τ
z
e′σ

z
q′

Ie=(s,t) = σz
s τz

e σz
t 7→ τx

e′

Bp = ∏e∈p
τz

e 7→ σx
s′

σx
s 7→ Bp′ .

This encodes the statements that the duality transform maps gauge strings τx
e on edge e

onto Higgs strings Ie′ on the dual edge e′ = e and charges σx
s on site s onto monopoles Bp′

on the dual face p′ = s. An application of this transformation on HGHM yields the dual

Hamiltonian

H′GHM = −∑
e′

Ie′ −∑
p′

Bp′ − λ ∑
e′

τx
e′ −ω ∑

s′
σx

s′ (1.171)

which describes the same theory with modified couplings on the dual lattice. This duality

is responsible for the (grey dotted) self-duality line in Fig. 1.14 as it maps the upper right

corner (λ → ∞ and ω → ∞) onto the lower left corner (λ → 0 and ω → 0) of the phase

diagram.

This works only in two spatial dimensions21 and is an equivalent way to express the well-

known self-duality of the toric code. Dualities of Ising type lattice gauge theories are a

19In higher dimensions this becomes a surface or brane that encloses the corresponding site s.
20That is, the dual Higgs fields live on the faces of the old lattice.
21Only there the correspondence e = e′, s = p′ and p = s′ holds.
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powerful tool to translate systems and the mathematical challenges that come along into

one another [95, 110]. If systems are self-dual, this proves often very useful to compute

critical points analytically22.

The phase transitions that separate the three phases are illustrated in Fig. 1.14. The free

charge phase is separated by two second order lines that originate at the boundaries of the

(compactified) parameter space and join at a multicritical point (blue circle). In [2] it was shown

that the second order transitions of the pure Z2 Ising gauge theory for λ = 0 and the second

order transition of the Ising model for ω = ∞ are stable against perturbations so that the second

order lines enter the interior of the ω-λ-plane. They proved furthermore that there is a region of

analytic behaviour (i.e. without phase transitions) that connects the large-ω and large-λ regime

(C) with the small-ω and small-λ regime. Formally speaking, the Higgs- and confinement

regimes belong to the same quantum phase. This can be motivated if one considers the toric

code: The confined phase corresponds to a toric code with strong magnetic field in x-direction

whereas the Higgs phase describes a toric code with a strong magnetic field in z-direction. If

one starts with a strong hx field and therefore with a nearly τx-polarised state and then rotates

the magnetic field adiabatically into the z-direction, one ends up in a nearly τz-polarised state

— which corresponds to the Higgs phase. It is clear that there will be no phase transition as

long as the magnetic fields remain dominant along the path from (A) to (B). This is not true

if the other contributions are relevant as the existence of a first order line separating phase (A)

and (C) shows. On its lower-left side in the confined charge phase there is a high density of

fluctuating, weakly confined charges. On its upper-right side in the Higgs phase there is a high

density of fluctuating, weakly confined monopoles. At the first order transition the densities of

monopoles and charges exchange rapidly. In contrast, the second order lines are characterised

by the continuous vanishing of the gauge string tension and the Higgs string tension which

indicates the transition from confinement of charges and monopoles to the free charge phase,

respectively.

In Chapter 3 we approximate the phase diagram in Fig. 1.14 by simple mean field tech-

niques for comparison and subsequently construct a purely dissipative analogue of the Z2-

Gauge-Higgs model. We show that the basic features of the Hamiltonian mean field phase

diagram can be recovered in the purely dissipative setup.

� Relation to Maxwell’s theory

Above we used terms such as “(electrical) charges” and “(magnetic) monopoles” without any

justification. There is, however, a tight connection to Maxwell’s theory of electromagnetism

which is a U(1) gauge theory after all. Actually we are working with a quantum mechanical

version of discretised electromagnetism [111]. To this end, consider a two-dimensional square

lattice with two discrete binary23 vector fields {Ae} and {Ee} living on the edges and a discrete

binary scalar field {ρs} living on the sites. The discrete curl of A is a one-component field

(perpendicular to the lattice) that lives on faces p and is given by the discrete sum

[∇× A]p = ∂x Ay − ∂y Ax = (Aey − Aey+x)− (Aex − Aex+y) . (1.172)

22Think of the celebrated self-duality of the two-dimensional classical Ising model employed by Kramers and Wannier
to derive the exact critical point.

23We call a quantity X binary if X ∈ {0, 1}.
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Here ex (ey) denotes the lower (left) boundary of face p in x (y) direction. ex + y (ey+ x) denotes

the next edge parallel to ex (ey) in y- (x-) direction. The discrete divergence of E is a scalar that

lives on vertices s and reads

[∇E]s = ∂xEx + ∂yEy = (Es+x − Es−x)− (Es+y − Es−y) (1.173)

where s± x (s± y) denotes the edge adjacent to s in ±x- (±y-) direction.

Let us now make the identifications

τz
e ↔ eiπ Ae (1.174a)

τx
e ↔ eiπ Ee (1.174b)

σx
s ↔ eiπ ρs (1.174c)

and recall that Ae, Ee, ρs ∈ {0, 1}. If we introduce the magnetic flux density bp ≡ ∇× A, we find

the additional identification

Bp = ∏
e∈p

τz
e ↔ ∏

e∈p

eiπ Ae = eiπ ∑e∈p Ae = eiπ [∇×A]p = eiπ bp (1.175)

which justifies the term “monopole” and “magnetic flux” for faces with Bp = −1 ⇔ bp = 1.

Note that we used that Ae is a binary field and therefore e−iπ Ae = eiπ Ae . Analogously we

derive

As = ∏
e∈s

τx
e ↔ ∏

e∈s

eiπ Ee = eiπ ∑e∈s Ee = eiπ [∇E]s . (1.176)

In this formulation the gauge condition reads

σx
s As |Ψ〉 = |Ψ〉 ↔ eiπ ρs eiπ [∇E]s = 1 ⇔ eiπ [∇E]s = eiπ ρs (1.177)

for any physical state |Ψ〉. We conclude that

∀s∈S : [∇E]s = ρs (1.178)

which is just the discrete version of Gauss’s law ∇E = ρ where ρ denotes the continuous charge

density. This explains why the gauge condition is often referred to as Gauss’s law and why we

consider a site s where σx
s = −1 as “occupied by a charge”. Note that the open (closed) gauge

strings in the confined phase are nothing else than open (closed) electrical flux lines attached

at (electrical) charges if they are open. In the pure Ising gauge theory there was no Higgs field

and consequently there were no charges. Then there are only closed electric flux lines which is

microscopically enforced by Gauss’s law ∇E = 0. This is the gauge condition As |Ψ〉 = |Ψ〉
which we derived by demanding that there is an even number of gauge strings adjacent to each

site s which, in turn, is a discrete version of Gauss’s law.
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1.5 The overall picture
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In the preceding preliminaries we presented several lattice models that feature quantum phase

transitions. In particular the toric code model (TCM) in 1.3.3, the Majorana chain (MC) and the

transverse field Ising model (TIM) in 1.3.4, the Z2-Ising-Gauge theory in 1.4.1, and the Z2-Gauge-

Higgs model in 1.4.2. All of these models are more or less obviously connected, some are

even mathematically equivalent in particular spatial dimensions. I do not want to give detailed

explanations at this point (some of the connections were discussed in the corresponding sections

above), but I want the reader to be aware of this network of physical models, their relations and

equivalences. As this thesis deals — directly or indirectly — with most of these models, it is of

crucial importance to keep the overall picture in mind; this overall picture looks as follows:

We saw in 1.3.4 that the Majorana chain with open boundary conditions can be mapped on the

transverse field Ising model in one spatial dimension by a Jordan-Wigner transformation (and

vice versa). Therefore the two models are mathematically equivalent even though they describe

physically different settings. In 1.4.1 we motivated the Z2-Ising-Gauge theory by introduction

of unphysical degrees of freedom in a “loop representation” of the transverse field Ising model

in two dimensions. Afterwards, in 1.4.2, we introduced the Z2-Gauge-Higgs model via its math-

ematical equivalence to the toric code model in two dimensions. It became clear by comparison

of the gauge conditions and an interpretation in terms of Maxwell’s theory that the Z2-Gauge-

Higgs model is an “extension” of the pure Z2-Ising-Gauge theory which allows additionally

for electrical charges due to the Higgs field. It is furthermore easy to see that the low energy

sector of the toric code model with strongly suppressed electrical charges and a magnetic field

in x-direction is effectively described by the pure Z2-Ising-Gauge theory. The Majorana chain

is a paradigmatic example for a topological phase with a topological invariant that characterises

its Hamiltonian. In contrast, the toric code is a paradigmatic toy model for systems with topo-

logical order whose low energy physics is described by a topological quantum field theory and

whose ground states exhibit a string-net structure. Both models can be employed as a topo-

logical quantum memory and feature anyonic excitations. The Majorana chain can even serve

as a building block for a topological quantum computer since its Majorana fermions exhibit

non-abelian statistics (which is not true for the toric code).
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To see where and how we refer to the above models and to conclude the preliminaries, let us

give a short outlook on the topics of this thesis:

In Chapter 2 we introduce a dissipative counterpart of the transverse field Ising model in

terms of competing jump operators and described by a Lindblad equation. We analyse its

phase structure with and without additional Hamiltonian contributions in detail.

In Chapter 3 we extend the notion of a dissipative counterpart to the Z2-Gauge-Higgs model.

We introduce competing jump operators so that particular combinations of the latter drive

the system towards each of the three quantum phases of the Z2-Gauge-Higgs model. We

give a short mean field analysis of the phase structure of our dissipative Z2-Gauge-Higgs

model.

In Chapter 4 we give some critical comments on the dissipative realisation of the Majorana

chain as proposed in Ref. [1] by Diehl et al.. We argue that their proposed number conserving

jump operators do not yield steady states with topological properties.

In Chapter 5 we introduce jump operators that provably cool into the Majorana chain

ground state. However, numeric results suggest that such straightforward dissipative im-

plementations do not yield a self-correcting quantum memory.

In Appendix E we get off the subject and discuss some mathematical aspects of (quasi)

locality in physics.

This is on the agenda. Let’s get started.
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Chapter 2 Spontaneous symmetry breaking

by dissipation

“Symmetry is a vast subject, significant in art and nature.

Mathematics lies at its root, and it would be hard to find a

better one on which to demonstrate the working of the mathe-

matical intellect.”

Hermann Weyl

In the preliminaries we discussed the transverse field Ising model (TIM) as it came along

with the Majorana chain, see Subsection 1.3.4 and especially paragraph 1.3.4. The transverse

field Ising model is known as a paradigmatic example for quantum phase transitions and spon-

taneous symmetry breaking in the quantum regime as it features a disordered paramagnetic

phase and a symmetry-broken ferromagnetic phase with long range order.

In this chapter we take the TIM Hamiltonian and its phases as a model to contrive a compet-

ing dissipative process in terms of Lindbladian jump operators that drives the system (1) into

the symmetric paramagnetic phase at one end of the parameter space and (2) into the symmetry-

broken ferromagnetic phase at the other end. We hope to find a dissipative phase transition that

separates both phases and includes dissipative spontaneous symmetry breaking. We are also in-

terested in the competition of Hamiltonian and dissipative dynamics if one parallels the TIM

Hamiltonian with its dissipative counterpart. To scrutinise the proposed model, we employ

both a detailed mean field analysis and quantum trajectory Monte Carlo simulations.

This chapter is structured as follows. In Section 2.1 we introduce our dissipative model. In

Section 2.2 we present a formal treatment of its strong dissipative symmetries. In Section 2.3

we give a detailed mean field analysis of the phase diagram. The mean field jump operators

are derived in Subsection 2.3.1, their static solutions are examined in 2.3.2 with and without

competing Hamiltonian contributions and the dynamics of the mean field theory is discussed

in 2.3.3. In Section 2.4 we compare the mean field theories of the Hamiltonian theory and

our dissipative counterpart. In Section 2.5 we provide an analytical treatment of the minimal

instance for the dissipative theory and classify its non-equilibrium steady states. In Section 2.6

we finally present some Monte Carlo simulations for small systems in one and two dimensions.

Additional information can be found in Appendix A where we derive some general equations

for dissipative mean field theories, in Appendix B where we give an extended derivation of the

mean field jump operators, in Appendix C where we describe our QTMC implementation, and

in Appendix D where we present a few auxiliary calculations.
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2.1 The Setting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As stated above, our starting point is the well-known transverse field Ising model in arbitrary

spatial dimensions d. Its Hamiltonian reads

HTIM = −J ∑
〈n,m〉

σz
nσz

m − h ∑
n

σx
n (2.1)

where we denote by

∑
〈n,m〉

≡ 1

2

N

∑
n=1

∑
m∈Nn

(2.2)

the sum over all next-nearest neighbour pairs 〈n, m〉. J ≥ 0 denotes a ferromagnetic spin-spin

coupling and h ∈ R the transverse magnetic field in x-direction. As we saw in the course of our

discussion of the Majorana chain in Subsection 1.3.4, both models are mathematically equivalent

in one spatial dimension and with open boundary conditions via a Jordan-Wigner transforma-

tion, see paragraph 1.3.4. We derived by means of a Bogoliubov-de Gennes transformation the

exact spectrum for the Majorana chain and thereby found a quantum phase transition — which

led us to the conclusion that the transverse field Ising model features a quantum phase transi-

tion as well. The disordered paramagnetic phase features the Z2-symmetry of the Hamiltonian

and corresponds to a unique ground state:

HTIM
h≫J−−→ −h ∑

n

σx
n ⇒ |GS〉 = |+〉⊗N for h > 0 (2.3)

In the other limit one finds the pure quantum Ising model

HTIM
h→0−−→ −J ∑

〈n,m〉
σz

nσz
m ⇒ |GS〉 ∈ span

{
|↑〉⊗N , |↓〉⊗N

}
for J > 0 (2.4)

with a degenerate ground state space. The latter comprises states that break the Z2 spin-flip

symmetry of the system spontaneously. But in contrast to classical spontaneous symmetry break-

ing, where the system itself ends up randomly in one of several states of lower symmetry, the

actual ground state for finite h remains symmetric as it is close to the superposition

|GS, h ≈ 0〉 = 1√
2

(
|↑〉⊗N + |↓〉⊗N

)
. (2.5)

In this ferromagnetic phase the Z2-symmetry is spontaneously broken in the sense that any

measurement leads to decoherence and results in a state after projection that violates the Z2-

symmetry. In the context of quantum phases this implies that the actual ground state features finite

correlations 〈σz
mσz

n〉 for |m− n| → ∞ and long-range entanglement between states that break the

Z2-symmetry (which makes the state susceptible to decoherence). But the system does not jump

spontaneously in a state with finite σz-magnetisation as it is expected from classical spontaneous

symmetry breaking.

Nevertheless it is well-known that straightforward mean field approaches yield solutions

where the expectation value mz = 〈σz
m〉 obtains a finite value. These results indeed indicate

the quantum phase transition correctly but one has to keep in mind that the pure quantum

86 |



N. Lang The Setting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

formalism (without decoherence) does not predict a finite σz-magnetisation. The spontaneous

symmetry breaking is “hidden” in that regard but can nevertheless be detected by correlations

(which is impossible in mean field theory).

The basic idea that we elaborate in this chapter is the following: Can one come up with

a purely dissipative process (in terms of Lindblad jump operators) that “mimics” the phase

structure of the TIM so that in one parameter regime the system is driven towards a ferromagnetic

state in span
{
|↑〉⊗N , |↓〉⊗N

}
with finite correlations and in the opposite parameter regime the

symmetric state |+〉⊗N is reached? One would then expect a (second order) phase boundary

separating these two phases and could drive a non-equilibrium phase transition by crossing this

boundary. Due to the dissipation we anticipate mixed states when driving the system from the

symmetric into the symmetry-broken phase. Additional questions arise when we parallel this

dissipative analogue with the actual Hamiltonian dynamics.

Before we can follow these questions, we have to come up with competing jump operators

that meet our expectations. As there are two distinct phases, it is reasonable to propose two

competing baths defined by their jump operators:

◮ Definition 2.1: Dissipative Transverse Field Ising Model

Consider a d-dimensional square lattice with spins attached to the sites. Then we define the

dissipative transverse field Ising model by the jump operators

di :=

√
κF

2
σx

i

(
1− 1

q ∑
j∈Ni

σz
j σz

i

)
(2.6a)

ci :=

√
κP

2
σz

i (1− σx
i ) = σ+,x

i (2.6b)

for each site i. q = 2d is the coordination number and Ni is the set of nearest-neighbours for i.

κF denotes the coupling strength for the ferromagnetic bath {di} and κP the coupling strength

for the paramagnetic bath {ci}. The dynamics is given by the Lindblad master equation

∂tρ = ∑
i

[
diρd†

i −
1

2

{
d†

i di, ρ
}]

+ ∑
i

[
ciρc†

i −
1

2

{
c†

i ci, ρ
}]

(2.7)

and the non-equilibrium steady states (NESS) satisfy ∂tρNESS = 0.

The motivation for these jump operators is evident: di “measures” the average correlation of

spin i with its nearest neighbours via 1
q ∑j∈Ni

σz
j σz

i . For ferromagnetic states in

span
{
|↑〉⊗N , |↓〉⊗N

}

this yields 1 and di annihilates such states; they are dark states for the ferromagnetic process {di}.
States with anticorrelated neighbours are driven towards perfect correlation by the spin flip σx

i

that occurs when 1
q ∑j∈Ni

σz
j σz

i < 1. The steady states of the dissipative process {di} are exactly

the ground states of the TIM for vanishing magnetic field h = 0 (and their incoherent mixtures).

In contrast, ci is just the raising operator in the σx-eigenbasis that acts strictly local on spin i.

The paramagnetic process {ci} drives the system in the completely x-polarised state |+〉⊗N —

which is clearly a unique dark state and equals the ground state of the TIM for h→ ∞ or J = 0.
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The principal question of this chapter is: What happens if we vary the parameters from

κF = 0 and/or κP = ∞ to κF = ∞ and/or κP = 0? This question includes both aspects

of the Lindblad equation, the non-equilibrium steady states and the relaxation to the latter.

To complicate the system, one may include the Hamiltonian HTIM and examine the effects of

competing unitary and dissipative contributions on the dynamics and steady states.

Before we start with the analysis, there is a technical remark in order: It took roughly a year

to write this thesis. As a consequence there are passages which were written at early stages of

my studies. Therefore the notation is not always consistent; some notations changed over time

and reached their evolutionary fixed point at later stages. In the following, the ferromagnetic

jump operators are sometimes written in the slightly modified form

di = σx
i

(
1

q ∑
j∈Ni

σz
j σz

i − 1

)
. (2.8)

In these cases the couplings κF and κP are written explicitly in front of the Lindbladian superop-

erator L[•]. It is obvious that this is equivalent to Def. 2.1 up to a phase factor and a rescaling of

κF. With this in mind, we can start our discussion of the dissipative transverse field Ising model

with some symmetry considerations in the next section.
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In this section we rigorously derive the complete group of strong symmetries for the dissipative

system given in Def. 2.1. To this end we start with some notes on symmetries of Lindblad

superoperators in 2.2.1. In Subsec. 2.2.2 follows the detailed derivation for the dissipative TIM.

2.2.1 General definitions

Let us start with some definitions concerning symmetries of master equations in Lindblad form.

In contrast to symmetries of Hamiltonian systems, there is a bit more freedom regarding sym-

metries of dissipative processes that are described by a Lindblad master equation. The following

definition is motivated by Ref. [112]:

◮ Definition 2.2: Symmetries of Lindblad operators

Given a master equation in Lindblad form

∂tρ = −i [H, ρ] +
M

∑
i=1

∑
j

κi

[
ci,jρc†

i,j −
1

2

{
c†

i,jci,j, ρ
}]
≡ −i [H, ρ] + L({κi}, {ci,j})[ρ] (2.9)

where κi > 0 denotes the coupling strength to bath i. The coupling is described by the

jump operators ci,j where i is the bath index and j denotes the lattice site. The unitary

dynamics is governed by the Hamiltonian H and the dissipative dynamics by the Lindblad

superoperator L.

For brevity define

L[ρ] ≡ −i [H, ρ] + L({κi}, {ci,j})[ρ] (2.10)

which is the generator of a completely positive and trace preserving (CPTP) map on the

convex set of density matrices D(H) where H is the system Hilbert space.

A unitary (antiunitary) operator U (UK) that leaves L invariant is called a weak symmetry:

L[UρU†] = UL[ρ]U† (2.11)

In case of an antiunitary operator UK, the additional relation L[Kρ] = KL[ρ] must hold.

Here K denotes the (antilinear) complex conjugation.

For a strong symmetry U (UK) we require

UHU† = H (2.12a)

and ∀i,j Uci,jU
† = eiαi,j ci,j where αi,j ∈ R . (2.12b)

That is, each summand in the dissipative part of L remains invariant and U (UK) is a

symmetry of the Hamiltonian system.

Is U a symmetry and a local unitary, that is U = ∏j Uj and supp
(
Uj

)
= {j} for all sites j,

we call it a local symmetry.

Let us now proceed with an application of this definition to our dissipative TIM.
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2.2.2 Symmetries of the TIM master equation

In this subsection we derive all possible strong local symmetries of the dissipative TIM master

equation introduced above. To this end, recall that

cj =
1

2

(
σz

j − iσ
y
j

)
, dj = −

i

q ∑
m∈Nj

σz
mσ

y
j − σx

j , and H = −J ∑
〈n,m〉

σz
nσz

m − h ∑
n

σx
n (2.13)

and consequently we are looking for local unitary operators U = ∏j Uj such that

UHU† = H (2.14a)

∀j UcjU
† = eiαj cj (2.14b)

∀j UdjU
† = eiβ j dj . (2.14c)

Let us proceed systematically:

Antiunitary symmetries
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, let us consider an antiunitary operator UK. We demand L[Kρ] = KL[ρ], so

K (−i [H, ρ] + L[ρ]) = i [H, Kρ] + L[Kρ]
!
= −i [H, Kρ] + L[Kρ] . (2.15)

Here we used the fact that H, cj and dj are real operators. We conclude that

∀ρ [H, ρ] = 0 ⇒ H = λ1 , λ ∈ R . (2.16)

Since this conditions are not met by the Hamiltonian at hand, the system cannot feature any

antiunitary strong local symmetries.

Especially the reflection at the σx-σz-plane is not a symmetry as long as the Hamiltonian

dynamics is present. This can be seen easily as follows: The aforementioned reflection demands

σx → σx

σy → −σy

σz → σz

and we immediately identify 1K as the appropriate antiunitary operator. If we set H = 0, and

thus consider a pure dissipatively driven system, this becomes a symmetry and we expect the

ferromagnetic solutions to stick to the σx-σz-plane. We will see that this is indeed the case, see

paragraph 2.3.2 for instance. �
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Unitary symmetries
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us now strive towards possible unitary strong local symmetries. Therefore equations (2.14)

must be fulfilled by some local unitary U = ∏i Ui. For reasons which become clear later on, we

start with Eq. (2.14c).

� On UdjU
† = eiβ j dj

First expand the left and and right hand side. One finds

UdjU
† = − i

q ∑
m∈Nj

(
Umσz

mU†
m

) (
Ujσ

y
j U†

j

)
−Ujσ

x
j U†

j (2.17a)

eiβ j dj = − i

q ∑
m∈Nj

eiβ j σz
mσ

y
j − eiβ j σx

j (2.17b)

and by subtraction the equations read

− i

q ∑
m∈Nj

[(
Umσz

mU†
m

) (
Ujσ

y
j U†

j

)
− eiβ j σz

mσ
y
j

]
−
[
Ujσ

x
j U†

j − eiβ j σx
j

]
= 0 . (2.18)

Apply Trj [ · ] on both sides of the equation and note that Trj

[
Umσz

mU†
m

]
= Trj [σ

z
m] = 0, given

m 6= j. Thus we arrive at

Ujσ
x
j U†

j − eiβ j σx
j = 0 ⇔ Ujσ

x
j U†

j = eiβ j σx
j (2.19)

and consequently

− i

q ∑
m∈Nj

[(
Umσz

mU†
m

) (
Ujσ

y
j U†

j

)
− eiβ j σz

mσ
y
j

]
= 0 . (2.20)

A second application of Tr{i,j} [ · ] (i ∈ Nj) yields

(
Uiσ

z
i U†

i

) (
Ujσ

y
j U†

j

)
− eiβ j σz

i σ
y
j = 0 ⇔

(
Uiσ

z
i U†

i

) (
Ujσ

y
j U†

j

)
= eiβ j σz

i σ
y
j . (2.21)

It is now clear that

∀i∈Nj
Uiσ

z
i U†

i = eiβ j,2 σz
i (2.22a)

Ujσ
y
j U†

j = eiβ j,1 σ
y
j (2.22b)

where β j,1 + β j,2 = β j since i- and j-operators act on distinct Hilbert spaces. To get rid of the

j-indices, apply Eq. (2.19) to Eq. (2.21):

(
Uiσ

z
i U†

i

) (
Ujσ

z
j U†

j

)
= e2iβ j σz

i σz
j (2.23)

A permutation of i and j yields

(
Uiσ

z
i U†

i

) (
Ujσ

z
j U†

j

)
= e2iβi σz

i σz
j (2.24)

| 91



Chapter2 Spontaneous symmetry breaking by dissipation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and consequently βi = β j whenever i ∈ Nj. Therefore, on each connected component of the

lattice, we find β j ≡ β being independent of j. To sum up, Eq. (2.14c) implies:

◮ Remark 2.1: Requirements for strong local Symmetries I

Ujσ
x
j U†

j = eiβσx
j (2.25a)

Ujσ
y
j U†

j = eiβ1 σ
y
j (2.25b)

Ujσ
z
j U†

j = eiβ2 σz
j where β1 + β2 = β (2.25c)

These results are crucial and prove useful as we proceed with Eq. (2.14c).

� On UHU† = H

Expand the left hand side and apply the relations we just found:

UHU† = −J ∑
〈n,m〉

(
Unσz

nU†
n

) (
Umσz

mU†
m

)
− h ∑

n

Unσx
n U†

n

= −J ∑
〈n,m〉

e2iβ2 σz
nσz

m − h ∑
n

eiβσx
n

!
= −J ∑

〈n,m〉
σz

nσz
m − h ∑

n

σx
n

Tracing out via Trj [ · ] yields eiβσx
j = σx

j , that is β = 2πk (k ∈ Z). Since it follows

∑
〈n,m〉

e2iβ2 σz
nσz

m = ∑
〈n,m〉

σz
nσz

m (2.26)

we arrive at e2iβ2 σz
i σz

j = σz
i σz

j ⇒ β2 = πl (l ∈ Z) via Tr{i,j} [ · ] (i ∈ Nj). By β1 + β2 = β we find

β2 = π(2k− l), that is eiβ1 = eiβ2 = ±1. Let us summarise what we found so far:

◮ Remark 2.2: Requirements for strong local Symmetries II

Ujσ
x
j U†

j = σx
j (2.27a)

Ujσ
y
j U†

j = ±σ
y
j (2.27b)

Ujσ
z
j U†

j = ±σz
j (2.27c)

Note that only two of these equations are independent as any combination of two equations

yields the third.
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� On UcjU
† = eiαj cj

By application of the latest results one finds

UcjU
† =

1

2

(
Ujσ

z
j U†

j − iUσ
y
j U†

j

)
= ±1

2

(
σz

j − iσ
y
j

)
!
= eiαj cj (2.28)

and therefore αj = β1 = β2 ≡ α. So there are no additional constraints due to the relation

UcjU
† = eiαj cj. �

In order to solve the system of equations (2.27), we employ the following parametrisation of

the 4-parameter Lie group U(2) [113] 24. For all U ∈ U(2) exist (α1, α2, τ, θ) ∈ [0, 2π]3 ×
[
0, π

2

]

such that

U = VAV† where A =

[
eiα1 0

0 eiα2

]
and V =

[
eiτ cos θ − sin θ

sin θ e−iτ cos θ

]
. (2.29)

Inserting this parametrisation in two of the equations (2.27) yields after some straightforward

calculations the following solutions

(+) : Uj = eiϕ
1j and (−) : Uj = eiϕσx

j where ϕ ∈ R , (2.30)

as expected. Therefore the strong local symmetry group is (up to a global phase) {1, X} ∼= Z2

which is represented by a global π-rotation about the σx-axis, that is, X = ∏i σx
i . Thus we expect

the (ferromagnetic) solutions to transform with respect to this symmetry group.

◮ Result 2.1: Strong symmetries of the dissipative TIM

The group of strong local symmetries for the dissipative transverse field Ising model is

{1, X} ∼= Z2 where X = ∏
i

σx
i (2.31)

denotes a global spin-flip or π-rotation about the σx-axis.

Please note that this global symmetry group {1, X} ∼= Z2 is exactly the global spin-flip symme-

try that characterises the transverse field Ising model.

24At this point the solutions are easy to see. However, we proceed rigorously by solving the equation systems.
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The original motivation for the dissipative TIM was the presumed non-equilibrium phase transi-

tion that separates the ferromagnetic and the paramagnetic phase. Our top priority is therefore

to learn as much as possible about its phase diagram. Whereas the paramagnetic jump oper-

ators act locally on single spins and do not interact with other sites, the ferromagnetic jump

operators do interact with the nearest-neighbours. In fact, this is inevitable as the ferromagnetic

steady states are characterised by their non-trivial transformation with respect to the strong

symmetry group Z2. To achieve this, the jumps have to establish correlations and not polarisation

which requires interactions between adjacent spins. Unfortunately this renders the dissipative

TIM analytically challenging if not intractable.

As we cannot count on analytical solutions, we have to put up with approximate ones. Here

we focus on a mean field solution of the dissipative TIM — motivated by the qualitative success

of mean field approaches for its Hamiltonian counterpart.

This is the main part of the current chapter and we proceed as follows. In the next subsec-

tion 2.3.1 we present a brief derivation of the effective mean field jump operators. The stationary

mean field solutions are examined in Subsec. 2.3.2 in detail; both with and without competing

Hamiltonian contributions. We also discuss the limit of the theory for infinite dimensions. In

Subsec. 2.3.3 we investigate the dynamical behaviour of the theory with focus on its behaviour

near the phase transition. In addition we derive a continuous version of the mean field theory.

2.3.1 Derivation of the mean field Lindblad superoperator

For the sake of clarity, we give at this point a condensed derivation of the mean field jump

operators. A detailed version of the following steps can be found in Appendix B.

Preliminary remarks
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to derive a mean field version of the dissipative theory given in Def. 2.1, recall that the

jump operators read

cj =
1

2

(
σz

j − iσ
y
j

)
and dj = σx

j


1

q ∑
m∈Nj

σz
mσz

j − 1


 (2.32)

and the (combined) dynamics of Hamiltonian and dissipative contributions is given by the

Lindblad master equation

∂tρ = −i [H, ρ] + κP ∑
j

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

+ κF ∑
j

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

(2.33a)

≡ −i [H, ρ] + L[ρ] (2.33b)

where κP, κF ≥ 0 describe the strength of the coupling to the external baths and L denotes

the Lindblad superoperator; the generator of a completely positive and trace preserving (CPTP)

map on the space of density matrices that encodes the dissipatively induced ensemble evolution

of the system.
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Each spin is described by its two-dimensional Hilbert space Hi = C2
i ; therefore the systems

Hilbert space is H =
⊗

jHj. In the following we write Hi =
⊗

j,j 6=iHj and Tri [X] ≡ TrHi
[X] for

tracing out the whole system except the ith spin.

Derivation of the mean field jump operators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In self-consistent field theory (or mean field theory) the nearest neighbour couplings are re-

placed by the interaction with an effective mean field arising from the spin environment. To this

end, the product ansatz

ρ =
N

∏
l=1

ρl (2.34)

is inserted into the master equation; here ρl operates nontrivially only on Hl . We note that
Tri [ρ] = ρi. Due to the product ansatz above, the master equation decouples into N independent
differential equations for {ρi}1≤i≤N . That is

Tri [∂tρ]

︸ ︷︷ ︸
Derivative

= − i Tri [[H, ρ]]

︸ ︷︷ ︸
Unitary term

+ κP ∑
j

Tri

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

︸ ︷︷ ︸
Paramagnetic term

+ κF ∑
j

Tri

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

︸ ︷︷ ︸
Ferromagnetic term

is expected to be of the form

∂tρi = −i
[

Hmf
i , ρi

]
+ Lmf

i [ρi] (2.35)

where Hmf
i and Lmf

i denote the local mean field versions of the Hamiltonian and the Lindbladian,

respectively. In the next paragraphs the exact form of Hmf
i and Lmf

i is derived. The left-hand

side is easily evaluated to

Tri [∂tρ] = ∂t Tri

[
N

∏
l=1

ρl

]
= ∂tρi (2.36)

so that we can proceed with the unitary term:

� Unitary term

This term yields the well-known mean field theory for the transverse field Ising model and reads

− i Tri [[H, ρ]] = · · · = −i [−Jqmzσz
i − hσx

i , ρi] . (2.37)

For this calculation we used the fact that Tri [[X, ρ]] = Tri [Xρ]− Tri [ρX] = ρi (〈X〉 − 〈X〉) = 0 if

X acts nontrivially on Hi only and assumed a homogeneous system; that is, mz ≡ 〈σz
n〉 = Tri [σ

z
nρn]

is independent of n( 6= i). Therefore the mean field Hamiltonian reads

Hmf
i = −Jqmzσz

i − hσx
i = −hmfσi (2.38)

where σi =
[
σx

i , σ
y
i , σz

i

]T
and hmf = −[h, 0, Jqmz]T denotes the mean field.
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� Paramagnetic term

Let us continue with the paramagnetic term. Since

cj =
1

2

(
σz

j − iσ
y
j

)
= σx,+

j (2.39)

acts non-trivially on Hi only, we find immediately

Tri

[
ciρc†

i

]
= ciρic

†
i , Tri

[
c†

i ciρ
]
= c†

i ciρi , Tri

[
ρc†

i ci

]
= ρic

†
i ci (2.40)

and for j 6= i

Tri

[
cjρc†

j

]
= Tri

[
c†

j cjρ
]
= Tri

[
ρc†

j cj

]
= ρi

〈
c†

j cj

〉
. (2.41)

If we use these results, it is straightforward to show

κP ∑
j

Tri

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

= κP

(
ciρic

†
i −

1

2

{
c†

i ci, ρi

})
= κPL (ci) [ρi] (2.42)

which was expected since the paramagnetic jump operators cj act locally and independent of

the neighbours Nj. Consequently they remain unaffected by the mean field approximation.

� Ferromagnetic term

The ferromagnetic term is the most complicated one since the jump operator dj acts on spin j

and its neighbours Nj. First we note that for j /∈ Ni ∪ {i}

Tri

[
djρd†

j

]
= Tri

[
d†

j djρ
]
= Tri

[
ρd†

j dj

]
= ρi

〈
d†

j dj

〉
(2.43)

and therefore

∑
j,j/∈Ni∪{i}

Tri

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

= ∑
j,j/∈Ni∪{i}

{
Tri

[
djρd†

j

]
− 1

2
Tri

[{
d†

j dj, ρ
}]}

= 0 (2.44)

vanishes. This reduces the sum that remains to be evaluated to

κF ∑
j

Tri

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

= κF ∑
j,j∈Ni

{
Tri

[
djρd†

j

]
− 1

2
Tri

[{
d†

j dj, ρ
}]}

︸ ︷︷ ︸
Nearest neighbours (NN)

(2.45a)

+ κF

(
Tri

[
diρd†

i

]
− 1

2
Tri

[{
d†

i di, ρ
}])

︸ ︷︷ ︸
Spin i (Si)

. (2.45b)

which comprises q + 1 = 2d + 1 terms in total for a d-dimensional lattice. We have to calculate

the partial traces for the nearest neighbours (NN) and the spin itself (Si) separately:
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◮ Nearest neighbours (NN)

Let us first consider the case where j ∈ Ni ⇔ i ∈ Nj (⇒ i 6= j). Straightforward but cumber-

some calculations yield the three summands

Tri

[
djρd†

j

]
=

1

q2
[C(q, mz)ρi + (q− 1)mz {σz

i , ρi}+ σz
i ρiσ

z
i ]−

mz

q
[(q− 1)2mzρi + {σz

i , ρi}] + ρi

Tri

[
d†

j djρ
]

=
1

q2
[C(q, mz)ρi + 2(q− 1)mzσz

i ρi + σz
i σz

i ρi]−
2mz

q
[(q− 1)mzρi + σz

i ρi] + ρi

Tri

[
ρd†

j dj

]
=

1

q2
[C(q, mz)ρi + 2(q− 1)mzρiσ

z
i + ρiσ

z
i σz

i ]−
2mz

q
[(q− 1)mzρi + ρiσ

z
i ] + ρi .

The last equation can of course be deduced by symmetry arguments and has not to be com-

puted by hand. The constant term C(q, mz) is not important as it cancels in the next step. The

combination of these three terms yields

∑
j,j∈Ni

{
Tri

[
djρd†

j

]
− 1

2
Tri

[{
d†

j dj, ρ
}]}

=
1

q

(
σz

i ρiσ
z
i −

1

2
{σz

i σz
i , ρi}

)
(2.47)

and we found as additional mean field jump operator the σz-dephasing

oj :=
1√
q

σz
j . (2.48)

the coupling strength of which is rescaled by the dimension q = 2d.

◮ Spin i (Si)

Finally the special case j = i is left and we find by straightforward calculations

Tri

[
diρd†

i

]
= biρib

†
i + diρid

†
i and Tri

[
d†

i diρ
]
= b

†
i biρi + d

†
i diρi

and subsequently

Tri

[{
d†

i di, ρ
}]

=
{

b
†
i bi, ρi

}
+
{

d
†
i di, ρi

}
. (2.49)

Here we introduced the mean field jump operators

dj := σx
j

(
mzσz

j − 1

)
(2.50a)

bj :=
1√
q

√
1−m2

z σ
y
j . (2.50b)

We arrive at

Tri

[
diρd†

i

]
− 1

2
Tri

[{
d†

i di, ρ
}]

= diρid
†
i −

1

2

{
d

†
i di, ρi

}
+ biρib

†
i −

1

2

{
b

†
i bi, ρi

}
(2.51)

with the new mean field jump operators bj and dj. ◭
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Therefore the total contributions of the ferromagnetic jump operators dj are

∑
j

Tri

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

= L
(

di

)
[ρi] + L

(
bi

)
[ρi] + L (oi) [ρi] (2.52)

with the three superoperators

L
(

di

)
[ρi] = diρid

†
i −

1

2

{
d

†
i di, ρi

}
(2.53a)

L
(

bi

)
[ρi] = biρib

†
i −

1

2

{
b

†
i bi, ρi

}
(2.53b)

L (oi) [ρi] = oiρio
†
i −

1

2

{
o†

i oi, ρi

}
(2.53c)

and the effective jump operators di, bi and oz
i defined above. �

By combining all results derived above, we finally arrive at the mean field version of the

Lindblad master equation:

◮ Result 2.2: Mean field Lindblad equation for dissipative TIM

The mean field version of the Lindblad master equation for the dissipative TIM reads

∂tρi = −i
[

Hmf
i , ρi

]
+ κPL (ci) [ρi] + κFL

(
di

)
[ρi] + κFL

(
bi

)
[ρi] + κFL (oi) [ρi]

with the four effective jump operators

dj = σx
j

(
mzσz

j − 1

)
(2.54a)

bj =
1√
q

√
1−m2

z σ
y
j (2.54b)

oj =
1√
q

σz
j (2.54c)

cj =
1

2

(
σz

j − iσ
y
j

)
(2.54d)

and the mean field Hamiltonian

Hmf
i = −Jqmzσz

i − hσx
i = −hmfσi . (2.54e)

for the unitary evolution of the transverse field Ising model.

We are now prepared for the detailed mean field analysis of the dissipative TIM in the next

two subsections. There we employ the results derived in Appendix A to find the self-consistent

steady states and their dynamics for the dissipative process derived in this subsection.
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2.3.2 Static solutions

In this section we examine the non-equilibrium steady states of the dissipatively driven trans-

verse field Ising model by means of the previously derived mean field jump operators. To

this end we employ the equations derived in Appendix A for general mean field theories of

dissipative processes governed by Lindblad master equations.

A first overview
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us first derive the specific mean field equations of the theory and subsequently compute the

steady states numerically for various parameters to get an overview of the phase structure. In

the following paragraphs the different parameter regimes are then examined more carefully.

To apply the mean field equation Eq.(A.26) which determines the steady states, we first have

to compute the system matrix
(

Li,j

)
defined in Eq. (A.8). Note that we deal with a single mean

field m and therefore α ≡ 1 in all equations of Appendix A. Recall the four mean field jump

operators (we omit the overlines in the following)

d ≡ √κF σx(1−mzσz) , b ≡
√

κF

q

√
1−m2

z σy , o ≡
√

κF

q
σz , c ≡

√
κP

2
(σz − iσy) (2.55)

and the mean field unitary dynamics defined by

Hmf
TIM = −Jqmzσz − hσx ≡ hmfσ with hmf =

[
−h 0 −Jqmz

]T
. (2.56)

The coordinate representation lµ,λ (where µ = 1, 2, 3, 4 or d, b, o, c and λ = 1, 2, 3 or x, y, z) of the

four jump operators can be computed via

lµ,λ =
1

2
Tr
[
σλLµ

]
where Lµ ∈ {d, b, o, c} (2.57)

and we find

ld =
√

κF

[
1 imz 0

]T
(2.58a)

lb =

√
κF

q

[
0
√

1−m2
z 0

]T
(2.58b)

lo =

√
κF

q

[
0 0 1

]T
(2.58c)

lc =

√
κP

2

[
0 −i 1

]T
(2.58d)

which then yields according to Eq. (A.8) the system matrix

(
Li,j

)
=




κF imzκF 0

−imzκF
κF
q

[
(q− 1)m2

z + 1
]
+ κP

4
iκP
4

0 − iκP
4

κF
q + κP

4


 (2.59)
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� Figure 2.1: Classification of the mean field solutions. There are five algebraic solutions to the mean field
equations. They are physical, in the sense that a ∈ R3 and ‖a‖ ≤ 1, in the blue regions. On the horizontal
axis κP and on the vertical axis κF is varied. The unitary parameters are fixed at J = 0.2 = h and the
coordination number is q = 6. Note the change of scales in the plots of solutions No. 2 and 3.

and hence the real Ri,j and imaginary part Ii,j read

(
Ri,j

)
=




κF 0 0

0 κF
q

[
(q− 1)m2

z + 1
]
+ κP

4 0

0 0 κF
q + κP

4


 ,

(
Ii,j

)
=




0 mzκF 0

−mzκF 0 κP
4

0 − κP
4 0


 . (2.60)

To apply Eq. (A.34) the trace R = Li,i = Ri,i is required; it reads

R =
κF

q

[
2 + q + (q− 1)m2

z

]
+

κP

q
. (2.61)

We are now ready to insert our results for Ri,j, Ii,j, R, and hm f ,i in

Rmn = ǫijn
[

Ii,j + hmf,imj
]
+ miRn,i for n = x, y, z (2.62)

which yields the non-linear system of equations

q
(
2Jqayaz + κP

)
= ax

[
2κF

(
(q− 1)a2

z + 2
)
+ qκP

]
(2.63a)

az (h− Jqax) = ay

[(
1 +

1

q

)
κF +

κP

4

]
(2.63b)

(
1− 1

q

)
az

(
1− a2

z

)
κF = hay + az

κP

4
(2.63c)

Remember that the self-consistency demands mi = Tr
[
σiρ
]
= ai. So we just applied the re-

placement rule mi 7→ ai for i = x, y, z to all three equations. The equations (2.63) determine

all non-equilibrium steady states of the mean field theory and can be solved analytically for

arbitrary parameters J, h, κF, κP ∈ R
+
0 and q ≥ 2. However, the solutions are quite lengthy for

this generic case and we do not present them here for the gain of insight would be negligible.

The analytical treatment gives 5 distinct solutions where four of them can be grouped to two

pairs such that the partners differ by a sign. Not all mathematical solutions can be interpreted as

physical solutions since only real vectors a ∈ R3 inside the unit ball, |a| ≤ 1, can be used to form

valid density matrices ρ = 1
2 (1+ aσ).

In Fig. 2.1 we show the regions (blue) in dependence of κP (horizontal axis) and κF (vertical

axis) for fixed unitary parameters J = 0.2 = h, where the solutions obey these conditions. Solu-

tion No. 1 is physical throughout the whole parameter range whereas the other four solutions
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(the two pairs mentioned above) feature physical and unphysical regions. Notably, the “region

of physicality” for Solutions No. 2 and 3 is extremely limited in κP-direction and bounded in

the κF-direction as well. In contrast, the region of physicality for Solutions No. 4 and 5 seems

(and indeed is) unbounded for κF → ∞. Obviously we can expect a phase transitions (at least

in mean field approximation) where the different solutions become (un)physical.

But this is not the end of the story since we are only interested in static solutions of the

dynamical system (see Eq.(A.39))

∂ta = F(ax, ay, az) (2.64)

that are stable against small perturbations of a. A realistic system will not linger in an unstable

fixed point as small perturbations are ubiquitous. We already derived the flow F in Eq. (A.38),

[
F
(
ax, ay, az

)]
n
= 2ǫijn

[
Ii,j + hmf,iaj

]
+ 2 (Rn,i − Rδni) ai (2.65)

which in our case reads

F(ax, ay, az) =




−ax

[
2κF

(
(1− 1

q )a2
z +

2
q

)
+ κP

]
+ 2Jq ayaz + κP

2az (h− Jqax)− ay

[
2(1 + 1

q )κF +
κP
2

]

2(1− 1
q )az

(
1− a2

z

)
κF − 2hay − az

κP
2 .


 (2.66)

The steady states (or fixed points) are given by the condition F
!
= 0 as computed above. The

stability of these fixed points can be inferred from the spectrum of the Fréchet derivative

DF = JF ≡
[

∂Fi

∂aj

]

ij

(2.67)

which is given in coordinate representation by the Jacobian matrix JF . The matrix is easily
computed and reads in our case

[DF](a) =




−2
[
(1− 1

q )a2
z +

2
q

]
κF − κP 2Jqaz 2Jqay − 4(1− 1

q )axazκF

−2Jqaz −2(1 + 1
q )κF − κP

2 2 (h− Jqax)

0 −2h −2(1− 1
q )
(
3a2

z − 1
)

κF − κP
2


 . (2.68)

It is a well-known fact that a stationary solution ã, i.e. F(ã) = 0, is stable if and only if the

real part of the spectrum σ[DF](ã) is completely negative, namely max Re [σ[DF](ã)] < 0. If

there are zero (positive) eigenvalues, the stationary state becomes metastable (unstable). The

eigenvalues of DF can be computed analytically – though they are quite lengthy and we do not

present them explicitly.

In Fig. 2.2 we show the regions (red) in the κP-κF-plane where the solutions are physical

and stable. In the upper row of Fig. 2.2 the scale for each solution equals the scale in Fig. 2.1;

the lower row shows the (small) region corresponding to solutions No. 2 and 3 for all five

solutions in detail. We realise that solution No. 1 becomes stable in the region where the

solutions No. 4 and 5 are unstable (and unphysical). The additional solutions No. 2 and 3 are

unstable throughout the κP-κF-plane. Although irrelevant, they seem to cause the first solution

to become stable in their region of existence once more. That is, there is a (small) regime for

0 < κP . 0.01 and 0 < κF . 0.2 where both, the (paramagnetic, see below) solution No. 1 and
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� Figure 2.2: Not all physical solutions in Fig. 2.1 are stable and thus physically relevant. Here the stable
parameter regions (κP and κF, as in Fig. 2.1) are marked red. In the first row the parameter ranges are the
same as in Fig. 2.1 whereas in the second row the (small) section of the additional solutions No. 2 and 3 is
shown in detail for all five solutions. Note that the solutions No. 2 and 3 are completely unstable but cause
solution No. 1 to become (meta-) stable in the corresponding region. At the second-order phase transition,
the stability of the ferromagnetic solutions No. 4 and 5 is passed on to the paramagnetic solution No. 1.

the (ferromagnetic) solutions No. 4 and 5 are stable. We will examine this region in detail in

one of the following subsections.

Let us shortly summarise what we found so far: There are three relevant solutions to the

mean field equations. Two of which (No. 4 and 5) presumably are linked via the Z2 symmetry

of the theory. They represent the symmetry broken phase of the theory. The first solution (No.

1) becomes stable when the Z2-broken solutions become unphysical and represents the disor-

dered (paramagnetic) phase where the Z2 symmetry is restored. Furthermore there is a small

parameter regime with ferromagnetic and paramagnetic solutions which may indicate a region

of metastability.

To underpin our claims and to provide a first overview of the phase diagram, we produced

colour-coded plots of the purity γ, the x-magnetisation 〈σx〉 = ax and the z-magnetisation

〈σz〉 = az in the κP-κF-plane, see Fig. 2.3. Each row corresponds to one of the four generic

parameter regimes (top down): J 6= 0 6= h, J 6= 0 = h, J = 0 6= h, and J = 0 = h. All plots

show the data for the stable solution with the maximum z-magnetisation (which is solution No.

1 in the paramagnetic and No. 5 in the ferromagnetic regime; solution No. 4 has the same

z-magnetisation as No. 5 but with opposite sign). Let us point out our first findings:

In the first row a finite magnetic field and nearest-neighbour spin-spin coupling are

present, J 6= 0 6= h. Clearly there is a second-order phase transition with 〈σz〉 as or-

der parameter. For κP ≫ κF the system is driven towards a paramagnetic phase with

vanishing z-magnetisation while for κF ≫ κP a finite z-magnetisation indicates the spon-

taneous breaking of the Z2-symmetry. The ferromagnetic phase is stabilised against the

paramagnetic κP-jumps up to κP ∼ 1.7 due to the unitary dynamics of the system. To this

end, recall that the mean field phase transition of Hmf
TIM for T = 0 occurs at h = qJ. For

the plots we set q = 6 and thus h = 0.2 < 6 · 0.2 = qJ, i.e. the Hamiltonian system it in

the ferromagnetic (quantum) phase. We conclude that this phase is (to a certain extent)
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resilient with respect to the incompatible jumps cj. Notice that, due to the finite magnetic

field h > 0, there is finite x-magnetisation remaining on the κF-axis (i.e. for κP → 0). The

leftmost plot shows that in the limiting cases κF → ∞ and κP → ∞ the system is driven

towards pure steady states since a single bath dominates the dissipative and Hamiltonian

dynamics at such extreme points of the parameter space.

In the second row the nearest-neighbour spin-spin coupling is present, J 6= 0, but the

magnetic field is switched off, h = 0. The phase transition remains qualitatively the same

– however, the stability of the quantum phase against paramagnetic driving is apparently

lost. This might puzzle the reader at first sight since the system is now even “deeper” in

the ferromagnetic phase as before (h = 0 < 6 · 0.2 = qJ) and we will give more details

on this account in subsequent sections. Note that due to the missing magnetic field, the

x-magnetisation vanishes completely for κP → 0 as it is created solely by the paramagnetic

bath. We furthermore realise that the rate of change of the x-magnetisation at the phase

border for small couplings κp and κF becomes larger. So it seems reasonable that the

second order line becomes a first order phase transition for specific unitary regimes. We

give more details on this account in the following subsections.

In the third row the spin-spin coupling is switched off, J = 0, and the magnetic field

remains finite, h 6= 0. Now the Hamiltonian system is in the paramagnetic regime since

h = 0.2 > 6 · 0 = qJ. Again, this quantum phase proves resilient against small ferro-

magnetic driving κF . 0.2 and the symmetry broken phase is shifted towards larger κF

due to the Hamiltonian contributions. However, we stress that the details are clearly not

analogous to the first case with J 6= 0 6= h – as can be seen from the peculiar structure of

the purity plot, for instance. We point out that at this stage it is far from clear how the

transition between the diagrams in the first and the third row looks like – especially in the

context of the second row diagrams. More on that later.

In the fourth row all Hamiltonian contributions vanish, J = 0 = h, and the system is

purely dissipative. All diagrams feature a “ray-like” structure since there is just one free

parameter left, namely the relative coupling κ = κP
κF

. Note that all extended stability

regions (see above) vanish and the system is governed by the competition of the two

baths. Remarkably, the second order phase transition is present even if all Hamiltonian

contributions are switched off. Actually this is one of the most interesting points and one

of the key messages of this thesis: In a certain way, the two competing baths mimic the

well-known phase transition of the transverse field Ising model. This observation tells us

in addition that the phase transitions in the previous cases (with some unitary dynamics)

are not mere residual effects of the formerly known quantum phase transition induced by

Hmf
TIM.

In the following subsections the above mentioned phenomena are examined in detail. Never-

theless, our focus is on the novel purely dissipative phase transition for vanishing Hamiltonian

contributions. Therefore we start in the next paragraph with this special case. In the subsequent

paragraphs we consider the effects of the Hamiltonian dynamics and analyse the mean field

theory’s behaviour in the high-dimensional limit q→ ∞, where it is expected to become exact.
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� Figure 2.3: Stable steady states of dissipative TIM in mean field approximation with maximum z-
magnetisation in dependence of the bath couplings κP and κF for different unitary contributions J and h.
All results refer to a 3-dimensional (q = 6) system. The first column shows the purity (white denotes pure
states), the second column the x-magnetisation (dark green is fully polarised), and the third column the
z-magnetisation (dark red is fully polarised). The z-magnetisation is an order parameter and indicates a
second-order phase transition. More comments are given in the text.
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� Figure 2.4: Stable steady states of purely dissipative TIM in mean field approximation with maximum
z-magnetisation in dependence of the bath couplings κP and κF. All results refer to a 2-dimensional (q = 4)
system. As in Fig. 2.3 we show (from left to right) the purity, the x-magnetisation, and the z-magnetisation.
The second-order phase transition is indicated in the rightmost plot by the transition from az = 0 to az > 0.
Note that the state depends only on the relative coupling strength κ = κP/κF since we set J = 0 = h. So
we may restrict ourselves to plots along some diagonal as indicated by the bold lines.

No unitary dynamics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us consider the purely dissipative system, i.e. set J = 0 = h in the mean field equations (2.63).

Its phase diagram is shown in Fig. 2.4. We are interested in the competition of the two baths. It

is therefore reasonable to assume κF > 0 and κP > 0 and introduce the relative coupling κ = κP
κF

(see Fig. 2.4) which allows further simplifications. This yields the mean field equations

κq = ax

(
2a2

z(q− 1) + κq + 4
)

(2.69a)

0 = ay (2.69b)

0 = 4az

(
a2

z − 1
)
(q− 1) + azκq (2.69c)

for the purely dissipative setting. The flow in the Bloch ball is given by

F(ax, ay, az)
∣∣

J=0=h
=




−ax

[
2κF

(
(1− 1

q )a2
z +

2
q

)
+ κP

]
+ κP

−ay

[
2(1 + 1

q )κF +
κP
2

]

2(1− 1
q )az

(
1− a2

z

)
κF − az

κP
2 .


 (2.70)

with the triangular Jacobian matrix

[DF](a)|J=0=h =




−2
[
(1− 1

q )a2
z +

2
q

]
κF − κP 0 −4axazκF(1− 1

q )

0 −2(1 + 1
q )κF − κP

2 0

0 0 −2(1− 1
q )
(
3a2

z − 1
)

κF − κP
2


 ,

the spectrum of which can be read off.

If one computes the solutions of the mean field equations (2.69) one finds three of them. The

additional solutions No. 2 and 3, which were responsible for the small region with three steady

states, are no longer present. If we compute the parameter ranges where the three remaining
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� Figure 2.5: Classification of the mean
field solutions for the purely dissipative
system. Only three of the five algebraic
solutions are left if J = 0 = h. In the
upper row we show the regions (blue) in
the κP-κF-plane where the solutions be-
come physical (see also Fig. 2.1 and 2.2).
In the lower row the regions where these
solutions are physical and stable is high-
lighted red. The two ferromagnetic solu-
tions No. 2 and 3 are stable for κP < 3κF

whereas for κP ≥ 3κF the paramagnetic
solution No. 1 describes the system.

solutions are physical and stable the simplified scheme in Fig. 2.5 is obtained. This result is clearly

consistent with our findings in Fig. 2.3: The paramagnetic solution is stable for κP ≥ 3κF (where

the ’3’ is a consequence of q = 4) and becomes unstable when the two ferromagnetic solutions

become physical.

As a consequence of the simplicity of the mean field equations, the three solutions can be

expressed in a compact form:

aP =
[

κq
κq+4 0 0

]T
(2.71a)

aF1 =
[

2κq
(κ+4)q+4

0 − 1
2

√
4− κq

q−1

]T
(2.71b)

aF2 =
[

2κq
(κ+4)q+4

0 + 1
2

√
4− κq

q−1

]T
(2.71c)

Clearly, the ferromagnetic solutions become physical iff

4− κq

q− 1
≥ 0 ⇔ κ ≤ κc ≡ 4

(
1− 1

q

)
(2.72)

which we call the critical coupling κc henceforth. However, from these equations we cannot

deduce the instability of the paramagnetic solution for κ < κc. We have to insert the latter into

the three eigenvalues of [DF](a)|J=0=h. This yields

λP
1 = 2− 1

2

(
κ +

4

q

)
≶ 0 , λP

2 = −κq + 4

q
< 0 , λP

3 = −κ

2
− 2

q
− 2 < 0 (2.73)

and we see that the paramagnetic solution becomes unstable for κ < κc = 4
(

1− 1
q

)
where

λP
1 > 0. The same procedure for the ferromagnetic states yields

λF
1 = κ − 4

(
1− 1

q

)
≶ 0 , λF

2 = −κ

2
− 2

q
− 2 < 0 , λF

3 = −κ

2
− 2

q
− 2 < 0 (2.74)

which leads us to the conclusion that they indeed become stable the moment they become

physical (i.e. real-valued), namely for κ < κc = 4
(

1− 1
q

)
when λF

1 becomes negative.
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� Figure 2.6: Illustration of the mean field dynamics for a purely dissipative (J = 0 = h) system as flow
in a cross section (ay = 0) of the Bloch ball. ax varies on the horizontal, az on the vertical axis. The vector
field describes ȧx and ȧz and colour-codes the y-component, i.e. ȧy (black arrows imply ȧy = 0). The
Bloch ball’s surface (the Bloch sphere) is denoted as thick grey line. The shaded region does not describe
any physical states (‖a‖ > 1). The relative bath strength κ = κP/κF varies from left to right, where
the leftmost plot describes a purely paramagnetic and the rightmost plot a purely ferromagnetic system.
During variation of κ from ∞ to 0 the steady states run along the bold lines. For κ > κc the symmetry is
spontaneously broken and the paramagnetic (green) steady state becomes unstable (circle). Note that the
symmetry breaking appears inside the Bloch ball and therefore at a mixed state.

These calculations are as correct as they are simple; but they lack presentiveness as the

connection between the emergence of the ferromagnetic solutions on the one side and the decay

of the paramagnetic solution on the other side remains elusive. This connection becomes clear

instantaneously if we plot the dynamical field F(a) as a vector field in the Bloch ball. As we

already derived that all steady states have ay = 0, it seems reasonable to plot the flux in a cross-

section of the Bloch ball, namely the ax-az-plane. This is shown in Fig. 2.6 for the three showcases

κ = ∞ (paramagnetic phase), κ = 1.6 (close to phase transition) and κ = 0 (ferromagnetic phase).

There we see:

In the paramagnetic regime, κ = ∞, there is a single steady state within the Bloch ball

(more precisely: on its boundary). Since it is located at the ax = 1 and az = 0 pole of

the sphere, we identify this fixed point with a pure paramagnetic steady state. Clearly this

is solution No. 1 as no other physical solution exists in this parameter regime. Note that

the orthogonal components of the flux lines towards the surf ache of the Bloch ball (bold

grey circle) point into the ball without exception. This is a consequence of the fact that

exp (Lt) is a CPTP map for all times t; therefore it is impossible for a Bloch vector a to

leave the Bloch ball and become “unphysical” if its dynamics is governed by the equations

of motion, namely the Lindblad master equation.

Lowering κ drives the steady state along the green line into the Bloch ball, thus rendering

the steady state mixed. At the point where the red and blue lines emerge the symmetry

breaking occurs. For the plots in Fig. 2.6 we set q = 4 and therefore one finds κc = 3.

Hence the symmetry breaking already occurred in the second plot as κ = 1.6 < 3 = κc:

The paramagnetic solution remains physical (meaning: in the Bloch ball) but becomes

unstable (green circle). This instability manifests itself by the saddle point structure of the

flux lines. In contrast, the ferromagnetic solutions are both physical and stable and move

along the red and blue arcs towards the full z-magnetised poles of the Bloch ball. Since

the ferromagnetic solutions become physical by becoming real-valued, they do not enter
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the Bloch ball through the drawn surface but rather from “another dimension”, namely

the complex environment of the Bloch ball as subset of C3.

In the purely ferromagnetic regime, κ = 0, the fixed points are located at the z-poles of the

Bloch ball. Since they once more reached its surface, they are pure states.

From this perspective all the previous abstract computations fit together quite nicely. Note that

the important part of the dynamics, as encoded by the flux F, is located in the shown ax-az-plane.

The rest of the Bloch ball (i.e. points with ay 6= 0) is driven towards this plane, independently

of the ax-az projection, as can be seen from the second component in Eq. (2.70).

� Phase diagram, critical exponents and entropy

To conclude this subsection on the steady states of the purely dissipative system, let us give ex-

plicit formulas for magnetisation and entropy. Actually, we just need to read off the expressions

from the solutions given above. The magnetisation reads

mx =





κq
κq+4 for κ > κc

2κq
(κ+4)q+4

for κ ≤ κc

(2.75a)

my = 0 (2.75b)

mz =





0 for κ > κc

± 1
2

√
4− κq

q−1 for κ ≤ κc

. (2.75c)

This function is shown for q = 4 in Fig. 2.7. Note that κc = 4
(

1− 1
4

)
= 3. At this point it is easy

to derive the mean field critical exponent β for the ordered phase (κ ≤ κc) that is defined via

β := lim
τ→0

ln |mz(τ)|
ln |τ| with τ ≡ κ − κc

κc
(2.76)

and describes the power-law behaviour of the order parameter mz with respect to the control

parameter κ near (and below) the critical coupling κc, i.e.

mz(τ) = (−τ)β =

(
κc − κ

κc

)β

. (2.77)

If we recast the magnetisation in terms of κc (instead of q) we find mz =
√

κc−κ
κc

for κ ≤ κc. Then

it is trivial to see that β = 0.5 which, after all, is not surprising in a mean field context. As usual

in mean field theories, the dependence of the lattice dimension D (or coordination number q) is

completely lost – the critical exponent is superuniversal.

In Fig. 2.7 we furthermore show the norm of the Bloch vector |a| as a measure of purity

(dashed lines). Note that the connection between purity γ and |a| is given via

γ = Tr
[
ρ2
]
=

1

2

(
1 + |a|2

)
(2.78)

So they are actually the same; the only difference being γ ∈ [0.5, 1] (for one qubit!) and |a| ∈
[0, 1]. Thus we denote both γ and |a| as “purity” in the mean field context. In Fig. 2.7 it becomes
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� Figure 2.7: Phase diagram of purely dissipative TIM in mean field approximation. The z-magnetisation
〈σz〉 is shown for all three solutions of the mean field equations in dependence of the relative coupling
κ. Note that the paramagnetic solution No. 1 becomes unstable in the ferromagnetic regime (dark green).
The purity γ is shown for the paramagnetic and, exemplarily, one of the two ferromagnetic solutions. It
reaches 1 (indicating a pure state) for κ → 0 and the ferromagnetic solution as well as for κ → ∞ and the
paramagnetic solution (to be read off at the second y-axis). The entropy S was calculated for stable states,
i.e. for one of the ferromagnetic states if κ ≤ 3 and for the paramagnetic state if κ > 3. Note the cusp
feature of S at the critical coupling κc = 3.

clear that the purity drops to its minimum at the phase transition. This however is not true in

general as we will see in the next paragraph.

Another interesting quantity in an open system setup is the Von Neumann entropy S which,

for a single spin, is a function of the Bloch vector

S [ρa] = −
1

2
log

[
1− a2

4
·
(

1 + a

1− a

)a]
, (2.79)

see Eq. (D.7) in Appendix D. In Fig. 2.7 the entropy is denoted as solid purple line. In accordance

with the purity it reaches its maximum at the phase transition. We want to draw the readers

attention to the cusp feature at the critical point, i.e. there is a discontinuity of ∂S
∂κ at κc which is

consistent with our notion of a second order phase transition.

High-dimensional limit without unitary dynamics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is widely accepted that mean field approximations become more reliable for high-dimensional

systems as the number of nearest-neighbour interaction becomes larger. Clearly, interactions

with many (nearest) neighbours are more faithfully represented by a homogeneous mean field.

There are two ways to achieve this: First, the interaction range may be extended and thereby

the number of interacting neighbours. Second, the (spatial) dimension of the underlying lattice

directly determines the number of next-nearest neighbours (coordination number q). Increasing

the dimension therefore improves the accuracy of mean field predictions. As a consequence, it

is important and enlightening to analyse the mean field theory in the limit q→ ∞.
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� Figure 2.8: Illustration of the mean field dynamics for a purely dissipative (J = 0 = h) system as flow
in a cross section (ay = 0) of the Bloch ball in the high-dimensional (q = ∞) limit. See Fig. 2.6 for further
explanations. A comparison with the finite-q systems shows that the phase transition now occurs on the
Bloch sphere, i.e. in a pure paramagnetic phase. As before, the ferromagnetic states move along the red and
blue arcs to their corresponding pole. Note that, although pure for k ≥ κc, in the ordered phase (for κ < κc)
the states “dive” into the Bloch ball and become mixed until they “resurface” for κ → 0 and become pure
once more.

The mean field equations of the purely dissipative system now read

κ = ax

(
2a2

z + κ
)

(2.80a)

0 = ay (2.80b)

0 = 4az

(
a2

z − 1
)
+ azκ (2.80c)

as can be seen easily from Eq. (2.69). The flow in the Bloch ball reads

F(ax, ay, az)
∣∣

J=0=h,q=∞
=



−ax

[
2κFa2

z + κP

]
+ κP

−ay

[
2κF +

κP
2

]

2az

(
1− a2

z

)
κF − az

κP
2


 (2.81)

which follows straightforwardly from Eq. (2.70). To obtain the solutions of the new mean field

equations we may solve them directly or perform the limit q→ ∞ on the finite-q solutions. Both

procedures yield the simple fixed points

a∞
P =

[
1 0 0

]T
(2.82a)

a∞
F1 =

[
2κ

κ+4 0 − 1
2

√
4− κ

]T
(2.82b)

a∞
F2 =

[
2κq
κ+4 0 + 1

2

√
4− κ

]T
(2.82c)

and the critical coupling becomes

κ∞
c = lim

q→∞
4

(
1− 1

q

)
= 4 . (2.83)

This is an important result: The critical coupling remains finite and therefore a non-trivial phase

transition survives in the high-dimensional limit. However, there is a peculiarity which can be
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� Figure 2.9: Phase diagram of purely dissipative TIM in mean field approximation and in the high-
dimensional (q = ∞) limit. See Fig. 2.7 for further explanations. In the case at hand the phase transition
occurs at κc = 4 where the ferromagnetic solutions become physical and mixed. Note that in contrast to
the finite-q case (cf. 2.7), here the purity in the paramagnetic phase is constant and equal to one. As a
consequence the entropy vanishes in the paramagnetic phase, becomes finite for 0 < κ < 4, and vanishes
again for κ = 0. We stress that the maximum entropy is reached somewhere in the ferromagnetic phase
and not at the phase transition.

seen in Fig. 2.8 (cf. Fig. 2.6) and Fig. 2.9 (cf. Fig. 2.7). Since a∞
P is obviously independent of κ, the

state remains fixed at the pure and completely x-polarised state throughout the paramagnetic

phase 4 ≤ κ ≤ ∞. However, when κ crosses κc from above, the stationary paramagnetic solution

becomes unstable and, as before, the two stable ferromagnetic solutions start their trip towards

to z-polarised poles. See the cross-sections in Fig. 2.8 for an illustration in terms of the dynamical

flux F. If we consider the z-magnetisation, purity |a| and the entropy S in dependence of κ we

find the phase diagram in Fig. 2.9. Here it becomes obvious what can be seen in Fig. 2.8 with

difficulty: The ferromagnetic solutions “dive” into the Bloch ball and the states for 0 < κ < 4

become (slightly) mixed. Here the minimal purity (and maximal entropy) is reached somewhere

in the ferromagnetic phase and not at the phase transition, cf. Fig. 2.7. We will see later that this

happens also for finite q, if they are large enough.

There is another point worth mentioning: For κ = 0 there appear further stationary states.

This can be easily seen since the mean field equations for this boundary case read

0 = 2axa2
z

0 = ay

0 = 4az

(
a2

z − 1
)

which are not only solved by our previously derived stationary states but additionally by all

Bloch vectors with vanishing az-component. That is, the equatorial plane becomes stationary as

indicated by the green bar in Fig. 2.8. However, the additional stationary states are unstable as

an inspection of the spectrum σ[DF](az = 0) shows (it is also clear from the flow in the cross-

sections). So we are left with a non-trivial phase transition in the high-dimensional limit with

a constant and pure paramagnetic phase and an unstable stationary equatorial ax-ay-plane for

vanishing paramagnetic driving κP.
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Competing unitary and dissipative dynamics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

How changes the purely dissipative phase diagram if additional unitary contributions are

switched on? This setting can be described as generic transverse field Ising model with ad-

ditional dissipative driving where one dissipative process favours the paramagnetic ground

state of the Hamiltonian system and the other bath drives the spins towards the (degenerate)

ferromagnetic ground state space. In this sense we augmented the Hamiltonian dynamics by a

“mimicked” or “replicated” dissipative one. As a consequence, there arise various competitions

among unitary and dissipative terms:

σz
i σz

j via J

σx
i via h

di via κF

ci via κP

✓

✓

✗✗ ✗

We already caught a glimpse of the consequences in the preliminary paragraph 2.3.2 where

Fig. 2.3 provides a brief overview of the phase structure with unitary contributions. In the

following we give a detailed (numerical) description of peculiarities in this regime. Since the

mean field equations (2.63) for the most generic case are rather lengthy, there exist no compact

or informative analytic expressions. Therefore we restrict ourselves to numerical solutions of

Eq. (2.63) and intuitively accessible illustrations of the mean field flux (2.66) in the Bloch ball.

It became clear by inspection of the purely dissipative system that there is a non-trivial

phase transition analogue to the (quantum) phase transition of the TIM. Consequently one

could expect that the dissipative phase transition is modified by the unitary contributions such

that the ferromagnetic phase becomes (to some extent) stable against paramagnetic driving

due to a large spin-spin coupling J. Respectively a strong magnetic field h might stabilise

the dissipatively induced paramagnetic phase against ferromagnetic driving. Such phenomena

were indeed observed in the preliminary paragraph 2.3.2, see Fig. 2.3. The effect, however, was

not symmetric and by means of Fig. 2.3 alone it was impossible to derive the transition between

the parameter range where the ferromagnetic phase is stabilised against paramagnetic driving

and the analogous range where the paramagnetic phase is resilient to the ferromagnetic bath.

This question is answered by Fig. 2.10 where we show the phase diagram for fixed magnetic

field h = 1 and decreasing spin-spin coupling J (top to down):

If the spin-spin coupling dominates the magnetic field (first row), the ferromagnetic phase

extends to the κP-axis and becomes stable against paramagnetic driving; up to κp ∼ 3.5

for the shown parameters. This is not surprising since the Hamiltonian system is in the

ferromagnetic (mean field) phase, i.e. h = 1 < 6 · 0.3 = qJ.

For slightly decreased spin-spin coupling (second row) a paramagnetic island at the κF-axis

emerges. Note that the Hamiltonian system is still in the ferromagnetic phase, h = 1 <

6 · 0.21 = qJ, but approaches the mean field phase transition at J = 0.16. Interestingly,

the z-magnetisation reaches its (finite) minimum at the saddle point and increases again

for κF → 0. This is a cooperative effect where the presence of two competing baths (on the
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� Figure 2.10: Steady states of dissipative TIM with unitary dynamics for varying J. We show for each
parameter J = 0.3, 0.21, 0.197, and 0.16 the purity, x-magnetisation and z-magnetisation of the steady state
which maximises the latter. The four steps explain how the phase diagrams in Fig. 2.3 transform into
each other: For specific parameter regimes there are separated ferromagnetic and paramagnetic islands,
respectively. Additionally, there is evidence in the 2nd, 3rd and 4th row for a first order line originating
on the κF-axis at κF ≈ 0.9 which becomes a second order phase transition at some point in the κP-κF-plane.
More details are given in the text.
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saddle point) disturbs the Hamiltonian phase and weakens its z-magnetisation more than

a single paramagnetic bath which, nevertheless, is in conflict with the Hamiltonian phase.

There is a second interesting phenomenon: The infinite phase boundary separating the fer-

romagnetic and the outer paramagnetic phase is clearly of second order. The phase bound-

ary of the paramagnetic island is of second order for small ferromagnetic coupling κF but

becomes a first order transition for κF & 0.6 as indicated by the purity and x-magnetisation

plots. Note that this first order transition is accompanied by a considerable drop in purity.

From this point of view it seems more appropriate to speak of a “mixed island” instead of

a “paramagnetic island”. We will investigate the first order transition in the course of this

paragraph, see Fig. 2.12.

When the spin-spin coupling decreases further (third row), the ferromagnetic bridge splits

at the saddle and converts the phase diagram, at least qualitatively, to its dual: Instead of

a paramagnetic island close to the κF axis there is now a ferromagnetic island close to the

κP-axis. The Hamiltonian system is still in the ferromagnetic phase, h = 1 < 6 · 0.197, and

stabilises the ferromagnetic phase against a dominant paramagnetic bath. As before, there

is a regime where the competition between ferromagnetic and paramagnetic jump operators

causes the Hamiltonian phase to become symmetric once more, namely the (horizontal)

paramagnetic bridge.

The ferromagnetic island shrinks as the Hamiltonian contributions approach their critical

point and vanishes completely at the critical point for h = 1 ≥ 6 · 1.6 = qJ (fourth row).

In this regime the strong magnetic field h stabilises the paramagnetic phase against ferro-

magnetic jumps up to κF ∼ 1 for κP → 0. This is, to some extent, the dual of the phase

diagram in the first row as they can be mapped onto each other by a reflection about the

angle bisector and a subsequent exchange of paramagnetic and ferromagnetic phases.

This duality is not perfect since the first order transition survives (and there is no such

transition visible in the first row): The phase boundary starts at the κF-axis as a first order

transition (this can be seen most clearly in the x-magnetisation plot) and becomes a second

order transition as one follows the phase boundary.

This analysis illuminates the unclear points raised during the discussion of Fig. 2.3 and prompts

new questions at once:

1. What does the ferromagnetic island look like in terms of purity, entropy etc.? Is there a

difference to the other connected component of the ferromagnetic phase?

2. How does the first order transition emerge in the mean field framework? How is it charac-

terised by the dynamical flow in the Bloch ball?

To shed light on these questions we examined the theory on straight lines in the parameter space

that traverse the critical regions in the phase diagram. The results are shown in Fig. 2.11 which

examines the ferromagnetic island, and Fig. 2.12 which explains the emergence of the first order

phase transition.
Let us first deal with the ferromagnetic island and Fig. 2.11:

In the lower row we show the phase space in the κP-κF-plane for J = 0.197 and h = 1,

which is a slice of the parameter space where the ferromagnetic bridge is split and the

island is completely separated. In the following we examine the steady states on the
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� Figure 2.11: Details of the phase diagram of the dissipative TIM with unitary dynamics and a ferro-
magnetic island at the κP-axis. In the lower row we show the purity, x-magnetisation and z-magnetisation
in the κP-κF-planes for J = 0.197 and h = 1 (see 3rd row of Fig. 2.10). In the middle we plot the z-
magnetisation and purity for all physical solutions (No. 1, 4 and 5) and the entropy for the solution
with maximal z-magnetisation along the bold dashed line shown in the 2D-plots below. We denote the
ferromagnetic (paramagnetic) phases by F (P). The paramagnetic solution (green) becomes unstable (dark
green) in the ranges where ferromagnetic solutions exist. The latter are stable throughout their range of
existence. In the upper row we plot the dynamical flow F on a cross-section of the Bloch ball for three
distinguished parameter sets labelled by 1, 2 and 3 in the 2D-plots and by vertical orange lines in the plot
below. As before, open circles denote unstable fixed points while filled discs mark the stable ones. The
paths of these fixed points along the dashed parameter path are drawn with bold coloured lines. Note that
due to the unitary dynamics the ferromagnetic fixed points are no longer located on the ax-az-plane with
ay = 0! The shown cross sections with three fixed points are defined by the plane spanned by these three
points. The cross section with a single (paramagnetic) fixed point lies in the ax-az-plane. The colour of the
arrows encodes their component orthogonal to the shown plane. Further details are given in the text.
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bold dashed line in detail. Note that this line crosses a phase boundary twice but misses

the suspected first order transition when it enters the ferromagnetic bulk region (see the

x-magnetisation plot).

In the middle row we plot the z-magnetisation, purity and entropy for the paramagnetic

and ferromagnetic solutions along the mentioned line. First, both phase transitions are

clearly of second order; so the first order line terminates in fact at some multicritical point

on the phase boundary. Second, in the ferromagnetic island (1) the steady states become

pure for κF → 0 and finite κP though they do not become completely z-polarised — contrary

to the limit κF → ∞ (3) where the system reaches pure and completely z-polarised steady

states (as in the purely dissipative setup). In addition, the two depicted phase transitions

are qualitatively different since the entropy reaches its maximum at the second one and

traverses the first one without any indication of a phase transition.

In the upper row we show the dynamical flux F at three distinct points (1), (2), and

(3) in the parameter space. The depicted cross-section is defined by the plane spanned

by the three steady states to provide insight into the non-trivial three-dimensional flow.

If only a single steady state is present, the cross section is chosen parallel to the ax-az-

plane. The color of the arrows encodes the component of F perpendicular to the cross-

section. We denote stable (unstable) solutions by disks (circles). The first plot at t = 0.1

illustrates the fact that the symmetry-broken steady states become pure for κF → 0 on the

ferromagnetic island though they do not reach the poles of the Bloch sphere. When we

reach the paramagnetic bridge (t = 0.35) the ferromagnetic solutions vanish and any initial

state is driven towards the same steady state. For larger κF (t = 0.9) the ferromagnetic

solutions re-emerge and tend towards the poles whereas the (now unstable) paramagnetic

solution reaches the completely mixed state in the limit κF → ∞. Note that the qualitative

structure of the flow F in the vicinity of and beyond the second phase transition is closely

related to the purely dissipative transition, see e.g. Fig 2.6.

We conclude that there are qualitative differences between the symmetry-broken phases on the

ferromagnetic island on the one hand and in the bulk region on the other hand. In addition, we

found the remarkable result that the symmetry-broken steady states on the ferromagnetic island

become pure for finite unitary dynamics and paramagnetic driving given the ferromagnetic bath

decouples.

Now let us turn towards the first order transition and Fig. 2.12:

In the lower 2D plots we show a small section adjacent to the κF-axis which includes the

suspected line of first order transition. The following inspection is based on the path along

the angle bisector which traverses the phase transition almost perpendicularly.

The middle plot along the mentioned path, first, confirms beyond doubt that the transi-

tion is of first order, and second, reveals the (mathematical) mechanism that is responsible

for this phenomenon: In the grey region denoted by (M) the peculiar additional solutions

No. 2 and 3 (see e.g. Fig. 2.1) become physical but remain unstable. In this intermediate,

metastable parameter range the paramagnetic and the ferromagnetic solutions become sta-

ble and the shown behaviour of the z-magnetisation reminds of a hysteresis: Coming from

the ferromagnetic regime the system lowers the z-magnetisation but remains in the ferro-

magnetic phase when it enters the metastable region. When it leaves the latter and enters

the paramagnetic phase, the current (ferromagnetic) state becomes suddenly unphysical
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� Figure 2.12: Details of the phase diagram of the dissipative TIM with unitary dynamics near the κF-axis
in the region with three stable solutions. For details on the structure of the illustration we refer the reader
to the caption of Fig. 2.11. The shown transition from the symmetric (1) to the symmetry-broken phase (3)
is of first order with an intermediate region (2) where both, the paramagnetic and ferromagnetic solutions
are stable. Note that in the 2D plots the solution with maximum z-magnetisation is shown, which prevents
the intermediate region to become visible. In this region the additional solutions No. 2 and 3 become
physical (but remain unstable) and connect the ferromagnetic solutions with the paramagnetic one. In the
Bloch ball cross-sections the unstable solutions are marked with circles of the corresponding colour. Note
that due to the non-trivial flow perpendicular to the shown planes, the (in-)stability of the fixed points
cannot be inferred from the shown flux lines. For instance, at t = 0.1 (first Bloch ball from the left) the
(green) paramagnetic solution seems to be unstable according to the shown flux lines. This, however, is
not true as a thorough analysis reveals. More details are given in the text.
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and the new stable (paramagnetic) solution emerges separated from the current state. The

reversed process occurs if the system enters the metastable region from the paramagnetic

and proceeds to the ferromagnetic phase. Due to this mechanism it is impossible to tra-

verse this line25 adiabatically.

The metastable region is comparatively thin and may be considered as a single transition

line. Consistently with our findings the entropy is discontinuous at this line (since the

purity is) — a typical feature of a first order phase transition.

The dynamical flow F in the upper row looks peculiar and is highly misleading without

further comments: In contrast to the purely dissipative setting where the interesting dy-

namics takes place in the ax-az-plane at ay = 0, this is not true when unitary components

are present. The latter rotates the ferromagnetic steady states (slightly) about the ax-axis

out of the aforementioned plane. The flow features additional vortex-like structures due

to the unitary evolution which, for instance, are responsible for the “dummy steady-states”

in the t = 0.1 cross-section where the flux flows out of and into the plane. Another effect

of this complicated dynamics is the apparent instability of the paramagnetic steady state at

t = 0.55 which cannot be verified by inspection of the Jacobian matrix26. Since the unstable

additional solutions (light red and blue circles) lie not within the shown plane, one cannot

infer any useful information from the plotted projection of the flux.

When the system is deep inside the ferromagnetic phase for κF → ∞ (t = 0.9), the flux

resembles qualitatively the purely dissipative one (up to the out-of-plane components), cf.

Fig 2.6.

The discussion of Fig. 2.12 provided two crucial and closely related insights: First, we under-

stood how a first order phase transition emerges in mean field theory as a manifestation of a

thin metastable region with three stable solutions. And second, the additional solutions (which

first appeared as mere mathematical artefacts) are now closely linked to the mechanism that

is responsible for the first order phase transition and the emergence of a metastable parameter

regime.

In the next paragraph we have a look at the high-dimensional limit of the generic case to

estimate which of the phenomena that were treated above might be mean-field artefacts.

High-dimensional limit with unitary dynamics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here we examine the high-dimensional limit q→ ∞ of the mean field theory with non-vanishing

unitary contributions. The procedure is the same as in the previous paragraph 2.3.2: We start

from the finite-q mean field equations (2.63) with unitary dynamics and perform the limit q→ ∞.

We immediately realise that this limit is not well-defined if we consider the spin-spin coupling

J to be constant. This comes as no surprise since in the high-dimensional limit the number of

neighbours diverges and with it the nearest-neighbour interaction energy per spin. Thus we

have to renormalise the spin-spin coupling according to

J 7→ J′ ≡ J

q
. (2.84)

25Actually it is some sort of hyperplane in the parameter space spanned by J, h, κF , and κP.
26This is an artefact of the projection used for these illustrations and occurs whenever a vortex is cut lengthways.
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� Figure 2.13: Regions in the κP-κF-plane where the five algebraic solutions are physical (upper row, blue
regions) and stable (lower row, red regions), respectively. There are two striking differences: First, the
additional solutions No. 2 and 3 are no longer physical at any point in the parameter space28. Second,
the phase boundary is shifted towards κP = 0, i.e. the relative contribution of ferromagnetic (κF) and
paramagnetic (κP) jump operators is modified. Compare with the finite-q results of Fig. 2.1 (physical
solutions) and Fig. 2.2 (stable solutions).

So we reduce the spin-spin coupling J for increasing q to compensate for the diverging number

of nearest neighbours27. With this substitution, we finally obtain the mean field equations:

2Jayaz + κP = ax

(
2κFa2

z + κP

)
(2.85a)

az (h− Jax) = ay

(
κF +

κP

4

)
(2.85b)

az

(
1− a2

z

)
κF = hay + az

κP

4
(2.85c)

The flow in the Bloch ball follows from Eq. (2.66) and reads

F(ax, ay, az)
∣∣
q=∞

=



−ax

(
2κFa2

z + κP

)
+ 2J ayaz + κP

2az (h− Jax)− ay

(
2κF +

κP
2

)

2az

(
1− a2

z

)
κF − 2hay − az

κP
2


 . (2.86)

One can solve Eq. (2.85) for stationary solutions analytically and obtains five distinct solutions,

as in the case of finite q above. They are still lengthy, so we do not present them here in detail.

Their classification in the κP-κF-plane is illustrated in Fig. 2.13. Compare these results with the

plots in Fig. 2.1 and Fig. 2.2 (same parameters, same scaling, finite q). There are two striking

differences:

1. The additional solutions No. 2 and 3 are no longer physical at any point in the parameter

space. Therefore the first order phase transition and the region of three stable solutions

27The reader may ask why this was not necessary in the purely dissipative setting before. The reason is that κF (the
dissipative analogue of J) is already renormalised for q → ∞ due to the coefficient q−1 in the definition of the jump
operators di .
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(see previous paragraph 2.3.2) do not survive in the high-dimensional limit. It is therefore

questionable whether these phenomena are genuine effects or mere mean field artefacts.

2. The phase boundary is shifted towards κP = 0, i.e. the relative contributions of the competing

baths are modified. This is not unexpected as the baths are not symmetric: The ferromagnetic

jump operators di interact with the nearest-neighbours and for this reason are sensitive to the

lattice dimension. In contrast, the paramagnetic jump operators ci act on single sites only

and therefore remain unaffected in the high-dimensional limit.

The qualitative structure of the phase diagram is unaffected by the limit q → ∞, as can be seen

in Fig. 2.14 where we show the three generic cases J = 0.5 = h, J = 0.5 and h = 0, J = 0 and

h = 0.5 (the purely dissipative setting, J = 0 = h, was outlined in the previous paragraph).

Compare these results with the plots of the first three rows in Fig. 2.3 (finite-q setting). The

phase boundary in the first row is shifted towards κP = 0 as already mentioned. However,

for larger spin-spin couplings J > h > 0 the first row of Fig. 2.3 can be reproduced. The

second and third rows are quite similar with respect to the x- and z-magnetisation. But there is

an obvious difference between the purity structures in the third rows of Fig. 2.3 and Fig. 2.14.

Note that this is the parameter regime where we found the first order transition. The kink

structure in the purity graph in Fig. 2.3 for h > J = 0 is a consequence of this phenomenon.

As we already mentioned, we do not expect this first order transition to survive in the present

case. Consequently, the purity structure in the corresponding plot of Fig. 2.14 looks differently.

Nevertheless, a residue of the first order anomaly seems to be present near the κF-axis, as can

be seen e.g. in the purity plot of the first row of Fig. 2.14. There is, however, no phase transition

(neither first nor second order) in this region, as a detailed inspection reveals.

We do not discuss all details of the phase diagram for arbitrary parameters J, h, κP and

κF here since the main message is not how it looks like but that the qualitative phase structure

survives in the high-dimensional limit (up to the first-order anomaly etc.). However, there is

one peculiarity which we examine in the following that occurred already in the finite-q setting:

For vanishing magnetic field (J = 0.5 and h = 0 in the high-dimensional setup and J = 0.2 and

h = 0 in the finite dimensional setup) the phase boundary becomes a straight line where the

z-magnetisation features a ray-like structure but the x-magnetisation does not. If one considers

the second rows of Fig. 2.3 and Fig. 2.14, the question arises whether the phase transition re-

mains of second order near the origin since there the x-magnetisation drops quite rapidly when

the phase boundary is crossed and the system enters the ferromagnetic phase. We therefore

scrutinise this transition for small κP and κF along a straight line in the κP-κF-plane; the results

are shown in Fig. 2.15. The structure of the illustration has already been introduced before (see

paragraph 2.3.2 for instance). Here some comments on the results:

The 2D plots confirm what we already found in the purely dissipative high-dimensional

limit: The paramagnetic phase is the pure, completely x-polarised state and is independent

of the bath couplings as long as they remain in the paramagnetic phase. When the phase

boundary is crossed, the symmetry broken states depend on the parameters and become

mixed unless κP = 0.

The 2D purity plot reveals a dent of reduced purity near the origin which separates the

pure paramagnetic phase and the pure ferromagnetic phase for κP → 0. Note that the

overall purity is comparatively high (for this example, the minimum length |a| of the

Bloch vector is ∼ 0.6).
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� Figure 2.14: Stable steady states of dissipative TIM in mean field approximation with maximum z-
magnetisation in dependence of the bath couplings κP and κF for different unitary contributions J and
h and in the high-dimensional limit q → ∞. The first column shows the purity (white denotes pure
states), the second column the x-magnetisation (dark green is fully polarised), and the third column the z-
magnetisation (dark red is fully polarised). Compare these results to the finite-q plots in Fig. 2.3 and note
the missing structure in the paramagnetic phase. As in the purely dissipative setting the paramagnetic
phase is pure and independent of the bath couplings κP and κF. More comments are given in the text.

| 121



Chapter2 Spontaneous symmetry breaking by dissipation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The 2D z-magnetisation plot shows that the structure is not exactly linear near the origin.

This contrasts the z-magnetisation in the purely dissipative setting where the ray-structure

is perfect as there is only one relevant parameter left, namely the relative coupling κ.

The plot in the second row shows the usual quantities along the dashed line crossing

the phase boundary from top left to down right. Now it becomes clear that the phase

transition is of second order although the shape of the z-magnetisation is slightly deformed

compared to the purely dissipative setting (which was described by a simple square root).

It seem reasonable (and can be checked easily) that the initial slope of the order parameter

increases the closer the crossing is probed to the origin.

The previously mentioned dent of purity in the symmetry-broken phase is easily identified

in the plot. Hence the entropy reaches its maximum not at but near the phase transition.

The differences to the purely dissipative setting manifest not only in the quantitative be-

haviour of the magnetisation and purity but also in the structure of the flux lines shown in

the cross sections of the Bloch balls in the upper row. Note that in the case of three fixed

points the cross-sections are defined by the plane spanned by these three points; in the

case of a single fixed point the plane is chosen parallel to the ax-az-plane. Due to the uni-

tary dynamics, the ferromagnetic stationary states gain non-vanishing ay-components of

opposite sign. As a consequence, the shown cross-sections (t = 0.1 and t = 0.5) are tilted

towards the ax-az-plane. The paths of the ferromagnetic stationary states for 0 ≤ t ≤ 1 are

drawn with bold lines in the corresponding colours and projected onto the cross-section.

As the perspective changes from t = 0.1 to t = 0.5, the endpoints appear to be inside the

Bloch ball for t = 0.5 whereas they clearly are attached to the surface as can be seen at

t = 0.1.

There are two features that are noteworthy: First, near the purity dent the flux features

a remarkable vortex structure near the stationary states. Such vortices result from the

combination of unitary and dissipative dynamics and do not occur in the purely dissi-

pative setting. Second, the shape of the paths projected onto the ax-az-plane (t = 0.9)

is slightly distorted as compared with the purely dissipative setting in Fig. 2.6. This is

another manifestation of the already mentioned deformed shape of the order parameter

function mz = mz(t).

Thereby we conclude the analysis of the mean field steady states and proceed in the next sub-

sections with some properties regarding the dynamics of the mean field theory.

2.3.3 Dynamic evolution

So far we were only concerned with the steady state properties of our dissipatively driven trans-

verse field Ising model. But how does the system approach this (or these) steady state(s)? We

already saw that in mean field approximation the time evolution is determined by the dynamical

system

∂ta = F(a) (2.87)

where a is the Bloch vector (that lives in the closed unit ball B1(0)) and F is a vector field or flow

on B1(0) ⊆ R3 determined by the (mean field) jump operators. See Eq. (A.37) f. in that regard.

In the previous section we investigated the steady states for both, purely dissipative and unitary

dynamics. In the following we omit the unitary contributions completely and focus on purely
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� Figure 2.15: Details of the phase diagram of the dissipative TIM with unitary dynamics, J = 0.5 and
h = 0, in the high-dimensional limit. For details on the structure of the illustration we refer the reader to
the caption of Fig. 2.11. The 2D plots alone leave open the question whether the phase transition is of first
or second order, especially close to the origin. We probe this transition on the dashed line and find clearly
a second order phase transition which, however, shows a different behaviour in the ferromagnetic phase
as compared to the purely dissipative setting. Note the distinctive fall of the purity (and hence rise of the
entropy) shortly after the symmetry breaking occurs. In this parameter region the flux lines in the Bloch
ball cross-sections exhibit a remarkable vortex structure. Recall that the cross-sections with three steady
states are tilted towards the ax-az-plane. As a consequence, the projected paths of the steady states appear
distorted in the second Bloch ball. More details are given in the text.
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dissipatively driven system, i.e. J = 0 = h from now on. This is justified as our primary goal is

the analysis of purely dissipative driven phase transitions. Therefore the flux – see Eq. (2.70) –

reads:

F(ax, ay, az)
∣∣

J=0=h
=




−ax

[
2κF

(
(1− 1

q )a2
z +

2
q

)
+ κP

]
+ κP

−ay

[
2(1 + 1

q )κF +
κP
2

]

2(1− 1
q )az

(
1− a2

z

)
κF − az

κP
2 .


 (2.88)

Clearly, by rescaling time t 7→ κFt in the dynamical system (2.87) we get rid of one parameter

and find

F(a) ≡ κ−1
F F(ax, ay, az)

∣∣
J=0=h

=




−ax

[
2(1− 1

q )a2
z +

4
q + κ

]
+ κ

−ay

[
2(1 + 1

q ) +
κ
2

]

−az

[
κ
2 − 2(1− 1

q )
(
1− a2

z

)]


 (2.89)

with the relative coupling κ = κP
κF

. We already know that the non-linear dynamical system (2.87)

has a unique stable fixed point for κ ≥ κc = 4
(
1− q−1

)
and two stable fixed points otherwise.

Which fixed point is reached depends crucially on the initial conditions, as can be seen from

Fig. 2.6 where we showed the flux F(a) for the purely dissipative TIM in a cross section of the

Bloch ball. The evolution follows the flux lines, which is a manifestation of Eq. (2.87), until it

reaches one of the stable points29. The relaxation process features an exponential approach to

the stationary states. We consider this point more thoroughly in the next paragraph.

Relaxation for late times
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The full dynamical system is non-linear and coupled, thus the exact solutions are complicated

and provide no insight whatsoever. But it might be enlightening to examine the relaxation for

late times, or – equivalently – close to the steady state. To this end, assume that limt→∞ a(t) =

aNESS is the (not necessarily unique) steady state for initial conditions a(0) = a0. We can then

write a(t) = aNESS + δa(t) with the deviation δa(t). For late times or close to the steady state

we can assume that the deviations are small, i.e. |δa| ≪ 1, and linearise F(a) at aNESS in δa.

More formally

∂tδa = ∂ta = F (aNESS + δa) = F (aNESS) + DF (aNESS) δa + O(δa) (2.90)

which is just a multidimensional Taylor series. Note that ∂ta(t) = ∂tδa(t) and F(aNESS) = 0 by

definition. Therefore we find

∂tδa = DF (aNESS) δa for |δa| ≪ 1 (2.91)

as an approximate dynamics close to the steady state. Recall that we already computed the
derivative DF in (2.3.2) for the stability analysis. There we found the triangular matrix

DF(a) =




−2
[
(1− 1

q )a2
z +

2
q

]
− κ 0 −4axaz(1− 1

q )

0 −2(1 + 1
q )− κ

2 0

0 0 −2(1− 1
q )
(
3a2

z − 1
)
− κ

2


 , (2.92)

29It actually never reaches the fixed points for finite times, only asymptotically for t→ ∞.
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with the eigenvalues on the diagonal. At the paramagnetic fixed point (κ ≥ κc) it reads

DF(aP) =



−κ + κc − 4 0 0

0 1
2 (−κ + κc − 8) 0

0 0 1
2 (κc − κ)


 (2.93)

and at one of the ferromagnetic fixed points (κ ≤ κc) one finds

DF(aF1) =




1
2 (−κ + κc − 8) 0 2κκc

κ−κc+8

√
1− κ

κc

0 1
2 (−κ + κc − 8) 0

0 0 κ − κc


 . (2.94)

Here we substituted the coordination number q by the critical coupling κc, i.e. q = 4(4 −
κc)−1. Let us now solve the linear system of differential equations (2.91) for paramagnetic and

ferromagnetic fixed points separately.

� Paramagnetic fixed point

At the paramagnetic fixed point the system is already decoupled since DF(aP) is diagonal. Thus

the solutions of the three independent differential equations can be read off and one finds

δax(t) = δax(0) e−(κ−κc+4)t (2.95a)

δay(t) = δay(0) e−
1
2 (κ−κc+8)t (2.95b)

δaz(t) = δaz(0) e−
1
2 (κ−κc)t . (2.95c)

Note that all three exponents are negative for t > 0 since κ > κc in the paramagnetic phase

(i.e. when the fixed point aP is stable30). Even when κ approaches the critical value κc from

above, the relaxation of δax and δay remains exponential. This is obviously not true for the

relaxation in az-direction: δaz(t) becomes constant as κ ց κc. That is, the paramagnetic solution

becomes metastable in the az-direction at the critical point. This is not really surprising since we

found previously that the two ferromagnetic solutions emerge in this direction from the unique

paramagnetic fixed point, see for instance the flux in Fig. 2.6. �

� Ferromagnetic fixed point

At the ferromagnetic fixed points DF(aFi), i = 1, 2, is a triangular matrix and the system of

differential equations couples δax and δaz. To decouple the equations we have to diagonalise

DF(aF1) which is straightforward and yields the three decoupled differential equations

∂tδãx = −(κc − κ)δãx (2.96a)

∂tδãy = −1

2
(8 + κ − κc)δãy (2.96b)

∂tδãz = −1

2
(8 + κ − κc)δãz (2.96c)

30Actually, the point is that because all three exponents are negative, the solution aP is stable in the paramagnetic
regime.
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For the sake of brevity, we introduce the coefficient

Cκ =
4κκc

(8 + 3κ − 3κc)(8 + κ − κc)

√
1− κ

κc
for 0 ≤ κ ≤ κc . (2.97)

Then the eigenmodes

δãx(t) = δaz(t)

δãy(t) = δay(t)

δãz(t) = δax(t)− Cκ δaz(t) .

can be determined by the eigenvectors of DF(aF1). The solution of the differential equations in

terms of eigenmodes is trivial and yields

δãx(t) = δãx(0) e−(κc−κ)t

δãy(t) = δãy(0) e−
1
2 (8+κ−κc)t

δãz(t) = δãz(0) e−
1
2 (8+κ−κc)t

which can be recast in the original degrees of freedom, that is

δax(t) = [δax(0)− Cκδaz(0)] e−
1
2 (8+κ−κc)t + Cκ δaz(0) e−(κc−κ)t (2.100a)

δay(t) = δay(0) e−
1
2 (κ−κc+8)t (2.100b)

δaz(t) = δaz(0) e−(κc−κ)t . (2.100c)

As before, the relaxation in ay-direction remains exponential31 even in the vicinity of κc. The

relaxation of az is exponential and becomes stationary for κ ր κc. We note that the exponential

decay of δaz is faster in the ferromagnetic than in the paramagnetic regime due to the doubled

decay rate. The relaxation of ax is most complicated due to the coupling in the original equations

and depends not only on the initial value δax(0) but also on the position in az direction, namely

δaz(0). The contribution of this az dependency however vanishes for κ ր κc as Cκ → 0 in this

limit. Due to the two exponential components in δax(t) there are two regimes of decay: Close

to the critical point, κ ≈ κc, it holds 1
2 (κ − κc + 8) ≫ κc − κ. At the beginning (t small) the first

summand in Eq. (2.100a) dominates the relaxation. Later (t large) the first part is already small

and the (slower) relaxation is dominated by the second summand proportional to Cκ . �

We illustrate both relaxation processes near the fixed points for paramagnetic and ferromag-

netic systems in Fig. 2.16 (logarithmic δai-axis vs. linear time axis) by numerical integration

of the complete dynamical system and compare these results with our analytically derived so-

lutions for late times. In accordance with our assumptions, the exact solutions fit perfectly —

up to one exception — with our analytic solutions since the initial deviations |δai(0)| = 0.001

were chosen small enough. The exception being the evolution of δax in the paramagnetic regime

with an interval of slower exponential decay for late times which is not captured by our analyt-

ical solution. The two exponential regimes for the relaxation in ax-direction in the ferromagnetic

system become clearly visible. However, the same structure occurs on the paramagnetic side

where we did not expect it. There is only one possible solution: The second regime of slower

decay in the ferromagnetic system is a feature of first order in δa. As we linearised the theory,

31Remember that κc = 4(1− q−1) ≤ 4 so that κ − κc + 8 > 0 for all admissible κ.
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� Figure 2.16: Dynamics of the purely dissipative TIM in mean field approximation with initial states
close to the ferromagnetic (left plot) and paramagnetic (right plot) steady states. Equivalently this describes
the dynamics of any evolution at late times – at least qualitatively. The initial offset for all coordinates is
|δai(0)| = 0.001. Furthermore we set q = 4 (i.e. κc = 3) and κ = 0.29 (κ = 0.31) in the ferromagnetic
(paramagnetic) plot. The coloured lines represent results of numerical integrations of the complete dy-
namical system and therefore serve as reference solutions. The results for late times calculated exactly in
the text are drawn with dashed black lines. Note that the scaling of the vertical axis is logarithmic but
different for each solution δai, so one cannot compare absolute values and slopes in one plot. However,
one can compare the numerical results with the analytically derived results. Obviously they fit perfectly
in the ferromagnetic regime (so |δai(0)| = 0.001 is “small enough”). However, the evolution of δax in the
paramagnetic regime deviates from the analytical solution obtained by linearising the dynamical system
at late times (B) whereas it fits well if δax is still larger (A). This can be fixed by including quadratic orders
of δaz in the calculation (dotted line). More details are given in the text.

the analogue regime in the paramagnetic system must be a feature of second order in δa! This is

consistent with the fact that δax relaxes faster than δaz. During the evolution of the system a

point is reached (close to the steady state) where δax ≪ δaz holds. Then the dynamics of δax is

no longer determined by the first order contribution δax but by the second order contribution

δa2
z .

� Higher-order contributions

Let us have a look at the details. To this end (and since we need it in the next paragraph

anyway) we write the complete dynamical system ∂tδa = F (aNESS + δa) in terms of δai (without

linearising it). Straightforward but cumbersome calculations yield for the paramagnetic fixed

point aP

∂tδax = κ4 δax+
κκc

2κ4
δa2

z −
κc

2
δaxδa2

z (2.101a)

∂tδay =
1

2
κ8 δay (2.101b)

∂tδaz =
1

2
(κc − κ) δaz −

κc

2
δa3

z (2.101c)
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and for the ferromagnetic fixed point aF1

∂tδax =
1

2
κ8 δax−

2κκ̃κc

κ8
δaz +

κκc

κ8
δa2

z + κ̃κc δaxδaz −
κc

2
δaxδa2

z (2.102a)

∂tδay =
1

2
κ8 δay (2.102b)

∂tδaz = (κ − κc) δaz +
3

2
κ̃κc δa2

z −
1

2
κc δa3

z (2.102c)

where we introduced κ̃ ≡
√

1− κ
κc

, κ4 ≡ κc − κ − 4 and κ8 ≡ κc − κ − 8 to shorten the expres-

sions. The answer to the unexpected second relaxation regime for δax in the paramagnetic case

is apparent if we compare the right-hand sides of the equations which determine the time evo-

lution of δax, namely Eq. (2.101a) and Eq. (2.102a): Whereas near a ferromagnetic fixed point the

leading order in δaz is linear32 (blue summand), there is only a second order contribution (blue

summand) near a paramagnetic fixed point. This second order contribution becomes relevant at

late times when due to the fast δax-relaxation it holds δax ≪ δaz. And this very contribution

was lost due to our linearisation!

To fix the problem we have to include this second order contribution and solve the new

(partially linearised) dynamical system near a paramagnetic fixed point

∂tδax = κ4 δax+
κκc

2κ4
δa2

z (2.103a)

∂tδay =
1

2
κ8 δay (2.103b)

∂tδaz =
1

2
(κc − κ) δaz (2.103c)

which describes the dynamics for |δa| ≪ 1. The solutions for δay and δaz are easily derived and

read

δay(t) = δay(0) e
1
2 κ8t (2.104a)

δaz(t) = δaz(0) e
1
2 (κc−κ)t (2.104b)

which we found already to be a correct description in Fig. 2.16. Now insert the solution for

δaz into Eq. (2.103a) and solve the inhomogeneous differential equation. The solution can be

derived by standard methods and reads

δax(t) =

[
δax(0)−

κκc

8κ4
δaz(0)

2

]
eκ4t+

κκc

8κ4
δaz(0)

2 e−(κ−κc)t (2.105)

where we highlighted the additional term as a result of the quadratic contribution. In Fig. 2.16

we plot this solution as dotted black line — this verifies our new result. �

Critical Slowing-down
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So far we were concerned with the limit for late times or systems close to the steady state. Let

us now consider systems far in the ferromagnetic (κ → 0) and paramagnetic (κ → ∞) regime as

32Note that due to δaz ≪ 1 it is still true that δa2
z ≪ δaz, so the linear order dominates the quadratic order of the same

variable.
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well as critical systems with κ = κc. We do not assume that the systems are close to the steady

state whatsoever. In what follows or focus is on the transition from one phase to the other and

its impact on the relaxation of the system. So let us proceed systematically:

� Paramagnetic system (κ ≫ κc)

Here we assume that κ ≫ κc is large (but finite). If we take this into account, the dynamical

system (2.101) can be simplified to

∂tδax = −κ δax +
κc

2
δa2

z (2.106a)

∂tδay = −κ

2
δay (2.106b)

∂tδaz = −κ

2
δaz (2.106c)

if we recall that |δa| ≤ 2 is bounded by the diameter of the Bloch ball and thus bounded. Note

that we keep in Eq. (2.106a) the quadratic component although its coefficient is much smaller

than κ. This is motivated by our previous findings: If κ is finite and δax relaxes faster than

δaz there will be a regime for late times where |κδax| ≪ δa2
z . Then this quadratic contribution

becomes relevant once more.

The solutions can be easily derived by standard techniques and read

δax =
[
δax(0)−

κc

2
δaz(0)

2 t
]

e−κt (2.107a)

δay = δay(0) e−
κ
2 t (2.107b)

δaz = δaz(0) e−
κ
2 t (2.107c)

where δax gets modified by a contribution proportional to δaz(0)2 as before, see Eq. (2.107a).

Note that the solution for δax hints at a conversion as t runs from zero to infinity if δax(0) > 0

and δaz(0) 6= 0. The bottom line is that deep in the paramagnetic phase, away from the critical

point, the relaxation is exponentially fast in all degrees of freedom. A numerical inspection

similar to that in Fig. 2.16 confirms the correctness of these results. Since this is neither an

interesting nor enlightening task, we omit this plot.

� Critical system (κ = κc)

Let us now turn towards the most interesting case, namely that of a critical system for κ = κc.

We already saw that close to the steady state the δaz-relaxation vanishes at the critical point due

to the emergence of two stable solutions in az-direction. The relaxation in ax- and ay-direction

however remained exponential. We are now interested in the analogous dynamics away from the

steady state. If we set κ = κc we are free to choose between the dynamical system in Eq. (2.101)

and the one in Eq. (2.102). In both cases the result reads

∂tδax = −4 δax −
κ2

c

8
δa2

z −
κc

2
δaxδa2

z (2.108a)

∂tδay = −4 δay (2.108b)

∂tδaz = −κc

2
δa3

z (2.108c)
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� Figure 2.17: Dynamics of the purely dissipative TIM in mean field approximation at the critical coupling
κc. The initial state is far away from the stationary point and we set q = 4. All three plots are full-
logarithmic. The numerical solutions of the full dynamical system are shown as coloured lines whereas
the analytical solutions for t→ ∞ are shown as dashed black lines. For comparison we plot the analytical
solutions for strongly paramagnetic systems (κ ≫ κc) as dashed grey lines. As shown in the text, the
δay-relaxation remains exponential irrespective of the coupling κ (centred plot). In contrast, the δx- and
δz-relaxation become algebraic for late times and the analytic results join with the numerical ones perfectly.
However, the relaxation in the beginning is dominated by exponential contributions as can be seen from
the comparison with the (exponentially decaying) paramagnetic solutions. Note that there is a dent at
(A) in the exact (numerical) evolution of δax which is a consequence of the complex differential equation
which governs this relaxation process (and which was responsible for the approximations we had to apply,
see e.g. Eq. (2.108a)). The feature in (B) follows from the conversion of δax as mentioned in the text and
described by Eq. (2.107a) for appropriate initial conditions.

and we immediately find the solution for δay

δay(t) = δay(0) e−4t (2.109)

and the solution for δaz is

δaz(t) =
δaz(0)√

δaz(0)2κc · t + 1

t→∞−−→ t−
1
2√

κc
(2.110)

which can be found by a separation of variables. So even away from the steady state the relax-

ation in az-direction is no longer exponential. As we are not infinitesimally close to the steady

state, the relaxation does not cease but becomes algebraic with critical (mean field) exponent

ηz = − 1
2 . This is some sort of critical slowing down in the dynamics of the dissipative system

which is intimately connected with the suspected vanishing of the dissipative gap in the (real

part of the) spectrum of the Lindbladian superoperator L.

The solution of Eq. (2.108a) is not that simple. For the sake of simplicity let us consider

solutions for late times, i.e. t → ∞. To this end insert the late-time solution for δaz; then the

differential equation reads

∂tδax = −4 δax −
κc

8t
− 1

2t
δax (2.111)

a formal solutions of which can be given in terms of the imaginary error function

erfi(x) := −i erf(ix) where erf(x) :=
2√
π

∫ x

0
e−t2

dt (2.112)
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denotes the (Gauss) error function. It reads

δax(t) = C
e−4t

√
t
−
√

πκc

16
√

t
e−4t erfi(2

√
t) (2.113)

with the integration constant C. This is a downright useless expression as it tells us nothing

about the behaviour of the solution for late times. Thus we should try to approximate erfi(2
√

t)

for t→ ∞. We note that there is the following connection

erfi(x) = −i(1− erfc(ix)) (2.114)

with the complementary error function

erfc(x) := 1− erf(x) =
2√
π

∫ ∞

x
e−t2

dt (2.115)

which in turn has an asymptotic expansion for x → ∞ reading

erfc(x) =
e−x2

x
√

π

N−1

∑
n=0

(−1)n (2n− 1)!!

(2x2)n
+ RN(x) (2.116)

with a remainder RN(x) ∈ O
(

x−2N+1e−x2
)

. For our solution we find

erfi(2
√

t) =
e4t

2
√

π
√

t

N−1

∑
n=0

(2n− 1)!!

(8t)n
− i + R′N

(
2i
√

t
)

(2.117)

and consequently

δax(t) = C
e−4t

√
t
− κc

32t

N−1

∑
n=0

(2n− 1)!!

(8t)n
+

i
√

πκc

16
√

t
e−4t + R′′N

(
2i
√

t
)

. (2.118)

The exponential and algebraic parts are now separated and the slowest decaying summand

determines the behaviour for t → ∞ when the exponential contributions already vanish. The

dominant algebraic contribution is given by the first summand of the series (i.e. n = 0) and

reads

δax(t)
t→∞−−→ − κc

32
t−1 (2.119)

which is the approximate result for the long-term behaviour of the ax-deviation from the steady

state at the critical point.

In Fig. 2.17 we compare our analytical and the results obtained by numerical integration

of the full dynamical system. There are two points worth mentioning: First, we succeeded in

deriving analytical results for late times as they obviously describe the exact behaviour perfectly

once the exponential contributions vanish. Second, the term “critical slowing down” is justified

as a comparison of the timescales of the (algebraic) δax/δaz-relaxation and the (still exponential)

δay-relaxation shows. For comparison we plot the previously derived solutions for κ ≫ κc, see

Eq.(2.107), as well. Thereby it becomes clear that the initial relaxation remains exponential as in
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� Figure 2.18: Critical slowing down at the phase transition. On the left-hand side we show the spectrum
σ(DF) of the Jacobian matrix DF of the flow F(ax, ay, az) at a ferromagnetic (paramagnetic) steady state for
κ ≤ 3 = κc (κ > 3). The ferromagnetic solution (No. 3, red line) is stable in the range where it is physical
which can be seen from the fact that DF clearly is negative (semidefinite). The paramagnetic solution (No.
1, green line) is stable for κ > κc but becomes unstable for κ ≤ κc since in this range an eigenvalue becomes
positive. At the phase transition the spectral gap of DF closes which leads to an algebraic relaxation rate
in az-direction even close to the stationary state. On the right-hand side we show the time evolutions
of the distances δai(t) = |ai(t)− limt→∞ ai(t)| (see text) for couplings κ below, at, and above the critical
value κc = 3. Since the plots are in a full-logarithmic reference frame, we conclude that the ax- and az-
relaxation become algebraic close to the phase transition and for long times. The ay-relaxation remains
exponential for all times and couplings. The reason that two directions decay algebraically even though
just one eigenvalue in σ(DF) vanishes is explained in the text by solving suitable limiting cases of the
dynamical system analytically.

the paramagnetic regime and becomes algebraic at late times when the fast decaying exponential

contributions vanish.

Interestingly the critical exponent ηx = −1 (see Eq. (2.119)) differs from the one for relax-

ation in az-direction, namely ηz = − 1
2 . We furthermore point out that the algebraic decay in

ax-direction will eventually proceed to an exponential decay close to the steady state. In contrast

to the δaz-relaxation, where we found a vanishing eigenvalue of the derivative DF at the crit-

ical point and therefore an algebraic approach even close to the steady state, there is no such

infinitesimal property in ax-direction. This is pointed out in Fig. 2.18 where we show on the

left-hand side the spectrum of DF at a stable fixed point for varying κ and on the right-hand

side the relaxation in ax-, ay and az-direction below, at and above the critical coupling κc = 3

for an initial state far from the fixed point. It can clearly be seen that the δay-relaxation remains

exponential at the phase transition whereas the δax- and δaz-relaxation are exponential away

from the critical point but become algebraic at κc = 3 (these are full-logarithmic plots). The

spectrum reveals that only one of the three eigenvalues vanishes at the critical coupling33 whilst

the relaxation becomes algebraic in two directions away from the fixed point.

33That was already derived in the course of the stability analysis in 2.3.2.
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� Ferromagnetic system (κ → 0)

In a purely ferromagnetic system (κ = 0) the dynamical equations (2.102) read

∂tδax =
1

2
(κc − 8) δax + κc δaxδaz −

κc

2
δaxδa2

z (2.120a)

∂tδay =
1

2
(κc − 8) δay (2.120b)

∂tδaz = −κc δaz +
3

2
κc δa2

z −
1

2
κc δa3

z (2.120c)

which is still much more complicated than in the paramagnetic phase or at the phase transition.

We will not derive analytical solutions in this case as we cannot expect to gain much insight.

The paramagnetic system served as a paradigmatic case and provided us via straightforward

calculations with simple solutions that showed the exponential decay towards the paramagnetic

steady state. Numerical integrations of the system (2.120) show that the exponential decay in all

three directions dominates the dynamics away from the steady state34 like in the paramagnetic

regime which was examined above. An example is given in the first row of Fig. 2.18 (right-hand

side) which is almost indistinguishable from the paramagnetic evolution.

Note that there is a subtle but crucial difference between the ferromagnetic system (2.102)

and the paramagnetic analogue (2.101). The latter features a unique fixed point and any (phys-

ical) initial state ends up in this steady state. The ferromagnetic dynamical system in terms of

δa describes the distance to one of the two (stable) fixed points. So if the initial state is cho-

sen in the “wrong” hemisphere of the Bloch ball, δa is driven towards a fixed point but does

not vanish for t → ∞ (for instance, κ = 0 leads to limt→∞ |δa(t)| = 2). Furthermore there is

the unstable (paramagnetic) fixed point close to the origin. Whereas the attraction domain of

the ferromagnetic fixed points are the northern and southern hemisphere minus the equatorial

plane (which are of positive measure), the attraction domain of the unstable paramagnetic fixed

point is precisely this plane which is of measure zero. This more delicate structure of attractors

and attraction domains is linked to the complexity of the dynamical system (in contrast to the

paramagnetic case).

The multiple fixed points can be most easily illustrated by Eq. (2.120c) where the roots and

signs of the polynomial

− δaz +
3

2
δa2

z −
1

2
δa3

z =
1

2
(2− δaz)(δaz − 1)δaz (2.121)

determine the evolution of δaz. The root δaz = 1 corresponds to the unstable paramagnetic fixed

point whereas the roots δaz = 0 and δaz = 2 describe the stable ferromagnetic fixed points. Note

that the expression becomes negative for δaz ∈ (0, 1) which describes the relaxation to δaz = 0.

For δaz ∈ (1, 2) it becomes positive and describes the repulsion to the second ferromagnetic

fixed point aF2. �

Inhomogeneous mean field theory
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The mean field theory we used so far was raised on the assumption of a homogeneous system.

This simplification was incorporated in the derivation of the ferromagnetic mean field jump

operators, namely in Eq. (2.43) f. and the same assumption led to the well-known mean field

34Close to the steady state we already know this fact since σ (DF) is negative.
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Hamiltonian of the TIM in Eq. (2.38). We already pointed out in the course of our general

treatment on mean field theories of dissipative processes (see Appendix A) that there is no a

priori requirement for a homogeneous system and a single mean field whatsoever. Basically,

inhomogeneities can be taken into account by the introduction of one mean field per site or 3N

mean field degrees of freedom for N spins. The system in such a theory is still described by a

density matrix in product form, ρ(t) = ∏i ρi(t), but the state ρi(t) is site-dependent and couples

dynamically to the neighbouring states ρj(t), j ∈ Ni.

In the following, we perform these computations for the dissipative TIM and derive the

inhomogeneous mean field equations. This includes a modification of the derivation of the

ferromagnetic mean field jump operators. In the last paragraph the resulting dynamical sys-

tems are solved numerically for systems of several spins and we identify the two regimes of

homogenising and relaxation.

� Inhomogeneous dissipative dynamics

Let us proceed with a more general derivation of the ferromagnetic mean field jump operators

(see paragraph 2.3.1 for the homogeneous case). We denote by mz
i ≡ Tr

[
ρiσ

z
i

]
the site-dependent

polarisation in z-direction. The computation runs along the same lines as in 2.3.1. We calculate

the relevant partial traces:

◮ First case: i ∈ Nj

First, introduce Mi
j ≡ ∑l∈Nj,l 6=i mz

l to shorten the following expressions. Then the jump contri-

bution yields

Tri

[
djρd†

j

]
=

1

q2 ∑
m,n∈Nj

Tri

[
σz

mρjσ
z
n

]
−

mz
j

q ∑
m∈Nj

Tri

[{
σz

m, ρj

}]
+ ρi

=
1

q2

[
Cij(q, {mz

l })ρi + Mi
j {σz

i , ρi}+ σz
i ρiσ

z
i

]
−

mz
j

q

[
2Mi

jρi + {σz
i , ρi}

]
+ ρi

and the effective Hamiltonian results in

Tri

[
d†

j djρ
]

=
1

q2 ∑
m,n∈Nj

Tri

[
σz

mσz
nρj

]
−

2mz
j

q ∑
m∈Nj

Tri

[
σz

mρj

]
+ ρi

=
1

q2

[
Cij(q, {mz

l })ρi + 2Mi
jσ

z
i ρi + σz

i σz
i ρi

]
−

2mz
j

q

[
Mi

jρi + σz
i ρi

]
+ ρi

which combines, after some straightforward calculations, to

κF ∑
j∈Ni

[
Tri

[
djρd†

j

]
− 1

2
Tri

[{
d†

j dj, ρ
}]]

=
κF

q

[
σz

i ρiσ
z
i −

1

2
{σz

i σz
i , ρi}

]
. (2.122)

This is the well known z-dephasing induced by the correlation part in di = σx
i

(
1−∑j∈Ni

σz
i σz

j

)
.
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◮ Second case: i = j

First, introduce the quantities

M
z
i ≡

√
1

q ∑
j∈Ni

(
mz

j

)2
and Mz

i ≡
1

q ∑
j∈Ni

mz
j . (2.123)

Tracing out all but the central spin i yields for the jumps

Tri

[
diρd†

i

]
=

1

q2 ∑
m,n∈Ni

Tri [σ
z
mρiσ

z
n] σ

y
i ρiσ

y
i +

i

q ∑
m∈Ni

mz
mσ

y
i ρiσ

x
i −

i

q ∑
m∈Ni

mz
mσx

i ρiσ
y
i + σx

i ρiσ
x
i .

We calculate further

∑
m,n∈Ni

Tri [σ
z
mρiσ

z
n] = ∑

m,n∈Ni

〈σz
mσz

n〉 = ∑
m,n∈Ni∧m 6=n

mz
mmz

n + q ≡ M̃z
i + q . (2.124)

This yields

Tri

[
diρd†

i

]
=

1

q2
M̃z

i σ
y
i ρiσ

y
i +

1

q
σ

y
i ρiρ

y
i + iMz

i

(
σ

y
i ρiσ

x
i − σx

i ρiσ
y
i

)
+ σx

i ρiσ
x
i .

If we use

(Mz
i )

2 =
1

q2 ∑
m∈Ni ,n∈Ni

mz
mmz

n =
1

q2
M̃z

i +
1

q2 ∑
n∈Ni

(mz
n)

2 =
1

q2
M̃z

i +
1

q

(
M

z
i

)2
(2.125)

it follows

Tri

[
diρd†

i

]
=

[
(Mz

i )
2 − 1

q

(
M

z
i

)2
]

σ
y
i ρiσ

y
i +

1

q
σ

y
i ρiρ

y
i + iMz

i

(
σ

y
i ρiσ

x
i − σx

i ρiσ
y
i

)
+ σx

i ρiσ
x
i .

One could now proceed with the calculation of Tri

[
d†

i diρ
]

although is is already easy to infer

the effective jump operators without any further calculations. We prefer the latter: It is now not

difficult to see that

Tri

[
diρd†

i

]
= [σx

i (1−Mz
i σz

i )] ρi [σ
x
i (1−Mz

i σz
i )]

† (2.126a)

+

[
1√
q

√
1−

(
M

z
i

)2
σ

y
i

]
ρi

[
1√
q

√
1−

(
M

z
i

)2
σ

y
i

]†

(2.126b)

and we conclude that the remaining (ferromagnetic) mean field jump operators read

di =
√

κF σx
i (1−Mz

i σz
i ) and bi =

√
κF

q

√
1−

(
M

z
i

)2
σ

y
i (2.127)

Note that in the homogeneous limit, mz
i ≡ mz for all sites i, it holds Mz

i = mz and M
z
i =

|mz| and the above operators reduce to the homogeneous jump operators we used up to now.

These results are not surprising and meet our expectations as the inhomogeneity demands the

substitutions

mz 7→ Mz
i =

1

q ∑
j∈Ni

mz
j and m2

z 7→
(

M
z
i

)2
=

1

q ∑
j∈Ni

(
mz

j

)2
(2.128)
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which take the magnetisation of the nearest neighbours into account.

Let us sum up what we found so far:

◮ Result 2.3: Inhomogeneous Mean Field Lindblad Equation

The inhomogeneous mean field version of the Lindblad master equation describing the purely

dissipative transverse field Ising model reads for each site i

∂tρi = L (ci) [ρi]
︸ ︷︷ ︸

paramagnetic

+L
(

di

)
[ρi] + L

(
bi

)
[ρi] + L (oi) [ρi]

︸ ︷︷ ︸
ferromagnetic

with the three ferromagnetic mean field jump operators

di =
√

κF σx
i (1−Mz

i σz
i ) (2.129a)

bi =

√
κF

q

√
1−

(
M

z
i

)2
σ

y
i (2.129b)

oi =

√
κF

q
σz

i (2.129c)

and the paramagnetic jump operator

cj =

√
κP

2

(
σz

j − iσ
y
j

)
(2.129d)

which remains unaffected by the mean field approximation.

There are 3N mean field degrees of freedom mx
i , m

y
i , and mz

i in a system with N spins.

Their dynamical relevant combinations read

Mz
i =

1

q ∑
j∈Ni

mz
j and M

z
i =

√
1

q ∑
j∈Ni

(
mz

j

)2
(2.130)

for each site i and the coordination number q.

Let us now turn towards the mean field equations of this theory.

� Inhomogeneous mean field equations

The dynamical equations for multiple mean fields were derived in Appendix A for general

dissipative systems. The dynamical system (A.37) reads for vanishing unitary dynamics hmf = 0

and one mean field per site (i.e. α = i = 1, . . . , N)

∂tm
n
α = 2ǫijn Iα

i,j + 2
(

Rα
n,i − Rαδni

)
mi

α (2.131)

where Iα
i,j and Rα

i,j are defined in (A.8).
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The mean field jump operators read in the Pauli basis

lα
d

=
√

κF

[
1 iMz

α 0
]T

(2.132a)

lα
b

=

√
κF

q

[
0

√
1−

(
M

z
α

)2
0

]T

(2.132b)

lα
o =

√
κF

q

[
0 0 1

]T
(2.132c)

lα
c =

√
κP

2

[
0 −i 1

]T
. (2.132d)

If we insert these in the definition of the real matrices Iα and Rα, Eq. (2.131) reads

∂ta
x
i = κ +

ax
i

q

[
2∆2

i − (4 + qκ)
]

(2.133a)

∂ta
y
i = − a

y
i

2q
[(4 + qκ) + 4q] = −λa

y
i (2.133b)

∂ta
z
i = 4Mz

i +
az

i

2q

[
4∆2

i − {(4 + qκ) + 4q}
]

(2.133c)

where we introduced the shortcuts ∆2
i ≡

(
M

z
i

)2
− q

(
Mz

i

)2
and λ ≡ (2q)−1 [(4 + qκ) + 4q],

replaced α by the site index i, used the self-consistency condition mk
α = ak

α and rescaled time

to introduce the relative coupling κ = κP
κF

. Here aα = ai denotes the Bloch vector on site i, i.e.

ρi =
1
2 (1+ aiσi).

The relaxation in a
y
i -direction is free, i.e. decoupled from the dynamics in ax

i - and az
i -direction.

As in the homogeneous case, it is exponential for all couplings κ and reads

a
y
i (t) = a

y
i (0) e−λt . (2.134)

So this component of the mean fields is not interesting and we omit it completely in the follow-

ing treatment of the mean field dynamics. If we rewrite the remaining differential equations in

terms of λ we end up with

∂ta
x
i = κ +

[
2

q
∆2

i − 2(λ− 2)

]
ax

i (2.135a)

∂ta
z
i = 4Mz

i +

[
2

q
∆2

i − λ

]
az

i (2.135b)

for each site i. Note that the neighbouring fields are hidden in ∆2
i and we have to solve a system

of 2N non-linear differential equations in ax
i and az

i . There is no sense in solving this system

analytically, so we restrict ourselves to numerical integrations in the following paragraph to gain

insight into the dynamics of several coupled spins.
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� Figure 2.19: Mean field dynamics of the inhomogeneous purely dissipative TIM in one dimension for
L = 9 spins and with PBC. We show the dynamics of ax

i and az
i for i = 1, . . . , 9 in (left to right) the ferro-

magnetic (κ = 1.9), critical (κ = 2.0 = κc for q = 2) and paramagnetic (κ = 2.1) regime. Note that due to the
cyclic symmetry of the system there are only five different magnetisations visible. The dashed grey lines
denote the average magnetisation L−1 ∑i ak

i for k = x, z. The system was initialised with spin 1 polarised
in z-direction, |Ψ0〉1 = |↑〉, and the rest of the spins polarised in x-direction, |Ψ0〉i = |+〉 for i = 2, . . . , 9.
Note that there are two distinct regimes in the relaxation process: Up to t ≈ 5 the system homogenises,
subsequently the now homogeneous system is driven towards the NESS. Whereas there is no obvious impact
of the coupling on the homogenisation, the homogeneous relaxation process becomes algebraic at the critical
point (A) for late times and remains exponential (B) in the paramagnetic & ferromagnetic regime. Note
that the initial polarisation of spin 1 breaks the Z2 symmetry of the dissipative process explicitly and is
thus responsible for the reached steady state in the ferromagnetic regime. Further comments are given in
the text.

� Results: Homogenising and relaxation

Here we solve the dynamical equations (2.135) in small one- and two-dimensional systems nu-

merically and visualise the relaxation of initially inhomogeneous systems to their non-equilibrium

steady state.

◮ One-dimensional system

In Fig. 2.19 we show the results of a numerical integration of (2.135) for a L = 9 spin chain

with PBC. To illustrate the response of the system on a localised perturbation, the first spin was

initialised in the completely z-polarised state |↑〉 whereas the rest of the system was initialised

completely x-polarised, namely in |+〉. We plot ax
i and az

i logarithmically vs. a logarithmic

timescale for 0.001 ≤ t ≤ 1000 and compute furthermore the average magnetisation L−1 ∑i ak
i

(k = x, z) for each quantity. The perturbed spin is denoted by bold lines whereas the other spins

are drawn with thin ones. We computed the time evolution for comparison in the ferromagnetic

(κ = 1.9), critical (κ = 2 = κc) and paramagnetic (κ = 2.1) regime. Let us analyse the results in

detail:

There are two distinct regimes: First homogenisation, then relaxation. Up to t . 5 the system

reduces the inhomogeneity quickly until it ends up in a homogeneous non-stationary

state. Subsequently the homogeneous system is driven towards the κ-dependent fixed point.

Note that the time interval in which the homogenisation takes place seems to be rather

independent of the relative coupling κ and therefore the system’s phase.

During the homogenisation the initially z-polarised spin “shares” z-magnetisation with

the other spins (the more the closer the interacting spin). However, on an absolute scale
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its own local relaxation dominates the dynamics since az
1 first drops from 1 to ∼ 0.2 until

it is of the same order as the remaining az
i (logarithmic scale!).

In the ferromagnetic phase the Z2 symmetry of the dissipative process is explicitly broken

by the chosen initial condition, namely the z-polarised spin (the other spins are perfectly

symmetric with respect to the global spin-flip ∏i σx
i ). As we chose the first spin to point in

positive az-direction, the reached ferromagnetic steady state is the one with the same sign.

At the critical point and in the paramagnetic phase the reached steady state is obviously

independent of the initial state as it is unique. However, the relaxation of the system

towards its steady state depends crucially on κ: At the critical point, κ = κc = 2, the

relaxation becomes algebraic for late times (A) whereas it remains exponential for all times

in the paramagnetic regime, κ > κc = 2, as can be seen at (B). This was to be expected since

the homogeneous system is described by our previous results based on the homogeneous

mean field equations.

Note that due to the periodic boundary conditions the evolution of az
2 and az

9 (and corre-

sponding pairs) coincides. Consequently there are only five distinct time evolutions visible

in the plots.

Besides all details, the crucial result of this inspection is the following: Inhomogeneous systems

homogenise rapidly — in all phases (even at the critical point) and independently of κ. There-

fore, subsequent to a short initial time interval, they are well described by the homogeneous

mean field equations which we employed for all our previous inspections. The homogeneity as-

sumption in the derivation of the mean field theory is thus legit, at least from this more general

mean field point of view and in the purely dissipative setup. We will see below that this holds

also in two dimensions and there is no evidence of dynamical instabilities or other phenomena

caused by multiple, coupled spins.

◮ Two-dimensional system

In the upper two rows of Fig. 2.20 we show the results of a numerical integration of (2.135)

for a L = 4× 4 spin plaquette with PBC. To illustrate the evolution towards homogeneity, we

initialised the 16 spins randomly in pure states with a
y
i = 0 and ax

i = cos θi, az
i = sin θi where

Θi ∈ U (0, 2π) is uniformly distributed. Here we plot ax
i and az

i linearly35 vs. a logarithmic

timescale for 0.01 ≤ t ≤ 100 and compute the average magnetisation L−1 ∑i ak
i (k = x, z) for

each quantity. We computed the time evolution for comparison in the ferromagnetic (κ = 2),

critical (κ = 3 = κc) and paramagnetic (κ = 4) regime. Here some remarks:

The qualitative structure of the time evolution is confirmed: The system homogenises

rapidly and subsequently evolves homogeneously to the steady state. This can be observed

in both phases, at the critical point and for both, ax
i and az

i . The partitioning of the time

evolution into homogenisation and relaxation can be most clearly seen in the centred plot

of az
i for a critical system. There the homogenisation for 0 ≤ t . 1 is followed by a nearly

algebraic approach to the critical steady state. This approach becomes exponential in the

paramagnetic regime.

Comparison of (A) and (B) verifies the statement from above that the homogenisation

process remains (qualitatively) unaffected by changes of κ. Especially, there is no slowing

down at the critical point during the homogenisation (A).

35This is more convenient since there are zeros in the plots.
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� Figure 2.20: Mean field dynamics of the inhomogeneous purely dissipative TIM in two dimensions
for L = 4× 4 spins and with PBC. We show the dynamics of ax

i (upper row) and az
i (middle row) for

i = 1, . . . , 16 in (left to right) the ferromagnetic (κ = 2), critical (κ = 3 = κc for q = 4) and paramagnetic
(κ = 4) regime. The dashed grey lines denote the average magnetisation L−1 ∑i ak

i for k = x, z. For
the plots in the upper two rows the system was initialised in a random configuration of spins in pure
states with a

y
i = 0 and ax

i = cos θi, az
i = sin θi where θi ∈ U (0, 2π) is uniformly distributed. Here the

two regimes (homogenisation and relaxation) are clearly visible. Note that the coupling κ has hardly any
effect on the structure and duration of the homogenisation process, see (A) and (B), whereas the relaxation
crucially depends on κ. The average initial z-magnetisation breaks the Z2 symmetry and determines the
final steady state in the ferromagnetic phase, see (C). In the lower row we show the time evolution of az

i
for a critical system κ = κc with a single z-polarized spin (blue square in the leftmost plot) for t = 0; the
other spins were initialised in the (paramagnetic) steady state of the critical system. The numbers denote
the shown time slice on a logarithmic time scale. For 0 ≤ t . 1 the system is homogenising, subsequently
the homogeneous system is driven towards the steady state with vanishing z-magnetisation.

In the ferromagnetic regime, the (sign of the) final steady state depends on the initial

average z-magnetisation which breaks the Z2 symmetry, see (C) and the dashed line for

t→ 0 in the same plot.

The lower row of Fig. 2.20 shows a spatially resolved time evolution of the discrete field az
i

in the L = 4 × 4 critical (κ = κc) system for distinguished time slices on a logarithmic time

scale. The system was initialised with a single completely z-polarised spin (blue square in

leftmost plot) and all other spins in the homogeneous steady state. The first three slices for

0 ≤ t . 1 show the homogenisation and the last three the relaxation to the critical steady state

with vanishing z-magnetisation. The slices at t = 0.05 and t = 0.6 illustrate the influences of the
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localised perturbation on its neighbouring spins and the dispersion of z-magnetisation through

the system.

The numerical results in this and the previous paragraph suggest a qualitatively different

relaxation of inhomogeneities as compared to the relaxation of the homogeneous system. We

tackle this phenomenon in the next subsection by means of a continuum theory.

Continuous mean field theory for dissipative dynamics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If one considers large lattices of spins and perturbations with characteristic length scales much

larger than the lattice constant, it is convenient to switch to a continuum description,

ak
i 7→ ak(x) with x ∈ R

D and k = x, z . (2.136)

As a consequence, the set of 2N differential equations in (2.135) has to be replaced by a field

equation. Before we derive such a continuum description, it is convenient to change the dynam-

ical degrees of freedom

ax
i = ax + δax

i and az
i = az + δaz

i (2.137)

since we are interested in the relaxation of inhomogeneities δak
i towards a homogeneous steady

state ak. In the following we express the differential equations (2.135) in terms of δak
i and

linearise them to obtain a solvable theory for spatial perturbations with long wavelengths and

small amplitudes.

Let us start with ∆2
i =

(
M

z
i

)2
− q

(
Mz

i

)2
. It is straightforward to show

∆2
i =

1

q ∑
j∈Ni

(az + δaz
i )

2 − 1

q

[

∑
j∈Ni

(az + δaz
i )

]2

= (1− q)a2
z +

2az

q
(1− q) ∑

j∈Ni

δaz
j +O

(
δaz

j
2
)

and the average z-magnetisation at site i reads

Mz
i =

1

q ∑
j∈Ni

(az + δaz
i ) = az +

1

q ∑
j∈Ni

δaz
j .

Hence we find for the first equation (2.135a)

∂tδax
i = κ +

[
2

q
∆2

i − 2(λ− 2)

]
ax

i

= κ +

[
2

q
(1− q)a2

z +
4az

q2
(1− q) ∑

j∈Ni

δaz
j − 2(λ− 2)

]
(ax + δax

i ) +O
(

δaz
j
2
)

≈
[
κ − κc

2
axa2

z − 2ax(λ− 2)
]
+
[
−κc

2
a2

z − 2(λ− 2)
]

δax
i −

κcaxaz

q ∑
j∈Ni

δaz
j
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and for the second one (2.135b)

∂ta
z
i = 4Mz

i +

[
2

q
∆2

i − λ

]
az

i

= 4az +
4

q ∑
j∈Ni

δaz
j +

[
2

q
(1− q)a2

z +
4az

q2
(1− q) ∑

j∈Ni

δaz
j − λ

]
(az + δaz

i ) +O
(

δaz
j
2
)

≈
[
4az −

κc

2
a3

z − λaz

]
+
[
−κc

2
a2

z − λ
]

δaz
i +

[
4

q
− κca2

z

q

]
∑

j∈Ni

δaz
j .

Let us now abandon the discrete lattice with sites i and write the linearised equations in terms

of fields ak(x) with continuous coordinates x ∈ RD. We identify site i with the point xi and

denote by eµ the basis vector of RD in µ-direction. Let d be the distance of nearest neighbours in

the lattice {xi}, i.e. the lattice constant. Recall that for any function f ∈ C2(RD, R) the second

derivative in µ-direction can be written in terms of finite differences

∂2
µ f (x) =

f (x + deµ)− 2 f (x) + f (x− deµ)

d2
+O

(
d2
)

. (2.138)

With that said we find

az
i+µ + az

i−µ ≡ az(xi + deµ) + az(xi − deµ) = 2az(xi) + d2∂2
µaz(xi) +O

(
d4
)

(2.139)

and consequently

1

q ∑
j∈Ni

az
j =

1

q ∑
µ

(
az(xi + eµ) + az(xi − eµ)

)
= az(xi) +

d2

q ∑
µ

∂2
µaz(xi) +O

(
d4
)

= az(xi) +
d2

q
∆az(xi) +O

(
d4
)

which finally yields

1

q ∑
j∈Ni

δaz
j = δaz(xi) +

d2

q
∆δaz(xi) +O

(
d4
)

(2.140)

where we used az
i = az + δaz

i and the fact that az is homogeneous.

If we consider a lattice {xi} embedded in RD with d ≪ 1, the following substitutions yield

a continuous theory that approximates the discrete mean field theory on the lattice sites xi:

ak
i 7→ ak(x) with x ∈ R

D and k = x, z (2.141a)

1

q ∑
j∈Ni

δaz
j 7→ δaz(x) +

d2

q
∆δaz(x) (2.141b)

One easily derives the dynamical field equations

δȧx =
[
κ − κc

2
axa2

z + κ4ax

]
+
[
−κc

2
a2

z + κ4

]
δax − κcaxaz δaz − κcaxaz

d2

q
∆δaz (2.142a)

δȧz =

[
−κc

2
a3

z −
κ − κc

2
az

]
+

[
−3κc

2
a2

z −
κ − κc

2

]
δaz +

[
4− κca2

z

] d2

q
∆δaz (2.142b)
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where we substituted λ = 4 + 1
2 (κ − κc). Or for short

δȧx = Ax + Bxδax + Cxδaz + Dx∆δaz (2.143a)

δȧz = Az + Bzδax + Czδaz + Dz∆δaz (2.143b)

with the parameters Ak, Bk, Ck, and Dk defined via identification with Eq. (2.142). A Fourier

transform of Eq. (2.143) with respect to the spatial coordinates yields

δ ˙̂ax = Axδ(κ) + Bxδâx + Cxδâz − Dxk2δâz (2.144a)

δ ˙̂az = Azδ(κ) + Bzδâx + Czδâz − Dzk2δâz (2.144b)

where we employed the rule F [∂2
µ f ](k) = −k2F [ f ](k) and the shorthand notation f̂ ≡ F [ f ].

We can rewrite Eq. (2.144) in matrix form

d

dt

[
δâx(t, k)

δâz(t, k)

]
=

[
Ax

Az

]
δ(k) +

[
Bx Cx − k2Dx

Bz Cz − k2Dz

]
·
[

δâx(t, k)

δâz(t, k)

]
(2.145)

with Bz = 0. As we are interested in spatial perturbations of the homogeneous steady state, it is

reasonable to restrict ourselves to solutions with non-vanishing wave number k 6= 0, thus the

interesting differential equations read

d

dt

[
δâx(t, k)

δâz(t, k)

]
=

[
Bx Cx − k2Dx

0 Cz − k2Dz

]

︸ ︷︷ ︸
≡M(k)

·
[

δâx(t, k)

δâz(t, k)

]
. (2.146)

The spectrum σ(M) can be read off and we find the eigenvalues

Γ1(k) = Bx = −κc

2
a2

z + κ4 (2.147a)

Γ2(k) = Cz − k2Dz = −
3κc

2
a2

z −
κ − κc

2
− (kd)2

q

[
4− κca2

z

]
. (2.147b)

We see that d is just a scaling parameter for the spatial dimensions (and the reciprocal space)

and we are free to set it to one, so d = 1 from now on. The damping spectrum depends on

the homogeneous steady state (ax, az) which, in turn, depends on κ. The expressions for the

paramagnetic (κ ≥ κc) and ferromagnetic (κ < κc) steady states are already known since the ho-

mogeneous steady states of the inhomogeneous theory are the steady states of the homogeneous

theory. Let us write the results in Eq. (2.71) one more time:

aP =
[
− κ

κ4
0 0

]T
and aF1,2 =

[
− 2κ

κ8
0 ∓

√
1− κ

κc

]T
(2.148)

Here aP is the (homogeneous) paramagnetic steady state and aF1,2 are the (homogeneous) ferro-

magnetic steady states. The damping spectrum simplifies considerably if we insert these results

for az.
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Straightforward calculations yield

Γ1(k) =

{
κ4 = −4− (κ − κc) for κ > κc

κ8
2 = −4 + κc−κ

2 for κ ≤ κc

(2.149a)

Γ2(k) =

{
− κ−κc

2 − (4− κc) k2 for κ > κc

−(κc − κ)− 4+(κ−κc)
4 (4− κc) k2 for κ ≤ κc

. (2.149b)

To compare these results with the homogeneous ones of paragraph 2.3.3, one has to solve the

differential equation (2.146). As before, the solutions depend on the phase and we have to treat

the cases κ > κc and κ ≤ κc separately:

◮ Paramagnetic phase

For κ > κc we have az = 0 and thus Cx = 0 = Dx which makes M(k) diagonal for all wave

numbers k. As a result, the solutions are trivially derived and read

δâx(t, k) = δâx(0, k) eΓ1(k) t = δâx(0, k) e−(4+κ−κc) t (2.150a)

δâz(t, k) = δâz(0, k) eΓ2(k) t = δâz(0, k) e−
κ−κc

2 t−(4−κc) k2t (2.150b)

where the relaxation rate of δãz depends explicitly on the wave number k. As a consistency

check, consider the limiting case k → 0 of (nearly) homogeneous modes. Then the solutions

read δâx(t, k) = δâx(0, k) e−(κ−κc+4) t and δâz(t, k) = δâz(0, k) e−
1
2 (κ−κc) t for k ≪ 1. These are

exactly the homogeneous results we found in 2.3.3, see Eq. (2.95).

◮ Ferromagnetic phase

For κ ≤ κc we have az 6= 0 and thus Cx 6= 0 6= Dx which makes M(k) a triangular matrix that

has to be diagonalised. This is a standard procedure and left as an exercise to the reader. One

finds

δâx(t, k) =
[
δâx(0, k)− Ĉκ(k)δâz(0, k)

]
eΓ1(k)t + Ĉκ(k) δâz(0, k) eΓ2(k)t

=
[
δâx(0, k)− Ĉκ(k)δâz(0, k)

]
e−

1
2 (8+κ−κc)t

+Ĉκ(k) δâz(0, k) e−(κc−κ) t+
κ4
4 (4−κc) k2t (2.151a)

and

δâz(t, k) = δâz(0, k) eΓ2(k)t

= δâz(0, k) e−(κc−κ) t+
κ4
4 (4−κc) k2t (2.151b)

which are of the same structure as found in 2.3.3, see Eq. (2.100). The coupling of the δâx- to the

δâz-relaxation is described by the k-dependent coefficient

Ĉκ(k) ≡
k2Dx − Cx

Bx − Cz + k2Dz
=

4κκc

(
q−1k2 − 1

)

(8 + 3κ − 3κc +
2κ4

q k2)(8 + κ − κc)

√
1− κ

κc
(2.152)
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for 0 ≤ κ ≤ κc. Note that Ĉκ(0) = Cκ (the definition of Cκ can be found in Eq. (2.97)). Therefore

the above solutions coincide with the homogeneous solutions (2.100) in the limit of small wave

numbers k→ 0. ◭

Recall that we found afterwards in paragraph 2.3.3 that in the paramagnetic phase there is a

second regime of exponential decay for late times which is a second order effect and thus gets

lost in the linearised theory. As there were no second order contributions taken into account

in the above derivations, we cannot expect the paramagnetic result for δâx to describe this

second regime properly. We could take remedial action by inclusion of the relevant second order

contributions. As we cannot expect to benefit from this much more cumbersome calculations,

we put up with the simpler solutions derived above.

These solutions reveal how the relaxation depends on the eigenvalues Γ1 and Γ2. Let us

shortly point out important facts: First, Γ1 remains negative for all couplings κ and wave num-

bers k since Γ1 < −2 for any finite q. This corresponds to the previous result that in the homo-

geneous system δax vanishes exponentially for late times — even at the critical point. Second,

Γ2 remains negative for all couplings κ and all finite wave numbers k > 0, particularly

Γ2(k)
κ=κc= −(4− κc) k2

< 0 for k > 0 . (2.153)

To sum it up: The damping spectrum of M(k) is negative and gapped away from the critical

point, κ 6= κc. This implies an exponential relaxation of all modes close to the homogeneous

steady state. The gap closes at the critical point, κ = κc since then Γ2(0) = 0. This corresponds

to the previously derived critical slowing down in az-direction. The important point is that both,

Γ1(k) and Γ2(k) remain negative even at the critical point for finite k > 0, i.e. inhomogeneous

perturbations. This substantiates our former finding that the homogenisation of δax and especially

δaz remains fast, that is exponential, for all couplings κ — even at the critical point where the

homogeneous system experiences a critical slowing down.

This concludes our investigation of the dynamical properties of the mean field theory for the

purely dissipative transverse field Ising model. In the next section we look closely at the relation

of the purely dissipative transition from a symmetric paramagnetic phase to a symmetry-broken

ferromagnetic one and the thermal analogue, namely the paradigmatic phase transition of the

TIM in D ≥ 2 dimensions at finite temperature.
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2.4 Comparing the mean field theories of Lmf, Hmf and Hmf
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At the outset of this chapter we motivated the introduction of the dissipative transverse field

Ising model by its Hamiltonian prototype and its two distinct quantum phases. Quantum phase

transitions occur by definition at zero temperature where the critical fluctuations that are re-

sponsible for the non-analyticities are of purely quantum mechanical origin. For the transverse

field Ising model in two and higher dimensions this quantum phase transition passes into a

classical phase transition with additional contributions by quantum fluctuations for finite but

small temperatures. The higher the temperature at which the critical behaviour can be observed

the more diminish the contributions due to quantum fluctuations.

The previous discussions showed that the purely dissipative TIM can be driven into a non-

equilibrium phase transition by variation of the relative coupling κ. At the critical point the state

is mixed and the entropy reaches its maximum at a cusp. In this sense we cannot claim to drive

a quantum phase transition. We do not, however, drive a thermal phase transition either since the

(mixed) steady states are not in thermal equilibrium. It is therefore interesting to ask whether

there are non-trivial relations between the thermal states of either the original TIM or the parent

Hamiltonian of the dissipative process and the non-equilibrium phase transition; for instance if

we compare them by means of entropy as a common parameter36.

For these reasons we aim at a comparison of the phases and symmetry breaking described

by the mean-field theories of

1. the Hamiltonian transverse field Ising model Hmf,

2. the dissipative transverse field Ising model Lmf and

3. the parent Hamiltonian of the dissipative transverse field Ising model Hmf
P .

This is the to-do list for this section.

2.4.1 Mean field results & Short summary

Before we compare the three theories, let us first collect what we found so far and derive some

missing facts that are needed for the intended comparison.

Mean field theory of the transverse field Ising model Hmf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The exact transverse Ising model Hamiltonian reads

H = −J ∑
〈n,m〉

σz
nσz

m − h ∑
n

σx
n (2.154)

and in mean field approximation the former simplifies to

Hmf = −Jqmzσz − hσx = −hmfσ (2.155)

36As stated above, there is no temperature for the dissipative setting. Nevertheless we can compute the entropy for both
the dissipative non-equilibrium and the thermal states to compare them on an equal footing.
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as we derived at the beginning of paragraph 2.3.1 in Section 2.3. The self-consistency condition

reads

mz = Tr [ρσz] = az with ρ =
1

2
(1+ aσ) (2.156)

and the Bloch vector a that parametrises the (mixed) state ρ. For a thermal state at inverse

temperature β it holds

ρ =
e−βHmf

Tr
[
e−βHmf

] . (2.157)

One easily finds

e−βHmf
= eβhmfσ = eβhmf·ĥmfσ = 1 cosh(βhmf) + ĥmfσ sinh(βhmf)

with the normalised mean field ĥmf; it follows immediately Tr
[
e−βHmf

]
= 2 cosh(βhmf).

Then it can be seen that

ρ =
1 cosh(βhmf) + ĥmfσ sinh(βhmf)

2 cosh(βhmf)
=

1

2

(
1+ tanh (βhmf) ĥmfσ

)
(2.158)

and we conclude that a = tanh (βhmf) ĥmf which spells for the self-consistency

mz = tanh (βhmf) ĥ
z
mf . (2.159)

Note that ĥmf =
(
h2 + (Jqmz)2

)−1/2
[h, 0, Jqmz]

T , so we find the implicit equation

√
h2 + (Jqmz)2mz = Jqmz tanh (βhmf) (2.160)

for the magnetisation mz. If we introduce the scaled coupling g = h
Jq we end up with

√
g2 + m2

z = tanh

(
β̃
√

g2 + m2
z

)
or mz = 0 (2.161)

as possible mean field magnetisations. Here we introduced the inverse temperature β̃ = Jq
kBT in

units of Jq. Any solution mz = mz(g, β̃) of these equations provides us with a state

a(g, β̃) = a
(

g, mz(g, β̃)
)
=

tanh
(

β̃
√

g2 + m2
z

)

√
g2 + m2

z




g

0

mz


 =




g

0

mz


 . (2.162)

A necessary condition for non-zero magnetisation is obviously

β̃ > 1 ⇔ Jq > kBT . (2.163)

At zero temperature one finds
√

g2 + m2
z = 1 if J 6= 0, that is mz(g, T = 0) =

√
1− g2. So on the

T = 0-axis the critical field is gc =
hc
Jq = 1.
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The entropy of the system is given by the expression

S [ρ] = −1

2
log

[
1− a2

4
·
(

1 + a

1− a

)a]
where a = tanh

(
β̃
√

g2 + m2
z

)
(2.164)

A derivation can be found in Appendix D.

Mean field theory of the dissipative process Lmf

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us outline what we found so far for the dissipative mean field theory: The exact dissipative

process is described by the Lindblad equation

∂tρ = κP ∑
j

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

+ κF ∑
j

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

(2.165)

with the jump operators

cj =
1

2
σz

j

(
1− σx

j

)
and dj = σx

j


1

q ∑
m∈Nj

σz
mσ

y
j − 1


 . (2.166)

We derived in paragraph 2.3.1 (Section 2.3) the mean field approximation of this theory. The

dynamics is then described by

∂tρ = κPL (c) [ρ] + κFL
(

d
)
[ρ] + κFL

(
b
)
[ρ] + κFL (o) [ρ] (2.167)

with the four effective jump operators

d = σx (mzσz − 1) , b =
1√
q

√
1−m2

z σy, o =
1√
q

σz, and c =
1

2
σz (1− σx) .

The self-consistency equation reads once again

mz = Tr [ρσz] = az with ρ =
1

2
(1+ aσ) and the Bloch vector a. (2.168)

We will be concerned with the stationary states ρ̇s = 0 ⇔ ȧs = 0. If we substitute mz → az

(according to the self-consistency condition) on the right-hand side of Eq. (2.167), set the left-

hand side to zero and solve for a, we find the following three solutions

Paramagnetic solution : aP =
[

qκ
4+qκ 0 0

]T
(2.169a)

Ferromagnetic solution (−) : a−F =
[

2qκ
4(1+q)+qκ

0 −
√

1− qκ
4(q−1)

]T
(2.169b)

Ferromagnetic solution (+) : a+
F =

[
2qκ

4(1+q)+qκ
0
√

1− qκ
4(q−1)

]T
(2.169c)

with the coupling ratio κ = κP
κF

. This was shown in paragraph 2.3.2 of the previous section 2.3.2.

The symmetry breaking is characterised by the transition from imaginary z-components of

the ferromagnetic solutions to real ones (i.e. physical states). Thus the critical coupling ratio is

148 |



N. Lang Comparing the mean field theories of Lmf, Hmf and Hmf
P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κc = 4

(
1− 1

q

)
(2.170)

and the magnetisation is given by the function

mz =
(
a±F
)

z
= ±

√
1− qκ

4(q− 1)
or mz = (aP)z = 0 (2.171)

where the paramagnetic solution (mz = 0) becomes unstable at the phase transition. Please

note that the critical coupling remains finite for q → ∞, i.e. limq→∞ κc = 4. Since the mean-

field theory is believed to yield reliable results in high dimensions, this supports the claim of a

non-trivial, dissipatively driven phase transition above its critical dimension dc.
The entropy of the system is given by (see Appendix D):

S [ρ] = −1

2
log

[
1− a2

4

(
1 + a

1− a

)a]
with a =





qκ
4+qκ if κ ≥ κc[(

2qκ
4(1+q)+qκ

)2
− qκ

4(q−1)
+ 1

]1/2

if κ < κc

Clearly, for κ → 0 (meaning κP → 0 and/or κF → ∞) it follows S [ρ] → 0. Analogously we

find S [ρ] → 0 for κ → ∞ (meaning κP → ∞ and/or κF → 0). This behaviour characterises the

pure steady states for non-competing bath couplings.

Mean field theory of the parent Hamiltonian Hmf
P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So far we considered only the prototypical Hamiltonian of the transverse field Ising model.

However, for the dissipative process the parent Hamiltonian is clearly more important than some

abstract prototype (which was merely used to motivate the jump operators) as the former gov-

erns the non-Hermitian damping (decoherence) of states in periods where no jump occurs. It is

therefore more probable that the dissipative steady states are related to the thermal states of the

parent Hamiltonian than to the analogue states of the original TIM.

If we consider the mean field theory of the parent Hamiltonian, there are two inequivalent

approaches that yield similar results which, however, differ by some prefactors: We could (1)

start with the exact parent Hamiltonian and perform a mean field approximation or (2) construct

the parent Hamiltonian directly from the mean field jump operators. In the next paragraph

we show the first approach (1), followed by the alternative derivation (2) in the subsequent

paragraph.
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� First approach: Mean field theory for the parent Hamiltonian

The exact parent Hamiltonian for the dissipative dynamics is defined via

HP = κP ∑
j

c†
j cj + κF ∑

j

d†
j dj (2.172)

with the exact jump operators cj (paramagnetic bath) and dj (ferromagnetic bath).

One computes easily

c†
j cj =

1

2

(
1− σx

j

)
and d†

j dj =
1

q2 ∑
m,n∈Nj

σz
mσz

n −
2

q ∑
m∈Nj

σz
mσz

j + 1 (2.173)

and we finally obtain the parent Hamiltonian

HP =
(κP

2
+ κF

)
N −κP

2 ∑
j

σx
j

︸ ︷︷ ︸
Magnetic field

−4κF

q ∑
〈m,n〉

σz
mσz

n

︸ ︷︷ ︸
NN Ferromagnetic

+
κF

q2 ∑
j

∑
m,n∈Nj

σz
mσz

n

︸ ︷︷ ︸
NNN Antiferromagnetic

(2.174)

where N denotes the number of sites. In one dimension this Hamiltonian is known as the

ANNNI model in transverse magnetic field [114]. The mean field theory follows from the

product ansatz ρ = ∏j ρj and the Von Neumann equation ∂tρ = −i [HP, ρ] via the partial trace

∂tρi = Tr 6=i [∂tρ] = −i Tr 6=i [[HP, ρ]] = −i ∑
j

{
κP Tr 6=i

[[
c†

j cj, ρ
]]

+ κF Tr 6=i

[[
d†

j dj, ρ
]]}

.

We already computed

Tr 6=i

[
d†

j djρ
]

=
1

q2
[C(q, mz)ρi + 2(q− 1)mzσz

i ρi + ρi]−
2mz

q
[(q− 1)mzρi + σz

i ρi] + ρi

Tr 6=i

[
ρd†

j dj

]
=

1

q2
[C(q, mz)ρi + 2(q− 1)mzρiσ

z
i + ρi]−

2mz

q
[(q− 1)mzρi + ρiσ

z
i ] + ρi

for j ∈ Ni as well as

Tr 6=i

[
d†

j djρ
]
= b

†
i biρi + d

†
i diρi and Tr 6=i

[
ρd†

j dj

]
= ρib

†
i bi + ρid

†
i di

for j = i with the mean field jump operators

dj = σx
j

(
mzσz

j − 1

)
and bj =

1√
q

√
1−m2

z σ
y
j .

See paragraph 2.3.2 of the previous section 2.3.2 for the derivation or Appendix B for details.

Note that Tr 6=i

[[
c†

j cj, ρ
]]

= 0 if i 6= j and Tr 6=i

[[
d†

j dj, ρ
]]

= 0 if i /∈ Nj ∪ {j}, so we find

i∂tρi = κP Tr 6=i

[[
c†

i ci, ρ
]]

+ κF Tr 6=i

[[
d†

i di, ρ
]]

+ κF ∑
j∈Ni

Tr 6=i

[[
d†

j dj, ρ
]]

. (2.175)
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Invoking the former results yields

Tr 6=i

[[
c†

i ci, ρ
]]

=
[
c†

i ci, ρi

]
=

1

2
[1− σx

i , ρi] =

[
−σx

i

2
, ρi

]

Tr 6=i

[[
d†

i di, ρ
]]

=
1

q

[
b

†
i bi, ρi

]
+
[
d

†
i di, ρi

]
=
[
d

†
i di, ρi

]
= [−2mzσz

i , ρi]

∑
j∈Ni

Tr 6=i

[[
d†

j dj, ρ
]]

= q

[
2(q− 1)

q2
mz [σ

z
i , ρi]−

2mz

q
[σz

i , ρi]

]
=

[
−mz

q
σz

i , ρi

]

so that

∂tρi = −i

[
−κP

2
σx

i − 2κFmzσz
i −

κFmz

q
σz

i , ρi

]
≡ −i

[
Hmf

P , ρi

]
. (2.176)

That is, the mean field parent Hamiltonian reads

Hmf
P = −κP

2
σx

i − κFmz

(
2 + q−1

)
σz

i = −hmf
P σ (2.177)

with the mean field hmf
P =

[
κP
2 0 κFmz

(
2 + q−1

)]T
. The self-consistency equation is the same

as before and we find the transcendent mean field equation

mz = tanh
(

βhmf
P

)
ĥ

mf,z
P (2.178)

for a thermal state ρ = ρ(β). With the normalised mean field ĥ
mf
P we arrive at the implicit

equation √
κ2

P

4
+ κ2

Fm2
z (2 + q−1)

2
mz = κFmz

(
2 + q−1

)
tanh

(
βhmf

P

)
(2.179)

for the magnetisation mz. If we introduce the scaled coupling gP = κP

2κF(2+q−1)
= κ

2(2+q−1)
we

end up with the same equations as before

√
g2

P + m2
z = tanh

(
β̃P

√
g2

P + m2
z

)
or mz = 0 (2.180)

as possible mean field magnetisations. Here we introduced the inverse temperature β̃P =
κF(2+q−1)

kBT in units of κF(2 + q−1). Any solution mz = mz(gP, β̃P) of these equations provides

a thermal state

a(gP, β̃P) = a
(

gP, mz(gP, β̃P)
)
=
[

gP 0 mz

]T
. (2.181)

The necessary condition for non-zero magnetisations is

β̃P > 1 ⇔ κF(2 + q−1) > kBT . (2.182)

At zero temperature this reads
√

g2
P + m2

z = 1 if κF 6= 0, that is mz(gP, T = 0) =
√

1− g2
P. So

on the T = 0-axis the critical coupling is gP,c =
κc

2(2+q−1)
= 1. For the sake of completeness, the

entropy of the system can be computed via
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S [ρ] = −1

2
log

[
1− a2

4

(
1 + a

1− a

)a]
where a = tanh

(
β̃P

√
g2

P + m2
z

)
. (2.183)

� Second approach: Parent Hamiltonian for the mean-field dynamics

Let us now follow the alternative approach and derive the parent Hamiltonian for the mean

field jump operators. As before, the parent Hamiltonian can be written as

H
mf
P = κP ∑

j

c†
j cj + κF ∑

j

d
†
j dj + κF ∑

j

b
†
j bj + κF ∑

j

o†
j oj (2.184)

with the mean field jump operators

dj = σx
j

(
mzσz

j − 1

)
, bj =

1√
q

√
1−m2

z σ
y
j , oj =

1√
q

σz
j , and cj =

1

2
σz

j

(
1− σx

j

)
.

For a single site the Hamiltonian reads

h
mf
P = κPc†c + κFd

†
d + κFb

†
b + κFo†o

=
κP

2
(1− σx) + κF (mzσz − 1) (mzσz − 1) +

κF

q
(1−m2

z)1+
κF

q
1 .

Dropping terms that are proportional to the identity yields

h
mf
P = −κP

2
σx − 2κFmzσz ≡ −h

mf
P σ (2.185)

with the mean-field h
mf
P =

[
κP/2 0 2κFmz

]T
. Obviously this is the theory according to the

first approach in the high-dimensional limit q → ∞. That is, we immediately end up with the

self-consistency equation

√
g2

P + m2
z = tanh

(
βP

√
g2

P + m2
z

)
or mz = 0 (2.186)

where gP = κP
4κF

= κ
4 and βP = 2κF

kBT in units of 2κF. The necessary condition for non-zero

magnetisations is

βP > 1 ⇔ κF >
kBT

2
. (2.187)

At zero temperature one finds
√

g2
P + m2

z = 1 if κF 6= 0, that is mz(gP, T = 0) =
√

1− g2
P. In this

case the critical coupling on the T = 0-axis is gP,c = κc
4 = 1. The entropy can be computed via

Eq. (2.183) if one sets

a = tanh

(
βP

√
g2

P + m2
z

)
. (2.188)

We are now prepared to compare the mean field theories that we outlined above.
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2.4.2 Comparison of phase transitions

As a measure of purity in a one-qubit system we may employ the Von Neumann entropy S,

the purity γ or the length a of the Bloch vector. Since all of these quantities are connected

by monotone relations, it is actually irrelevant which measure we use to quantify the “purity”

of a state. For the sake of simplicity we will use the length a to determine the critical line in

the phase diagrams for each mean-field theory. To call on purity as parameter provides a link

between dissipatively driven phase transitions and “classical” thermal phase transitions.

The critical purity in the dissipative setting surely is

acrit
D = |aP(κ = κc)| =

qκc

4 + qκc
=

4(q− 1)

4 + 4(q− 1)
= 1− 1

q
=

κc

4
. (2.189)

In the Hamiltonian mean field theories the critical purity is given by

acrit = tanh
(

β̃P,c

√
g2

P,c + m2
z

)
=
√

g2
P,c + m2

z
mz=0
= gP,c

since the magnetisation vanishes at the phase transition (which is of 2nd order). For the first

approach (mean field theory of the exact parent Hamiltonian) we end up with

acrit
1 = gP,c =

κc

2(2 + q−1)
(2.190)

whereas the second approach (parent Hamiltonian of the mean field jump operators) yields

acrit
2 = gP,c =

κc

4
. (2.191)

Note that there is actually no sensible way to compare the mean field theory of the original TIM

with the dissipative results since there is no a priori relation between the Hamiltonian parameters

J and h (g) on the one hand, and the dissipative couplings κF and κP (κ) on the other hand. The

original theory was just the prototype for our dissipative model after all — there is no rigorous

mathematical relation involved.

We are led to the conclusion that, at least in mean-field approximation, the purity (and

thereby the entropy) provides a useful parameter to compare formerly “incomparable” systems

(namely, the dissipative setting with the thermal Hamiltonian setting) and additionally infer

a relation between both phase transitions: The dissipative and the thermal phase transition

(according to the second approach) occur at the same purity, compare Eq. (2.189) and (2.191).

In that regard, the dissipative phase transition simulates the thermal phase transition of the

underlying parent Hamiltonian.

Please note that the transition according to the first approach, see Eq. (2.190), deviates from

the dissipative transition, cf. Eq. (2.189). This is due to additional contributions proportional to

q−1. In the high-dimensional limit q → ∞ both approaches lead to the same mean field results.

We should stress that this result is the most consistent one: The dissipative phase transition of

the mean field theory is related via purity/entropy to the thermal phase transition of its very

own parent Hamiltonian.
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Ferromagnetic

Paramagnetic

100 16 8 4 2

A B

� Figure 2.21: Comparison of the dissipative and the thermal TIM in mean field approximation. Both plots
show properties of the stationary and thermal states in dependence of the entropy S (horizontal axis) and
the relative coupling κ (vertical axis). In (A) we show the trace distance of the stationary state for a given
κ and the thermal states for this parameter and varying temperature (converted to entropy). The lighter
the color, the closer is the thermal state at this point to the stationary state of the dissipative system. The
blue line marks the thermal phase transition where the lower area represents the ferromagnetic phase.
The red line marks the entropy of the dissipative stationary state in dependence of κ. Note that the cusp
feature – which indicates the dissipative phase transition – coincides with the phase boundary of the thermal
system. In (B) we show these lines for different coordination numbers q = 2, 4, 8, 16, 100 with color-coded
z-magnetisation (black: mz = 0, red: mz > 0). The background color encodes the z-magnetisation of the
thermal state (white: mz = 0, grey: mz > 0).

In Fig. 2.21 we illustrate these findings. To this end we translated the Bloch vector length a

(or purity) into the Von Neumann entropy S = S(a) as this is the more natural quantity. There

are some comments in order:

In (A) we show as a 2D colour plot the trace distance between the thermal state of the

parent Hamiltonian and the dissipative steady state. The lighter the color the closer are

both states. The thermal phase transition is marked by a blue curve that separates the

paramagnetic and the ferromagnetic region in the shown S-κ-plane37. The entropy SD of

the dissipative steady state is shown as a function of the coupling κ (red line). According

to our previous result, the cusp feature (which marks the dissipative phase transition)

coincides with the thermal phase transition at a particular point (Sc, κc) in the thermal

phase diagram. The trace distance reveals that the dissipative fixed point equals thermal

states in the paramagnetic phase, with a temperature β specified via SD(κ)
!
= S(β). This

is not true in the ferromagnetic phase unless κ → 0 and S → 0 where both states meet

again at the poles of the Bloch ball. The result in the paramagnetic phase is to some extent

unavoidable: There both the thermal and the stationary state are restricted to the positive

σx-axis and start at the completely x-polarised state on the Bloch sphere. Consequently

there has to be a temperature β = β(κ) for all couplings κ such that the thermal state

“overtakes” the stationary state on this axis. This is no longer true in the ferromagnetic

phase since there both states are restricted to the σx-σz-plane and therefore can “avoid”

each other until their reunion at the poles.

37For the thermal states one can think of the entropy axis as a (deformed) temperature axis.
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In (B) we show the same plane where the blue curve once again marks the thermal phase

boundary. The coloured background encodes the z-magnetisation for the thermal states

(white: mz = 0, grey: mz = 1), the colour of the curves indicates the z-magnetisation of the

dissipative steady states (black: mz = 0, red: mz = 1). The family of curves illustrates dis-

sipative steady states for varying coordination numbers (or dimensions) q = 2, 4, 8, 16, 100.

To this end keep in mind that the parent Hamiltonian h
mf
P is independent of q and conse-

quently the phase boundary (blue curve) remains the same for all dimensions. The plot

illustrates that the dissipative phase transition coincides with the thermal phase boundary

in any case but at different points (Sc, κc) in the S-κ-plane. In the high-dimensional limit

the dissipative phase transition occurs at limq→∞ κc = 4 in a pure paramagnetic state. This

corresponds to our findings in paragraph 2.3.2 (Section 2.3). From this perspective, the

dissipative phase transition in infinite dimensions equals the quantum phase transition at

T = 0 of the parent Hamiltonian.

This concludes the comparison of dissipative and thermal mean field phase transitions for the

transverse field Ising model. In the next section we continue with the analytical solution of a

minimal 2-spin instance with and without Hamiltonian contributions.
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Here we investigate the smallest instance of the dissipatively driven transverse field Ising model

by exact calculations. We give an analysis of both the steady states and the dynamics of the

system in the formerly introduced superoperator formalism. Since the system is finite and small,

we cannot expect features of non-trivial, spontaneous symmetry breaking to occur (as predicted

by the mean-field theory). However, we aim at a deeper understanding of this paradigmatic

example for two competing baths, one of which features a non-trivial dark state subspace due

to global symmetries.

2.5.1 The system in superoperator language

Let us assume our system comprises two spins described by pure states in H2 = C2 ⊗C2. Gen-

eral states are described by density matrices ρ ∈ S ≡ S(H2) ⊆ B(H2) ≡ B where S(H2) de-

notes the convex set of positive-semidefinite, Hermitian operators of trace one and B(H2) is the

vector space of bounded linear operators on the Hilbert space. Here these operators can be iden-

tified with complex 4× 4 matrices if we choose the computational basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}.
The unitary dynamics is given by the TIM Hamiltonian which reads for two spins

H = −J σz
1 σz

2 − h (σx
1 + σx

2 ) (2.192)

with exchange interaction J and magnetic field h. The dissipative dynamics is governed by two

competing baths described by jump operators

cj =

√
κP

2

(
σz

j − iσ
y
j

)
and dj =

√
κF

2
σx

j

(
1− σz

j+1σz
j

)
(2.193)

where j = 1, 2 and all indices are numbers modulo 2. κP and κF determine the strengths of the

“paramagnetic” and “ferromagnetic” baths, respectively.

It is now straightforward to calculate the parent Hamiltonian HP = ∑j

(
d†

j dj + c†
j cj

)
and the

quantum jump superoperator L = ∑j

(
dj ⊗ dj + cj ⊗ cj

)
. The effective Hamiltonian (including

non-Hermitian damping contributions) follows directly via Heff ≡ H − i
2 HP. This operator has

to be “lifted” in the superoperator representation Heff = −i
[
1⊗ Heff − Heff ⊗ 1

]
. Finally this

yields the Lindbladian superoperator L = Heff + L (a complex 16× 16 matrix) which describes

the dynamics and stationary states of the system completely via exp (Lt) and Ker [L] ≤ |B〉〉.
Here |B〉〉 denotes the vectorised operator space and ≤ reads “linear subspace of”.

What complicates the analysis of the steady states (a bit) is due to the observation that

Ker [L] 6= |D〉〉 in general, where |D〉〉 ⊆ |B〉〉 denotes the set of (physical) steady states. In

other words: The operators in the kernel of the Lindbladian are not necessarily density matrices.

In the next paragraphs we will deal with this hitch.
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2.5.2 Solutions for steady states

Let us now have a look at the steady states of this simple system. It proves advantageous to

split the analysis into three parameter regimes, namely:

κP 6= 0 and J, h, κF arbitrary ⇒ unique, mixed steady state

κP = 0, h 6= 0 and J, κF arbitrary ⇒ convex line of mixed steady states

κP = 0, h = 0 and J, κF arbitrary ⇒ full Bloch sphere of steady states

Here κP, κF and J are always non-negative real numbers.

� κP 6= 0 and J, h, κF arbitrary

For this generic parameter regime there is no simple representation of Ker [L]. However, nu-

merical solutions are easily calculated and one finds dim Ker [L] = 1. This is good news since it

is known that every Lindblad operator L has at least one steady state. Let |S〉〉 be an arbitrary

vector such that span { |S〉〉} = Ker [L]. We can then choose a phase eiϕ so that eiϕS (which is a

4× 4 matrix) is Hermitian. According to the previous statement, this is always possible. Here

ϕ can be calculated via ϕ = − 1
2 (ϕ1,4 + ϕ4,1) where ϕi,j = arg Si,j. Finally, the normalisation

ρNESS = eiϕS
Tr[eiϕS]

yields the unique steady state. Its positive-semidefiniteness follows from the

existence of at least one steady state and the fact that eiϕS
Tr[eiϕS]

is the only Hermitian operator with

trace one in the kernel of the Lindbladian.

Since there is no simple visualisation of a generic two-spin mixed state38 it is useful to

consider a set of quantities which yield a quite detailed description of the steady state. Clearly,

one should consider the (averaged) magnetisations Σi ≡ 1
2

(
σi

1 + σi
2

)
for i = x, y, z. First, since

our systems features the permutation symmetry 1 ↔ 2 with respect to spin 1 and 2, one can

simply measure the one-site magnetisation σi
1. Second, it turns out that 〈σz

1〉NESS = 0 = 〈σy
1 〉NESS

for all NESS (as long as κP 6= 0); so we just compute 〈σx
1 〉NESS. Furthermore, as we explicitly

deal with non-unitary evolutions of quantum states, the purity γ = Tr
[
ρ2

NESS

]
is mandatory.

Additionally we may ask whether the two spins (or qubits) are entangled – and if so, to

which extent? To quantify entanglement a variety of entanglement measures has been contrived

in the quantum information community (see Ref. [115] for a nice review) and lots of them were

adopted by other communities such as condensed matter physicists to learn a great deal about

the “quantumness” of their many body systems and phases [116]. A well-known entanglement

measure whose convex roof extension39 can be evaluated analytically for arbitrary mixed two-

qubit states is the concurrence [117]. For an arbitrary mixed state ρ of two qubits the concurrence

can be calculated via

C[ρ] = max{λ1 − λ2 − λ3 − λ4, 0} (2.194)

38At least not in the three spatial dimensions I have at my disposal.
39Usually entanglement measures are defined as functionals on pure state vectors inH which satisfy certain properties

such as monotony under LOCC operations etc. (for a complete characterisation see Ref. [115]). There is a general
procedure to extend such a pure state entanglement measure to mixed states in S(H) via a convex roof extension which is
based on minimising over all possible realisations of a mixed state ρ. Although mathematically well defined, it proves
hard or even impossible to calculate such quantities analytically for large systems. However, for two qubits and the
concurrence as pure state entanglement measure, the convex roof can be evaluated analytically.
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where λ2
1 ≥ λ2

2 ≥ λ2
3 ≥ λ2

4 is the ordered non-negative spectrum of the positive-semidefinite

Hermitian matrix

R ≡ √ρρ̃
√

ρ =
√

ρσ
y
1 σ

y
2 ρσ

y
1 σ

y
2

√
ρ . (2.195)

C[ρ] = 0 corresponds to unentangled and C[ρ] = 1 to maximally entangled states. For more

details see e.g. Ref. [116].

◮ Evaluation

In Fig. 2.22 we show these three quantities for the four parameter sets (J, h) = (1, 1), (0, 0),

(1, 0), (0, 1) and varying κP (horizontal axis) and κF (vertical axis). Note that J and h determine

the unitary dynamics whereas κP and κF determine the dissipative dynamics of the system. Some

comments on the findings in Fig. 2.22 are in order:

The purity is highest (light regions) in the high κP and low κF regions. It drops (grey

regions) for lower κP and higher κF since the two baths do not agree about their favoured

dark states. If the unitary dynamics is deactivated (second row) there is one effective

parameter (κ = κP
κF

) left and the diagram becomes ray-shaped. Interestingly the purity

does not increase in the high κF and low κP regime which hints at a discontinuity for

κP = 0 and κF 6= 0 regarding the steady state set structure (see the next case where κP = 0

is considered). Unitary dynamics leads to a distortion of the symmetric, purely dissipative

case. If the spin-spin interaction J is present there are no longer pure steady states for

κF = 0 and κP 6= 0 since the eigenstates of H and the dark states of ci do not match.

This is not true for a magnetic field in x-direction (h 6= 0) where the steady states remain

pure. Note that the unitary components give rise to an “island of mixed states” close to

the completely unitary system, i.e. for κP and κF small. Clearly, this is justified by the

predominance of the baths for κP → ∞ or κF → ∞ which drive the system either to a

unique pure steady state (ci) or, at least, to a mixed steady state with enforced non-trivial

correlations (di).

The concurrence is lowest (highest) in blue (white) regions, i.e. blue regions correspond

to unentangled states whereas in lighter regions entanglement is present. In the limit

κP → ∞ and κF small (or just κF small for the purely dissipative setting in the second row)

the entanglement drops to zero. If we remember that the steady states becomes pure in

this limit we can conclude that the latter features a product structure. Indeed, the exact

dark state of the paramagnetic bath is the completely x-polarised state |+〉〉 which cer-

tainly is a product state. The dark states of the ferromagnetic bath are degenerate and

completely z-polarised, namely |↑〉〉 and |↓〉〉. These are product states, however their co-

herent superpositions (which are dark states as well) include the maximally entangled bell

states |Φ±〉〉. The drop in entanglement can therefore not be explained in the same way as

in the paramagnetic case. One has to recall that the disturbance due to the paramagnetic

bath lowers the purity significantly – and strongly mixed states exhibit notoriously low en-

tanglement. An interesting feature of the interplay between unitary dynamics (J 6= 0) and

dissipative dynamics is the emergent saddle-shaped structure where an “isle” of entangle-

ment shows up for low κF and a certain range of κP. However, the absolute entanglement

there, C[ρNESS] ≈ 0.3, is comparatively low.

The x-magnetisation is highest (lowest) in green (white) regions. In the context of our

previous findings there is nothing unexpected about the plots. The magnetisation becomes
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� Figure 2.22: Here we show the purity γ, the concurrence C and the x-magnetisation 〈σx〉 for the four
parameter sets (J, h) = (1, 1), (0, 0), (1, 0), (0, 1) and varying κP (horizontal axis) and κF (vertical axis).
Note that J and h determine the unitary dynamics whereas κP and κF determine the dissipative dynamics of
the system. A discussion of the results is given in the text.
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highest in the (nearly) pure steady state for κP → ∞ and κF small. If no competing unitary

dynamics is present (J = 0) it becomes even unity for κF = 0. 〈σx〉NESS vanishes for κP → 0

and finite κF since the set of steady states there is well approximated by the coherent

superpositions of |↑〉〉 and |↓〉〉 and the convex combinations thereof – all of which a

characterised by vanishing x-magnetisation. This, however, is not true if the magnetic

field is switched on in which case a residual x-magnetisations prevails (see topmost row).

All of these remarks are valid for a non-trivial coupling of the paramagnetic bath ci. What

happens if we set κP = 0? ◭

� κP = 0, h 6= 0 and J, κF arbitrary

Since we do not expect the steady states to vary qualitatively with the spin-spin coupling, let
us just divide all parameters by J or, equivalently, set J = 1. Then two free parameters re-
main, namely h and κF. If one computes the kernel Ker [L] analytically it turns out to be two
dimensional with the possible basis

S1 =




1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1


 and S2 =




0 2i+κF
2i−κF

2i+κF
2i−κF

− i(4h2+κF
2+4)

h(−2i+κF)

1 − 2ih
−2i+κF

− 2ih
−2i+κF

1

1 − 2ih
−2i+κF

− 2ih
−2i+κF

1

− i(4h2+κF
2+4)

h(−2i+κF)
2i+κF
2i−κF

2i+κF
2i−κF

0




.

S1 is obviously a density matrix (up to a factor of 1/2), namely |Φ−〉 〈Φ−|. S2 is not yet

Hermitian and of trace one – this can be fixed by multiplication with −−2i+κF
4ih which yields

S1 =




1
2 0 0 − 1

2

0 0 0 0

0 0 0 0

− 1
2 0 0 1

2


 and S2 =




0 2−iκF
4h

2−iκF
4h

κF2+4
4h2 + 1

iκF+2
4h

1
2

1
2

iκF+2
4h

iκF+2
4h

1
2

1
2

iκF+2
4h

κF2+4
4h2 + 1 2−iκF

4h
2−iκF

4h 0


 .

Now both basis operators are Hermitian and have trace one. An arbitrary linear combination

remains in the kernel but only real linear combinations remain Hermitian. That would yield a

real linear subspace – but only convex combinations preserver the trace! So we are left with a

single real parameter λ and the potential set of density matrices

S(λ) = λ · S1 + (1− λ) · S2 with λ ∈ R . (2.196)

It can be easily shown that min σ (S2) < 0 for all parameters h and κF (σ(•) denotes the spectrum

of an operator), i.e. S2 is not a density matrix. This, however, is not true for σ (S(λ)) – at least

not for all λ ∈ R. We end up with a convex set of density operators defined via

D = {S(λ) ∈ B | λ ∈ [a, b]} where [a, b] = {λ ∈ R | min σ(S(λ)) ≥ 0} (2.197)

which are exactly the steady states of our theory. This convex set (a “line” in B) can formally be

written as |D〉〉 = Ker [L] ∩ |S〉〉 and is the convex envelope of S(a) and S(b). As we shall see

it is a < b = 1 where S(a) is some mixed state but S(b) = |Φ−〉 〈Φ−| is a pure Bell state. So our

“steady state line” is attached with one end at an extreme point of the convex set S of density

matrices and ends at some mixed state on its surface. The CPTP map exp (Lt) defines then a

flow on S towards this line.
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◮ Evaluation

In Fig. 2.23 we show the purity and x-magnetisation in the second and third row for h = 0.5,

h = 1, h = 1.5 and varying κF (y-axis). On the horizontal axis the parameter λ is varied, i.e. the

vertical lines can be seen as the line D in the space of density matrices. In the light grey region

the matrix S(λ) is not positive-semidefinite anymore and S(λ) leaves40 the convex set S .

Instead of the concurrence we show in the upper row of Fig. 2.23 the trace distance to the

three pure states

∣∣Φ−
〉〉

=
∣∣∣∣Φ−

〉 〈
Φ−
∣∣〉〉 , |↑〉〉 = ||↑↑〉 〈↑↑|〉〉 and |+〉〉 = ||++〉 〈++|〉〉 (2.198)

where |Φ−〉 = 1√
2
(|↑↑〉 − |↓↓〉) is a Bell state. The trace distance is defined by

TD [ρ, π] :=
1

2
Tr

[√
(ρ− π)2

]
(2.199)

and constitutes a metric on the set of density matrices S . It can be computed easily via

TD [ρ, π] = 1
2 ∑i |λi| where {λi} ⊂ R are the real eigenvalues of the Hermitian matrix ρ−π. We

use the trace distance to locate the steady state with respect to the three reference states given

above.

Let us make some comments on the findings in Fig. 2.23:

In the first row the trace distance between the steady state S(λ) and one of the three

reference states is color-coded for varying κF. In dark-green regions the steady state is

close to the reference state; in white regions they are far apart. First, we realise that

the z-polarised state |↑〉〉 is not near any steady state in D and its distance from S(λ) is

nearly constant. The x-polarised state |+〉〉 and the pure end of D (λ = 1) are far apart

(rightmost plot) whereas the mixed extreme point (S(a)) approaches |+〉〉 for decreasing

κF (it does never reach any pure state, though). However, the leftmost plot shows that the

κF-independent extreme point S(1) equals the pure Bell state |Φ−〉〉. It is noteworthy that

|Φ−〉〉 seems to be a special state since the distance function of TD[|Φ−〉 〈Φ−| , S(λ)] is just

rescaled for varying κF. Obviously this is not true for the other two reference states where

this function changes fundamentally with κF.

In the second row the purity of S(λ) is illustrated for the magnetic fields h = 0.5, 1 and

1.5. As previously, pure states are characterised by white points and the purity decreases

towards black. Clearly, the varying magnetic field does not change D qualitatively (other

than rescaling the parametrisation λ). In the rightmost plot for h = 1.5 one can easily see

that the extreme point S(1) indeed is a pure state. Then D “dives” into the mixed interior

of S turning towards more pure states as λ approaches a. However, S(a) remains mixed

as suggested above – although it becomes more pure with increasing κF.

In the last row the x-magnetisation is shown for the three magnetic fields. Obviously

the magnetisation depends only on the position λ in D and not on the bath coupling

κF. Nevertheless, the magnetisations that can be reached in D become more and more

restricted to lower values for increasing κF. Note that the maximum magnetisation for

40Note that “leaving” the convex set of density matrices does not necessarily mean “leaving via pure states on the
extreme points of the convex envelope”. One can “leave” in other directions, e.g. by destroying the Hermiticity or
positivity (as in our case).
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S(a) and κF → 0 is about Tr [ΣxS(a)] ≈ 0.7 which corresponds to the findings for the

purity and the distance to |+〉〉.
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� Figure 2.23: Steady states of the 2-spin dissipative TIM with unitary dynamics for κP = 0 and h 6= 0.
In the first row we show the trace distance between the steady state S(λ) and one of the three reference
states (dark green [white]→ close to [far from] the reference state). In the second row the purity of S(λ) is
illustrated for the magnetic fields h = 0.5, 1 and 1.5. Pure states are characterised by white points and the
purity decreases towards black. The last row illustrates the x-magnetisation for the three magnetic fields
(white [green]→ 〈σx〉 = 0 [〈σx〉 = 1]).
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� Figure 2.24: The plot illustrates the trace distance
TD[ρε

NESS, S(λ)] between S(λ) and the unique steady state
ρε

NESS = ρNESS(κP = 0 + ε) for 0 < ε ≪ 1, that is, finite para-
magnetic driving κP > 0, close to the parameter regime where
the uniqueness is lost. In the grey region S(λ) is unphysical.
The warmer the colour the closer is the unique state ρε

NESS to
S(λ). The yellow line highlights the point λ(κF) where the
unique NESS joins the convex set of stationary solutions for
κP → 0.

A question that arises now inevitably is the following: How does the transition between

κP 6= 0 (where we found a unique mixed steady state) and the case at hand, i.e. κP = 0,

look like? In other words: When κP approaches adiabatically 0 so that the system remains in

its current steady state for all times, where does ρNESS show up in the convex set D which we

parametrised by λ? To answer this question it is helpful to plot the trace distance TD[ρε
NESS, S(λ)]

where ρε
NESS = ρNESS(κP = 0 + ε) for 0 < ε ≪ 1 is a unique steady state close to the parameter

regime where the uniqueness is lost.

In Fig. 2.24 we calculated this quantity for h = 1. As above the grey region marks the

unphysical matrices S(λ) for λ /∈ [a, b]. The trace distance is larger for darker colours. Thus the

point in D where ρε
NESS enters is centred in the bright line where the trace distance vanishes (it

vanishes not exactly since ε does not). So we come to the conclusion that ρε
NESS does not enter

D at the extreme points (as one might expect) but somewhere in the interior, quite distant from

the pure steady state |Φ−〉〉. ◭

� κP = 0, h = 0 and J, κF arbitrary

If we switch off the magnetic field, h = 0, we expect the set of steady states D to grow even
further since the ground states of the Hamiltonian now coincide with the dark states of the
dissipative process. But let us proceed as above and calculate the kernel of the Lindbladian
superoperator. We find dim Ker [L] = 4 and the following basis operators:

S1 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 , S2 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 , S3 =




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


 , S4 =




0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0




S1 and S2 are density matrices, namely |↓〉 〈↓| and |↑〉 〈↑|. This is not surprising since both of

them are clearly dark states of di and eigenstates41 of H. Since they are eigenstates to the same

eigenvalue, each linear combination of |↑↑〉 and |↓↓〉 remains a dark state of the system (this

would be not true if their eigenvalues differed!). But we cannot create coherent superpositions by

linear combinations in S as we could in H. This is where S3 and S4 enter the stage. Note that

those are no density matrices, i.e. S3, S4 /∈ S , and there is no possibility transforming them into

41They are even ground states; but that does not matter if we are interested in the steady states.
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such. They are not even Hermitian, but if we combine S3 and S4 in a certain way, we may create

coherences between |↑↑〉 and |↓↓〉.
So we can do convex combinations of S1 and S2 in order to create mixtures and add complex

linear combinations of S3 and S4 in order to create coherences. It is easy to see that all potential

steady states can thus be written as

S(t, u, ϕ) = t · S1 + (1− t) · S2 + ue−iϕ · S3 + ueiϕ · S4 (2.200)

since Tr [S] = 1 and S† = S for all parameters t ∈ R, u ∈ [0, ∞] and ϕ ∈ [0, 2π]. The non-zero

eigenvalues of S read

λ± =
1

2

(
1±

√
(1− 2t)2 + 4u2

)
(2.201)

and thus we find the necessary and sufficient condition
√
(1− 2t)2 + 4u2 ≤ 1 for S to be positive-

semidefinite, ergo a density matrix. It is useful to reparametrise S via t := 1
2 (r cos θ + 1) and

u := r
2 sin θ, where r ∈ [0, 1] and θ ∈ [0, 2π] make sure that the positivity condition is satisfied.

So we have

S(r, θ, ϕ) =




1
2 (1 + r cos θ) 0 0 r

2 e−iϕ sin θ

0 0 0 0

0 0 0 0
r
2 eiϕ sin θ 0 0 1

2 (1− r cos θ)


 (2.202)

Define now the following four dimensional representation of the Pauli spin algebra

τx ≡ |↓↓〉 〈↑↑|+ |↑↑〉 〈↓↓|
τy ≡ i |↑↑〉 〈↓↓| − i |↓↓〉 〈↑↑|
τz ≡ |↓↓〉 〈↓↓| − |↑↑〉 〈↑↑|

where one easily checks that
[
τi, τ j

]
= 2iεijkτk and

{
τi, τ j

}
= 2δij1. It is now straightforward to

show that the steady states can be parametrised as

S(r) =
1

2
(1+ rτ) where r =




r cos ϕ sin θ

r sin ϕ sin θ

r cos θ


 (2.203)

where τ is the column vector of the τi. But r is just a usual Bloch vector! So the actual parameters

read r ∈ [0, 1], θ ∈ [0, π] and ϕ ∈ [0, 2π] (the range of θ has to be constrained to [0, π] in order

to obtain a unique42 description of steady states). That is, all steady states can be viewed as the

states (mixed or pure) of a new spin, namely |⇓〉 ≡ |↓↓〉 and |⇑〉 ≡ |↑↑〉. Therefore it is not

surprising that the purity reads γ = Tr
[
S2
]
= 1

2

(
1 + r2

)
, which is a well-known expression for

a single spin. In a nutshell: For the parameters κP = 0 = h the system reduces effectively to a

free one-spin system.

To illustrate our findings see Fig. 2.25. There we show the concurrence, the z-magnetisation

and the trace distance to the reference states |⊕〉 ≡ |Φ+〉 = 1√
2
(|⇓〉 + |⇑〉), |⊖〉 ≡ |Φ−〉 =

1√
2
(|⇓〉 − |⇑〉), |⇓〉 and |⇑〉 for r = 1, i.e. the pure shell of the Bloch sphere. The concurrence

vanishes at the poles since |↓〉 and |↑〉 are product states and becomes one on the equator since

42Unique up to the usual singularity at θ = 0, π and r = 0 known from spherical coordinates.
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� Figure 2.25: Here we show the concurrence C (white → C small), the z-magnetisation 〈σz〉 and the
trace distance to the reference states |⊕〉 ≡

∣∣Φ+
〉

(Bell state,red), |⊖〉 ≡
∣∣Φ−

〉
(Bell state, blue) and |⇑〉

(z-polarised, red), |⇓〉 (z-polarised, blue) for r = 1, i.e. the pure shell of the Bloch sphere. The darker the
color the closer is S(r) = S(ϕ, θ) to the corresponding reference state. Further comments are given in the
text.

there the maximally entangled Bell states |Φ±〉 can be found. Note that the latter take in our

effective one-spin system the role of |+〉 and |−〉 for a single qubit, hence the notation |⊕〉
and |⊖〉. In the effective one-spin picture the entanglement of the underlying physical spins

degenerates to a degree of superposition of the two basis states |⇓〉 and |⇑〉. The z-magnetisation

becomes ±1 at the poles and vanishes at the equator, as expected. Note that there can be

no x-magnetisation with respect to the physical spins, i.e. 〈Σx〉NESS = 0 for all steady states

ρNESS = S(r). The trace distance plots show that the states |⊕〉 (red) and |⊖〉 (blue) are located

at (θ, ϕ) = (π/2, 0) and (θ, ϕ) = (π/2, π), respectively. Analogously one finds the states |⇑〉
(red) and |⇓〉 (blue) at the poles of the Bloch sphere. �

2.5.3 Relaxation to steady states

So far we were concerned with the stationary states, i.e. with the properties at t → ∞. Let

us now have a look at the dynamic properties of the 2-spin system, that is, its approach to a

steady state. Since |B〉〉 is a sixteen-dimensional complex vector space and L is a matrix of

corresponding dimension, it is no challenge to compute the time evolution channel

U(t) = exp (Lt) and |ρ(t)〉〉 = U(t) |ρ0〉〉 (2.204)

analytically for given parameters by means of a CAS. We did this for a representative selection

of parameters and found the evolutions depicted in Fig. 2.26. Let us make some short remarks:

The upper left plot in Fig. 2.26 shows the evolution of the initial states |↑〉〉 (z-polarised),

|+〉〉 (x-polarised) and |1〉〉 (completely mixed) for the parameters J = 0 = h, κP = 0 and

κF = 0.1. We show for each initial state the correlation 〈σz
1 σz

2〉 and the purity γ = Tr
[
ρ(t)2

]
.

To clarify the relations of the steady states for different initial conditions, the trace dis-

tances between |ρ+(t)〉〉 = U(t) |+〉〉,
∣∣ρ↑(t)

〉〉
= U(t) |↑〉〉 and the completely mixed

evolution |ρ1(t)〉〉 = U(t) |1〉〉 is shown with dashed black lines. The set of steady states

for vanishing paramagnetic driving (κP = 0) was derived in the previous subsection and

we found a Bloch ball for the completely z-polarised states |⇑〉 and |⇓〉. So we cannot

expect a unique steady state, and indeed, the trace distance between
∣∣ρ↑(t)

〉〉
, |ρ+(t)〉〉

and |ρ1(t)〉〉 remains finite for all times. Note that the purity for both,
∣∣ρ↑(t)

〉〉
and

|ρ+(t)〉〉, approaches one. However, although both pure, their steady states do not co-
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� Figure 2.26: Examples of the exact time evolution of
the 2-spin dissipative TIM. Each plot shows the evolution
|ρX(t)〉〉 = U(t) |X〉〉 for the three initial states X =↑ (z-
polarized), + (x-polarized) and 1 (completely mixed). To
this end we calculated the spin-spin correlation 〈σz

1 σz
2 〉, the

purity γ = Tr [ρ(t)] and the trace distances TD[•, •] for the
two pairs |ρ1(t)〉〉,

∣∣ρ↑(t)
〉〉

and |ρ1(t)〉〉, |ρ+(t)〉〉 as func-
tions of time. The four plots correspond to four generic
sets of parameters J, h, κP and κF. A detailed description
is given in the text.

incide43. Clearly, |↑〉〉 is already a steady state and therefore undergoes a trivial time

evolution. The completely mixed initial state |1〉〉 does not become pure due to the degen-

erate dark state space – nevertheless it becomes purer since all contributions of states which

violate the correlation condition 〈σz
1 σz

2〉 = 1 are eliminated. Note that, though mixed, the

steady state exhibits perfect spin-spin correlations 〈σz
1 σz

2〉 = 1.

The upper right plot in Fig. 2.26 shows the same quantities and the same evolutions as

above with the only difference that the paramagnetic bath couples with κP = 0.1 and thus

a unique (mixed) steady state emerges. The most obvious indication of this new uniqueness

is the vanishing of both trace distances – so all three initial states end up in the same steady

state. The latter is mixed and exhibits a strong but not perfect positive correlation 〈σz
1 σz

2〉
between the two spins.

43The derivation of this statement is left as an exercise to the reader.
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The lower left plot in Fig. 2.26 shows the same evolutions as the upper left plot with

an additional unitary dynamics imposed by H and the parameters J = 0.5 = h. This

additional unitary evolutions changes the long term behaviour of the three initial states

qualitatively: Clearly, the oscillations are due to the unitary evolution and superimpose the

previously smooth damping caused by the dissipative processes. Whereas in the purely

dissipative setting all three initial states ended up in different steady states, in the current

setting the initial states |1〉〉 and |↑〉〉 tend towards the same steady state and only |+〉〉
ends up elsewhere. This can be easily seen since the trace distance between the first two

evolutions vanishes whereas the trace distance between |ρ+(t)〉〉 and |ρ1(t)〉〉 does not.

The different steady states also lead to differing spin-spin correlations as t → ∞. We

already understood these phenomena in the previous subsections where we found that

the magnetic field h 6= 0 leads to a convex “line” D of steady states with two extremal

points, one of which is a pure state. In the case at hand |1〉〉 and |↑〉〉 flow towards the

same point on this line whereas |+〉〉 meets it elsewhere.

The lower right plot in Fig. 2.26 shows the same setting with additional coupling to the

paramagnetic bath, κP = 0.1. As we saw earlier this leads to a unique steady state. The

long-term behaviour is more or less the same as in the purely dissipative setting shown in

the upper right plot. At the beginning, the unitary dynamics dominates the evolution and

superimposes oscillations on the dissipative damping.

We utilise this system and the analytical results discussed above in Subsection 2.6.2 as a consis-

tency check for a quantum trajectory Monte Carlo simulation of dissipative evolution channels

U(t). There we will meet the time evolutions again and interpret them as ensembles of quantum

trajectories for given ensembles of initial states.
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Here we apply the technique of Quantum Trajectory Monte Carlo (QTMC) simulations to our

dissipative transverse field Ising model. We shall use this unravelling of the Lindblad master

equation furthermore in the context of dissipative quantum error correction in the subsequent

chapters.

2.6.1 Technical remarks

We already saw in Subsection 1.1.3 that the time evolution encoded in a Lindblad master equa-

tion can be expressed in terms of quantum trajectories via

|ρ(t)〉〉 = exp (Lt) |ρ0〉〉 =
∫

[0,t],{Lj}
D [L] P[L; t] |ρc[L; t]〉〉 .

where the conditioned density matrix

|ρc[L; t]〉〉 ≡ (P[L; t])−1 T
[

exp (Hefft)∏
l∈L

l

]
|ρ0〉〉

describes a system which experienced a particular sequence L of quantum jumps Lji at times ti.

This particular trajectory occurs with probability

P[L; t] = 〈〈1| eHeff(t−tm)Ljm eHeff(tm−tm−1)Ljm−1
. . . Lj1 eHeff(t1−0) |ρ0〉〉 .

Hence it seems reasonable to obtain an approximation of ρ(t) by a Monte Carlo algorithm

which samples over all possible jump trajectories L with distribution P[L; t]. Originally such an

unravelling of the master equation in terms of quantum jump trajectories was contrived in [118]

and applied for simulation in [119]. However, our straightforward simulation goes along the

lines of Ref. [120] which is also a nice review for the trajectory approach in the context of

Markovian master equations.

In the following we describe the algorithm without giving a formal proof of its correctness,

see [120] for further details. Assuming the initial state is given by a convex combination of

pure states |Φi〉 via ρ0 = ∑i pi |Φi〉 〈Φi| with the (classical) probability distribution {pi} and

we wish to find the evolution for 0 ≤ t ≤ T, the procedure for a QTMC simulation reads as

follows: Discretise time via tj = j · ∆t, j = 0, 1, 2, . . . , NT , so that t0 = 0 and tNT
= T. ∆t

must be chosen much smaller than the physical timescales of the system under consideration,

determined by the excitation energies of the Hamiltonian and the decay rates given by the bath

coupling strengths. Now generate a quantum trajectory by choosing an initial state |Ψ(t0)〉 =
|Φi〉 randomly according to the probability distribution {pi} and proceed as follows:

(1) Assume we reached time tj. Measure your selected observables 〈X〉(tj) =
〈
Ψ(tj)

∣∣X
∣∣Ψ(tj)

〉

and store the results (see below for an explanation).

(2) Draw a random number r ∈ [0, 1).

(3) Define ∆Pµ(tj) ≡ ∆t
〈
Ψ(tj)

∣∣ L†
µLµ

∣∣Ψ(tj)
〉

for the jump operator Lµ. Now calculate Pν(tj) ≡
∑

ν
µ=1 ∆Pµ(tj) for µ = 1, 2, . . . until r ≤ Pν∗(tj) for some index ν∗ for the first time or all jump
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operators have been added and it is still r > PNJ
(tj) (where NJ denotes the number of jump

operators). If the first case applies proceed with (a), otherwise with (b).

(a) If r ≤ Pν∗(tj) a jump occurs. The next (renormalised) state is given by

∣∣Ψ(tj+1)
〉
≡ Lν∗ |Ψ(ti)〉√

〈Ψ(ti)| L†
ν∗Lν∗ |Ψ(ti)〉

(2.205)

where one can re-use Lν∗ |Ψ(ti)〉 which has already been calculated for Pν∗(tj).

(b) If r > PNJ
(tj) no jump occurs and the system evolves according to the effective Hamil-

tonian Heff = H − i
2 HP where H determines the unitary evolution and the positive

Hamiltonian HP is responsible for the damping & decoherence. So compute44

∣∣Ψ(tj+1)
〉
= N−1/2 exp (−iHeff∆t) ≈ N−1/2 [1− iHeff∆t]

∣∣Ψ(tj)
〉

(2.206)

where the normalisation

N =
〈
Ψ(tj)

∣∣ [1+ iH†
eff∆t][1− iHeff∆t]

∣∣Ψ(tj)
〉

(2.207)

is necessary since Heff is not Hermitian (due to HP) and thus the time evolution is not

unitary.

(4) Start over with (1) until you reach tNT
= T.

This sequence yields a single quantum trajectory n described by the state |Ψn(t)〉 (which varies

not smooth with t due to the quantum jumps – even if we take t as continuous variable). The

time evolution starting from ρ0 is now given by

ρ(t) = eLtρ0 = lim
N→∞

1

N

N

∑
n=1

|Ψn(t)〉 〈Ψn(t)|
M≫1≈ 1

M

M

∑
n=1

|Ψn(t)〉 〈Ψn(t)| . (2.208)

That is, we have to perform lots of quantum jump trajectories with initial states distributed ac-

cording to ρ0. For larger systems (∼ 10 spins and more) it is inconvenient to keep the actual

(averaged) state ρM(t) ≡ M−1 ∑
M
n=1 |Ψn(t)〉 〈Ψn(t)| in memory during the simulation 45. There-

fore one restricts oneself to store only the averages of previously chosen observables; i.e. if X is a

Hermitian (bounded) operator, then

〈X〉(t) = Tr
[

XeLtρ0

]
= lim

N→∞

1

N

N

∑
n=1

〈Ψn(t)|X |Ψn(t)〉
M≫1≈ 1

M

M

∑
n=1

〈Ψn(t)|X |Ψn(t)〉 (2.209)

where each observable requires just a sequence of real numbers instead of a sequence of large

complex matrices to be stored. We should mention that this is the most straightforward and

lowest order unravelling of the Lindblad equation. One can employ, for instance, higher order

44Let us give a quick-and-dirty upper bound for ∆t which is necessary to justify the linearisation of the time evo-
lution operator. One certainly demands ‖ − iHeff∆t‖ ≪ 1, so ∆t ≪ ‖H − i/2HP‖−1. Since ‖H − i/2HP‖−1 ≥
(‖H‖+ ‖HP‖)−1 ≥ (ρ(H) + ρ(HP))

−1 we are on the safe side for ∆t ≪ (ρ(H) + ρ(HP))
−1 (here ρ(•) denotes the

spectral radius). If we define λmax := max{|λ| | λ ∈ σ(H) ∪ σ(HP)} to be the eigenvalue of H and HP with the largest
absolute value, we finally obtain the sufficient condition ∆t ≪ λ−1

max which formalises the statement that ∆t must be
much smaller than the energy scale of the unitary dynamics and the damping scale of the dissipative dynamics.

45Recall that for each discrete time tj the state ρM(tj) is given by a 4Q-dimensional complex matrix. For Q = 10 spins
this is already a 1048576× 1048576 matrix with complex entries – for each time step tj!
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Runge-Kutta integrators to obtain continuous-time unravellings which provide higher accuracy

than this simple algorithm, see [120] for details.

Our implementation of this algorithm is written in C++ and runs parallelized on a Core

i7-2600K workstation. We utilise several open source libraries, namely

Boost for managing threads and parsing system configurations via regular expressions.

OpenBLAS as BLAS implementation (mostly BLAS Level 2 operations, namely matrix-

vector multiplications).

Armadillo as wrapper for BLAS functions.

OpenBLAS was compiled manually to take full advantage of its optimisation for the Intel Sandy-

Bridge architecture. For a detailed description of our implementation see Appendix C.

2.6.2 Comparison with exact evolution: A consistency check

To check whether our QTMC algorithm performs correctly (and to complete the 2-spin example

introduced in Sec. 2.5), we simulate the 2-spin TIM and compare the results to the previously

derived analytical ones. The simulations for this system took up to several seconds (depending

on the number of samples) since the system is small (2 spins → 4-dimensional matrix-vector

multiplications in the QTMC simulation). This is comparable to the time needed to calculate

|ρ(t)〉〉 = U(t) |ρ0〉〉 by numerical means46 – which yields the exact result without any statistical

fluctuations. Thus there is no actual benefit due to the QTMC simulation. The latter becomes

useful for three spins and more where a numerical computation of exp (Lt) becomes time-

consuming or even practically impossible.

Dynamics with unique steady state
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us first investigate the case of a unique steady state with different (pure and mixed) initial

states. To this end we simulated the system for unitary parameters J = 0.5 = h and dissipative

couplings κP = 0.1 = κF; here we can expect a unique steady state and the exact dynamics is

already known, see Fig. 2.26 and the related explanations in the text.

In Fig. 2.27 we compare the QTMC results (points) with the exact time evolution (lines). The

three plots correspond to the three initial states (top-down) |ρ0〉〉 = |↑〉〉, |+〉〉 and |1〉〉. For

all evolutions the four observables σx
1 , σ

y
1 , σz

1 and σz
1 σz

2 were measured during two simulations,

one with 100 samples and another with 10000 samples. The discretisation parameter was set to

∆t = 0.001 and the total time to T = 30 which led to 30000 steps per trajectory. The simulation

times ranged from fractions of a second (100 samples) to few seconds (10000 samples).

Besides the observables mentioned above, the relative deviation

δ〈X〉(t) = 〈X〉QTMC(t)− 〈X〉A(t)
〈X〉A(t)

(2.210)

of the QTMC result 〈X〉QTMC and the analytical result 〈X〉A for the correlation X = σz
1 σz

2 is

shown by a bar graph in the background. The light-grey (dark-grey) bars refer to the simulation

with 100 (10000) samples.

46This usually requires the Jordan canonical form of L to compute exp (Lt).
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� Figure 2.27: QTMC simulation of 2-spin TIM with unitary parameters J = 0.5 = h and bath couplings
κP = 0.1 = κF for different initial states. The lines denote the analytical evolution of the observables σx

1 ,

σ
y
2 , σz

3 and σz
1 σz

2 , the points denote the corresponding QTMC simulation results for 100 and 10000 samples,
respectively. The bar graphs illustrate the relative deviations δ〈σz

1 σz
2 〉 of the QTMC and analytical results

for the spin-spin correlation. Light-grey (dark-grey) bars correspond to the simulations with 100 (10000)
samples. Further details are given in the text.
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First, we notice that he simulations with 10000 samples clearly reproduce the analytical

evolution and our QTMC algorithm seems to perform as expected. The relative deviations are in

the order of ∼ 1% and exhibit a (statistically distorted) periodic behaviour due to the underlying

unitary dynamics. Second, the simulations with just 100 samples are much worse (as expected)

and follow only roughly the exact evolution. Interestingly, their deviations are quite low in the

beginning (for, say, 0 ≤ t ≤ 10) if the initial state is pure, whereas for the completely mixed initial

state the statistical fluctuations dominate the entire evolution. The answer to this phenomenon

is connected with the relative weakness of the baths (κP = κF = 0.1 < 0.5 = J = h). The

statistical component of the QTMC simulation is directly linked to the occurrence of quantum

jumps. For 0 ≤ t ≤ 10 the probability of a jump occurring is low and therefore the dynamics is

determined by the (non-stochastic) time evolution via exp (−iHeff). Only at late times there is

a considerable probability that several jumps occurred and then statistics becomes relevant. But

this is only true for a pure initial state. If, in contrast, the initial state is (completely) mixed,

there are statistical fluctuations from the beginning due to the randomly chosen (pure) initial

states. This can be clearly seen in the lower plot of Fig. 2.27.

Dynamics with non-unique steady states
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To check whether the QTMC simulation also performs correctly on systems with non-unique

steady states, we employ the previously examined parameter set J = 0.5 = h, κP = 0 and

κF = 0.1 with a convex line D of steady states. As before, we start with the three different

initial states |1〉〉, |↑〉〉 and |+〉〉 and measure the observables σx
1 and σz

1 σz
2 for times t ∈ [0, 40]

(discretisation ∆t = 0.001). To obtain good results even for late times, the QTMC simulations

sampled over 50000 trajectories for each initial state.

The results are shown in Fig. 2.28 where dashed lines (solid lines) denote the analytical

results for 〈σx
1 〉(t) (〈σz

1 σz
2〉(t)) and the points mark the QTMC results. Obviously the QTMC

simulation fits the exact results almost perfectly and therefore reproduces the known fact (see

Fig. 2.26 and the related descriptions) that the initial states |1〉〉 and |↑〉〉 evolve towards the

same steady state whereas |+〉〉 is driven to another one.

Quantum jump trajectories
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We mentioned above that there is no actual benefit from the QTMC simulation regarding the

time evolution of observables since the (numerical) exact solution can be calculated in the same

time (or even faster) with less errors. However, even for our simple example there is an advan-

tage if we want to understand and illustrate the action of the baths since the QTMC simulation

enables us to generate single quantum jump trajectories.

Figure 2.29 shows four representative trajectories for different parameters and initial states

over different periods of time. In the upper part of each plot we show the time evolution of the

three observables σx
1 , σz

1 σz
2 and the average z-magnetisation Σz. Recall that these values now are

pure quantum mechanical expectation values computed with respect to some pure state
∣∣Ψ(tj)

〉
.

In contrast, the time evolutions we considered so far described classical (ensemble) averages of

quantum mechanical expectation values. The lower part of each plot encodes the occurrence

of jumps over time: Each jump is marked by an impulse; red impulses for (one of the two)

ferromagnetic (di) jumps and blue ones for the paramagnetic (ci) jumps. If one performed an
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Non-unique steady states

� Figure 2.28: QTMC simulation of 2-spin TIM with unitary
parameters J = 0.5 = h and bath couplings κP = 0 and κF = 0.1
for three different initial states, namely |↑〉〉, |+〉〉 and |1〉〉. We
show for each evolution the analytic solutions for the two ob-
servables σx

1 (dashed lines) and σz
1 σz

2 (solid lines) in comparison
with the QTMC results (points). Depending on the initial states,
the evolutions reach different steady states which can be seen
from the differing observables for e.g. |ρ1(t)〉〉 and |ρ+(t)〉〉. A
detailed explanation is given in the text.

experiment where the action of the bath on the system is under observation, these sequences of

jumps constitute possible measurement outcomes.

Let us now examine the four trajectories in detail. There are some remarks in order:

The upper left plot describes a possible evolution of a system which is initially in the state

|↓↑〉 and couples to the ferromagnetic bath di with κF = 0.1. The system will therefore

evolve towards a (pure) dark state in the subspace span {|↓↓〉 , |↑↑〉}. But the initial state

has no overlap with any of the dark states. In such a case the only possibility to reach

a steady state is a jump which creates the missing overlap instantaneously. This jump

occurs at t ≈ 3.4 and flips the state to |↑↑〉 which follows from 〈Σz〉 = 1. We therefore

conclude that the jump occurred on the first spin, namely d1. It could have occurred with

the same probability on the second spin (d2) – then the final state would have been |↓↓〉.
This explains why the initial state |↑↓〉 〈↑↓| ends up in a mixture of |↑↑〉 and |↓↓〉. The

reader may ask why, before and after the jump, the system seems to be stationary; the

reasons for that are twofold: Before the jump the system is in an eigenstate of HP with

finite energy. In each step the state is therefore damped by Heff. However, unless the jump

happens the system cannot leave its current state and therefore the normalisation after

each step restores the state |↓↑〉. Note that the finite energy of this state with respect to

HP is responsible for d1 to occur anyway. The longer the system remains in this “excited”
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state, the smaller the probability for such a trajectory to occur as part of exp (Lt). After

the jump the system is in a dark state which has zero energy with respect to HP. There no

damping occurs anymore and normalisation is therefore not necessary since exp (−iHeff)

acts just trivially on |↑↑〉.
The upper right plot shows a possible evolution of the same system started in

|++〉 = 1

2
(|↓↓〉+ |↓↑〉+ |↑↓〉+ |↑↑〉) (2.211)

which obviously has an overlap with dark states in span {|↓↓〉 , |↑↑〉}. This overlap dimin-

ishes the probability of a jump di to occur. If the overlap is large (as in this case) the

probability that no jump occurs at all becomes large, too. The trajectory at hand is such

a history without any jump. But a jump indeed it not necessary since the damping (and

subsequent normalisation) via exp (−iHeff) gets rid of the non-dark components |↓↑〉 and

|↑↓〉 successively while it preserves the dark states |↓↓〉 and |↑↑〉. Hence the system ends

up in the Bell state |⊕〉 = 1√
2
(|↓↓〉+ |↑↑〉) for t→ ∞ which is consistent with 〈Σz〉 remain-

ing zero and 〈σz
1 σz

2〉 going to one, as depicted in the plot. Note that the other possibility

to reach a dark state would have been a jump di with di |++〉 = 1
2 (|↓↓〉+ |↑↑〉). However,

the probability for such a trajectory is lower since the energy of |++〉 with respect to HP

is lower than the energy of |↓↑〉.
In the lower left plot the system is coupled to the two competing baths via κP = 0.1 = κF

without unitary dynamics and starts in the completely x-polarised state as above. Since

the unique steady state of this system is mixed, we expect a finite jump density for all

times of both di and ci, which indeed can be observed in the representative trajectory un-

der consideration. So the single trajectory cannot become stationary but rather explores

the ensemble given by the unique stationary state limt→∞ ρ+(t). Let us have a closer look at

the observables. As expected, each ferromagnetic jump increases the spin-spin correlation

〈σz
1 σz

2〉. However, since span {|↓↓〉 , |↑↑〉} is not a dark state space of this system, the target

states of di decohere due to the damping of Heff after each jump. The paramagnetic jumps

ci increase the x-magnetisation 〈σx
1 〉 up to one exception at t ≈ 68. But be careful: We

measure the first spins x-magnetisation and c1 certainly will increase this quantity. How-

ever, imagine the system ended up in the state 1/
√

2 (|++〉+ |−−〉) for instance. Then

we get 〈σx
1 〉 = 0. Now apply c2 on the second spin which yields |−+〉 after normalisation.

But now we clearly find 〈σx
1 〉 = −1. We conclude that the local x-magnetisation may be

diminished or even flipped by other jump operators. This it what happened at t ≈ 68 and

we therefore conclude that c2 occurred at this point in the jump history.

In the lower right plot the same system with an additional unitary dynamics J = 0.5 = h

gave rise to the jump trajectory. The steady state remains unique and mixed and the

jump record does not change qualitatively. The imprint of the unitary dynamics is the

(damped) oscillatory behaviour between subsequent jumps. Note that the frequency of

these oscillations depends on the energy of the current state with respect to HP. If, by

chance, the state jumps into an energy eigenstate47 of HP it remains there until another

jump occurs This happens at t ≈ 12 perfectly and almost perfectly at t ≈ 59 where the

period of the oscillation is comparatively large.

47Since there is no dark state for this system, the parent Hamiltonian becomes a positive operator with finite ground
state energy. As a consequence, the probability of a trajectory where the system remains in an eigenstate of HP becomes
zero for t→ ∞. I.e. the state can become stationary for some time, but eventually a jump will occur.
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Although we cannot gain insight into the ensemble evolution (described by the Lindblad master

equation) by inspection of single jump trajectories, we learned several new things about the spe-

cific processes which give rise to this evolution. Moreover, this examination of specific examples

completes the rather abstract treatment of the quantum trajectory interpretation given in the

introductory subsection 1.1.3.
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� Figure 2.29: Four single realizations of quantum jump trajectories for the 2-spin TIM. We show the
three observables σx

1 , σz
1 σz

2 and the mean z-magnetisation Σz in the upper part of each plot. In the lower
part each impulse marks a quantum jump at a specific time. Red (blue) impulses denote a ferromagnetic
jump di (paramagnetic jump ci). In the upper row the parameters J = 0 = h, κP = 0 and κF = 0.1 were
used to simulate the purely dissipative ferromagnetic bath. For the initial state |↓↑〉 (upper left plot) there
is no overlap with the dark state space and the only possibility to reach a dark state is a discontinuous
quantum jump di (red impulse). The resulting dark state is |↑↑〉. For the initial state |++〉 (upper right
plot) there is a huge overlap with dark states so that the probability of a jump is diminished. The non-
unitary evolution by Heff eliminates the non-dark components of the initial state and the system ends up
in the dark state |↑↑〉+ |↓↓〉 (note that Σz vanishes!). In the lower part of the plot, longer time intervals are
shown for competing baths κP = 0.1 = κF without (J = 0 = h) and with (J = 0.5 = h) unitary dynamics.
Since the steady states are mixed, there is a non-vanishing jump density for all times. Note that di-jumps
(red impulses) increase the correlation σz

1 σz
2 whereas ci-jumps (blue impulses) increase the x-polarisation

σ1
x if they occur on site 1. If the unitary dynamics is switched on, the periods which separate subsequent

jumps are characterized by a damped, oscillatory behaviour. Further remarks can be found in the text.
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2.6.3 Dissipative transverse field Ising model in one and two dimension(s)

In the previous section the simplest instance of the dissipative transverse field Ising model,

namely 2 coupled spins, was examined by means of a quantum trajectory Monte Carlo simu-

lation. There were three reasons to do this: First, the simulation complemented the analytical

treatment of this system which was introduced for didactical purposes48 in section 2.5. Second,

we verified the correctness of the QTMC algorithm in general and the authors implementation

of the latter in particular. And thirdly, we got a feel for actual quantum trajectories of the

dissipative TIM, that is, the action of the ferromagnetic and paramagnetic jump operators.

Nevertheless the real purpose of QTMC simulations is the investigation of many-body sys-

tems that are notoriously hard to treat analytically. Recall that the basic concept is to pay for

tractable mathematical representations and operations (meaning: smaller vectors & matrices) by

statistical uncertainties that come along with the sampling approach. In our case this bargain

reads as follows: To treat a dissipative system with, say, 10 spins in a numerically exact fashion

one had to compute the matrix exponential of a 410 × 410 = 1.048.576× 1.048.576 complex val-

ued, in general non-Hermitian matrix49 (the Lindbladian superoperator) for each time t. This

usually involves a diagonalisation or, in the non-Hermitian case, block diagonalisation in terms

of (generalised) eigenvectors. This is intractable on a modern workstation PC — at least in a

reasonable amount of time. In contrast, the QTMC simulation requires just the multiplication of

a complex vector of size 210 = 1024 with a fixed matrix of corresponding dimension50. This is

tractable but the drawback is sampling: The simple matrix-vector multiplications has to be per-

formed countless times to yield adequate results with small statistical fluctuations. Nevertheless

it is still preferable to have (more or less) noisy results than to have no results at all.

In the subsequent paragraphs we follow this idea and discuss the results of QTMC simula-

tions for small instances of the purely dissipative TIM in one and two dimensions.

Quantum jump trajectories
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us first have a look at single quantum jump trajectories. In Fig. 2.30 we present four single

realisations of a quantum jump trajectory for one-dimensional systems with periodic boundary

conditions. All four simulations were performed with time steps of ∆t = 0.001 for 0 ≤ t ≤ 100

and with a completely z-polarised initial state, |Ψ0〉 = |⇑〉. The system sizes were L = 2 (A),

4 (B), 6 (C), and 8 (D) spins and the couplings were fixed at
√

κP = 1 and
√

κF = 3. For

each trajectory we measured the average z-polarisation (red line), namely 〈Σz〉 = L−1 ∑i〈σz
i 〉,

and the nearest neighbour correlation 〈σz
1 σz

2〉 (light grey line). Below each plot we illustrate the

occurrence of jumps with respect to time by impulses on the grey time line where blue and

black marks represent paramagnetic and ferromagnetic jumps, respectively. Let us have a closer

look:

The correlation remains positive and close to 1 most of the time, for all system sizes.

A thorough inspection of the jump history reveals that the dents in the correlation plot

go along with blue, that is, paramagnetic jumps. These paramagnetic jumps are often

48Not only for the reader but for the author as well.
49To convey a feeling: Merely holding the matrix in the RAM in terms of complex doubles requires ∼ 17 terabytes of

memory. Of course this a rough estimate that ignores the fact that (quasi-) locally coupled systems can be described by
sparse matrices that require less storage capacity. This, however, does not affect the ultimate problem of an exponential
scaling of resources.

50 For comparison: The vector requires not more than 16 kilobytes and the matrix roughly 17 megabytes of RAM.
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� Figure 2.30: Quantum jump trajectories of the purely dissipative TIM for parameters
√

κP = 1 and√
κF = 3 in one dimension. We simulated chains of size L = 2 (A), L = 4 (B), L = 6 (C), and L = 8 (D) and

measured the nearest-neighbour correlation 〈σz
1 σz

2 〉 and the average z-magnetisation 〈Σz〉. Impulses in the
grey bar below each observable plot encode single quantum jumps (blue: di, black: ci). The initial state
was completely polarised, namely |Ψ0〉 = |⇑〉. Details are given in the text.
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� Figure 2.31: Quantum jump trajectories of the purely dissipative TIM for parameters
√

κP = 1 and√
κF = 3 in two dimensions. We simulated plaquettes of size L = 2× 2 (A) and L = 3× 3 (B) with PBC

and measured the nearest-neighbour correlation 〈σz
1 σz

2 〉 and the average z-magnetisation 〈Σz〉. Impulses in
the grey bar below each observable plot encode single quantum jumps (blue: di, black: ci). The initial state
was completely polarised, namely |Ψ0〉 = |⇑〉. Compare these trajectories to the one-dimensional results
in Fig. 2.30. Details are given in the text.

followed by a subsequent ferromagnetic jump (most of the black impulses are actually

combinations of a paramagnetic (blue) jump followed by a ferromagnetic (black) jump

shortly after) which restores the correlation to unity. This mechanism, paramagnetic jumps

followed by ferromagnetic ones which (try to) revert the actions of the preceding jump, is

responsible for the typical evolution of the correlation function, that is, a horizontal line at

1 intermitted by sharp peaks.

The total z-magnetisation starts at 1 due to the chosen initial state |Ψ0〉 = |⇑〉. What fol-

lows is an interesting evolution of long periods with almost constant magnetisation that

repeatedly change sign almost instantaneously. This “metastability” of z-polarisation is a

manifestation of the ferromagnetic jump operators and may be compared to the metasta-

bility of a classical two-dimensional and finite Ising system in the ferromagnetic phase just

below the critical temperature. Let us try to reveal the mechanism that is responsible for

the conversion by inspection of its first occurrence in plot (A). A closer look at the first

impulse on the time line reveals that it is a typical combination of a blue line followed

immediately by a black one, i.e. a paramagnetic jump followed by ferromagnetic one.
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Then we can just write down what happened (let us assume that the first jump affected

the first spin and omit normalisations):

|↑↑〉 c1=1/2 σz
1 (1−σx

1 )−−−−−−−−−−→ |↑↑〉+ |↓↑〉 d2=1/2 σx
2 (1−σz

2 σz
1 )−−−−−−−−−−−→ |↓↓〉

Note that the conversion was a coincidence since the (equiprobable) action of d1 would

have reversed the effect of c1 completely. We realise that this characteristic behaviour

of the average (or total) z-magnetisation is a cooperative effect of both, ferromagnetic and

paramagnetic jumps: The conversions are initiated by paramagnetic jumps but conducted

by the ferromagnetic operators. In the larger systems it becomes clear that not all initiated

conversions actually succeed. Some reach a depolarised state (〈Σz〉 ≈ 0) but return to the

previous sign afterwards, see (D) for instance. Clearly this is due to the requirement of a

sequence of ferromagnetic jumps that traverses the complete system. In one dimension the

diffusion of domain walls (i.e. adjacent spins with negative correlation) is equiprobable

in both directions. Thus the retraction and subsequent annihilation of a domain with

negative sign is not unlikely.

There is another obvious effect concerning the the average z-magnetisation: Its amplitude

decreases in time. The absolute value of the plateaus tends to zero for t → ∞ in stages

and not continuously. Furthermore note that the correlation (see especially (A)) remains

1 although the magnetisation vanishes. That leads to the conclusion that a cooperative

effect of jumps must be responsible for this effect as it creates superpositions α |⇑〉+ β |⇓〉 of

perfectly correlated states. Clearly this superposition is not symmetric, i.e. |α| 6= |β|, since

the magnetisation does not vanish completely (but it becomes more symmetric during in

time). The basic jump sequence responsible for this effect is easily explained:

|↑↑〉 c1−→ |↑↑〉+ |↓↑〉 exp(−HPδt)−−−−−−→ α |↑↑〉+ β |↓↑〉
c2−→ α |↑↑〉+ α |↑↓〉+ β |↓↑〉+ β |↓↓〉
d1−→ α |↓↓〉+ β |↑↑〉

There are some comments in order: The completely symmetric state |↑↑〉 + |↓↓〉 can be

reached by the (fast) sequence of jumps d1c2c1. The plots however suggest that there

are also superpositions with a residual magnetisation 0 < |〈Σz〉| < 1 which requires an

asymmetric superposition α |↑↑〉+ β |↓↓〉. This can be achieved by a modification of the

time span between the first (c1) and the second (c2) jump where the system evolves non-

unitarily according to the parent Hamiltonian HP. For a dominant ferromagnetic bath its

eigenstates are close to the eigenstates of σz
i ; hence the system evolves towards its ground

state(s) which in our case read (approximately) |↑↑〉 and |↓↓〉. Consequently we find

|α| > |β| after the time span δt which is responsible for the residual magnetisation in the

end.

In a nutshell: A combination of paramagnetic and ferromagnetic jumps as well as the

non-unitary evolution by the parent Hamiltonian are responsible for the successive loss of

macroscopic magnetisation. That is, the system symmetrises asymmetric initial states for

t → ∞, essentially due to the action of paramagnetic jump operators, but nevertheless re-

mains most of the time in a subspace with non-vanishing correlations (that in turn depend

on the ratio of κP and κF).
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� Figure 2.32: Relaxation of the z-magnetisation in a purely dissipative TIM in one (A) and two (B)
dimension(s). All simulations were performed with PBC and the parameters

√
κP = 1 and

√
κF = 3. The

initial state was completely polarised, |Ψ0〉 = |⇑〉, and therefore the global magnetisation 〈Σz(t)〉 equals
the time correlation 〈Σz(0)Σz(t)〉. The simulations in one dimension (A) were performed on systems
with L = 2, 3, . . . , 9 spins; in two dimensions (B) plaquettes with dimensions L = 2× 2 and L = 3× 3 were
examined. Note that the global magnetisation vanishes exponentially in both cases. In the one dimensional
system this relaxation clearly remains exponential in the thermodynamic limit since results show a limiting
behaviour for L → ∞. In the two dimensional setup such a conclusion cannot be drawn due to a lack of
different system sizes. However, it becomes evident that the L = 9 spin plaquette loses is magnetisation
much slower than the corresponding L = 9 spin chain. Further comments are given in the text.

The total jump density per time obviously increases with the system size as the jump

sequences reveal. This is to be expected since the number of jumps per site and time remains

constant. Since we mark any jump anywhere in the system with an impulse on the time

line, the density of impulses increases for larger systems.

For comparison and to conclude this first part we simulated two-dimensional plaquettes with

dimensions L = 2× 2 (A) and L = 3× 3 (B) in Fig. 2.31. The parameters were the same as for

the one-dimensional systems above. Instead of the fixed correlation 〈σz
1 σz

2〉 we show the average

correlation of spin 1 and its nearest neighbours, 4−1 ∑j∈N1
〈σz

1 σz
j 〉.

The qualitative structure of the trajectories remains unaltered as a comparison with Fig. 2.30

reveals. The trajectory in (B) conveys the clustering of jumps at the points of time when a

conversion of the average magnetisation takes place. These short periods of increased jump

frequencies are separated by long periods of comparatively low jump rates where paramagnetic

jumps are immediately followed by ferromagnetic jumps that revert the preceding actions. The

regions of 〈Σz〉 > 0 and 〈Σz〉 < 0 can be considered as dynamical phases and the periods of

increased jump rates qualify as dynamical phase transitions accordingly. Note that the vanishing

of the magnetisation in the L = 3 × 3 setup seems to be suppressed. We cannot infer any

quantitative changes from a single trajectory, though. To this end we analysed the relaxation of

〈Σz〉 quantitatively in the following paragraph.

Relaxation of magnetisation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As the quantum trajectories suggest there are two reasons for the average magnetisation 〈Σz〉 to

vanish in time if one considers the time evolution of the ensemble ρ(t) (described by the Lindblad

master equation):
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1. The conversion of the quantum mechanical expectation value 〈Σz〉Ψ as observed for single

quantum trajectories |Ψ(t)〉 causes a decay of the ensemble average 〈Σz〉ρ for the complete

evolution ρ(t) of the system. This would be the case even if the single trajectories were

completely polarised, | 〈Σz〉Ψ| = 1, for all times.

2. The vanishing of 〈Σz〉Ψ for a single trajectory due to the action of the paramagnetic bath

reduces the ensemble average 〈Σz〉ρ further.

The combination of both effects results in an exponential decay of the average magnetisation

for completely polarised initial states; this can be seen in Fig. 2.32 where we computed the time

evolution of 〈Σz〉ρ for the same parameters as before in one (A) and two (B) dimensions. We did

this for various system sizes L = 2, . . . , 9 (chain) and L = 2× 2, 3× 3 (plaquette) and performed

104 samples for each of them to obtain results without too much statistical fluctuations51.

We have to point out that the 2 × 2 plaquette and the 4-spin chain (both with PBC) are

actually the same system. This explains why the plots of both systems in (A) and (B) coincide

up to statistical fluctuations. This is not so much a bug as a feature since it provides us with a

common reference system. There are two findings to be stressed:

If one considers the change of the relaxation process in one dimension as the system size

L increases, it becomes evident that there must be a limiting curve for the family of curves

in the thermodynamic limit L → ∞. This limit must be close to the L = 9 curve since the

shifting of the preceding curves for L = 6, 7, and 8 is already very small. We conclude that

in one dimension the relaxation of the average magnetisation is exponential in the thermo-

dynamic limit and for the chosen relative coupling
√

κ = 1/3 (which describes a system

of dominant ferromagnetic dissipation after all). There are two possible reasons for this

behaviour which are not mutually exclusive: First, there is no dissipative phase transition

in one dimension and the system remains in a paramagnetic phase for all finite κ. This is

probably true as there is numerical evidence that the dissipative gap of the Lindbladian

does not close in the thermodynamic limit in one dimension. Second, even in the presence

of a genuine phase transition and in the ferromagnetic phase the magnetisation might de-

cay over time due to second mechanism described above. In the end, the symmetry broken

phase is indicated by a finite correlation lim|i−j|→∞〈σz
i σz

j 〉ρ > 0 in the ensemble description

and not by a finite global magnetisation.

Clearly there are not enough data sets available in (B) to draw analogous conclusions for

the two-dimensional setup. As it is illusory to simulate L = 4× 4 = 16 spins with the code

and hardware at my disposal, there is no way to answer the question whether there is an

analogous limiting curve with finite slope — at least not with the QTMC simulation. But

we can infer that the relaxation, though exponential, is much slower in two dimensions

than in one dimensional systems of similar size. Compare the slope of the L = 9 = 3× 3

curves (green points) in that regard. This quantifies our previous impression that the

height of the magnetisation plateaus of single trajectories decreases slower in two than in

one dimensions. Note that the relaxation of the 3× 3 plaquette is already much slower

than the suspected rate of the chain in the thermodynamic limit.

As we identified the correlation as the crucial quantity that indicates the phase transition in a

statistical ensemble of quantum states52, it is natural to ask how 〈σz
1 σz

j 〉 depends on the distance

j and the relative coupling κ. So let us go into this matter.

51To demonstrate the effect of too few samples we included one of the first results with just 100 trajectories in plot (B).
52Which is given by the pseudo probability distribution ρ, i.e. the density matrix.
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To conclude this section we examined the κ-dependence of both, single trajectories and the

expectation values of spin-spin correlations in one and two dimensions. Let us start with the

quantum jump trajectories shown in Fig. 2.33. They describe the dynamics of a L = 6 spin chain

with PBC and completely polarised initial state for fixed
√

κF = 3 and varying
√

κP = 0.25, 1.25,

2.15 and 3.25 (top down). Let us discuss the results:

In (A) the ferromagnetic bath dominates the paramagnetic one completely. Both, the cor-

relation and the magnetisation are 1 and constant up to few paramagnetic jumps. In the

shown period of time their actions are either immediately reverted by a subsequent ferro-

magnetic jump (e.g. first jump from the left) or smoothed out by the non-unitary evolution

of the parent Hamiltonian53 (e.g. second and third jumps from the left).

For larger κP the conversions of 〈Σz〉 become visible within the shown time interval and

the gradual relaxation of the plateaus is apparent (B). Due to the characteristic structure

of the trajectories it seems natural to assume that the magnetisation decreases inevitably

and cannot increase due to some restrictions of the jump operators. The trajectory in (B)

disproves this assumption, cf. the magnetisations at t ∼ 68 and t ∼ 98. The magnetisation

can increase but our experience shows that this is rather unlikely. To cut the matter short:

The decrease of magnetisation can be (partially) inverted for single trajectories — but it

cannot for the ensemble.

There actually is a “microscopically” irreversible process as the trajectories in (C) and (D)

suggest: When the magnetisation vanishes identically at one point of time, it remains zero

thereafter. This happens quite rapidly for strong paramagnetic couplings as (D) shows.

We already figured out that fast sequences of paramagnetic and ferromagnetic jump oper-

ators can create states of vanishing magnetisation. For this effect we do not even require

ferromagnetic operators: As there is a high paramagnetic jump density, it is not unlikely

that the state ends up temporarily as |Ψ(t)〉 = |+〉⊗L, that is, an eigenstate of X ≡ ∏i σx
i

with vanishing z-magnetisation.

It is important to keep in mind that this is not a dark state — there is none! This becomes

also clear if one considers the correlation which keeps changing rapidly; obviously there

are lots of jumps per time and the state is far from being stationary. Nevertheless the

magnetisation remains identically zero which demands a symmetry argument. To this

end note that our system features a (strong) Z2 symmetry, namely the global spin-flip X.

Assume that |Ψ(t)〉 = |+〉⊗L at some point t of the trajectory. At a later time t + δt the

state evolved according to some sequence of jumps
(

Lik

)
with Lik ∈ {dj, cj} intermitted

by periods of non-unitary evolution exp(−HP∆tk) (up to normalisation). If we denote this

evolution by U, it follows

〈Ψ(t + δt)|Σz |Ψ(t + δt)〉 = 〈Ψ(t)|U†ΣzU |Ψ(t)〉
= − 〈Ψ(t)|U†X†ΣzXU |Ψ(t)〉
= − 〈Ψ(t)|X†U†ΣzUX |Ψ(t)〉
= − 〈Ψ(t)|U†ΣzU |Ψ(t)〉 = − 〈Ψ(t + δt)|Σz |Ψ(t + δt)〉

53Note that paramagnetic jumps preserve an overlap with the ferromagnetic dark states.
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� Figure 2.33: Quantum jump trajectories of the purely dissipative TIM for L = 6 spins and different
parameters κP (fixed κF = 3) in one dimension with PBC. We simulated chains with increasing coupling
to the paramagnetic bath, namely

√
κP = 0.25 (A), 1.25 (B), 2.25 (C), and 3.25 (D) and measured the

nearest-neighbour correlation 〈σz
1 σz

2 〉 and the average z-magnetisation 〈Σz〉. Impulses in the grey bar below
each observable plot encode single quantum jumps (blue: di, black: ci). The initial state was completely
polarised, namely |Ψ0〉 = |⇑〉. Details are given in the text.
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Here we used the strong symmetry of the dissipative process, namely [di, X] = 0, {ci, X} =
0 and hence [HP, X] = 0 for all sites i. We conclude that 〈Ψ(t + δt)|Σz |Ψ(t + δt)〉 = 0 for

all δt ≥ 0. This is exactly what we observe in (C) and (D).

Let us now turn towards a quantitative analysis of the correlations and their dependence on the

relative coupling κ.

In Fig. 2.34 we condense our results of a family of simulations for chains with L = 4, 6

and 9 spins and plaquettes of size L = 2× 2 and 3× 3. The initial state was still completely

polarised; this is irrelevant though as we are interested in the steady state correlations which are

independent of the initial conditions. We measured the correlations 〈σz
1 σz

j 〉 for j = 2, . . . , L for

chains with time steps ∆t = 0.001 and 0 ≤ t ≤ 3. This is shown in (A) exemplarily for a L = 6

spin chain and with couplings
√

κP = 2.5,
√

κF = 3.0. The correlations reach their steady state

value limt→∞〈σz
1 σz

j 〉 quickly and we extract their numerical value by horizontal fits denoted by

dashed black lines. The same can be done for plaquettes where we measure the correlations

〈σz
1 σj〉 for j = 4, 3 (L = 2× 2 setup) and j = 2, 5 (L = 3× 3 setup). The spin labels refer to

the pictorial illustrations of the simulated systems in (C) and (E). Note that due to the periodic

boundary conditions there are just nearest and next-nearest neighbour correlations that can be

measured in the small two-dimensional systems under investigation. As a consistency check

we show all five possible correlations of the L = 6 spin chain in (A). Evidently 〈σz
1 σz

2〉 = 〈σz
1 σz

5〉
and 〈σz

1 σz
3〉 = 〈σz

1 σz
4〉 which is to be expected due to the periodic boundary conditions. With the

procedure described above we obtained values for the relevant correlations for varying relative

couplings via
√

κP = 0, 0.25, . . . , 3.0 (fixed
√

κF = 3), different system sizes and geometries. We

present the results in the remaining plots of Fig. 2.34, namely (B), (C), (D), (E), and (F):

In (B) we show the steady state correlations limt→∞〈σz
1 σz

j 〉 in dependence of j on a L = 9

spin chain for varying κ as an array of curves. The dashed lines are drawn to keep track of

the related points and bear no physical meaning. We conclude that the correlations decay

exponentially with the distance in one dimensional systems. The rate of decay depends

crucially on the relative couplings and increases with the strength of the paramagnetic

bath. This is a typical behaviour for spatial correlations in quasilocal physical systems with

a dissipative gap54. The reader may have noticed that the exponential decay is modified for

j = 5 where the correlations are larger as expected. This is a finite-size effect and caused by

the periodic boundary conditions since the correlation at j = 6 equals the one at j = 4 and

is therefore larger than the minimum at j = 5. This presumably lifts the correlation at j = 5

above the exponential level. Note that this effect is also visible in (A) where one would

expect equidistant gaps between the horizontal fits due to the logarithmic correlation axis.

In the plots below, namely (D) and (F), we show the κ-dependence of the nearest and next-

nearest neighbour correlation for the various system sizes. The plots (C) and (D) show

the marked boxes of the corresponding plots in detail. The points of the nearest (next-

nearest) neighbour correlations are connected by continuous (dashed) splines for clarity.

We furthermore computed linear fits at the first few points of the L = 9 = 3× 3 systems

for small paramagnetic coupling κ < 0.1 to emphasise the asymptotic behaviour for κ → 0.

As expected the correlations decrease for increasing κ. This is true for both, the nearest and

next-nearest correlations, albeit the next-nearest neighbour correlations decrease faster for

small couplings than the nearest neighbour correlations. Note that the curves for L = 4 in

54As the system is finite, the spectrum is discrete and therefore trivially gapped. The question whether this behaviour
(and the gap) survives in the thermodynamic limit cannot be inferred from this set of data.

184 |



N. Lang Quantum trajectory Monte Carlo simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.1

1.0

0 1 2 3

C
o
rr
e
la
ti
o
n
s
〈σ

z 1
σ

z j
〉

Time t

〈σz
1 σz

2 〉
〈σz

1 σz
3 〉

〈σz
1 σz

4 〉
〈σz

1 σz
5 〉

〈σz
1 σz

6 〉

lim
t→∞
〈σz

1 σz
j 〉

√
κP = 2.5,

√
κF = 3.0, L = 6

0.1

1.0

1 2 3 4 5

C
o
rr
e
la
ti
o
n
s

li
m

t→
∞
〈σ

z 1
σ

z j
〉

Site/Distance j

√
κP = 0.0, 0.25, . . . , 2.75, 3.0

√
κF = 3.0, L = 9

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3

C
o
rr
e
la
ti
o
n
s

li
m

t→
∞
〈σ

z 1
σ

z j
〉

Relative coupling κ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Relative coupling κ

〈σz
1 σz

4 〉
〈σz

1 σz
3 〉

〈σz
1 σz

2 〉
〈σz

1 σz
5 〉

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3

C
o
rr
e
la
ti
o
n
s

li
m

t→
∞
〈σ

z 1
σ

z j
〉

Relative coupling κ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Relative coupling κ

〈σz
1 σz

2 〉
〈σz

1 σz
3 〉

〈σz
1 σz

2 〉

〈σz
1 σz

3 〉
〈σz

1 σz
2 〉

〈σz
1 σz

3 〉

A

B

D

F

C

E

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6

1 2 3 4

1 2

34

1 2 3

6 5 4

7 8 9

� Figure 2.34: QTMC simulation of the purely dissipative TIM in one and two dimensions. In (A) we
show exemplarily for

√
κP = 2.5 and

√
κF = 3 the time evolution of correlations 〈σz

1 σz
j 〉 for j = 2, . . . , 6 on

a L = 6 chain with PBC. The initial state is completely polarised, |Ψ0〉 = |⇑〉. The horizontal fits are used
to extract the steady state correlations limt→∞〈σz

1 σz
j 〉 as shown in the remaining plots. In (B) we show the

steady state correlations for j = 1, . . . , 5 of a L = 9 chain in a logarithmic reference frame for varying κ. In
(D) we show the nearest- (solid lines) and next-nearest- (dashed lines) neighbour correlations with respect
to the relative coupling κ for chain sizes L = 4, 6, 9. Plot (C) shows in detail the marked box in plot (D). In
(F) we show the nearest- and next-nearest neighbour correlations with respect to the relative coupling κ for
plaquettes with dimensions L = 2× 2 and L = 3× 3. Plot (E) shows in detail the marked box in plot (F).
The solid (dashed) light-grey lines in (C), (D), (E), and (F) denote linear fits to the first few points of the
shown nearest- (next-nearest-) neighbour correlations of the L = 9 spin systems. The colour of the marks
in the four plots (C), (D), (E), and (F) encodes j (in 〈σz

1 σz
j 〉), their shape encodes the system size L; see the

pictorial illustration of the simulated systems printed as insets of (C) and (E). All systems were simulated
with PBC. A detailed description is given in the text.
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one and L = 2× 2 in two dimensions coincide as these are the same systems. It is crucial

to realise that the curves in both dimensions and for both, the nearest and next-nearest

neighbour correlations, are bend down for larger systems. That this involves a change

of shape and not just a shift towards smaller correlations can be seen from the data in

(D). A manifestation of a genuine phase transition in the thermodynamic limit would be a

curve that originates at 1 for κ = 0 and decreases (presumably linearly55) until it hits the

κ-axis at the critical value κc. For κ ≥ κc one expects the correlation to vanish identically

for j → ∞. Such a behaviour cannot be observed for any finite system though. In these

cases one would expect smooth curves that fit to the limiting curve from above in the

limit L→ ∞. This tendency can be observed in (C) and (E). A non-trivial phase transition

demands κc > 0. Unfortunately it is not possible to infer this without any doubt from

the small systems depicted in (C) and (E). As we already suspected that κc = 0 in one

dimension, it seems reasonable that the curves for larger j and L fit asymptotically to the

vertical correlation axis. This is not evident for the two dimensional system in (E) where,

first, the difference in correlations to nearest and next-nearest neighbours is much smaller

(cf. (C)), and second, the curves of the next-nearest neighbour correlations fit already quite

convincing to straight lines (cf. (C)) with finite slope, as one would expect for κc ≈ 0.5 (see

(F)).

To sum it up: The behaviour of the correlations supports our conjecture that there is no phase

transition in one dimension. The behaviour for two dimensional systems is quantitatively different

and does not rule out a phase transition, that is, a finite κc. As we cannot provide data for larger

systems, it remains an open question whether the lower critical dimension dc of the dissipative

transverse field Ising model equals or exceeds 2.

This concludes our discussion of the QTMC results in particular and our discussion of the

dissipative TIM in general — which played the role of a paradigmatic model after all. In the

next chapter we turn towards more complex theories and possible dissipative analogues.

55Mean field theory suggests a square root behaviour for the magnetisation. Since 〈σz
1 σz

j 〉 ∼ m2
z one would expect a

linear behaviour for the correlation.

186 |



Chapter 3 A dissipative

Z2-Gauge-Higgs model

“If you want to have good ideas you must have many ideas.

Most of them will be wrong, and what you have to learn is

which ones to throw away.”

Linus Pauling

In Chapter 2 we introduced a purely dissipative version of the transverse field Ising model.

Meaning: we contrived two competing baths, termed “ferromagnetic” and “paramagnetic” re-

ferring to its Hamiltonian counterparts, each of which drives the spin-system into one of the

(pure) quantum phases of the Hamiltonian model. We then showed in mean field approxi-

mation that a purely dissipative phase transition takes place at a critical coupling where the

Z2-symmetry is spontaneously broken.

In this chapter we show that the procedure to construct purely dissipative counterparts of

Hamiltonian theories works also for more sophisticated models. In particular, we employ the

Z2-Gauge-Higgs theory as our model Hamiltonian — for a review see Section 1.4 and especially

paragraph 1.4.2 — and construct a purely dissipative version that (1) satisfies the local gauge

symmetries and (2) reproduces the three characteristic phases of the Hamiltonian prototype;

namely (A) the confined charge phase, (B) the free charge phase, and (C) the Higgs phase.

This chapter is structured as follows. In Section 3.1 we derive the mean field theory of the

Hamiltonian model to compare the results with the dissipative ones. We derive two mean field

theories, one without fixing the gauge degrees of freedom and with two mean fields (in 3.1.1),

and a another in unitary gauge with fixed gauge degrees of freedom and a single mean field

(in 3.1.2). In Section 3.2 we introduce our dissipative Z2-Gauge-Higgs model. The motivation

is given in 3.2.1 and the steady states for important limiting cases are discussed in 3.2.2. In

Section 3.3 we examine our theory in mean field approximation. The effective jump operators

are presented in 3.3.1 and the steady states depending on the parameters are discussed in 3.3.2.
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3.1 Mean field theory for the unitary theory
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Section 1.4 we mentioned that there are mean field approaches to approximate at least some of

the features of the Z2-Gauge-Higgs model [102–104]. These approaches were commonly based

on the classical version of the GHM formulated in terms of a gauge invariant action S. However,

the quantum-classical correspondence [96,101] for lattice spin models allows the transformation

of D-dimensional classical theories to D − 1-dimensional quantum theories by means of the

transfer matrix formalism (and vice versa). As a consequence, the results for classical models can

be interpreted in terms of their corresponding quantum mechanical theories in one less spatial

dimension. In the following two paragraphs we derive mean field theories for the quantum

mechanical version of Z2-Gauge-Higgs model in D spatial dimensions. This is nothing new but

we need these phase diagrams for comparison with our dissipative setup in Section 3.3.

As starting points we chose in 3.1.1 the GHM Hamiltonian in the common representation as

given in Eq. (1.4.2) and in 3.1.2 the GHM in unitary gauge which results from the gauge fixing

procedure we used to transform the GHM to the toric code (in two dimensions). For the first

approach we assign separate mean fields to both the Higgs and the gauge field whereas the

second approach gets along with a single mean field for the gauge field.

3.1.1 Two mean fields and unphysical degrees of freedom

As mentioned above, here we derive the mean field theory of the GHM in the common gauge,

namely

HGHM = −∑
e

τx
e −∑

s

σx
s − λ ∑

e

Ie −ω ∑
p

Bp (3.1)

with the additional gauge constraint Âs |Ψ〉 = |Ψ〉. This is equivalent to demand that physical

states live in HGHM. Our straightforward mean field approach is based on the product ansatz

ρ = ∏
e∈E

γe ∏
s∈S

πs (3.2)

with density matrices γe for the gauge field and πs for the Higgs field. The drawback of this

approach is well-known [102]: This mean field approach cannot distinguish between physical and

unphysical (gauge) degrees of freedom as we cannot enforce the gauge condition Âs |Ψ〉 = |Ψ〉.
Although the theory takes into account unphysical degrees of freedom, it reveals some features

of the phase diagram qualitatively.

So let us proceed with the partial trace of the Von Neumann equations to derive the dynam-

ical mean field equations:

π̇s = Trs [ρ̇] = −i Trs [[HGHM, ρ]] ≡ −i
[

h̃mf
π , πs

]
(3.3a)

γ̇e = Tre [ρ̇] = −i Tre [[HGHM, ρ]] ≡ −i
[

h̃mf
γ , γe

]
(3.3b)

A straightforward calculation yields the two mean field Hamiltonians

h̃mf
π = −hmf

π σ = −




1

0

2dλmzgz


 · σ and h̃mf

γ = −hmf
γ τ = −




1

0

λm2
z + 2ω(d− 1)g3

z


 · τ (3.4)
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where d ≡ D is the spatial dimension. mk = 〈σk
s 〉 denotes the homogeneous Higgs field expec-

tation values and gk = 〈τk
e 〉 the homogeneous gauge field expectation values for k = x, y, z. We

already dropped the site and edge indices s and e and write σ and τ for two representative spins

coupled non-linearly by the mean fields. We can combine both Hamiltonians via a Kronecker

sum56

Hmf
1 ≡ h̃mf

π + h̃mf
γ = −




1

0

2dλmzgz


 · σ −




1

0

λm2
z + 2ω(d− 1)g3

z


 · τ . (3.5)

If we introduce the normalised mean fields ĥ
mf
π , ĥ

mf
γ and the absolute values hmf

π , hmf
γ , the self-

consistency equations read

mz = ĥmf
π,z tanh

[
βhmf

π

]
(3.6a)

gz = ĥmf
γ,z tanh

[
βhmf

γ

]
(3.6b)

where β is the inverse temperature and

ĥmf
π,z =

2dλmzgz√
1 + (2dλmzgz)2

and ĥmf
γ,z =

λm2
z + 2w(d− 1)g3

z√
1 + (λm2

z + 2w(d− 1)g3
z)2

. (3.7)

These are transcendental equations which cannot be solved analytically. Even numerical solu-

tions are computationally expensive. As we are interested in a qualitative phase diagram, let us

consider the boundary case of zero temperature, i.e β→ ∞. Then we find the simpler (algebraic)

equations

(1− g2
z)

[
λ

(
1− 1

4d2λ2g2
z

)
+ 2ω(d− 1)g3

z

]2

= g2
z and m2

z = 1− 1

4d2λ2g2
z

(3.8)

for a non-vanishing Higgs field mz 6= 0 and

4ω2(1− g2
z)(d− 1)2g4

z = 1 ∨ gz = 0 (3.9)

for a vanishing Higgs expectation value, mz = 0. As these are polynomial equations of higher or-

der, there are multiple solutions in most parameter regions. We choose the one(s) that minimise

the energy expectation value

〈Hmf
1 〉 =

1

2
Tr
[

h̃mf
π (1+ mσ)

]
+

1

2
Tr
[

h̃mf
γ (1+ gτ)

]

= ∓
√

1−m2
z − (2dλmzgz)mz ∓

√
1− g2

z − (λm2
z + 2ω(d− 1)g3

z)gz (3.10)

where we used that my = 0 = gy and m2
x + m2

z = 1 = g2
x + g2

z since T = 0. Note that due to the

structure of the mean field equations, we have to solve just for one variable, namely gz, and can

calculate the others via m2
z = 1− (4d2λ2g2

z)
−1 and the aforementioned relations.

We illustrate the energy minimising solutions with positive expectation values in Fig. 3.1. In

(A) we show the gauge field gz = 〈τz〉, in (B) the Higgs field mz = 〈σz〉, and in (C) the quanti-

56That is, A⊕ B := A⊗ 1+ 1⊗ B.

| 189



Chapter3 A dissipative Z2-Gauge-Higgs model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
xp

e
ct
a
ti
o
n
va

lu
e
s
〈τ

z
〉/
〈σ

z
〉

Parameter t

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Gauge field Higgs fieldA B C

� Figure 3.1: Mean field theory for the Z2-Gauge-Higgs model without gauge fixing. In (A) we show
the colour-coded expectation value gz = 〈τz〉 of the gauge field and in (B) the corresponding expectation
value mz = 〈σz〉 for the Higgs field. The mean field theory identifies three distinct phases: The confined
charge phase with gz = 0 = mz, the free charge phase with gz > 0 and mz = 0, and the Higgs phase with
gz > 0 and mz > 0. The quantitative evaluation in (C) along the coloured paths in (A) and (B) reveals that
the phase boundary separating the Higgs and the free charge phase is of second order whereas the phase
boundaries between confined charge and Higgs phase and between confined and free charge phase are
of first order. Note that in contrast to the correct phase diagram, the first order line that originates at the
multicritical point ends at the (left) λ-axis.

tative results along the coloured parameter paths in (A) and (B). The mean field theory predicts

three distinct phases: The confined charge phase with gz = 0 = mz, the free charge phase with

gz > 0 and mz = 0, and the Higgs phase with gz > 0 and mz > 0. The phase transition between

Higgs and free charge phase is correctly identified as a second order transition, the same holds

for the first order transition between confined charge and Higgs phase; however, there are also

two incorrect predictions: First, the phase boundary between confined and free charge phase is

a second order transition and not of first order as the mean field theory makes us believe. And

second, the first order transition that originates at the multicritical point does not meet the axis

at ω = 0 — in contrast to the mean field theory result. In other words: The unphysical degrees

of freedom taken unintentionally into account by the mean field theory cause the (provably cor-

rect) analyticity region to vanish. We conclude that the mean field approach at hand captures

most of the characteristic features but fails at two of them.

3.1.2 A single mean field in unitary gauge

Here we pursue another mean field approach. As we could not enforce the gauge condition

As during the mean field calculation above, it seem reasonable to look for a representation in

which gauge fixing is simple and can be applied even in the mean field setting. To this end we

employ the so called unitary gauge which is the d-dimensional generalisation of our GHM-TCM

mapping discussed in 1.4.2. An application of the unitary transformation T (see subsection 1.4.2)

yields the Hamiltonian

HU
GHM ≡ T†HGHMT = −∑

e

τx
e − λ ∑

e

τz
e −∑

s

As −ω ∑
p

Bp (3.11)

with the trivial gauge condition σx
s |Ψ〉 = |Ψ〉. Note that HU

GHM acts trivially on the Higgs field

and can henceforth be restricted to the gauge field. Since the unphysical degrees of freedom
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are no longer included in the dynamics, we can drop them. That is, we introduce a single mean

field for the gauge degrees of freedom and the ansatz for the density matrix reads

ρ = ∏
e∈E

γe (3.12)

with density matrices γe for the gauge field. The mean field Hamiltonian is defined by

γ̇e = Tre [ρ̇] = −i Tre

[[
HU

GHM, ρ
]]
≡ −i

[
h̃mf

γ , γe

]
(3.13)

and a straightforward calculation yields

Hmf
2 ≡ h̃mf

γ = −hmf
γ τ = −




2g2d−1
x + 1

0

λ + 2ω(d− 1)g3
z


 · τ . (3.14)

In contrast to the mean field theory above, gx = 〈τx
e 〉 occurs here explicitly in the expression

for h̃mf
γ . With the normalised mean field ĥ

mf
γ and the absolute value hmf

γ the self-consistency

equations read

gx = ĥmf
γ,x tanh

[
βhmf

γ

]
(3.15a)

gz = ĥmf
γ,z tanh

[
βhmf

γ

]
(3.15b)

where β is the inverse temperature and

ĥmf
γ,x =

2g2d−1
x + 1√

(2g2d−1
x + 1)2 + (λ + 2w(d− 1)g3

z)2
and (3.16)

ĥmf
γ,z =

λ + 2w(d− 1)g3
z√

(2g2d−1
x + 1)2 + (λ + 2w(d− 1)g3

z)2
. (3.17)

If we set again T = 0, that is, consider the limit β → ∞, both self-consistency equations are

related via g2
x + g2

z = 1 since the states are pure and gy = 0. Then there is just one non-trivial

self-consistency equation left which reads

[
λ + 2ω(d− 1)g3

z

]2
(1− g2

z) = g2
z

[
2(1− g2

z)
2d−1

2 + 1
]2

(3.18)

for arbitrary gauge fields gx, gz ∈ R. As before, we choose the solutions that minimise the

energy expectation value which reads here

〈Hmf
2 〉 =

1

2
Tr
[

h̃mf
γ (1+ gτ)

]
= ∓

√
1− g2

z

[
±2(1− g2

z)
2d−1

2 + 1
]
− gz

[
λ + 2ω(d− 1)g3

z

]
. (3.19)

Once again we have to solve for one variable, namely gz, and can derive gx via g2
x = 1− g2

z .

We illustrate the energy minimising solutions with positive expectation values in Fig. 3.2. In

(A) we show the gauge field gz = 〈τz〉 and in (B) the quantitative results along the coloured

parameter paths in (A). The differences to Fig. 3.2 are obvious: Formally there is just one phase

as the lower region where gz is mall is smoothly connected to the upper region where gz is
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� Figure 3.2: Unitary mean field theory for the Z2-Gauge-Higgs model in unitary gauge with a single
mean field for the gauge degrees of freedom. In (A) we illustrate the expectation value gz = 〈τz〉 of
the gauge field and in (B) the quantitative results on the coloured lines in (A). There are two regions
in the phase diagram with small (light) and large (dark) z-polarisation, respectively; they correspond to
the confined charge and Higgs phase. For small values of λ both regions are separated by a first order
transition as (B) reveals. This transition line ends at a critical point and thus allows for smooth paths
that connect both phases. In contrast to Fig. 3.2 there is no separated deconfined phase in the lower right
corner.

large by paths which stay close to the (left) λ-axis and avoid the first order transition. (B) shows

clearly that this mean field theory reproduces the critical point (red disc in Fig. 1.14) where the

first order line ends and the analyticity region starts. In this regard the mean field theory at

hand is better than the first approach; however, it does not reproduce the free charge phase

since there are no other (second order) phase transitions. Like the mean field theory before, this

one does not predict the second order phase transition close to the (lower) ω-axis.

To sum it up: Both mean field approximations yield different (correct) features of the phase

diagram in Fig. 1.14. None of them succeeds completely in its qualitative approximation of the

Z2-Gauge-Higgs model but in combination they provide all features but the second order line

that separates the confined and free charge phase. The first approximation with two mean fields

provides reasonable results in the small-λ and large-ω regime whereas the second approxima-

tion in unitary gauge yields good results in the large-λ and small-ω section of the parameter

space. This is in agreement with the results presented in Ref. [102] (see p. 103 ff.) for the

classical Z2-Gauge-Higgs model.
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� Figure 3.3: Qualitative mean field phase diagram
for the Z2-Gauge-Higgs model motivated by the
unitary result in Fig. 3.1. It approximates the (more)
exact result in 1.14 and illustrates our expectations
towards a mean field theory for a dissipative ver-
sion of the GHM. The three phases are described in
Sec. 1.4.2. The dark grey rectangles surrounding the
phase diagram illustrate the dominant baths on the
adjacent axis, see Table 3.1. Their (collective) goal is
described verbally by the tags in the four light grey
boxes. For instance, the gauge string tension in com-
bination with their fragility seek for a string-free sys-
tem, thus “No-String”. The four corners labeled by
A-D denote the important limiting cases which are
described in the text. The grey-framed circles de-
pict cross sections of two superimposed Bloch balls
(one for the gauge mean field and one for its Higgs
counterpart). The red (blue) dot denotes the expected
location of the dissipative steady state for the gauge
(Higgs) mean field. We expect the steady states to
become pure deep within each phase near the cor-
ners of the phase diagram and to be mixed close to
the phase transitions.

3.2 The Setting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Section 1.4.2 we presented the Z2-Gauge-Higgs model and in the previous Section 3.1 we

derived two mean field theories for its unitary theory. As stated in the preliminary paragraph

above, we aim at a purely dissipative counterpart of the Hamiltonian Z2-Gauge-Higgs model,

that is, a lattice gauge theory defined by presumably several baths (given by their jump opera-

tors) and two parameters ω and λ such that in the limiting cases the three pure quantum phases

of the GHM are recovered. In a nutshell: We want to come up with a theory of quantum jumps

— as we did in Chapter 2 for the paradigmatic but simple transverse field Ising model — that

“mimics” the Z2-Gauge-Higgs model and features analogous phases and phase transitions.

3.2.1 Dissipative interpretation of a unitary theory

In Fig. 3.3 we sketch a qualitative mean field diagram motivated by the unitary mean field

result in Fig. 3.1. This is what we aim at and what we hope to find as a dissipative mean field

result. We will succeed qualitatively up to some subtleties as the mean field analysis reveals;

but to reach this point we need to recall the phase diagram in Fig. 1.14 and the discussion of

the phases in Subsec. 1.4.2 as we are looking for jump operators that drive the system into the

phases of the four57 corners of the phase diagram depicted in Fig. 3.3.

Our proposal comprises six different jump operators (or baths), each of which mimics a specific

dynamical property of the original GHM. Their names, formal definitions and short descriptions

can be found in Table 3.1. The dominant region for each bath is indicated on the boundaries of

the (mean field) phase diagram in Fig. 3.3. At each corner denoted by A, B, C, and D the two

or three baths on the adjacent edges dominate the dynamics of the system. This dominance is

encoded directly into the definitions via the two parameters ω and κ, see Tab. 3.1.

57Or at least the three “important” corners (A), (B) and (C) since (D) marks just the analytic transition region. | 193
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Name Jump Operator Description

Gauge string tension F
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

)
Causes fluctuation of gauge

strings and contracts them.

Gauge string fragility F
(2)
e = 1

2 Ie (1− τx
e ) Cuts gauge strings and creates

a pair of charges at their ends.

Higgs brane tension D
(1)
s = 1

2

√
λ σx

s

(
1− 1

2d ∑e∈s Ie

)
Causes fluctuations of Higgs

branes and contracts them.

Higgs brane fragility D
(2)
e = 1

2

√
λ τx

e (1− Ie) Cuts Higgs branes and creates

flux strings at their borders.

Charge hopping Te =
1
2 Ie

(
1− 1

2 ∑s∈e σx
s

)
Causes diffusion of charges and

their annihilation.

Flux string tension Be =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)
Causes fluctuations of flux

strings and contracts them.

� Table 3.1: The jump operators for the dissipative Z2-Gauge-Higgs model. Their action is described
in the text. s, e and p denote sites, edges and faces, respectively. Pictorial descriptions can be found in
Figures 3.4, 3.5, and 3.6.

To get a better understanding of the proposed jump operators, let us shortly summarise the

characteristic limiting cases:

In the low ω and λ regime the baths for charge hopping and annihilation as well as for

gauge string tension and fragility dominate the dissipative dynamics. This is called the

confined charge phase since two elementary charges are confined by a tense string of electric

flux.

In the low λ and high ω regime the charge hopping and annihilation remain dominant.

The gauge string tension and fragility is now superseded by the flux string tension which,

in two dimensions, degenerates to hopping and annihilation of isolated magnetic fluxes.

This phase is characterised by free charges since the electric flux lines connecting them lost

their tension and fragility.

In the high λ and ω regime the flux string tension persists. The charge hopping and

annihilation is superseded by two other baths, namely the Higgs brane tension and the

Higgs brane fragility. This phase is called the Higgs phase and its elementary excitations

are branes of Higgs excitations and closed loops of magnetic fluxes, both of which are

equipped with a tension by the baths.

In the low ω and high λ phase the four baths for Higgs brane tension and fragility as well

as gauge string tension and fragility determine the dynamics. We are not going to analyse

this phase in more detail since it has no distinct features and (in the dissipative approach)

it cannot be prepared as a pure state.

A detailed description of the action is given for each jump operator in the following subsec-

tion where we discuss the common steady and dark states of the bath combinations in the four

corners. Before we proceed, let me once more stress the crucial point that characterises our
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approach: The original Hamiltonian theory is governed by its energy which, at T = 0, is min-

imised. There is, to my knowledge, no such principle for the non-equilibrium setup. Whereas in

the Hamiltonian theory, say, a gauge string contracts due to the fundamental urge to lower the

total energy, there is no corresponding motivation for the same process in the dissipative setup

unless we enforce it by design. To put it differently: In a Hamiltonian theory the contraction or

breaking of a gauge string is an implicit effect motivated by energy minimisation. In the dissi-

pative setup there is no such “deeper reason”; if we want a gauge string to contract or break,

we have to provide suitable jump operators for this job. In this sense we are playing with Lego

pieces and construct a theory according to some Hamiltonian model theory by mixing distinct

ingredients in beneficial ratios.

There is second point worth mentioning: Obviously all six jump operators have a common

structure. It is reasonable to think of them as very simple, quasilocal (quantum) computers with

the atomic structure

Jump operator = THEN · IF (3.20)

where IF denotes an operator that checks whether a local condition is satisfied. As an example,

this reads for the gauge string tension:

F
(1)
p =

1

2
Bp

(
1− 1

4 ∑
e∈p

τx
e

)
→





IF = 1
2

(
1− 1

4 ∑e∈p τx
e

)

THEN = Bp

(3.21)

That is, F
(1)
p checks whether some gauge strings run along face p and redirects them with a

certain amplitude depending on the local length of the string. We should point out that the

summands in the parent Hamiltonian read

(Jump operator)†(Jump operator) = IF† · THEN† · THEN · IF = IF† · IF (3.22)

since the THEN-actions are unitary. That is, the parent Hamiltonian loses information about the

actions triggered by the IF-statements. What HP “knows” about a state is that an action has to

take place but it is ignorant of the action itself. By the way, this point of view suggests potentially

fruitful relations between quantum Markov processes described by quasilocal jump operators

and (asynchronous) quantum cellular automata.

3.2.2 Steady states

Let us now investigate the steady states (especially the dark states) of certain combinations of

the baths listed in Table 3.1. In order to determine the steady states of the theory, we restrict the

possible states to the gauge invariant ones. Keep in mind that the quasilocal operators

Âs = σx
s ∏

e∈s

τx
e = σx

s As (3.23)

are strong symmetries of the dissipative process for all sites s, meaning that

[
F
(1)
p , Âs

]
=
[

F
(2)
e , Âs

]
=
[

D
(1)
t , Âs

]
=
[

D
(2)
e , Âs

]
=
[
Te, Âs

]
=
[
Be, Âs

]
= 0 (3.24)
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� Figure 3.4: Schematic action of the jump operators which are dominant in the small ω and λ regime
denoted by A in Fig. 3.3. The three baths are responsible for the hopping and annihilation of charges, the
fragility of gauge strings and their tension. This is the confined phase. Schematic action of the jump
operators which are dominant in the large ω and small λ regime denoted by B in Fig. 3.3. The two baths
are responsible for the hopping and annihilation of charges and fluxes. In three dimensions and above the
flux hopping becomes a tension of flux strings. This is the deconfined phase. We indicate transitions which
are more likely to occur in one than in the other direction by asymmetric arrows. The key reads: =
gauge string; = (electrical) charge; = Higgs excitation; = (magnetic) flux.

for all sites s, t, edges e and plaquettes p. This is evident since all jump operators are composites

of gauge invariant terms. It is therefore legit to consider the dissipative process constrained to

the linear subspace

HGHM =
{
|Ψ〉 ∈ H̃GHM | ∀s : Âs |Ψ〉 = |Ψ〉

}
(3.25)

since there are no quantum jump trajectories which leave this space given the initial state lives

in HGHM. A short reminder for the following paragraphs: S, E and P denote the sets of sites

(vertices), edges and plaquettes (faces), respectively.

� Confined phase (A)

In the confined phase, denoted by in Fig. 3.3, the following three baths determine the steady

states of the theory:

Name Jump Operator Description

Gauge string tension F
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

)
Causes fluctuation of gauge

strings and contracts them.

Gauge string fragility F
(2)
e = 1

2 Ie (1− τx
e ) Cuts gauge strings and creates

a pair of charges at their ends.

Charge hopping Te =
1
2 Ie

(
1− 1

2 ∑i∈e σx
i

)
Causes diffusion of charges and

their annihilation.

This corresponds to the fact that in the original theory gauge strings and charges are penalised

and the system seeks a state devoid of these excitations. To get rid of strings and charges the

latter need to be movable (Te) and the former must contract (F
(1)
p ). In systems with non-trivial
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topology the strings must also be fragile (F
(2)
p ) — it must be possible to break them. Otherwise

the steady state space decays into (mixed) disjoint topological sectors as single, homotopically

non-trivial gauge strings cannot be contracted by quasilocal operations.

A dark state |D〉 ∈ HGHM has to satisfy the three conditions F
(1)
p |D〉 = 0, F

(2)
e |D〉 = 0, and

Te |D〉 = 0 for all edges e and plaquettes p. First, realise that Bp and Ie are unitary operators

and thus it follows immediately

1

4 ∑
e∈p

τx
e |D〉 = |D〉 and τx

e |D〉 = |D〉 and
1

2 ∑
i∈e

σx
i |D〉 = |D〉 . (3.26)

Clearly, there is just one state satisfying all three constraints, namely the completely x-polarised

state

|DA〉 = |+〉S |+〉E (3.27)

Obviously this is also a physical state, i.e. |DA〉 ∈ HGHM. So we conclude that there is exactly

one dark state in regime . However, we have to rule out the possibility of additional mixed

steady states. To this end we introduce a basis for HGHM which we term string basis58. Let s be

an arbitrary set of edges, i.e. s ⊆ E. We may equally consider it a collection of open and closed

strings on the lattice. Then the string states

|s〉 ≡∏
e∈s

Ie |+〉S |+〉E (3.28)

form an orthonormal basis of HGHM as they are a set of 2|E| linearly independent states which

clearly satisfy Âs |s〉 = |s〉 by construction. Now let |Ψ〉 = ∑s Ψ(s) |s〉 ∈ HGHM be an arbitrary

physical state. Choose an arbitrary string state |s̃〉 such that Ψ(s̃) 6= 0. Then there is a poly-

nomial P(s̃) in the jump operators {F(1)
p , F

(2)
e , Te} such that P(s̃) |s̃〉 = |DA〉 is the string-free

vacuum. Note that one needs F
(2)
e to break up strings which are homotopically non-trivial. Fur-

thermore there are two possibilities to get rid of homotopically trivial loops: Either one breaks

the loop by F
(2)
e and afterwards retracts it by F

(2)
e and Te. Or one retracts it by F

(1)
p without

breaking it altogether. Since P(s̃) |s〉 for s 6= s̃ cannot yield |DA〉, we find that 〈DA| P(s̃) |Ψ〉 6= 0

and consequently |DA〉 is the unique stationary state59 of the dissipative process {F(1)
p , F

(2)
e , Te}.

58We already came across this basis during our preliminary discussions in Subsection 1.4.2.
59The observant reader may have noticed that the jump operators F

(2)
e are sufficient for the uniqueness of the steady

state. However, to mimic the thermal behaviour of the excitations, the other two baths are necessary as well.
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� Free charge phase (B)

In the free charge phase, denoted by in Fig. 3.3, the following two baths determine the steady

states of the theory:

Name Jump Operator Description

Charge hopping Te =
1
2 Ie

(
1− 1

2 ∑s∈e σx
s

)
Causes diffusion of charges and

their annihilation.

Flux string tension Be =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)
Causes fluctuations of flux

strings and contracts them.

This choice accounts for the need to get rid of the unconfined charges via diffusion and pair

annihilation (Te) and to do the same for magnetic monopoles in two dimensions (Be). In three

and more dimensions Be induces a fluctuation and contraction of closed flux strings.

A dark state |D〉 ∈ HGHM has to satisfy the two conditions Be |D〉 = 0 and Te |D〉 = 0 for all

edges e. As before they reduce to the eigenstate conditions

1

2 ∑
i∈e

σx
i |D〉 = |D〉 and

1

2(d− 1) ∑
p∈e

Bp |D〉 = |D〉 (3.29)

for all edges e. To satisfy the first condition, the dark state must be of the form |D〉 = |+〉S |D〉′
where |D〉′ is a pure gauge field state. Since our states live in HGHM where Âs = σx

s As ≡ 1, the

gauge constraint reads As |D〉′ = |D〉′ where As is the d-dimensional star operator known from

the toric code. Since all star and plaquette operators As and Bp commute, there is (at least one)

common eigenstate with eigenvalue one. If the topology of the manifold is non-trivial, there are

several states with this property (cf. the ground states of the toric code). Thus there is a topology

dependent dark state space D ≤ HGHM which is just the quantum code defined by the stabiliser

{As, Bp}. Note that it is of crucial importance that the gauge string tension and fragility as

well as the Higgs brane tension and fragility are no longer present since deconfinement and the

topologically ordered phases of the toric code rely on the invisibility of the strings that connect pairs

of particles.

That there are no mixed stationary states (but multiple dark states for non-trivial topologies)

can be inferred from the effect of the jump operators. Let us exemplify this in two dimensions

and in unitary gauge (see the next paragraph for a more formal treatment of this transformation):

There one finds Te = 1
2 τz

e

(
1− 1

2 ∑s∈e As

)
for the charge hopping (and annihilation) and Be =

1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)
for the flux string tension which degenerates in two dimensions

to magnetic monopole hopping (and annihilation). These jump operators cause free diffusion of

electric charges and magnetic fluxes and pair annihilation whenever two particles of the same

species meet. Clearly, this is enough to cool any initial state into a state devoid of excitations.

The latter are non-unique for non-trivial topologies as straightforward calculations with the

stabiliser formalism reveal. The actual dark state that is reached for t → ∞ depends on the

topology of the particle trajectories.
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� Figure 3.5: Schematic action of the jump operators which are dominant in the large ω and λ regime
denoted by C in Fig. 3.3. The three baths are responsible for the hopping and annihilation of fluxes, the
fragility of Higgs branes and their tension. In three dimensions and above the flux hopping becomes a
tension of flux strings. This is the Higgs phase. We indicate transitions which are more likely to occur in
one than in the other direction by asymmetric arrows. The key reads: = Higgs excitation; =
(magnetic) flux.

� Higgs phase (C)

In the Higgs phase, denoted by in Fig. 3.3, the following three baths determine the steady

states of the theory:

Name Jump Operator Description

Higgs brane tension D
(1)
s = 1

2

√
λ σx

s

(
1− 1

2d ∑e∈s Ie

)
Causes fluctuations of Higgs

branes and contracts them.

Higgs brane fragility D
(2)
e = 1

2

√
λ τx

e (1− Ie) Cuts Higgs branes and creates

flux strings at their borders.

Flux string tension Be =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)
Causes fluctuations of flux

strings and contracts them.

In two dimensions the flux string tension degenerates to a monopole diffusion (Be); in both cases

Be gets rid of magnetic fluxes. Note that magnetic flux lines (d > 2) cannot end and form always

closed loops60. In two dimensions the Higgs brane tension (D
(1)
s ) and fragility (D

(2)
e ) become

the dual of the gauge string tension (F
(1)
p ) and fragility (F

(2)
e ) in the confined charge phase. The

Higgs brane tension in two dimensions cuts (dual) Higgs strings and creates a pair of magnetic

monopoles at their open ends. In higher dimensions the pure Higgs excitations form (d − 1)-

dimensional hyperplanes as there are 2d Higgs excitations that surround a site s were σx
s has

been applied. Higgs excitations created by τx
e form strings that are paralleled by magnetic flux

lines. The Higgs brane tension (D
(1)
s ) causes the hyperplanes to fluctuate and contracts them in

60To revive our analogy to electromagnetism, see Subsec. 1.4.2: There are no magnetic monopoles in dimensions
d > 2.
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the long time limit. The Higgs brane fragility (D
(2)
e ) tears holes in the hyperplanes and breaks

strings and subsequently attaches magnetic flux lines to the created borders.

A dark state |D〉 ∈ HGHM has to satisfy the three conditions D
(1)
s |D〉 = 0, D

(2)
e |D〉 = 0, and

Be |D〉 = 0 for all edges e and sites i. As usually we find the eigenstate conditions

1

2d ∑
e∈s

Ie |D〉 = |D〉 and Ie |D〉 = |D〉 and
1

2(d− 1) ∑
p∈e

Bp |D〉 = |D〉 (3.30)

for all edges e. As all operators Ie, Bp and Âs commute with each other, there is a common

eigenstate with eigenvalue one. To derive this eigenstate, let us recast the system in unitary

gauge by the transformation T

T = ∏
e

[
1

2
(1+ τx

e ) +
1

2
Ĩe(1− τx

e )

]
where Ĩe = σz

s σz
j for e = (i, j) (3.31)

which we already introduced and applied in Subsec. 1.4.2. There we also derived the transfor-

mation properties, namely

Tτz
e T† = Ie

Tτx
e T† = τx

e

Tσz
s T† = σz

s

Tσx
s T† = σx

s As = Âs .

The back-transformed jump operators read then

T†D
(1)
s T =

1

2

√
λ As

(
1− 1

2d ∑
e∈s

τz
e

)

T†D
(2)
e T =

1

2

√
λ τx

e (1− τz
e ) =

√
λτ+

e

T†BeT =
1

2

√
ω τx

e

(
1− 1

2(d− 1) ∑
p∈e

Bp

)
.

Recall that all physical states are now of the form |+〉S |Ψ〉 ∈ T†HGHM which corresponds to the

fact, that the Higgs field no longer appears in the jump operators. In this subspace it is trivial

to see that the unique steady state is the dark state

|DC〉′ = |+〉V |↑〉E (3.32)

and we note that the jump operators D
(2)
e alone are sufficient to drive into this dark state. The

corresponding dual statement for the confined charge phase is that the gauge string fragility

F
(2)
e is formally sufficient to get rid of all open and closed gauge strings.

We conclude that the unique dark state is just the completely z-polarised state in unitary

gauge. Recall that we already discussed in Subsec. 1.4.2 that this state can be considered an

equal-weight superposition of all open and closed string states with respect to the τx-eigenbasis.

The original dark state can now be obtained via T |DC〉′ = |DC〉 and one finds
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� Figure 3.6: Schematic action of the jump operators which are dominant in the small ω and large λ
regime denoted by D in Fig. 3.3. The four baths are responsible for the fragility of gauge strings and their
tension as well as the fragility and tension of Higgs branes. We indicate transitions which are more likely
to occur in one than in the other direction by asymmetric arrows. The key reads: = gauge string;
= (electrical) charge; = Higgs excitation; = (magnetic) flux.

|DC〉 =
1√
|2E| ∑

s⊆E

|s〉 = 1√
|2E| ∑

s⊆E

∏
e∈s

Ie |+〉S |+〉E . (3.33)

where 2E denotes the power set of E. Therefore |DC〉 is the equal-weight superposition of all

gauge-invariant charge configurations and all possible gauge string configurations.

� Confinement ↔ Higgs phase (D)

In the transition region Confinement↔ Higgs phase, denoted by in Fig. 3.3, the following four

baths determine the steady states of the theory:

Name Jump Operator Description

Gauge string tension F
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

)
Causes fluctuation of gauge

strings and contracts them.

Gauge string fragility F
(2)
e = 1

2 Ie (1− τx
e ) Cuts gauge strings and creates

a pair of charges at their ends.

Higgs brane tension D
(1)
i = 1

2

√
λ σx

i

(
1− 1

2d ∑e∈i Ie

)
Causes fluctuations of Higgs

branes and contracts them.

Higgs brane fragility D
(2)
e = 1

2

√
λ τx

e (1− Ie) Cuts Higgs branes and creates

flux strings at their borders.
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The transition region between confined charge and Higgs phase is not of particular interest as

it constitutes no distinct phase with characteristic properties. Hence there is no deeper reason

for the above combination of jump operators; the latter is rather a consequence of the other

(required) combinations in the three distinct phases. The special status of becomes apparent

if we try derive dark states for this four-bath process:

A dark state |D〉 ∈ HGHM has to satisfy the four conditions D
(1)
s |D〉 = 0, D

(2)
e |D〉 = 0,

F
(1)
p |D〉 = 0, and F

(2)
e |D〉 = 0 for all edges e, sites s and plaquettes p. We will now show that

there is no such state. To this end, we recast the jump operators D
(2)
e and F

(2)
e in unitary gauge,

i.e. we apply the unitary transformation T:

T†F
(2)
e T =

1

2
τz

e (1− τx
e )

T†D
(2)
e T =

1

2

√
λ τx

e (1− τz
e )

A dark state must satisfy

τx
e |D〉 = |D〉 and τz

e |D〉 = |D〉 (3.34)

which immediately leads to |D〉 = τz
e τx

e |D〉 = −τx
e τz

e |D〉 = − |D〉 and therefore |D〉 = 0. We

conclude that in contrast to the three distinct phases , and , there is no pure stationary

state for ω → 0 and λ → ∞. We should not be too worried about this result as there are three

distinct phases we are interested in. And these three (pure) phases can indeed be generated in

the limits we discussed above.

Note that the previous result of a mixed steady state in is not surprising: If we recast

the theory in unitary gauge and restrict ourselves to the relevant spins on the edges, namely

the gauge field, it becomes clear that the confined charge and Higgs phase correspond to the

completely polarised phase in x- and z-direction, respectively. We already stressed this fact

in Sec. 1.4.2 as a reason for the critical point and the analytic connection between confined

charge and Higgs phase. There we realised that, in the unitary gauge, such analytic paths in the

parameter space correspond to a spatial rotation of a dominant external magnetic field from x-

to z-direction. Two baths drive into the limiting states by means of simple ladder operators

T†F
(2)
e T =

1

2
τz

e (1− τx
e ) ∝ τx,+

e

T†D
(2)
e T =

1

2

√
λ τx

e (1− τz
e ) ∝ τz,+

e

where τx,+
e and τz,+

e drive towards the completely x- and z-polarised state, respectively. But

there is no simple dissipative process of two incoherent baths61 which simulate a rotating mag-

netic field by following it with a pure stationary state. We already encountered this situation in

the preliminaries, see 1.1.3, where we examined the stationary states of the competing ladder

operators τx,+
e and τx,+

e . Consider also Fig. 1.1 in that regard.

61Certainly one could design jump operators that can be tuned internally by a parameter so that their stationary state

remains pure and follows a rotating magnetic field (just transform τx,+
e by the corresponding spin rotation). But this

requires an active modification of the bath beyond the simple scaling of its strength. However, here we restrict ourselves
to fixed baths since they require fixed local processes with no fine tuning degrees of freedom.
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3.3 A short mean field analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In contrast to our detailed mean field analysis of the transverse field Ising model in Chapter 2,

we present a rather short discussion of the mean field results for the dissipative Z2-Gauge-Higgs

model. The primary purpose of this second model, introduced in the previous Section 3.2, is

to demonstrate that the “dissipative translation”, introduced for the rather simple but paradig-

matic TIM, may also yield interesting results for more complicated models. We already saw in

Section 3.1 that the mean field approximations of the Hamiltonian GHM do not reproduce all

characteristic features of the actual phase diagram. We therefore cannot expect to gain detailed

insight into the phase structure of our proposed dissipative Z2-Gauge-Higgs model by a mean

field analysis. However, as we will show in the following Section 3.3.2, the basic features of

the mean field diagrams with and without gauge fixing can be reproduced in the dissipative

mean field theory, although there are structural differences and some of the features change in

the high-dimensional limit. Note that the existence and the behaviour of phase transitions may

depend on the ratio and relative scaling of the six baths. This provides a multitude of free pa-

rameters, the choice of which may influence the phase diagrams drastically. We present here the

straightforward results without further fine tuning of the bath ratios. A more detailed analysis

is an open task for the future.

3.3.1 Derivation of the mean field Lindblad superoperator

We perform mean field approximations for both representations: First, with the gauge condi-

tions Âs = 1 which cannot be fixed in the mean field approach, and second, in the unitary

gauge with the gauge conditions σx
s = 1 and a single mean field. In the following we present

the resulting effective jump operators without detailed derivations as they are straightforward

but lengthy and provide no further insight. The reader may consider the analogous calcula-

tions for the dissipative TIM as a reference; see Section 2.3 for the condensed calculations and

Appendix B for the detailed derivation.

Mean field theory without gauge fixing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We start with the jump operators given in Table 3.1 and a system that lives in the physical

subspace HGHM with the gauge condition Âs = 1. As for the Hamiltonian derivation in 3.1.1,

we make the product ansatz

ρ = ∏
e∈E

γe ∏
s∈S

πs (3.35)

for the gauge (γe) and Higgs (πs) fields. We discuss in Appendix A that the mean field jump

operators can be derived by the partial trace

∂tγe = ∂t Tr 6=e [ρ] = ∑
i

[
Tr 6=e

[
LiρL†

i

]
− 1

2
Tr 6=e

[{
L†

i Li, ρ
}]]

∂tπs = ∂t Tr 6=s [ρ] = ∑
i

[
Tr 6=s

[
LiρL†

i

]
− 1

2
Tr 6=s

[{
L†

i Li, ρ
}]]
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Name Jump Operator Mean Field Jump Operators

Gauge string tension F
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

) f
(1),τ
1 = 1

2

√
2d−2

d τz
(
1− 3

4 gx − 1
4 τx

)

f
(1),τ
2 = 1

8

√
6d−6

d

√
1− g2

xτz

Gauge string fragility F
(2)
e = 1

2 Ie (1− τx
e )

f
(2),τ
1 = 1

2
√

d
τz (1− τx)

f
(2),σ
1 =

√
2

2 (1− gx)σz

f
(2),σ
2 =

√
2

2

√
1− g2

xσz

Higgs brane tension D
(1)
s = 1

2

√
λ σx

s

(
1− 1

2d ∑e∈s Ie

)
d
(1),τ
1 = 1

2d

√
λ
2 τz

d
(1),σ
1 =

√
λ

2 σx (1−mzgzσz)

d
(1),σ
2 = 1

2

√
λ
2d

√
1−m2

z g2
z σxσz

d
(1),σ
3 = 1

2

√
λ
2d σz

Higgs brane fragility D
(2)
e = 1

2

√
λ τx

e (1− Ie)

d
(2),τ
1 = 1

2

√
λ
d τx

(
1−m2

zτz
)

d
(2),τ
2 = 1

2

√
λ
d

√
1−m4

zτxτz

d
(2),σ
1 =

√
2λ
2 σz

Charge hopping Te =
1
2 Ie

(
1− 1

2 ∑s∈e σx
s

)
tτ
1 = 1

2
√

d
(1−mx)τz

tτ
2 = 1

2
√

2d

√
1−m2

xτz

tσ
1 =

√
2

2 σz
(
1− 1

2 mx − 1
2 σx

)

tσ
2 = 1

2
√

2

√
1−m2

xσz

Flux string tension Be =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

) bτ
1 =

√
ω

2 τx
(
1− g3

z τz
)

bτ
2 = 1

2

√
ω

2d−2

√
1− g6

z τxτz

bτ
3 = 1

2

√
3ω

2d−2 τz

� Table 3.2: The rescaled mean field jump operators for the dissipative Z2-Gauge-Higgs model. The
exact expression is given in the second row for comparison. In the third row all effective jump operators
for the corresponding exact version are listed according to the labelling described in the text.

where {Li} ≡
{

F
(1)
p , F

(2)
e , D

(1)
s , D

(2)
e , Te, Be

}
denotes the complete dissipative process, that is, the

combination of all six baths. If we assume a homogeneous system and drop the spatial indices

s, e and p, this calculation yields two effective Lindblad equations (one for each mean field)

∂tγ = ∑
l

∑
µl

[
lτ
µl

γlτ
µl

† − 1

2

{
lτ
µl

†lτ
µl

, γ
}]

∂tπ = ∑
l

∑
µl

[
lσ
µl

πlσ
µl

† − 1

2

{
lσ
µl

†lσ
µl

, π
}]

with the mean field jump operators
{

lτ
µl

}
l,µl

for the gauge field and
{

lσ
µl

}
l,µl

for the Higgs field.

Note that for each distinct interacting jump operator L (e.g. Te) one finds multiple effective jump

operators lτ
1 , . . . , lτ

q and lσ
1 , . . . , lσ

q for each mean field (e.g. tτ
1 , tτ

2 and tσ
1 , tσ

2 for the charge hopping

Te). All effective jump operators are listed in Table 3.2.

Note that we applied the rescaling

ω → ωd and λ → λd (3.36)

for the couplings and an overall rescaling (of time) via a global multiplication of the jump

operators by 1√
d

.
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Name Jump Operator Mean Field Jump Operators

Gauge string tension F
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

) f
(1),τ
1 =

√
2

2 τz
(
1− 3

4 gx − 1
4 τx

)

f
(1),τ
2 =

√
6

8

√
1− g2

xτz

Gauge string fragility F
(2)
e = 1

2 Ie (1− τx
e )

f
(2),σ
1 =

√
2

2 (1− gx)σz

f
(2),σ
2 =

√
2

2

√
1− g2

xσz

Higgs brane tension D
(1)
s = 1

2

√
λ σx

s

(
1− 1

2d ∑e∈s Ie

)
d
(1),σ
1 =

√
λ

2 σx (1−mzgzσz)

Higgs brane fragility D
(2)
e = 1

2

√
λ τx

e (1− Ie) d
(2),σ
1 =

√
2λ
2 σz

Charge hopping Te =
1
2 Ie

(
1− 1

2 ∑s∈e σx
s

) tσ
1 =

√
2

2 σz
(
1− 1

2 mx − 1
2 σx

)

tσ
2 = 1

2
√

2

√
1−m2

xσz

Flux string tension Be =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)
bτ

1 =
√

ω
2 τx

(
1− g3

z τz
)

� Table 3.3: The remaining mean field jump operators for the dissipative Z2-Gauge-Higgs model in the
high-dimensional limit. The exact expression is given in the second row for comparison. In the third row
the effective jump operators that survive the limit d→ ∞ are listed. Note that mostly dephasing operators
drop out, cf. Table 3.2.

Additionally the relative strength of the Higgs brane fragility must be modified according to

D
(2)
e =

1

2

√
λ τx

e (1− Ie) →
1√
d
· 1

2

√
λ τx

e (1− Ie) (3.37)

This is necessary to obtain reasonable (that is, finite) jump operators in the high-dimensional

limit d → ∞ but leaves the qualitative features of the phase diagram unaffected for finite d.

The differences in the necessary rescaling arise since the numbers of (adjacent) sites, edges

and faces scale differently with d. For instance, for each gauge spin there is one Higgs brane

fragility operator D
(2)
e which acts non-trivially. In contrast, for each Higgs spin there are 2d such

non-trivial operators, namely D
(2)
e for all 2d adjacent edges. This fact requires the additional

rescaling of D
(2)
e in order to keep the action on Higgs spins finite. In Table 3.3 we list all effective

jump operators that survive the d→ ∞ limit. We use this reduced system to examine the phase

diagram in the high-dimensional limit, see paragraph 3.3.2 below.

Mean field theory in unitary gauge
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us now turn towards the second mean field approach. We have to transform the theory by

the unitary T

T = ∏
e∈E

[
1eP+

e + ĨeP−e
]

(3.38)

into the subspace T†HGHM, see the preliminary discussions in Subsection 1.4.2. There the gauge

condition becomes trivial, namely σx
s = 1, and we drop the Higgs spins for our mean field

treatment. Then our ansatz reads once again

ρ = ∏
e∈E

γe (3.39)

for the gauge field γe, just as for the Hamiltonian theory in 3.1.2. The transformed jump opera-

tors are listed in Table 3.4, together with the original jump operators for comparison.
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Name Gauge condition σx
s As = 1 Gauge condition σx

s = 1

Gauge string tension F
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

)
F̃
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

)

Gauge string fragility F
(2)
e = 1

2 Ie (1− τx
e ) F̃

(2)
e = 1

2 τz
e (1− τx

e )

Higgs brane tension D
(1)
s = 1

2

√
λ σx

s

(
1− 1

2d ∑e∈s Ie

)
D̃
(1)
s = 1

2

√
λ As

(
1− 1

2d ∑e∈s τz
e

)

Higgs brane fragility D
(2)
e = 1

2

√
λ τx

e (1− Ie) D̃
(2)
e = 1

2

√
λ τx

e (1− τz
e )

Charge hopping Te =
1
2 Ie

(
1− 1

2 ∑s∈e σx
s

)
T̃e =

1
2 τz

e

(
1− 1

2 ∑s∈e As

)

Flux string tension Be =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)
B̃e =

1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)

� Table 3.4: The jump operators for the dissipative Z2-Gauge-Higgs model in unitary gauge (right col-
umn). They can be derived from the original jump operators in the middle column, see also Table 3.1,
by the unitary transformation T introduced in the preliminary Subsec. 1.4.2. Note that the Higgs field no
longer appears in any of the jump operators.

Note that the gauge and flux string tension F
(1)
p and Be are invariant under this transfor-

mation and we can reuse the mean field results found in the previous paragraph for them.

Furthermore we find that the gauge string and Higgs brane fragility F
(2)
e and D

(2)
e become

local operators and therefore remain unmodified by the mean field approximation. The only

non-trivial mean field calculations remain to be done for the Higgs brane tension D
(1)
s and

the charge hopping Te. The results are shown in Table 3.5. To derive them, we applied the

same rescaling as before; that is, ω → ωd, λ → λd, D̃
(2)
e → d−1/2D̃

(2)
e and the global time

scaling d−1/2. The remaining effective jump operators in the high-dimensional limit are listed

in Table 3.6. Please note that in this limit the gauge string and Higgs brane fragility vanish

completely and only four baths are left. This is not really surprising since the previous result

Name Jump Operator (Unitary Gauge) Mean Field Jump Operators

Gauge string tension F̃
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

) f̃
(1),τ
1 = 1

2

√
2d−2

d τz
(
1− 3

4 gx − 1
4 τx

)

f̃
(1),τ
2 = 1

8

√
6d−6

d

√
1− g2

xτz

Gauge string fragility F̃
(2)
e = 1

2 τz
e (1− τx

e ) f̃
(2),τ
1 = 1

2
√

d
τz (1− τx)

Higgs brane tension D̃
(1)
s = 1

2

√
λ As

(
1− 1

2d ∑e∈s τz
e

) d̃
(1),τ
1 =

√
2λ
2 τx

(
1− 2d−1

2d gz − 1
2d τz

)

d̃
(1),τ
2 =

√
2λ
2

√
2d−1
2d

√
1− g2

z τx

Higgs brane fragility D̃
(2)
e = 1

2

√
λ τx

e (1− τz
e ) d̃

(2),τ
1 = 1

2

√
λ
d τx (1− τz)

Charge hopping T̃e =
1
2 τz

e

(
1− 1

2 ∑s∈e As

)
t̃τ
1 = 1

2
√

d
τz
(
1− g2d−1

x τx
)

t̃τ
2 = 1

2
√

2d

√
1− g

2(2d−1)
x τzτx

t̃τ
3 = 1

2

√
2d−1

2d τx

Flux string tension B̃e =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

) b̃τ
1 =

√
ω

2 τx
(
1− g3

z τz
)

b̃τ
2 = 1

2

√
ω

2d−2

√
1− g6

z τxτz

b̃τ
3 = 1

2

√
3ω

2d−2 τz

� Table 3.5: The rescaled mean field jump operators for the dissipative Z2-Gauge-Higgs model in the
unitary gauge. The exact expression is given in the second row for comparison. In the third row all
effective jump operators for the corresponding exact version are listed.
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Name Jump Operator (Unitary Gauge) Mean Field Jump Operators

Gauge string tension F̃
(1)
p = 1

2 Bp

(
1− 1

4 ∑e∈p τx
e

) f̃
(1),τ
1 =

√
2

2 τz
(
1− 3

4 gx − 1
4 τx

)

f̃
(1),τ
2 =

√
6

8

√
1− g2

xτz

Higgs brane tension D̃
(1)
s = 1

2

√
λ As

(
1− 1

2d ∑e∈s τz
e

)
d̃
(1),τ
1 =

√
2λ
2 τx (1− gz)

Charge hopping T̃e =
1
2 τz

e

(
1− 1

2 ∑s∈e As

)
t̃τ
3 = 1

2 τx

Flux string tension B̃e =
1
2

√
ω τx

e

(
1− 1

2(d−1) ∑p∈e Bp

)
b̃τ

1 =
√

ω
2 τx

(
1− g3

z τz
)

� Table 3.6: The remaining mean field jump operators for the dissipative Z2-Gauge-Higgs model in the
unitary gauge and in the high-dimensional limit. The exact expression is given in the second row for
comparison. In the third row all effective jump operators that survive for d → ∞ are shown. Please note
that the gauge string and Higgs brane fragility are no longer present in this limit.

for the other mean field approach, see Table 3.3, showed that the only remaining effect of both

fragilities is a σz-dephasing on the Higgs field.

Now that all preparations were made, let us have a look at the solutions of the mean field

equations for both theories and for finite dimensions d as well as in the high-dimensional limit.
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3.3.2 Static solutions

In the following, we give a short analysis of the mean field stationary solutions depending on

the parameters ω and λ. To this end we consider the mean field jump operators with and

without gauge fixing for finite dimensions and in the high dimensional limit and plug them

into the steady state equations (A.26) that are derived in Appendix A and which read in our

case

Rσmn = ǫijn Iσ
i,j + miRσ

n,i and Rτ gn = ǫijn Iτ
i,j + giRτ

n,i (3.40)

without gauge fixing and just

R̃τ gn = ǫijn Ĩτ
i,j + giR̃τ

n,i (3.41)

in unitary gauge with a single mean field. Here we parametrise the gauge and Higgs field

density matrices

γ =
1

2
(1+ Γτ) and π =

1

2
(1+ Λσ) (3.42)

by means of two Bloch vectors Γ and Λ. Then the self-consistency conditions read Γ = g and

Λ = m. The solutions of the mean field equations together with the self-consistency relations

can be obtained numerically, even though they prove computationally demanding62. To simplify

the calculations, one can exploit the fact that all physical stationary solutions have vanishing

y-components, that is Λy = 0 and Γy = 0. We already encountered this simplification in

paragraph 2.3.2 where we examined the dissipative transverse field Ising model without unitary

dynamics.

Finite dimensional system
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us start with the mean field theories in finite dimensions d < ∞:

� Without gauge fixing

In Fig. 3.7 we show the results for the mean field theory without gauge fixing and in finite

dimensions (here we set d = 5). The expectation values gz = 〈τz〉 for the gauge field and

mz = 〈σz〉 for the Higgs field are shown colour-coded as functions of ω (horizontal axis) and

λ (vertical axis) in plots (B) and (C), respectively. The insets depict the small region around the

multicritical point in detail. (A) shows the qualitative results on the coloured lines in (B) and

(C). Please note that path 3 probes the phase transition between free charge and Higgs phase

in detail (it runs vertically from λ = 0 to λ = 1.5) and is therefore only drawn in the insets. In

(D) and (E) we show the well-known cross section of the Bloch balls with the dynamical mean

field flux F which determines the flow of the Bloch vectors. In contrast to our previous analyses,

here we have to deal with two coupled mean fields and thus two coupled Bloch vectors. That is,

the dynamical flux is a true six-dimensional63 vector field which cannot be illustrated without

loosing information. Here we draw in (D) the Bloch ball for the gauge field and denote its stable

physical solutions by bold and, if there are more than one, tiny dots. In (E) we do the same for

the Higgs field. To draw the flux in one cross section, one has to define values of the Bloch

coordinates in the other Bloch sphere and vice versa. Here we fix the Bloch coordinates of the

62At least for the finite dimensional theory with two coupled mean fields and in total 19 effective jump operators.
63Due to the trivial evolution in Γy- and Λy-direction, it can be reduced to a four-dimensional flux.
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� Figure 3.7: Mean field phase diagram for the dissipative Z2-Gauge-Higgs model with two separate
mean fields for the gauge degrees of freedom and the Higgs field. In (B) we plot the maximal z-polarisation
〈τz〉 of all stable physical steady states for the gauge field colour-coded in the ω-λ-plane (light → 〈τz〉 = 0,
dark → 〈τz〉 = 1). (C) shows the same for the Higgs field, that is 〈σz〉. (A) depicts the quantitative
results for 〈τz〉 (solid) and 〈σz〉 (dashed) on the coloured paths in (B) and (C). (D) and (E) illustrate cross
sections of the Bloch ball for the gauge (D) and Higgs field (E) with the dynamical mean field flux F as
flux lines and the stable physical fixed points marked by discs. The corresponding parameters (ω, λ) for
each vertical pair of cross sections are highlighted by numbers in the 2D plots (B) and (C). The shown flux
lines for the Bloch vector of one mean field depend on the Bloch vector of the other since the mean field
equations couple all six degrees of freedom. Each depicted gauge field flux corresponds to a fixed point
Bloch vector for the corresponding Higgs field and vice versa. Compare this mean field result with the
Hamiltonian mean field theory in Fig. 3.1. A discussion of the results is given in the text.

bold dots in one Bloch ball and use these to draw the flux lines in the other Bloch ball. The

shown flow therefore encodes the dynamics of one Bloch vector if we fix the other Bloch vector

at the bold dot in the corresponding cross section. As a consequence, the flux lines cannot be

used to infer the complete dynamics of the system; nevertheless they provide some insight into

the stability of the stationary points and their relation to the other stationary solutions. The

parameters for each vertical pair of cross sections are highlighted in the 2D plots by numbers.

We now turn towards the conclusions that can be drawn. To this end, compare Fig. 3.7 with

the results for the Hamiltonian theory in Fig. 3.1. Let us emphasise the central results:
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We essentially succeeded: The plots in (B) and (C) as well as the qualitative results in

(A) suggest the existence of three distinct phases which are characterised by gz = 0 and

mz = 0 (confined charge phase), gz > 0 and mz = 0 (free charge phase), and gz > 0 and

mz > 0 (Higgs phase) — just as in the Hamiltonian mean field theory.

The phase transitions between confined and free charge phase as well as between con-

fined charge and Higgs phase are of first order. Contrary to the transition separating free

charge and Higgs phase which is obviously of second order as (A) reveals. This is also in

accordance with the Hamiltonian mean field results.

However, there are also some drawbacks which may require a more carefully chosen relative

strength of the six baths. Another reason for the deviations from our expected result (see

Fig. 3.3) may be the break down of mean field theory which certainly does not take into account

the subtle actions of the jump operators. Let us point out the most severe issues:

As in the Hamiltonian mean field theory, in general one finds multiple solutions to the

mean field equations. Whereas in the Hamiltonian framework we can employ the min-

imisation of energy to decide which solutions represents the actual ground state, there is

no such principle for purely dissipative dynamics. In Fig. 3.7 (A)-(C) we choose always

the solution which maximises the shown expectation values as this indicates successfully

when new stable solutions appear. Although these solutions, highlighted in (D) and (E)

by bold dots, are stable, we cannot conclude which of the multiple stable solutions in the

free charge and Higgs phase correspond to the actual stationary states or whether they are

competing, metastable solutions.

We demanded that the stationary states in the three corners of the compactified parameter

space become pure dark states since they represent the three distinct phases of the Hamilto-

nian Z2-Gauge-Higgs model. We succeeded for the Higgs phase as the cross sections in (D)

and (E) reveal. In the free charge phase the gauge field becomes pure but the Higgs field

remains mixed; not completely mixed, but mixed after all. In the confined charge phase

both field remain mixed for ω → 0 and λ → 0 where the gauge field is more pure than

the Higgs field64. This is caused by the dephasings and could possibly be mended by a

modification of the jump operators’ relative strength.

As (B) and the inset of (C) reveal, there is a kink at the multicritical point where the

transition line to the free charge phase deviates from the Hamiltonian version which runs

(more or less) vertically down to meet the ω-axis. This, however, does not change the

qualitative structure of the phase diagram.

Note that the values of ω and λ at which the first order transition occurs are rather large

as compared to the value of λ where the second order transition takes place. This ratio

may be tuned by modifications the relative bath strengths.

To sum it up: These first results of the mean field theory are promising but push forward sev-

eral issues which require further inspection. Please note that the theory provides us with a large

number of degrees of freedom (namely, the relative strengths of six baths) which allow for fine

tuning. Since this theory is intended to show that there are more complicated structures that

might feature purely dissipatively driven phase transitions — motivated by a model Hamilto-

nian theory — we are not going to have a closer look at the aforementioned issues and their

possible mending. This is left open as a task for the future.

64Only for ω = 0 = λ an unstable fixed point on the Bloch sphere at Γx = 1 and Λx = 1 appears.
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� Figure 3.8: Mean field phase diagram for the dissipative Z2-Gauge-Higgs model in unitary gauge with
a single mean field for the gauge degrees of freedom. In (A) we plot the maximal z-polarisation 〈τz〉 of all
stable physical steady states colour-coded in the ω-λ-plane (light → 〈τz〉 = 0, dark → 〈τz〉 = 1). In (B) we
show the quantitative results for 〈τz〉 on the coloured paths in (A). (C) illustrates four characteristic cross
sections of the Bloch ball with the dynamical mean field flux F as flux lines and the stable physical fixed
points marked by cyan discs. The corresponding parameters (ω, λ) for each cross section are highlighted
by numbers in the 2D plot (A). Compare this dissipative result with the Hamiltonian mean field theory in
Fig. 3.2. A discussion of the results is given in the text.

� With gauge fixing (Unitary gauge)

Let us now have a look at the corresponding theory in unitary gauge, the results of which

are shown in Fig. 3.8. The basic structure of the illustration equals that of Fig. 3.7 which was

described in detail above. The difference is that there is only a single mean field to be analysed.

We compare these findings with the results for the Hamiltonian theory in Fig. 3.2:

The result is obviously quite similar to the Hamiltonian theory. There is a region of small

(but non-zero) gauge field expectation values gz for small ω and λ which represents the

confined charge phase. Then there is a region for large ω where gz is close to 1 which

corresponds to both the free charge and the Higgs phase. For small λ, both regions are

separated by a first order transition that ends in a critical point close to (2). Beyond this

critical point the transition between both phases is analytical, as can be inferred from the

green curve in (B).

Referring to the purity, we find pure stationary states in the Higgs phase limit ω → ∞ and

λ → ∞ as well as in the free charge limit ω → ∞ and λ → 0, the latter of which cannot

be distinguished by a phase transition in this mean field theory (as in the Hamiltonian
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counterpart). As before, in the confined charge limit ω → 0 and λ → 0 the gauge field

stationary state remains mixed as the cross section (1) demonstrates.

The small-gz fixed point in the confined charge phase close to the first order line is almost

completely mixed, see (4). When the phase boundary is traversed, a second stable solution

close to the gz = 1-pole of the Bloch ball appears, see (3). Please note that this almost pure

solution is stable although the flux in (3) suggests otherwise. In fact, there is an unstable

saddle point close to the pole and the stable solution lives within its attraction domain

shaped like a pole cap.

We conclude that the mean field theory in unitary gauge yields the expected results up to the

purity issue for small ω and λ: Up to the scaling of ω and λ, the phase diagram in Fig. 3.8 is

close to its Hamiltonian counterpart in Fig. 3.2.

High-dimensional limit
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We shall now turn towards the mean field theories in the high-dimensional limit:

� Without gauge fixing

In Fig. 3.9 we present the results for the theory with two mean field degrees of freedom when

we take into account only jump operators that survive in the d → ∞ limit. The structure of the

illustration equals its finite-d counterpart in Fig. 3.7. Compare these results with the findings

for finite d in Fig. 3.7:

If we have a look at (B) and (C), we find that there are still three distinct phases charac-

terised by gz = 0 and mz = 0 (confined charge phase), gz > 0 and mz = 0 (free charge

phase) and gz > 0 and mz > 0 (Higgs phase).

The phase transitions that separate these phases remain of first and second order, respec-

tively, see (A). We conclude that the key constituents of the mean field phase diagram

survive in the high-dimensional limit.

The cross sections in (D) and (E) are similar to those in 3.7 and we argue that the mathemat-

ical mechanisms that are responsible for the observed phase transitions remain unchanged.

The only differences are, first, that the gz = 0 solution for the gauge field no longer shifts

towards the completely mixed state in the centre of the Bloch ball but stays fixed halfway

to the gx = 1-pole, see (1)-(3). And second, that in the Higgs phase (4) there is another

stable solution close to the gz = −1-pole. A detailed inspection shows that this solution

comes along with a vanishing Higgs field and is therefore not equivalent to the highlighted

solution close to gz = 1.

There are, however, some striking differences to the finite-d phase diagram:

The first order line separating confined charge and Higgs phase no longer terminates at

the λ axis but runs off vertically towards infinity. This is a major drawback as it questions

the existence of the analyticity region that connects confined charge and Higgs phase.

Furthermore note that the irregular kink feature of the free charge phase below the multi-

critical point is no longer present.
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� Figure 3.9: Mean field phase diagram for the dissipative Z2-Gauge-Higgs model with two separate
mean fields for the gauge degrees of freedom and the Higgs field in the high-dimensional limit. In (B) we
plot the maximal z-polarisation 〈τz〉 of all stable physical steady states for the gauge field colour-coded in the
ω-λ-plane (light → 〈τz〉 = 0, dark → 〈τz〉 = 1). (C) shows the same for the Higgs field, that is 〈σz〉. (A)
depicts the quantitative results for 〈τz〉 (solid) and 〈σz〉 (dashed) on the coloured paths in (B) and (C). (D)
and (E) illustrate cross sections of the Bloch ball for the gauge (D) and Higgs field (E) with the dynamical
mean field flux F as flux lines and the stable physical fixed points marked by discs. The corresponding
parameters (ω, λ) for each vertical pair of cross sections are highlighted by numbers in the 2D plots (B)
and (C). The shown flux lines for the Bloch vector of one mean field depend on the Bloch vector of the
other since the mean field equations couple all six degrees of freedom. Each depicted gauge field flux
corresponds to a fixed point Bloch vector for the corresponding Higgs field and vice versa. Compare this
result for d → ∞ with the mean field result for finite d < ∞ in Fig. 3.7 and with the Hamiltonian mean
field theory in Fig. 3.1. A discussion of the results is given in the text.

In this sense, the phase diagram for d→ ∞ lost some of its peculiar and undesired features; but

it lost also one of its characteristic features, namely the coincidence of first order line and λ-axis.

The question that arises is whether this qualitative modification finds expression in the unitary

gauge mean field theory.
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� Figure 3.10: Mean field phase diagram for the dissipative Z2-Gauge-Higgs model in unitary gauge
with a single mean field for the gauge degrees of freedom an in the high-dimensional limit. In (A) we plot
the maximal z-polarisation 〈τz〉 of all stable physical steady states colour-coded in the ω-λ-plane (light →
〈τz〉 = 0, dark → 〈τz〉 = 1). In (B) we show the quantitative results for 〈τz〉 on the coloured paths in (A).
(C) illustrates four characteristic cross sections of the Bloch ball with the dynamical mean field flux F as
flux lines and the stable physical fixed points marked by cyan discs. The corresponding parameters (ω, λ)
for each cross section are highlighted by numbers in the 2D plot (A). Compare this mean field result for
d→ ∞ with the corresponding result for d < ∞ in Fig. 3.8 and with the Hamiltonian mean field theory in
Fig. 3.2. A discussion of the results is given in the text.

� With gauge fixing (Unitary gauge)

In Fig. 3.10 we show the results for the mean field theory in unitary gauge in the limit d → ∞.

A comparison with the results for finite d in Fig. 3.8 yields immediately: Yes, the qualitative

modification in Fig. 3.9 is also present in the unitary gauge:

The two sections of small gz and large gz that were connected smoothly via the analyticity

region are now completely separated since the first order transition runs off towards infin-

ity. This corresponds to the the first order line in Fig. 3.8 that no longer terminates at a

critical point on the λ-axis.

As a consequence of this true first order separation, the expectation value gz vanishes

identically in the confined charge phase as (B) reveals.

Note that the gz = 0-solution remains fixed in the Bloch ball, see (1)-(4). In contrast

to the finite-d theory, see Fig. 3.8 (2), this solution no longer obtains any finite gz value

but remains attached to the Γx-axis. At the phase transition, the almost pure stationary

solution at the gz = 1-pole appears within its small but finite attraction domain.
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We conclude that the results for the mean field theory in unitary gauge match our findings in

the previous paragraph for the mean field theory without gauge fixing: Both lack the feature of

a terminating first order line. Nevertheless, the first order transition and the two distinct phases

survive in this limit. �

In conclusion, our mean field analysis with and without gauge fixing revealed a qualitative

resemblance with the Hamiltonian mean field results. The phases and phase transitions survive

in the high-dimensional limit which supports their relevance for the actual physical system.

Unfortunately, the termination of the first order line that separates confined charge and Higgs

phase cannot be reproduced in this limit. This suggest either that the actual phase diagram of

the dissipative Z2-Gauge-Higgs model features a qualitatively different phase structure than its

Hamiltonian counterpart, or that the mean field theory breaks down and no longer reproduces

the key features of the correct phases and phase transitions.

Answers to these questions cannot be given in the approximative framework that we applied

here. As it is illusionary to hope for general analytical solutions, answering these questions

demands for perturbative approaches or duality arguments. Since this thesis is already extensive

enough and due to a lack of time, we leave these questions open as tasks for the future.
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Chapter 4
The dissipative Majorana chain

“I am a Quantum Engineer, but on Sundays I Have Principles.”

John Stewart Bell

The previous two chapters 2 and 3 represent the main part of this master thesis. There

we introduced new models and analysed their properties in detail. This chapter is different as

it is concerned with a model that was introduced recently by Diehl et al. in Ref. [1]. There

a proposal for the purely dissipative implementation of the Majorana chain ground states was

given. For a review of the Hamiltonian Majorana chain see Subsec. 1.3.4 in the preliminary

chapter 1. The main part of the aforementioned publication is concerned with the identification

and discussion of a topological invariant that is responsible for the stability of the dissipatively

reached dark state space which comprises the degenerate edge modes known from Kitaev’s

Majorana chain. This analysis is based on non-interacting jump operators that equal the quasi

particle annihilators of the Majorana chain at the ideal parameter point. However, as a starting

point different jump operators are introduced for which an experimental realisation in terms of

cold atoms is proposed. These jump operators are interacting and number conserving; the non-

interacting and parity violating jump operators that are used for all theoretical conclusions are

derived by a mean field approximation from the number conserving ones.

The calculations and investigations that we present in this chapter were motivated by this

questionable transition from number conserving to parity violating jump operators. Here we

are not concerned with the main results of Ref. [1] which are based on the non-interacting jump

operators; due to some validating calculations we agree with these statements. However, we

argue that the proposed experimental realisation in terms of number-conserving jump operators

does not yield a dissipative counterpart of the Majorana chain in any finite setup that may be

realised in the laboratory. To this end we analyse the structure of the exact dark states and

compare them to the Majorana ground states. We furthermore give some detailed recalculations

of the results presented in [1] and the supplementary information to gain a better understanding

of the transition from number conserving to parity violating jump operators.
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This chapter is structured as follows. In Section 4.1 we give a brief outline of the proposed

setting. In Section 4.2 follows a detailed derivation of the exact (number conserving) dark states

(Subsec. 4.2.2). We give a thorough treatment regarding the uniqueness of the steady states in

each fixed number sector and provide a computer-assisted proof for up to 15 sites (Subsec. 4.2.3).

In Section 4.3 we recalculate the mean field approximation of Ref. [1]. In Section 4.4 we compare

the number conserving dark states with the Majorana ground states. We conclude this chapter

with some final remarks in Section 4.5.

Let me point out that — in contrast to the more or less self-contained chapters 5, 2 and 3 — it is crucial for

the following calculations to be familiar with the original statements and calculations in Ref. [1]. It may

be even advisable to read the supplementary information to gain a deeper understanding of this chapter.

4.1 The Setting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The dissipative setup in [1] is motivated by Kitaev’s Majorana chain [3] at the ideal point. In the

preliminary review of the latter we found in Subsec. 1.3.4 the Hamiltonian

H = iw
L−1

∑
i=1

c2ic2i+1 = 2w
L−1

∑
i=1

(
ã†

i ãi −
1

2

)
, (4.1)

see Eq. (1.71) and (1.75). The elementary excitations ã†
i are fermionic quasi particles with a

flat dispersion at this ideal point. If one aims at a dissipative implementation of the above

Hamiltonians ground state space, it is natural to choose the non-interacting jump operators

ji = ãi =
1

2

(
ai + a†

i − ai+1 + a†
i+1

)
for 1 ≤ i < L ; (4.2)

that is, all fermionic annihilation operators but the edge mode ãL = b (which is non-local

after all). Since these jump operators obey a fermionic Dirac algebra, it is trivial to see that

the dark states coincide with the two degenerate ground states of (4.1) and that the coherent

superpositions of the latter (and their mixtures) are the only steady states of the process. These

are the jump operators that are used in [1] to derive a dissipative analogue of a topological phase.

To this end a topological invariant (Chern number) is found that explains the stability of the

dissipatively separated edge states against quenched disorder in the bath couplings.

The proposed experimental setup in terms of cold atoms however realises not the jump

operators ji but the interacting and number conserving jump operators

Ji =
1

4

(
a†

i + a†
i+1

)
(ai − ai+1) =

1

4

(
a†

i ai + a†
i+1ai − a†

i ai+1 − a†
i+1ai+1

)
(4.3)

for 1 ≤ i < L. Their dark states are not trivial to see nor is it trivial to proof their uniqueness

in a fixed number sector of the Hilbert space. The authors of [1] then employ a mean field

approximation of the Ji with a product ansatz of the density matrix in momentum space —

which yields the above fermionic quasiparticle annihilators.
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The relation between the dark states of Ji and ji and the mentioned mean field approximation

are the main topics of the following sections. We start with an analysis of the exact dark states

for the number conserving jump operators and discuss their uniqueness as steady states of the

dissipative process.

4.2 Steady states of the number conserving jump operators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section we derive the exact dark states of the number conserving process rigorously. We

furthermore discuss the uniqueness of the latter as stationary states of the dissipative process in

a fixed number sector of the Hilbert space and give a computer-assisted proof for L ≤ 15 sites.

We conclude this section with a discussion of their parent Hamiltonian and some properties of

the dark states.

4.2.1 Notation and some preliminary notes

Let us start with some remarks on notation and some facts about the jump operators {Ji}.

Description of the fermionic system
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, let us fix the notation. Let FL be the abstract Fermion algebra on L generators, i.e.

FL =
〈

a1, . . . , aL, a†
1, . . . , a†

L |
{

ai, aj

}
=
{

a†
i , a†

j

}
= 0,

{
ai, a†

j

}
= δij, 1 ≤ i, j ≤ L

〉
(4.4)

with 22L linearly independent, normal ordered basis elements a†
i1

. . . a†
in

aj1 . . . ajm , that is dimFL =

22L [121]. A commonly used representation of this algebra is obtained by a Jordan-Wigner trans-

formation. To this end we choose the computational basis |0〉 = (1, 0)T and |1〉 = (0, 1)T such

that Hi = span {|0〉i , |1〉i}. Furthermore let HL =
⊗L

i Hi be spanned by
{
|n〉 | n ∈ {0, 1}L

}

which one usually calls number states. With this basis in mind, the representation ρL reads

ρL : FL −→ EndHL
∼= Mat

(
C, 2L

)
(4.5a)

aj 7→ ρL

(
aj

)
=

[
j−1

∏
k=1

σz
k

]
σ+

j (4.5b)

a†
j 7→ ρL

(
a†

j

)
=

[
j−1

∏
k=1

σz
k

]
σ−j (4.5c)

which is easily verified to be an algebra homomorphism. Since ρL provides an action of FL on

HL, the latter becomes a FL-module. Here σ
x,y,z
i denotes the Pauli matrices acting on Hi and

σ±j = 1
2

(
σx

j ± iσ
y
j

)
the corresponding creation- and annihilation matrices. Note that σz

j |n〉j =
(−1)n |n〉j, n ∈ {0, 1}. For simplicity we identify the abstract elements ai ∈ FL with their

representations ρL (ai). Then we can write

|n〉 = |n1, . . . , nL〉 =
(

a†
1

)n1
. . .
(

a†
L

)nL |0, . . . , 0〉 (4.6)
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and we find

ai |n1, . . . , ni, . . . , nL〉 =

{
0, if ni = 0

(−1)n1+···+ni−1 |n1, . . . , 0, . . . , nL〉 , if ni = 1
(4.7a)

and

a†
i |n1, . . . , ni, . . . , nL〉 =

{
(−1)n1+···+ni−1 |n1, . . . , 1, . . . , nL〉 , if ni = 0

0, if ni = 1
(4.7b)

due to the anticommutation relation
{

ai, aj

}
= δij. As a result, it follows

a†
i ai |n1, . . . , ni, . . . , nL〉 = ni |n1, . . . , ni, . . . , nL〉 (4.8a)

a†
i aj |n1, . . . , 0, . . . , 1, . . . , nL〉 = (−1)ni+1+···+nj−1 |n1, . . . , 1, . . . , 0, . . . , nL〉 (4.8b)

a†
j ai |n1, . . . , 1, . . . , 0, . . . , nL〉 = (−1)ni+1+···+nj−1 |n1, . . . , 0, . . . , 1, . . . , nL〉 (4.8c)

where Ni ≡ a†
i ai is the one-site number operator and i < j. a†

i aj performs a jump to the left,

provided site i is vacant and site j is not. In the remaining cases, the state is annihilated. The

same holds for the jump to the right, a†
j ai.

We remind the reader of some special cases which will become important below:

a†
i ai+1 |n1, . . . , 0, 1, . . . , nL〉 = |n1, . . . , 1, 0, . . . , nL〉 (4.9a)

a†
i+1ai |n1, . . . , 1, 0, . . . , nL〉 = |n1, . . . , 0, 1, . . . , nL〉 (4.9b)

a†
1aL |0, . . . , 1〉 = (−1)n2+···+nL−1 |1, . . . , 0〉 = (−1)N−1 |1, . . . , 0〉 (4.9c)

a†
La1 |1, . . . , 0〉 = (−1)n2+···+nL−1 |0, . . . , 1〉 = (−1)N−1 |0, . . . , 1〉 (4.9d)

where N = ∑
L
i=1 ni denotes the total number of fermions.
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Description of the jump operators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The number conserving jump operators given above read

Ji =
1

4

(
a†

i + a†
i+1

)
(ai − ai+1) =

1

4

(
a†

i ai + a†
i+1ai − a†

i ai+1 − a†
i+1ai+1

)
(4.10)

for 1 ≤ i < L. In the following we give some preliminary notes on their Jordan-Wigner transfor-

mation and their algebra.

� Jordan-Wigner transformation

In order to obtain numerical results (which may be employed for verification and inspiration),

a matrix representation for the jump operators, and thus the fermionic algebra, is required. To

this end, we insert the Jordan-Wigner transformed fermionic operators (as defined above) into

the jump operators and obtain

Ĵi =
1

4

([
i−1

∏
k=1

σz
k

]
σ−i +

[
i

∏
k=1

σz
k

]
σ−i+1

)([
i−1

∏
k=1

σz
k

]
σ+

i −
[

i

∏
k=1

σz
k

]
σ+

i+1

)

=
1

4

(
σ−i + σz

i σ−i+1

) (
σ+

i − σz
i σ+

i+1

)

=
1

4

(
σ−i σ+

i + σz
i σ−i+1σ+

i − σ−i σz
i σ+

i+1 − σz
i σ−i+1σz

i σ+
i+1

)

=
1

4

[
1

2
(1− σz

i )−
1

2
(1− σz

i+1) + σz
i (σ
−
i+1σ+

i + σ−i σ+
i+1)

]

=
1

8

[
σz

i+1 − σz
i + 2σz

i (σ
−
i+1σ+

i + σ−i σ+
i+1)

]

=
1

8

[
σz

i+1 − σz
i + i(σx

i+1σ
y
i − σ

y
i+1σx

i )
]

for 1 ≤ i ≤ L− 1 where we used σzσ+ = σ+ and σzσ− = −σ−. Obviously all jump operators

in the open setup remain local after the Jordan-Wigner transformation. However, the additional

jump operator JL retains a non-local string which measures the parity of the bulk:

ĴL =
1

4

([
L−1

∏
k=1

σz
k

]
σ−L + σ−1

)([
L−1

∏
k=1

σz
k

]
σ+

L − σ+
1

)

=
1

4

(
P′σz

1 σ−L + σ−1
) (

P′σz
1 σ+

L − σ+
1

)

=
1

8

[
σz

1 − σz
L − 2P′σz

1(σ
−
1 σ+

L + σ−L σ+
1 )
]

=
1

8

[
σz

1 − σz
L + iP′(σx

1 σ
y
L − σ

y
1 σx

L)
]

Where we introduced the bulk parity P′ = ∏
L−1
k=2 σz

k .
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� Action on the number basis

It obvious that Ji annihilates a number state if ni = ni+1. On the other hand, if ni 6= ni+1, either

a left or a right jump is performed, along with a superposition with the previous state. In a

pictorial representation this reads (i is the left fermionic site):

Ji | 〉 = 0 (4.11a)

Ji | 〉 = −1

4
[| 〉+ | 〉] (4.11b)

Ji | 〉 =
1

4
[| 〉+ | 〉] (4.11c)

Ji | 〉 = 0 (4.11d)

It follows immediately that J2
i annihilates every number state.

Note that the above discussion holds only for an open chain. Closing an open chain (i.e.

introducing periodic boundary conditions) is described by an additional jump operator JL

JL =
1

4

(
a†

LaL + a†
1aL − a†

La1 − a†
1a1

)
. (4.12)

Whereas for the the other jump operators Ji with 1 ≤ i ≤ L − 1 the previous arguments still

apply, the new jump operator comes up with a peculiarity:

JL | . . . 〉 = 0 (4.13a)

JL | . . . 〉 = −1

4

[
(−1)N−1 | . . . 〉+ | . . . 〉

]
(4.13b)

JL | . . . 〉 =
1

4

[
(−1)N−1 | . . . 〉+ | . . . 〉

]
(4.13c)

JL | . . . 〉 = 0 (4.13d)

We are now going to write the action of the jump operators on the number states in a more

compact form. To this end, introduce the local transposition τi

τi : {0, 1}L −→ {0, 1}L (4.14a)

n = (n1, . . . , ni, ni+1, . . . , nL)
T 7→ τin = (n1, . . . , ni+1, ni, . . . , nL)

T (4.14b)

τL : {0, 1}L −→ {0, 1}L (4.14c)

n = (n1, . . . , nL)
T 7→ τLn = (nL, . . . , n1)

T , (4.14d)

where 1 ≤ i ≤ L− 1. Furthermore the local signum is defined as

σi : {0, 1}L −→ {−1, 0, 1}, n 7→ σin =





+1 ⇔ ni = 1∧ ni+1 = 0

0 ⇔ ni = ni+1

−1 ⇔ ni = 0∧ ni+1 = 1

(4.15)

where i is a variable modulo L. It is easy to verify that

σiτjn =





−σin ⇔ |i− j| = 0

σin + σjn ⇔ |i− j| = 1

σin ⇔ |i− j| > 1

. (4.16)
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We are now in the position to express the action of the jump operators as follows:

Ji |n〉 = σin (|n〉+ |τin〉) (4.17a)

JL |n〉 = σin
(
|n〉+ (−1)N−1 |τin〉

)
(4.17b)

Set ‖n‖ = ∑
L
i=1 |ni| and BN =

{
n ∈ {0, 1}L | ‖n‖ = N

}
. Then it is obvious that τiBN = BN for all

1 ≤ i ≤ L since τ2
i = 1. This relates to the number preserving property of the jump operators.

� The Temperley-Lieb algebra

The authors of Ref. [1] point out correctly that the jump operators Ji do not obey a simple Dirac

algebra and thus the derivation of their dark states and a proof of the uniqueness as steady states

is non-trivial [122]. Nevertheless, they obey another well-known algebra, namely the Temperley-

Lieb algebra. This algebra was originally introduced in the context of statistical mechanics [123].

Today it is known that the range of its applications is much wider [124]. In particular, there are

applications to quantum mechanical spin chains [125, 126] and there has been much progress

with respect to its representation theory [127–129]. A comprehensible introduction is given

in [128].

The Temperley-Lieb algebra and the periodic Temperley-Lieb algebra are defined as follows:

◮ Definition 4.1: Temperley-Lieb algebra

Let δ ∈ C be an arbitrary but fixed complex parameter (δ = 0 allowed!).

(i) The Temperley-Lieb algebra (TLA) TLL(δ) is the unital associative algebra over C

generated by 1, U1, . . . , UL−1 with relations

UiUj = UjUi for all |i− j| > 1, 1 ≤ i, j ≤ L− 1 (4.18a)

U2
i = δUi for all 1 ≤ i ≤ L− 1 (4.18b)

UiUi+1Ui = Ui for all 1 ≤ i ≤ L− 2 (4.18c)

UiUi−1Ui = Ui for all 2 ≤ i ≤ L− 1 . (4.18d)

(ii) The Periodic Temperley-Lieb algebra (PTLA) PTLL(δ) is the unital associative algebra

over C generated by 1, U1, . . . , UL−1, UL with the relations of TLL(δ) and the additional

relations

UiUL = ULUi for all i 6= 1, L− 1 (4.19a)

U2
L = δUL (4.19b)

ULUiUi = UL for i = 1, L− 1 (4.19c)

UiULUi = Ui for i = 1, L− 1 . (4.19d)

The dimension of the TLA can be shown be be finite and it holds

dim TLL(δ) =

(
2L

L

)
−
(

2L

L− 1

)
=

1

L + 1

(
2L

L

)
(4.20)

which is known from combinatorics as the Catalan number.

| 223



Chapter4 The dissipative Majorana chain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In contrast, the PTLA is infinite dimensional for L > 2, i.e. dim PTLL(δ) = ∞. We are now

going to show, that the particle conserving jump operators (up to a constant factor) constitute a

representation of TLL(0) and PTLL(0) in the case of an open and closed chain, respectively. To

this end, redefine the jump operators

Jj −→ 4i Jj (4.21)

and note that the factor 4 describes a rescaling of the system-bath coupling whereas the complex

phase i has no physical relevance due to the global phase symmetry of the Lindblad superoper-

ator. A straightforward but cumbersome calculation shows that the required relations hold:

Ji Jj = Jj Ji for all |i− j| > 1, 1 ≤ i, j ≤ L− 1

J2
i = 0 for all 1 ≤ i ≤ L− 1

Ji Ji+1 Ji = Ji for all 1 ≤ i ≤ L− 2

Ji Ji−1 Ji = Ji for all 2 ≤ i ≤ L− 1 .

And in the closed chain the additional relations hold:

Ji JL = JL Ji for all i 6= 1, L− 1

J2
L = 0

JL Ji JL = JL for i = 1, L− 1

Ji JL Ji = Ji for i = 1, L− 1 .

Here we employed the definition of Ji and the defining relations of the fermionic algebra FL. In

terms of spin S = 1
2 representations we find the representation (via the Jordan-Wigner transfor-

mation)

ρL : PTLL(0) −→ End
L⊗

i=1

C
2
i (4.22a)

Ui 7→ ρL(Ui) =
1

2

[
i(σz

i+1 − σz
i ) + (σ

y
i+1σx

i − σx
i+1σ

y
i )
]

(4.22b)

UL 7→ ρL(UL) =
1

2

[
i(σz

1 − σz
L) + P′(σy

1 σx
L − σx

1 σ
y
L)
]

(4.22c)

where 1 ≤ i ≤ L− 1. This is consistent with recent findings in [129].

Although we will not use the Temperley-Lieb algebra explicitly, it might be helpful for future

considerations of the dissipative process {Ji} and related jump operators to apply the machin-

ery of representation theory that has been developed for the TLA and PTLA to gain a deeper

understanding of the mathematics behind the theory. �
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4.2.2 Dark states

Let us now turn towards the dark states of the dissipative process {Ji}. In order to derive the

dark state space, i.e. the linear subspace65 DL = {|Ψ〉 ∈ HL | ∀1≤i≤L−1 : Ji |Ψ〉 = 0}, we note

that

HL = H(L,0) ⊕H(L,1) ⊕ · · · ⊕ H(L,L) where H(L,N) = span {|n〉 | n ∈ BN} . (4.23)

The dimension of the number operator eigenspaces H(L,N) is dimH(L,N) = ( L
N). We are going

to show, that for each particle number N there is a (at most) one-dimensional dark state space

D(L,N) such that

DL = D(L,0) ⊕D(L,1) ⊕ · · · ⊕ D(L,L) . (4.24)

That is, every dark state is a unique superposition of fixed number dark states and the latter are

unique in H(L,N).

� Open Chain

In an open boundary setting, the jump operators Ji for 1 ≤ i ≤ L− 1 must be considered. Let

|Ψ〉 = ∑n∈BN
Ψ(n) |n〉 ∈ H(L,N) be an arbitrary state. Then we find

Ji |Ψ〉 = ∑
n∈BN

Ψ(n)Ji |n〉 = ∑
n∈BN

Ψ(n)σin (|n〉+ |τin〉)

=
1

2 ∑
n∈BN

Ψ(n)σin (|n〉+ |τin〉) +
1

2 ∑
n∈BN

Ψ(τin)σiτin (|τin〉+ |n〉)

=
1

2 ∑
n∈BN

Ψ(n)σin (|n〉+ |τin〉)−
1

2 ∑
n∈BN

Ψ(τin)σin (|n〉+ |τin〉)

=
1

2 ∑
n∈BN

[Ψ(n)−Ψ(τin)] σin (|n〉+ |τin〉) !
= 0

where we used τiBN = BN , τ2
i = 1 and σiτin = −σin. Since {|n〉 | n ∈ BN} is a basis (and the

summands appear in pairs with the same coefficients), this is equivalent to

[Ψ(n)−Ψ(τin)] σin = 0 for all 1 ≤ i ≤ L− 1 and for all n ∈ BN . (4.25)

Note that σin = 0 ⇔ τin = n and the statement is trivial. Thus the only non trivial conditions

read

Ψ(n) = Ψ(τin) for all 1 ≤ i ≤ L− 1 and for all n ∈ BN . (4.26)

It is clear that any two vectors n, m ∈ BN may be converted into each other by a sequence of

local transpositions τ = ∏k τik : τm = n. Therefore the derived condition is satisfied if and only

if Ψ(n) = const for n ∈ BN and we find the unique fixed number dark state

|D, N〉 = N−1/2 ∑
n∈BN

|n〉 where N =

(
L

N

)
and D(L,N) = span {|D, N〉} . (4.27)

Note that there is no condition on the particle number N whatsoever. �

65If there is an additional Hamiltonian dynamics, the set of dark states (which have to be eigenstates of the Hamilto-
nian) is not a linear subspace in general. However, since we consider purely dissipative processes, DL is closed under
summation.
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� Closed Chain

If we connect the two ends of the (finite) chain, the additional condition JL |Ψ〉 = 0 for all

|Ψ〉 ∈ D(L,N)
=
{
|Ψ〉 ∈ H(L,N) | ∀1≤i≤L : Ji |Ψ〉 = 0

}
must hold. Since we derived a unique

dark state for the reduced jump operator set (1 ≤ i ≤ L− 1), it remains to check, whether the

additional jump operator JL annihilates |D, N〉:

JL |D, N〉 = N−1/2 ∑
n∈BN

JL |n〉 = N−1/2 ∑
n∈BN

σLn
(
|n〉+ (−1)N−1 |τLn〉

)

=
N−1/2

2 ∑
n∈BN

σLn
[
|n〉+ (−1)N−1 |τLn〉 − |τLn〉 − (−1)N−1 |n〉

]

=

{
0 ⇔ N odd or N = 0, L

N−1/2 ∑n∈BN
σLn [|n〉 − |τLn〉] 6= 0 ⇔ N even and N 6= 0, L

.

We conclude that for a PBC system with odd filling there is a unique dark state: D(L,N)
=

span {|D, N〉}. However, for even numbers of particles the dark state space is trivial and there

is no physical pure steady state: D(L,N)
= {0}. The absence of the even number (even parity)

dark states corresponds to the absence of the boundary modes in the Majorana chain for PBC.

In Section 4.3.2 we derive the fixed number dark state for a periodic chain in momentum

space. There we find

|BCS, N〉 = N−1/2
N a†

0

(
G†
)N
|0〉 = N−1/2

N a†
0

(

∑
k>0

ϕka†
−ka†

k

)N

|0〉 (4.28)

which includes an odd number of fermions. This is consistent with our findings above. Since

the dark state is unique, one can show |BCS, N〉 = |D, 2N + 1〉 by combinatorial arguments. �

Let us summarise our findings:

◮ Result 4.1: Fixed number dark states

A System with L fermionic sites and N particles, driven by the dissipative process {Ji},
features the unique dark state

|D, N〉 = N−1/2 ∑
n∈BN

|n〉 where N =

(
L

N

)
(4.29)

when open boundary conditions are inflicted. For periodic systems |D, N〉 is the unique dark

state only for odd fillings. In the case of even fillings there is no pure steady state.

Note that in the framework of spin-chains, the identification |n1, . . . , nL〉 ↔ |ln1
, . . . , lnL〉 is

made, where ni = 1 ⇔lni
=↓ and ni = 0 ⇔lni

=↑. So we find the dark state |D, N〉Spin =

N−1/2 ∑n∈BN
|ln1

, . . . , lnL〉.
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4.2.3 Steady states

In the previous paragraph we showed the uniqueness of the dark state in the case of open and

periodic boundary conditions. However, this does not guarantee that it is also the unique steady

state of the system [130]. In the following we reformulate the criterion for the uniqueness of

the steady state – as derived in [130] – in an more algebraic fashion and try to prove for the

system at hand the uniqueness of the steady state rigorously. As a result, we find a purely

mathematical statement in terms of recursively generated vectors that — if true — implies the

uniqueness of the steady states. Computer-assisted results for this recursive set of vectors prove

the uniqueness for up to 15 sites. We conjecture that the derived statement is generally true;

finding a proof for this statement is left open as a task for the future.

Criterion for a unique steady dark state
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We start with a quite general treatment of a (purely) dissipative dynamics governed by a Lind-

blad master equation and jump operators {Li}i∈I where I is some index set and Li ∈ B(H) are

(usually non-Hermitian) bounded operators acting on the Hilbert space H. Assume that the

dark state |D〉 is unique, i.e. D is a one-dimensional linear subspace. Then it can be shown [130]

that the following proposition holds.

◮ Proposition 4.1: Uniqueness I

If there exists no subspace S ≤ H, S ⊥ D, which is invariant under the action of the jump

operator algebra, LiS ⊆ S for all i ∈ I, then the dark state |D〉 is the only steady state.

Proof. See Theorem 2 in Ref. [130]. �

To recast this statement in a more practical form, we introduce the (abstract) unital jump opera-

tor algebra

A = 〈{Li | i ∈ I} ∪ {1}〉 (4.30)

which (in our case) is a subalgebra of FL. Its intended action on H is defined by a representation

ρ : A → EndH which endows H with the structure of an A-module. Since A is generated by

{Ji} and the identity, every element A ∈ A has the form of a complex polynomial in the jump

operators. The proposition above now tells us that we have to rule out the possibility for an

A-invariant subspace which is orthogonal to the dark state |D〉. We are now going to prove the

following proposition:

◮ Proposition 4.2: Uniqueness II

Given a unique dark state |D〉 ∈ H whereH is a (left) A-module of the unital jump operator

algebra A. If the dual space H∗ is a cyclic (right) A-module over 〈D|, then |D〉 is the unique

steady state. Formally this reads

〈D| A = H∗ ⇒ |D〉 is the unique steady state (4.31)
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Proof. We show the equivalence of the statement to proposition 4.1. To this end, it has to be

shown that the non-existence of an A-invariant subspace S which is orthogonal to |D〉 is equiv-

alent to H∗ being a cyclic A-module over 〈D|:

(⇒) Assume that 〈D| A 6= H∗, i.e. H∗ is not cyclic over 〈D|. Since 〈D| A is a (proper) linear

subspace, its orthogonal complement V⊥ = (〈D| A)⊥ 6= {0} is non-trivial. Choose an

arbitrary vector 〈s| ∈ V⊥ and define the subspace S = A |s〉 ≤ H. S is A-invariant by

construction and for every |Ψ〉 = AΨ |s〉 ∈ S we find 〈D |Ψ〉 = 〈D| AΨ |s〉 = 0 since

〈s| ∈ (〈D| A)⊥.

(⇐) Assume the opposite, i.e. there is an A-invariant subspace S ≤ H which is orthogonal to

|D〉. Choose |s〉 ∈ S arbitrarily. Then we find 〈D| A |s〉 = 0 for every A ∈ A since A |s〉 ∈ S

and S ⊥ |D〉. Consequently 〈s| /∈ 〈D| A and thus 〈D| A 6= H∗.

�

A more convenient form of the statements 4.1 and 4.2 is the following:

◮ Remark 4.1: Uniqueness I & II

Let B be an arbitrary ONB ofH. The following statements are equivalent and sufficient for a

unique dark state |D〉 being the only steady state under the dissipative dynamics governed

by the unital jump operator algebra A:

(i) For all states 0 6= |Ψ〉 ∈ H there is an operator A ∈ A such that 〈D| A |Ψ〉 6= 0.

(ii) There is a set {A1, . . . , An} ⊆ A, n = dimH, such that rank
{

A†
i |D〉 | 1 ≤ i ≤ n

}
= n.

Proof. We show the equivalence of the statements above to the premises of the previous two

propositions (which are equivalent, as shown above).

(i) Assume the statement holds. Then there is no A-invariant subspace orthogonal to |D〉.
Conversely, suppose there exists |Ψ〉 ∈ H such that for all A ∈ A it holds 〈D| A |Ψ〉 = 0.

Then S := A |Ψ〉 is an A-invariant subspace orthogonal to |D〉. Thus statement (i) is

equivalent to the premise in proposition 4.1.

(ii) Assume the statement holds. Then obviously rank {〈D| Ai | 1 ≤ i ≤ n} = n and thus

〈D| A = H∗. Conversely, given 〈D| A = H∗, then the existence of a set {A1, . . . , An} ⊆ A
with the demanded properties follows immediately. Thus statement (ii) is equivalent to

the premise in proposition 4.2.

�

Criterion (i) implies the construction of a polynomial in the jump operators based on an arbitrary

given state |Ψ〉 ∈ H. In contrast, criterion (ii) implies the construction of polynomials in the

adjoint jump operators which generate the whole Hilbert space over the dark state.

228 |



N. Lang Steady states of the number conserving jump operators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L

N

b

0

1

2

3

4

0

1

2

3

4

H(0,0)

H(2,1)

H(4,2)

H(1,0) H(1,1)

H(2,0) H(2,2)

H(3,0) H(3,1) H(3,2) H(3,3)

H(4,0) H(4,1) H(4,3) H(4,4) (a)

0

1

2

3

4

0

1

2

3

4

(b)

� Figure 4.1: Schematic for the recursive generation of matrix representations for the jump operator alge-
bra. (a) The system size L grows from top to bottom and the filling N from top left to down right. The

vertices denote the ( L
N)-dimensional AL-modules H(L,N) which coincide with the N-particle subspaces.

The dimension as well as the recursion scheme motivate the arrangement as Pascal’s triangle. (b) Exam-

ple for the recursive construction of the representation H(4,2), denoted by . Starting from the trivial,
one-dimensional boundary representations – denoted by – one combines successively pairs of repre-
sentations (denoted by and ) according to proposition 4.3. After four steps the target representation

is reached.

Derivation of the statement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider an (open or closed) chain of L fermionic sites and a complete set of quasilocal jump

operators {ai}1≤i≤L which obey the fermionic algebra, i.e.
{

ai, a†
j

}
= δij and so forth. Then the

dark state |D〉 is just the vacuum state (in general: a quasiparticle vacuum) which is unique due

to the completeness of the jump operator algebra. In this case the criterion (ii) (Remark 4.1) is

easily verified since {a†
i }1≤i≤L is just a complete set of creation operators which enables us to

construct any number state from the quasiparticle vacuum |D〉.
In the case at hand, the jump operators {Ji} do not obey a fermionic algebra and thus the

simple argument above is not valid. Nevertheless we are going to show the uniqueness of

the dark states |D, N〉 as steady states in the fixed particle number spaces H(L,N) by means of

criterion (ii). This turns out to be quite complicated due to the complex jump operator algebra

AL = TLL(0). Thus we start with some preliminary work first.

� Finite dimensional matrix representations

Here we give a recursive construction for finite dimensional matrix representations of the jump

operator algebra AL. Let ρL be the common matrix representation of AL on HL obtained by

the Jordan Wigner transformation as described above. Due to the particle number preserving

property of this representation, the AL-module HL is decomposable

HL = H(L,0) ⊕H(L,1) ⊕ · · · ⊕ H(L,L) (4.32)

where each submodule H(L,N) is endowed with a ( L
N)-dimensional subrepresentation ρ(L,N) of

ρL = ρ(L,0) ⊕ ρ(L,1) ⊕ · · · ⊕ ρ(L,L). In the following, the abstract generators of the algebra are

denoted by Ji whereas their matrix representation on H(L,N) is denoted by J
(L,N)
i (which is

a ( L
N) × ( L

N)-matrix). These AL-modules may be arranged as depicted in Fig. 4.1 (a) whose

structure is motivated by Pascal’s triangle due to the dimensions ( L
N).

In the following the number basis BN = {|n〉 | n ∈ BN} is furnished with a binary order

where the least significant bit is located on the left hand side.
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An example for L = 4 and N = 2 reads

| 〉 | 〉 | 〉 | 〉 | 〉 | 〉 .

Such a basis can be generated recursively as follows: Let
(
|n1〉 , . . . ,

∣∣np

〉)
and

(
|m1〉 , . . . ,

∣∣mq

〉)

be correctly ordered bases for H(L,N−1) and H(L,N), respectively (so p = ( L
N−1) and q = ( L

N)).

Then the corresponding basis for H(L+1,N) reads
(
|m1〉 |0〉 , . . . ,

∣∣mq

〉
|0〉 , |n1〉 |1〉 , . . . ,

∣∣np

〉
|1〉
)
.

With this in mind, we can show the following recursion:

◮ Proposition 4.3: Recursive matrix representations for open chains

Given L, N ∈ N0 with 0 ≤ N ≤ L and L ≥ 1 and the (abstract) generators {Ji}1≤i≤L−1. Then

for each 1 ≤ i ≤ L− 1 the matrix representation J
(L+1,N)
i is recursively given by

J
(L+1,N)
i =


J

(L,N)
i 0

0 J
(L,N−1)
i


 and J

(L+1,N)
L =

1

4




01

12 −12

12 −12

03




(4.33)

where 01 and 03 denote the (L−1
N )× (L−1

N )- and ( L−1
N−2)× ( L−1

N−2)-zero matrix, respectively. 12 is

the ( L−1
N−1)× ( L−1

N−1)-identity matrix. The identity is of course 1
(L+1,N) = diag{1, . . . , 1} with

size (L+1
N )× (L+1

N ). Note that

(
L + 1

N

)
=

(
L

N

)
+

(
L

N − 1

)
=

(
L− 1

N

)
+

(
L− 1

N − 1

)
+

(
L− 1

N − 1

)
+

(
L− 1

N − 2

)
(4.34)

which is the proper dimension for H(L+1,N). The boundary cases are N = 0 and N = L.

Then the representations are one-dimensional and read

1
(L,0) =

[
1
]

, J
(L,0)
i =

[
0
]

, and 1
(L,L) =

[
1
]

, J
(L,L)
i =

[
0
]

. (4.35)

By means of these statements, recursive schemes along the lines of Fig. 4.1 (b) allow for the

construction of representations for arbitrary L and N.

Proof. We start from the common representation defined by the action of the fermionic jump

operators on HL and show that the matrices with respect to the binary ordered number basis

BL take the claimed form.

First, consider the boundary representations, i.e. N = 0 and N = L. The representations are

one-dimensional since dimH(L,0) = dimH(L,L) = 1. Furthermore we already saw that

Ji | 〉 = 0 and Ji | 〉 = 0 (4.36)

which are the only basis states for N = 0 and N = L, respectively. Thus we find J
(L,0)
i = J

(L,L)
i =[

0
]

for all 1 ≤ i ≤ L− 1.
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Now assume that J
(L,N−1)
i and J

(L,N)
i are the correct representations on H(L,N−1) and H(L,N),

respectively. If we consider the new system with L + 1 sites and N fermions, there are two

possible states for the L + 1-th site. If it is empty, the N fermions have to be arranged on the

“old” sites. These number states correspond to the left-hand side of the matrix (according to our

convention) and are ordered in the same way as in H(L,N). The same argument holds for the

second case where the “new” site is occupied and there are N− 1 fermions to be arranged on the

“old” sites. These number states correspond to the right-hand side of the matrix. Furthermore

we realise that the generators Ji do not operate on the L + 1-th site. Therefore their matrix

representations remain unchanged. Since they cannot alter the state of the L + 1-th site, the new

representation matrix is block diagonal, i.e.

J
(L+1,N)
i =


J

(L,N)
i 0

0 J
(L,N−1)
i


 . (4.37)

The new jump operator JL acts as follows on the number states:

JL |. . . 〉 = 0 (4.38a)

JL |. . . 〉 = −1

4
[|. . . 〉+ |. . . 〉] (4.38b)

JL |. . . 〉 =
1

4
[|. . . 〉+ |. . . 〉] (4.38c)

JL |. . . 〉 = 0 (4.38d)

Due to our ordering the first (L−1
N ) basis states are of the form |. . . 〉 whereas the last ( L−1

N−2)

states are of the form |. . . 〉. Last but not least there are ( L−1
N−1) basis states for each of the two

forms |. . . 〉 and |. . . 〉 (in this order!). Finally we find

J
(L+1,N)
L =

1

4




01

12 −12

12 −12

03




(4.39)

with the block dimensions as claimed above. �

◮ Example on H(4,2)

As an example consider the (4
2) = 6-dimensional representation on H(4,2). There the jump

operators for A4 read (Note the structure of J
(4,2)
3 !)

J
(4,2)
1 =




0 0 0 0 0 0

0 1 −1 0 0 0

0 1 −1 0 0 0

0 0 0 1 −1 0

0 0 0 1 −1 0

0 0 0 0 0 0




, J
(4,2)
2 =




1 −1 0 0 0 0

1 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 −1

0 0 0 0 1 −1




, J
(4,2)
3 =




0 0 0 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 0 0 0 0 0




.
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It is easy to derive these matrices by hand if one employs the derivation depicted in Fig. 4.1 (b).

For representations adjacent to the boundary (i.e. N = 1 and N = L − 1) there is a slight

peculiarity, for binomial coefficients of the form ( L
−1) and (L−1

L ) occur. Such coefficients are

defined to be equal zero and consequently some blocks in J
(L+1,N)
L vanish. ◭

� Cyclic matrix representations

We know that there is a unique dark state |D, N〉 for each subspace H(L,N). To show its unique-

ness as a steady state, we have to show that the corresponding representation is cyclic over

|D, N〉, see remark 4.1 (ii). To this end, note that

|D, N〉 = N−1/2 ∑
n∈BN

|n〉 ⇒ (〈n |D, N〉) ∝
(

1 · · · 1
)T

. (4.40)

Thus we have to show that for each pair (L, N) there are elements {A1, . . . , An} ⊆ A, n ≥ ( L
N),

such that

rank





(
A
(L,N)
1

)†




1

...

1




, . . . ,
(

A
(L,N)
n

)†




1

...

1








= rank
{

ϕ(L,N)(A1), . . . , ϕ(L,N)(An)
}
=

(
L

N

)
.

Here we introduced the homomorphism of vector spaces

ϕ(L,N) : AL −→ C
( L

N), A 7→ ϕ(L,N)(A) ≡
(

ρ(L,N)(A)
)†




1

...

1




(4.41)

which is easily seen to obey the relation ϕ(L,N)(AB) = B̂† ϕ(L,N)(A) where B̂ ≡ ρ(L,N)(B) and

ϕ(L,N)(1) =
[
1 · · · 1

]T
. ϕ(L+1,N)(A) is a vector of size (L+1

N ) = ( L
N) + ( L

N−1). Then define the

partition

ϕ(L+1,N)(A) ≡

ϕ

(L+1,N)
↑ (A)

ϕ
(L+1,N)
↓ (A)


 where ϕ

(L+1,N)
↑ (A) ∈ C

( L
N) and ϕ

(L+1,N)
↓ (A) ∈ C

( L
N−1)

where we assume66 ( L
N) ≥ ( L

N−1).

66I.e. we confine ourselves to the left part of Pascal’s triangle which will be no restriction due to the symmetry of the
system with respect to fillings N ↔ L− N.

232 |



N. Lang Steady states of the number conserving jump operators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let A ∈ AL be an arbitrary polynomial in the jump operators {J1, . . . , JL−1}. Recall that in

H(L+1,N) the representation ρ(L+1,N)(A) is block diagonal (See proposition 4.3) for such opera-

tors. Therefore we find

ϕ(L+1,N)(A) = Â† ϕ(L+1,N)(1) =


ϕ

(L+1,N)
↑ (A)

ϕ
(L+1,N)
↓ (A)


 =


 ϕ(L,N)(A)

ϕ(L,N−1)(A)


 =




ϕ
(L,N)
↑ (A)

ϕ
(L,N)
↓ (A)

ϕ
(L,N−1)
↑ (A)

ϕ
(L,N−1)
↓ (A)




. (4.42)

Now consider an operator of the form AJL ∈ AL+1 where A ∈ AL is supported by the first L

sites whereas JL acts on the L-th and L + 1-th site. Then it holds

ϕ(L+1,N)(AJL) = ĴT
L ϕ(L+1,N)(A) =




01

12 12

−12 −12

03




·




ϕ
(L,N)
↑ (A)

ϕ
(L,N)
↓ (A)

ϕ
(L,N−1)
↑ (A)

ϕ
(L,N−1)
↓ (A)




(4.43a)

=




0

ϕ
(L,N)
↓ (A) + ϕ

(L,N−1)
↑ (A)

−ϕ
(L,N)
↓ (A)− ϕ

(L,N−1)
↑ (A)

0




≡

ϕ

(L+1,N)
↑ (A)

ϕ
(L+1,N)
↓ (A)


 . (4.43b)

These observations motivate the definition of a recursive set of vectors which — as we shall

prove — can be generated by monomials of jump operators: →֒
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◮ Definition 4.2: Recursive generating system G
Let

G(L, N) =




 ϕ

(L,N)
↑,1

ϕ
(L,N)
↓,1 )


 , . . . ,


 ϕ

(L,N)

↑,2L−1

ϕ
(L,N)

↓,2L−1)




 ⊆ R

( L
N)

be a finite set of vectors where ϕ
(L,N)
↑,i ∈ R

(L−1
N ) and ϕ

(L,N)
↓,i ∈ R

( L−1
N−1).

It is recursively defined as follows:

(i) The boundary sets, i.e. N = 0 and N = L, are explicitly given as

G(L, 0) =
([

ϕ
(L,0)
↑,1

]
, . . . ,

[
ϕ
(L,0)

↑,2L−1

])
=
([

1
]

,
[
0
]

. . . ,
[
0
])

(4.44)

G(L, L) =
([

ϕ
(L,L)
↓,1

]
, . . . ,

[
ϕ
(L,L)

↓,2L−1

])
=
([

1
]

,
[
0
]

. . . ,
[
0
])

(4.45)

(ii) The recursion is defined as

G(L + 1, N) =




ϕ

(L+1,N)
↑,1

ϕ
(L+1,N)
↓,1


 , . . . ,


ϕ

(L+1,N)

↑,2L−1

ϕ
(L+1,N)

↓,2L−1


 ,


ϕ

(L+1,N)

↑,2L−1+1

ϕ
(L+1,N)

↓,2L−1+1


 , . . . ,


ϕ

(L+1,N)

↑,2L

ϕ
(L+1,N)

↓,2L






where for the first half (1 ≤ i ≤ 2L−1) it is

ϕ
(L+1,N)
↑,i =


ϕ

(L,N)
↑,i

ϕ
(L,N)
↓,i


 and ϕ

(L+1,N)
↓,i =


ϕ

(L,N−1)
↑,i

ϕ
(L,N−1)
↓,i


 (4.46)

and for the second half (2L−1 + 1 ≤ i ≤ 2L) we define (i′ = i− 2L−1)

ϕ
(L+1,N)
↑,i =

1

2


 0

ϕ
(L,N)
↓,i′ + ϕ

(L,N−1)
↑,i′


 and ϕ

(L+1,N)
↓,i =

1

2


−ϕ

(L,N)
↓,i′ − ϕ

(L,N−1)
↑,i′

0


 .

Therefore the set G(L, N) has 2L−1 elements.

This construction is performed easily by hand according to the scheme depicted in Fig. 4.1 (b).

The first few sets read:

G(1, 0) =
([

1
])

and G(1, 1) =
([

1
])

→ G(2, 1) =




1

1


 ,


 1

−1






G(2, 0) =
([

1
]

,
[
0
])

and G(2, 1) → G(3, 1) =







1

1

1


 ,




1

−1

0


 ,




0

1

−1


 ,




0

−1

1







G(2, 1) and G(2, 2) =
([

1
]

,
[
0
])

→ G(3, 2) =







1

1

1


 ,




0

1

−1


 ,




1

−1

0


 ,




1

−1

0
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Obviously each of these sets has maximum rank, i.e. spans the whole space R
( L

N). �

A computer-assisted generation of G(L, N) up to L = 15 and for every possible filling N suggests

the following conjecture:

◮ Conjecture 4.1: Maximum rank of G

Given L, N ∈ N0, 0 ≤ N ≤ L and L ≥ 1. Then G(L, N) has the following properties:

(i) It has maximum rank, i.e. rankG(L, N) = ( L
N).

(ii) There is a sequence (Ai)1≤i≤2L−1 ⊆ A such that G(L, N) =
(

ϕ(L,N)(Ai)
)

1≤i≤2L−1
.

Proof. We prove the second part:

(ii) Let ΛL ⊆ AL be recursively defined as follows: Start with Λ1 = (1). Provided ΛL is already

known, set ΛL+1 = ΛL ∪ΛL JL where ∪ denotes the concatenation of sequences. Thus ΛL contains

all ordered sequences of jump operators up to length L− 1 and we find |ΛL| = 2L−1. We claim that

ΛL is the sequence of operators we are looking for. We show this by induction: For the boundary

cases N = 0 and N = L we obviously get the correct sets G(L, N) since the first element of ΛL is

1 which yields
[
1
]

and the other elements are represented by 1× 1 zero-matrices which yield the

remaining 2L−1 − 1 vectors
[
0
]
. Now assume that ΛL is the correct set for L and all 0 ≤ N ≤ L.

Then ΛL+1 yields via ϕ(L+1,N) the correct vectors of G(L + 1, N) (in the correct order) as shown in

Equations (4.42) and (4.43).

�

Unfortunately I was not able to find a general proof for (i) although it seems reasonable

to tackle it by induction. Nevertheless we succeeded for small systems with L ≤ 15 as the

computer-assisted generations show. Given a proof of (i) we would find as a corollary of Con-

jecture 4.1 and Remark 4.1 the desired statement for general L and N:

◮ Corollary 4.1: Uniqueness of steady dark state

Each AL-module H(L,N) is cyclic over |D, N〉.
The latter is the unique steady state of the dissipative dynamics AL.
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4.2.4 A parent Hamiltonian for the dark states

Let us now consider the parent Hamiltonian HP = ∑i J†
i Ji since its ground states with zero

energy coincide with the dark states of the dissipative process. It is straightforward to show (up

to a prefactor) that

HOBC =
L−1

∑
i=1

J†
i Ji =

1

2

L−1

∑
i=1

[
(ni + ni+1 − 2nini+1)− (a†

i ai+1 + a†
i+1ai)

]
(4.47)

where ni = a†
i ai is the number operator on site i. The Hamiltonian HOBC is called parent Hamilto-

nian for the process {Ji} (for open boundary conditions). For periodic boundary conditions the

parent Hamiltonian reads

HPBC =
L

∑
i=1

J†
i Ji =

1

2

L−1

∑
i=1

[
(ni + ni+1 − 2nini+1)− (a†

i ai+1 + a†
i+1ai)

]

+
1

2

[
(nL + n1 − 2nLn1)− (a†

La1 + a†
1aL)

]
(4.48)

where the additional term causes non-local operators after a Jordan-Wigner transformation (see

below).

Their ground state spaces coincide with the dark state spaces D if the latter is non-trivial.

Recall that any operator A† A is positive semidefinite and that the sum of such operators is

positive semidefinite as well. Therefore the spectrum of HO/PBC is non-negative. Given any

dark state |D〉 ∈ D then it is obviously HO/PBC |D〉 = 0 and we conclude that |D〉 is a

ground state of HO/PBC. Now assume that there is a ground state |G〉 with HO/PBC |G〉 = 0.

Then 〈G|HO/PBC |G〉 = ∑i 〈G| J†
i Ji |G〉 = 0 and since J†

i Ji is positive semidefinite we conclude

〈G| J†
i Ji |G〉 = ‖Ji |G〉 ‖2 = 0 which implies Ji |G〉 = 0 for all 1 ≤ i ≤ L− 1.

Since we already know the dark state space D we immediately conclude that the ground state

space of HOBC is L + 1-times degenerate and spanned by the equal-weighted superpositions of

number states |L, N〉 with fixed particle number 0 ≤ N ≤ L. For odd N and N = 0 or N = L

we also can identify |L, N〉 as the ground states of HPBC. For N even (besides N = 0 and

N = L, given L is even) we do not know the ground states since there are no dark states for the

corresponding processes {J1, . . . , JL}. However, we can conclude that the ground state energy

in these cases is strictly positive. The question is whether we can derive any properties of these

states by analysing HO/PBC.

To this end we employ the Jordan-Wigner transformation to recast HO/PBC in terms of spin- 1
2

sites. As is easily verified, this yields the well known isotropic Heisenberg model in one dimension

and in the ferromagnetic regime. One easily verifies that

ni → 1

2
(1− σz

i ) (4.49a)

a†
i ai+1 → 1

4

(
σx

i σx
i+1 + iσx

i σ
y
i+1 − iσ

y
i σx

i+1 + σ
y
i σ

y
i+1

)
(4.49b)

for 1 ≤ i ≤ L− 1.
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This leads to

HOBC =
1

4

L−1

∑
i=1

[
1− σx

i σx
i+1 − σ

y
i σ

y
i+1 − σz

i σz
i+1

]
=

L− 1

4
− 1

4

L−1

∑
i=1

σiσi+1 =
L− 1

4
−

L−1

∑
i=1

SiSi+1

where Si =
1
2 σi are the spin-operators for S = 1

2 and h̄ = 1. Clearly this is the ferromagnetic

Heisenberg model (FHM), namely

H1D-FHM,OBC = HOBC −
L− 1

4

and we immediately identify our (Jordan-Wigner transformed) dark states |L, N〉 as the ferro-

magnetic ground states with ground state energy E0 = − L−1
4 . The periodic boundary conditions

lead to non-local string operators in the spin framework, that is

HPBC =
1

4

L−1

∑
i=1

[
1− σx

i σx
i+1 − σ

y
i σ

y
i+1 − σz

i σz
i+1

]
+

1

4

[
1− σz

Lσz
1 − P′(σx

Lσx
1 + σ

y
Lσ

y
1 )
]

=
L

4
−

L−1

∑
i=1

SiSi+1 −
1

4

[
σz

Lσz
1 + P′(σx

Lσx
1 + σ

y
Lσ

y
1 )
]

where P′ = ∏
L−1
i=2 σz

i . Since this Hamiltonian conserves the total z-magnetisation Sz
tot = ∑

L
i=1 Sz

i

we may restrict its action to subspaces of the Hilbert space with fixed number N of down spins67

|. . . ↓ . . . 〉. In such subspaces P′ measures the parity of N − 1 and we find

HPBC =
L

4
−

L−1

∑
i=1

SiSi+1 −
1

4

[
σz

Lσz
1 + (−1)N−1(σx

Lσx
1 + σ

y
Lσ

y
1 )
]

N odd
=

L

4
−

L

∑
i=1

SiSi+1 . (4.50)

If we start from our fermionic theory with PBC and restrict the system to its odd parity supers-

election sector, we obtain a mapping to the 1D-Heisenberg model with PBC via

H1D-FHM,PBC = HPBC −
L

4

and therefore obtain the ground states |L, N〉 with ground state energy E0 = − L
4 for the odd N

sector. This is compatible with the well known results due to the Bethe ansatz, see e.g. [131] (set

J = 1). For N even the mapping is not valid; however, in these cases there are no dark states

and we could not have derived the ground states anyway. These result are compatible with the

observation that there are quasilocal operators such that their correlations decay algebraically

(and not exponentially). E.g.

〈
a†

i a†
i+1ajaj+1

〉
= N−1

N ∑
n,m∈BN

〈n| a†
i a†

i+1ajaj+1 |m〉 = −
(

L− 4

N − 2

)(
L

N

)−1

= −N(N − 1) · (L− N)(L− N − 1)

L4 +O(L3)

= −αL(αL− 1) · (L− αL)(L− αL− 1)

L4 +O(L3)
L→∞−−−→ −α2(1− α)2

6=
〈

a†
i a†

i+1

〉 〈
ajaj+1

〉
= 0 (4.51)

67Which correspond to occupied fermionic sites in our original theory.
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which is even a non-decaying correlation independent of |j − i| 6= 0 (α = N
L is the particle

density and kept constant in the thermodynamic limit). That
〈

a†
i a†

i+1

〉
=
〈

ajaj+1

〉
= 0 follows

since |L, N〉 is characterised by a fixed particle number. According to [132, 133] the connected

correlation function
〈

a†
i a†

i+1ajaj+1

〉
−
〈

a†
i a†

i+1

〉 〈
ajaj+1

〉
would decay exponentially for |i− j| →

∞ provided the dark states were ground states of some gapped Hamiltonian (since a†
i a†

i+1 and

ajaj+1 commute). Therefore we conclude that the considered dark states cannot be described as

a gapped phase and cannot be classified within the context of gapped topological phases [20].
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4.3 A mean field theory for late times
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here we recalculate and evaluate the mean field theory that is used in Ref. [1] to obtain the

effective jump operators ji in the thermodynamic limit and close to the steady state, that is at late times.

This is done to obtain a better understanding of the relation between the number-conserving

jump operators Ji and their parity violating counterparts ji. Please note that a few months after

this paragraph has been written, the authors of [1] published a review of their results in [122]

where they give a more detailed account of the mean field approximation in the appendix (as

compared with the discussions in the supplementary information of [1]).

4.3.1 Derivation of the mean field theory

Let us start with the derivation of the mean field jump operators in momentum space.

Definitions and notation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following, we consider a finite system of L spinless, fermionic sites with periodic bound-

ary conditions. The Hilbert space H = 〈B〉 (Fock space) is spanned by the fermionic number

states

B = {|n1, . . . , nL〉 | n1, . . . , nL ∈ {0, 1}}

and thus dimH = 2L. The fermionic ladder operators obey the usual anticommutation relations

{
ai, aj

}
=
{

a†
i , a†

j

}
= 0 and

{
ai, a†

j

}
= δij for all i, j ∈ {1, . . . , L} (4.52)

where ai acts on the i-th site.

We start with number conserving jump operators Ji := C†
i Ai where

C†
i :=

L

∑
j=1

vi−ja
†
j and Ai :=

L

∑
j=1

ui−jaj (4.53)

with position space functions u, v : Z → C, i 7→ ui, vi which obey the periodic boundary

conditions, i.e. ui+L, vi+L = ui, vi.

Since we will do the calculations in momentum space, let us fix the notation first. For any

sequence (Xi)i∈{1,...,L} of operators in the operator algebra L(H) on H, we define the discrete

Fourier transform (DFT) and the inverse discrete Fourier transform (iDFT) as follows:

X̂m ≡ F (X)m :=
1√
L

L

∑
j=1

Xj e−i 2π
L m·j where m ∈ {1, . . . , L} (4.54a)

Xj ≡ F−1(X̂)j :=
1√
L

L

∑
m=1

X̂m ei 2π
L m·j where j ∈ {1, . . . , L} (4.54b)

For the sake of simplicity, we write Xk ≡ X̂m with k = 2π
L m.
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Furthermore define the abbreviations

∑
k

≡
2π

∑
k= 2π

L

=
L

∑
m=1

Full Brillouin zone (4.55a)

∑
k>0

≡
2π
L ⌊ L−1

2 ⌋
∑

k= 2π
L

=
⌊ L−1

2 ⌋
∑

m=1

Half Brillouin zone . (4.55b)

Note that the sum over the half Brillouin zone excludes k = 0 and (given L is even) k = π.

Thus we find

∑
k

Xk = ∑
k>0

[Xk + X−k] + Xk=0 (+Xk=π) for L odd (even). (4.56)

Finally, we set ∑
j
≡

L

∑
j=1

. Furthermore we write BZ :=
{

2π
L , . . . , 2π

}
for the full Brillouin zone.

Master equation in momentum space
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We aim at a mean field approximation of the Lindblad master equation

∂tρ = κ ∑
j

[
JjρJ†

j −
1

2

{
J†
j Jj, ρ

}]
≡ L({Jj})[ρ] (4.57)

in momentum space. Let us begin with the DFT of J, that is

Jk =
1√
L

∑
j

Jj e−ikj =
1√
L

∑
j

C†
j Aj e−ikj =

1

L3/2 ∑
j

∑
k1,k2

C†
k1

e−ik1 j Ak2
eik2 j e−ikj

=
1

L3/2 ∑
k1,k2

C†
k1

Ak2 ∑
j

ei(k2−k−k1)j =
1√
L

∑
k1,k2

C†
k1

Ak2
δk2,k1+k

=
1√
L

∑
q

C†
q Aq+k =

1√
L

∑
q

C†
q−k Aq

The DFTs of the creation and annihilation parts read

C†
k =

1√
L

∑
j

C†
j eikj =

1√
L

∑
j,n

vj−na†
neikj =

1√
L

∑
n

a†
n eikn ∑

j

vj−neik(j−n) =
√

L v−ka†
k (4.58a)

Ak =
1√
L

∑
j

Aje
−ikj =

1√
L

∑
j,n

uj−nane−ikj =
1√
L

∑
n

an e−ikn ∑
j

uj−ne−ik(j−n) =
√

L ukak (4.58b)

and thus we find Jk = 1√
L

∑q C†
q−k Aq =

√
L ∑q vk−quq a†

q−kaq. Using Parseval’s identity

∑j XjX
†
j = ∑k1,k2

Xk1
X†

k2

1
L ∑j eij(k1−k2) = ∑k XkX†

k we obtain for the Lindblad equation in mo-

mentum space

◮ Remark 4.2: Lindblad equation in momentum space

∂tρ = κL ∑
k,q,p

(
vk−quqv∗k−pu∗p

) [
a†

q−kaq ρ a†
pap−k −

1

2

{
a†

pap−ka†
q−kaq, ρ

}]
. (4.59)
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Note that Eq. (4.59) is invariant with respect to transformations of the form uk → eαk+βuk and

vk → eαk+γvk where α, β, γ ∈ R. In our case, we have

Jj =
1

4

(
a†

j + a†
j+1

) (
aj − aj+1

)
⇒ C†

j =
1

2

(
a†

j + a†
j+1

)
, Aj =

1

2

(
aj − aj+1

)

⇒ vj =
1

2

(
δj,0 + δj+1,0

)
uj =

1

2

(
δj,0 − δj+1,0

)

where j ∈ ZL is an integer modulo L. The DFTs therefore read

vk =
1

2
√

L
∑

j

(
δj,0 + δj+1,0

)
e−ijk =

1

2
√

L

(
1 + eik

)
=

ei k
2√
L

cos
k

2
(4.60a)

uk =
1

2
√

L
∑

j

(
δj,0 − δj+1,0

)
e−ijk =

1

2
√

L

(
1− eik

)
= −i

ei k
2√
L

sin
k

2
. (4.60b)

Due to the invariance mentioned above, we may neglect the phases, i.e. vk = 1√
L

cos k
2 and

uk =
1√
L

sin k
2 . Therefore we assume in the following u−k = ±uk and v−k = ∓vk.

Mean field approximation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We normalised the mode operators ak so that

{
ak, aq

}
=
{

a†
k , a†

q

}
= 0 and

{
ak, a†

q

}
= δkq for all k, q ∈ BZ . (4.61)

Thus we find a new decomposition H = H0 ⊗
⊗

k>0H±k (⊗Hπ) with the mode-pair Hilbert

spaces H± and the corresponding ladder operators a−k and ak. Let

H±k = 〈{|0, 0〉±k , |0, 1〉±k , |1, 0〉±k , |1, 1〉±k}〉 (4.62)

where the first (second) entry denotes the occupation of the −k(k)-mode. Then we define

ρk := N−1(uk + αvka†
−ka†

k) |0, 0〉±k 〈0, 0| (u∗k + α∗v∗k aka−k) ∈ L (H±k) for 0 < k < π (4.63)

where N := |uk|2 + |αvk|2 ensures that ρk is a density operator on H±k and α = |α|eiθ . For the

sake of simplicity, we will assume that L is odd (i.e., there is no k = π mode) as well as u0 = 0

and v0 6= 0 (as derived above). Then one employs the ansatz ρ0 := |1〉0 〈1|.
Now consider the product ansatz for the density matrix

ρ = ρ0 ⊗
⊗

k>0

ρk (⊗ρπ) ≡ ∏
k≥0

ρk (4.64)

and insert it into Eq. (4.59):

∂t ∏
k≥0

ρk = κL ∑
k,q,p

(
vk−quqv∗k−pu∗p

) [
a†

q−kaq ∏
k≥0

ρk a†
pap−k −

1

2

{
a†

pap−ka†
q−kaq, ∏

k≥0

ρk

}]
. (4.65)
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To obtain the time evolution for the ±k-pairs, we trace over the remaining degrees of freedom,

i.e. Trr [ρ] ≡ Tr 6=±r [ρ] = ρr,

∂tρr = κL ∑
k,q,p

(
vk−quqv∗k−pu∗p

) [
Trr

[
a†

q−kaq ρ̃ a†
pap−k

]
− 1

2
Trr

[{
a†

pap−ka†
q−kaq, ρ̃

}]]
. (4.66)

Here ρ̃ = ρq−kρqρpρp−k (given the four momenta are distinct) and 0 ≤ r < π. In the following we

focus on the first part ∑k,q,p

(
vk−quqv∗k−pu∗p

)
Trr

[
a†

q−kaq ρ̃ a†
pap−k

]
(since the second one follows

then straightforwardly). To evaluate this sum, note the following: Each summand in Eq. (4.66)

with k− q, q, k− p, p 6= ±r vanishes due to the cyclic property of the trace. Therefore we need

to consider only summands with at least one occurrence of ±r. There are four cases:

One occurrence of ±r: Let α, β, γ ∈ BZ and α, β, γ 6= r. Then the partial trace is of the form

Trr

[
a†

r aα ρ a†
βaγ

]
(and permutations thereof). Obviously

Trr

[
a†

r aα ρ a†
βaγ

]
= a†

r ρr Trr

[
aα ρ′ a†

βaγ

]
= −Trr

[
aα ρ′ a†

βaγ

]
a†

r ρr (4.67)

and it follows Trr

[
a†

r aα ρ a†
βaγ

]
= 0. The same argument holds for the anticommutator in

the equation above.

Two occurrences of ±r: There are two cases to be considered separately.

– r’s on the same site of the density matrix: That is, we have Trr

[
a†

r ar ρ a†
αaβ

]
where α, β ∈

BZ and α, β 6= r (on one side of the density matrix the signs must coincide, see below).

If α 6= β, the trace vanishes. Therefore assume α = β and we find Trr

[
a†

r ar ρ a†
αaα

]
−

1
2 Trr

[{
a†

αaαa†
r ar, ρ

}]
+ Trr

[
a†

αaα ρ a†
r ar

]
− 1

2 Trr

[{
a†

r ara†
αaα, ρ

}]
= 0 by employing the

cyclic property of the trace. Thus there is no contribution due to this case.

– r’s on opposite sites of the density matrix: Given on each side of the density matrix one

ladder operators acts on the ±r-th mode. Then we end up with traces of the form

Trr

[
a
(†)
α ρ′ a(†)β

]
where ρ′ denotes the product density matrix save ρr. It is clear that

|α| 6= |β| implies Trr

[
a
(†)
α ρ′ a(†)β

]
= 0. Thus we consider the cases where α = ±β.

A straightforward calculation shows that there are just eight non-vanishing traces,

viz. Trr

[
a±αραa†

±α

]
, Trr [a±αραa∓α], Trr

[
a†
±αραa±α

]
, and Trr

[
a†
±αραa†

∓α

]
where α ∈ BZ

and α 6= r. Combining this with Eq. (4.66), we find eight corresponding relations for

p,q, and k which reduce the triple sum to a simple sum over k:

(i) p− k = q− k = ±r ⇔ p = q = ±r + k

(ii) p = k− q = ±r ⇔ p− k = −q = ±r− k

(iii) p = q = ±r ⇔ p− k = q− k = ±r− k

(iv) p− k = −q = ±r ⇔ p = k− q = ±r + k

Three occurrences of ±r: Three occurrences of r would imply (on one side of the density

matrix the signs must coincide, see below) p− k = p = r ⇔ k = 0 ⇔ q− k = q = r and

we end up in the next case.

Four occurrences of ±r: Here the partial trace reads Trr

[
a†
±ra±r ρ a†

±ra±r

]
. One verifies

easily that Trr

[
a†

σraσr ρ a†
κraκr

]
= a†

r ar ρr a†
r ar for σ, κ ∈ {+,−}. On the other hand one

finds a†
r a−r ρr = a†

−rar ρr = 0, so the other partial traces with different signs of r on one

side vanish.
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Conclusively, we have to consider all summands with two and four occurrences of ±r, whereas

in the case of two occurrences further conditions apply. Combining these results yields the

following expression for the triple sum:

∑
k,q,p

= ∑
p−k=q−k=±r︸ ︷︷ ︸

(i)

+ ∑
p=k−q=±r︸ ︷︷ ︸

(ii)

+ ∑
p=q=±r︸ ︷︷ ︸

(iii)

+ ∑
p−k=−q=±r︸ ︷︷ ︸

(iv)

− ∑
p=q=±r,k=0

− ∑
q=−p=±r,k=0

Note that the summands for (p, q, k) = (±r,±r, 0) and (p, q, k) = (∓r,±r, 0) appear twice in the

first four sums. Thus we subtract them at the end (as it will turn out, this is not necessary, for

the sum of the additional terms vanishes).

There are some special cases in the sum ∑k,q,p

(
vk−quqv∗k−pu∗p

)
Trr

[
a†

q−kaq ρ̃ a†
pap−k

]
which

require a separate treatment in the evaluations below:

k = 0 : Trr

[
a†

r ar ρ̃ a†
r ar

]
= Trr

[
a†
−ra−r ρ̃ a†

r ar

]
= Trr

[
a†

r ar ρ̃ a†
−ra−r

]
= a†

r ar ρr a†
r ar

k = ±2r : Trr

[
a†
−rar ρ̃ a†

r a−r

]
= Trr

[
a†

r a−r ρ̃ a†
−rar

]
= 0 (r 6= 0)

Let us start with the evaluation of the eight non-trivial sums68:

� p = q = ±r

Without loss of generality let p = q = r. Then we find

∑
k

(
vk−rurv∗k−ru∗r

)
Trr

[
a†

r−kar ρ̃ a†
r ar−k

]
= ∑

k 6=0,k 6=2r

|vk−rur|2 arρra†
r

|ur−k|2
|ur−k|2 + |αvr−k|2

+R

= |ur|2 arρra†
r ∑
|q|6=r

|uqvq|2
|uq|2 + |αvq|2

+R

where R = |vrur|2 a†
r ar ρr a†

r ar. Note that for r = 0 this term vanishes.

� p− k = q− k = ±r

Without loss of generality let p− k = q− k = r. Then we find

∑
k

(
v−rur+kv∗−ru∗r+k

)
Trr

[
a†

r ar+k ρ̃ a†
r+kar

]
= ∑

k 6=0,k 6=−2r

|v−rur+k|2 a†
r ρrar

|αvr+k|2
|ur+k|2 + |αvr+k|2

+R

= |αvr|2 a†
r ρrar ∑

|q|6=r

|uqvq|2
|uq|2 + |αvq|2

+R

where R = |vrur|2 a†
r ar ρr a†

r ar. �

68Due to the symmetry regarding ±r we evaluate just four of them
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� p− k = −q = ±r

Without loss of generality let p− k = −q = r. Then we find

∑
k

(
vk+ru−rv∗−ru∗r+k

)
Trr

[
a†
−r−ka−r ρ̃ a†

r+kar

]

= − ∑
k 6=0,k 6=−2r

(
vk+ru−rv∗−ru∗r+k

)
a−rρrar Trr

[
a†
−(r+k) ρr+k a†

r+k

]
−R

= − ∑
k 6=0,k 6=−2r

(
vk+ru−rv∗−ru∗r+k

)
a−rρrar

−α∗v∗r+kur+k

|uk+r|2 + |αvk+r|2
−R

= α∗u−rv∗−ra−rρrar ∑
|q|6=r

|vquq|2
|uq|2 + |αvq|2

−R

where R = |vrur|2 a†
−ra−r ρr a†

r ar = |vrur|2 a†
r ar ρr a†

r ar. Concerning the minus before R, we used

the fact that u−rv∗−r = −vru∗r . Note that for r = 0 this term vanishes.

� q− k = −p = ±r

Without loss of generality let q− k = −p = r. Then we find

∑
k

(
v−rur+kv∗k+ru∗−r

)
Trr

[
a†

r ar+k ρ̃ a†
−ra−r−k

]

= − ∑
k 6=0,k 6=−2r

(
v−rur+kv∗r+ku∗−r

)
a†

r ρra†
−r Trr

[
ar+k ρr+k a−(r+k)

]
−R

= − ∑
k 6=0,k 6=−2r

(
v−rur+kv∗r+ku∗−r

)
a†

r ρra†
−r

−αvr+ku∗r+k

|uk+r|2 + |αvk+r|2
−R

= αu∗−rv−ra†
r ρra†

−r ∑
|q|6=r

|vquq|2
|uq|2 + |αvq|2

−R

where R = |vrur|2 a†
r ar ρr a†

−ra−r = |vrur|2 a†
r ar ρr a†

r ar. Concerning the minus before R, we used

the fact that u∗−rv−r = −v∗r ur. Note that for r = 0 this term vanishes. �

If we define

κr := κ ∑
|q|6=r

|vquq|2
|uq|2 + |αvq|2

(4.68)

it follows

κ ∑
k,q,p

(
vk−quqv∗k−pu∗p

)
Trr

[
a†

q−kaq ρ a†
pap−k

]

= κ

(

∑
p=q=±r

+ ∑
p−k=q−k=±r

+ ∑
p−k=−q=±r

+ ∑
q−k=−p=±r

− ∑
p=q=±r,k=0

− ∑
q=−p=±r,k=0

)
[. . . ]

=
κr

L

[
jrρr j†

r + j−rρr j†
−r

]
≡ κr

L ∑
σ=±

jσrρr j†
σr (4.69)

where we defined the mean field jump operators
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jk :=
√

Lukak +
√

Lαvka†
−k = Ak + αC†

−k . (4.70)

In the case r = 0 one finds

κ ∑
k,q,p

(
vk−quqv∗k−pu∗p

)
Tr0

[
a†

q−kaq ρ a†
pap−k

]
=

κ0

L
j0ρ0 j†

0 = κ0|αv0|2a†
0ρ0a0 (4.71)

which is consistent with the equation for jk above and the assumption that u0 = 0.

Then it follows immediately:

◮ Result 4.2: Mean field Lindblad equation

In mean field approximation the Lindblad master equation reads

∂tρk = κk ∑
σ=±

[
jσkρk j†

σk −
1

2

{
j†
σk jσk, ρk

}]
(4.72a)

with the jump operators

jk =
√

Lukak +
√

Lαvka†
−k = Ak + αC†

−k (4.72b)

and the new bath coupling

κk = κ ∑
|q|6=k

|vquq|2
|uq|2 + |αvq|2

. (4.72c)

The new jump operators form (up to a normalisation) a Dirac algebra, that is

{
j†
k , j†

q

}
=

{
jk, jq

}
= L

{
ukak + αvka†

−k, uqaq + αvqa†
−q

}
= 0 and (4.73a)

{
jk, j†

q

}
= L

{
ukak + αvka†

−k, u∗q a†
q + α∗v∗q a−q

}
= L

(
|uk|2 + |αvk|2

)
δk,q . (4.73b)

Note that to show the first equation, we used u−k = ±uk and v−k = ∓vk for k = −q. In order to

get a proper Dirac algebra, we introduce the normalised jump operators

j̃k :=
1√

L (|uk|2 + |αvk|2)
jk (4.74)

and the new mode coupling

κ̃k := κk L
(
|uk|2 + |αvk|2

)
. (4.75)

With the new defined operators, the master equation for ρk reads

∂tρk = ∑
q=±k

κ̃q

[
j̃qρk j̃†

q −
1

2

{
j̃†
q j̃q, ρk

}]
. (4.76)
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Recall that
[
j±k, ρq

]
= 0 (k 6= q) and multiply the master equation by ∏p≥0,p 6=k ρp:

∂tρk ∏
p≥0,p 6=k

ρp = ∑
q=±k

κ̃q

[
j̃qρ j̃†

q −
1

2

{
j̃†
q j̃q, ρ

}]
(4.77)

A summation over k ≥ 0 finally yields

∂tρ = ∑
k≥0

[
∂tρk ∏

p≥0,p 6=k

ρp

]
= ∑

q

κ̃q

[
j̃qρ j̃†

q −
1

2

{
j̃†
q j̃q, ρ

}]
. (4.78)

To sum it up, the mean field Lindblad master equation in momentum space reads

◮ Remark 4.3: Linblad equation in momentum space

∂tρ = ∑
k

κ̃k

[
j̃kρ j̃†

k −
1

2

{
j̃†
k j̃k, ρ

}]
= ∑

k

κk

[
jkρj†

k −
1

2

{
j†
k jk, ρ

}]
. (4.79)

Back in position space we find for the jump operators

jj =
1√
L

∑
k

jkeijk =
1√
L

∑
k

Akeijk + α
1√
L

∑
k

C†
−keijk = Aj + αC†

j . (4.80)

In our case, this reads ji =
1
2

(
a†

i + a†
i+1 + ai − ai+1

)
where α = 1.

4.3.2 Some properties of the quadratic mean field theory

In [1] the quasi particle vacuum of the Majorana chain with PBC is referred to as fixed phase

state |BCS, α〉 whereas the dark state of the exact jump operators Ji is termed fixed number state

|BCS, N〉. Here α = |α|eiθ encodes the fixed phase θ and the particle density |α| of the coherent

state |BCS, α〉. This is motivated by analogy to the mean field approach in BCS theory. Here we

stick to this terminology: In the following we prove the dark state property for the fixed phase

(number) state |BCS, α〉 (|BCS, N〉). Furthermore we derive a relation between 〈N̂〉 and α.

Fixed phase dark state |BCS, α〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since the jj (and jk) jump operators form a complete Dirac algebra (that is, they are the Bo-

goliubov quasiparticle operators of a Hamiltonian theory), the Hamiltonian ground state —

the quasiparticle vacuum — coincides with the unique dark state of the dissipative dynamics

described by the Lindblad superoperator L({ji}). That is

|BCS, α〉 ∝ ∏
k

jk |0〉 ∝ j0 ∏
k>0

jk j−k |0〉

∝ a†
0 ∏

k>0

(
ukak + αvka†

−k

) (
u−ka−k + αv−ka†

k

)
|0〉

∝ a†
0 ∏

k>0

(
uk + αvka†

−ka†
k

)
|0〉 (4.81)
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where we used the fact that pairs jk j−k of fermionic operators commute and ak |0〉 = 0. This is

the (unique) dark state described by L({ji}) since

jk |BCS, α〉 = jk ∏
q

jq |0〉 = 0 ∀ k ∈ BZ ⇔ ji |BCS, α〉 = 0 ∀ i ∈ {1, . . . , L} (4.82)

holds by construction. This is consistent with the ansatz ρ = |BCS, α〉 〈BCS, α| for the density

matrix used to derive the mean field jump operators, given |BCS, α〉 is properly normalised:

◮ Result 4.3: Fixed phase dark state |BCS, α〉

|BCS, α〉 = N
− 1

2
α a†

0 ∏
k>0

(
uk + αvka†

−ka†
k

)
|0〉 where Nα = ∏

k>0

(
|uk|2 + |αvk|2

)
(4.83)

If we define69 ϕk := vk
uk

, we may rewrite (up to a sign) the fixed phase state as follows:

|BCS, α〉 = Ñ
− 1

2
α a†

0 ∏
k>0

(
1 + αϕka†

−ka†
k

)
|0〉 where Ñα = ∏

k>0

(
1 + |αϕk|2

)
(4.84)

Now let G† = ∑k>0 ϕka†
−ka†

k and recall that a2
k = 0 =

(
a†

k

)2
. Then it follows easily that

|BCS, α〉 = Ñ
− 1

2
α a†

0 ∏
k>0

[
1 + αϕka†

−ka†
k +

1

2!

(
αϕka†

−ka†
k

)2
+ . . .

]
|0〉

= Ñ
− 1

2
α a†

0 ∏
k>0

exp
[
αϕka†

−ka†
k

]
|0〉 = Ñ

− 1
2

α a†
0 exp

[
α ∑

k>0

ϕka†
−ka†

k

]
|0〉

= Ñ
− 1

2
α a†

0 exp
(

αG†
)
|0〉 (4.85)

where we used the fact that
[

a†
−ka†

k , a†
−qa†

q

]
= 0 for all k, q ∈ BZ.

Fixed number dark state |BCS, N〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider now the number preserving jump operators Ji = C†
i Ai and Jk = 1√

L
∑q C†

q−k Aq =
√

L ∑q vk−quq a†
q−kaq, respectively. The corresponding dark state is the fixed number state

|BCS, N〉 which is given by

|BCS, N〉 = N
− 1

2
N a†

0

(
G†
)N
|0〉 (4.86)

with an appropriate normalisation NN . We don not give an explicit expression for NN since there

is no need for it (and it is rather unattractive in the momentum space formulation anyway). Note

that in [1] the a†
0-mode was erroneously neglected. This mode, however, is crucial for the dark

state property as we will see immediately. Recall that we found in 4.2.2 that the only dark states

for Ji with PBC contain odd numbers of fermions. This corresponds to the fact that the quasi

particle vacuum of the Majorana chain has odd parity. From this point of view it is clear that the

a†
0-mode in the above expression for |BCS, N〉 is necessary as G† = ∑k>0 ϕka†

−ka†
k generates even

parity states from the physical vacuum |0〉. Please note that |BCS, N〉 contains 2N + 1 fermions.

69Note that, since uk ∝ sin k
2 , uk cannot vanish except for k = 0. E.g. ϕk is well defined except for k = 0.
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We are now going to derive the dark state property, i.e. Ji |BCS, N〉 = Jk |BCS, N〉 = 0. We

show that
[

Jk, a†
0

(
G†
)N
]
= 0 for all k ∈ BZ. In combination with Jk ∝ ∑q vk−quq a†

q−kaq, this

yields immediately Jka†
0

(
G†
)N |0〉 = a†

0

(
G†
)N

Jk |0〉 = 0. To this end, we compute

[
Jk, G†

]
=

[

∑
q

vk−quqa†
q−kaq, ∑

p>0

ϕpa†
−pa†

p

]
= ∑

q
∑
p>0

ϕpvk−quq

[
a†

q−kaq, a†
−pa†

p

]
. (4.87)

The evaluation of the commutator yields

[
a†

q−kaq, a†
−pa†

p

]
= a†

q−k

[
aq, a†

−p

]
a†

p + a†
q−ka†

−p

[
aq, a†

p

]

= a†
q−k

(
2aqa†

−p − δq,−p

)
a†

p + a†
q−ka†

−p

(
2aqa†

p − δq,p

)

= −a†
q−ka†

pδq,−p − a†
q−ka†

−pδq,p + 2
(

a†
q−kaqa†

−pa†
p + a†

q−ka†
−paqa†

p

)

= a†
q−ka†

pδq,−p − a†
q−ka†

−pδq,p (4.88)

Now assume that ϕk =
vk
uk

and recall that u−k = −uk, v−k = vk and uk+2π = uk, vk = vk+2π . The

form of ϕk is postulated. We show in the following that this is indeed the correct choice. With

this in mind, we find

[
Jk, G†

]
= ∑

q
∑
p>0

ϕpvk−quq

[
a†

q−ka†
pδq,−p − a†

q−ka†
−pδq,p

]

= ∑
p>0

[
ϕpvk+pu−p a†

−p−ka†
p − ϕpvk−pup a†

p−ka†
−p

]

= − ∑
p>0

vpvk+p a†
−p−ka†

p − ∑
p>0

vpvk−p a†
p−ka†

−p

= − ∑
p<0

vpvk−p a†
p−ka†

−p − ∑
p>0

vpvk−p a†
p−ka†

−p

= − ∑
p<0,p>0

vpvk−p a†
p−ka†

−p (4.89)

To get a sum over the full Brillouin zone, we add the p = 0-term v0vk a†
−ka†

0, that is

[
Jk, G†

]
= −∑

p

vpvk−p a†
p−ka†

−p + v0vk a†
−ka†

0 . (4.90)

To show that the first term vanishes, apply the index shift −q := p − k where q is the new

summation index that runs over the full Brillouin zone. This yields

−∑
p

vpvk−p a†
p−ka†

−p = −1

2

[

∑
p

vpvk−p a†
p−ka†

−p + ∑
q

vk−qvq a†
−qa†

q−k

]
= 0 . (4.91)

So we are left with
[

Jk, G†
]
= v0vk a†

−ka†
0. Recall that

[
Ji, a†

0

]
= 0 =

[
Jk, a†

0

]
since in Jk =√

L ∑q vk−quq a†
q−kaq the q = 0 term is not present due to u0 = 0 (which is, on the other hand,

the reason for the occurrence of a†
0 anyway). Then it is clear that

[
Jk, a†

0G†
]
= a†

0

[
Jk, G†

]
= v0vka†

0 a†
−ka†

0 = 0 . (4.92)
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Now assume that
[

Jk, a†
0

(
G†
)N−1

]
= 0 for some N ∈ N. Then it follows by induction

[
Jk, a†

0

(
G†
)N
]
= G†

[
Jk, a†

0

(
G†
)N−1

]
+
[

Jk, a†
0G†

] (
G†
)N−1

= 0 + 0 = 0 (4.93)

where we used that
[
a†

0, G†
]
= 0. This is exactly what we wanted to show and we conclude:

◮ Result 4.4: Fixed number dark state |BCS, N〉

The momentum space representation of the fixed number dark states reads

|BCS, N〉 = N
− 1

2
N a†

0

(
G†
)N
|0〉 (4.94)

for an state with 2N + 1 fermions.

Note that in contrast to the fixed phase state |BCS, α〉, the fixed number state |BCS, N〉 has no

product form in momentum space. We may express the fixed phase state as a superposition of

fixed number states70:

|BCS, α〉 ∝ a†
0 exp

(
αG†

)
|0〉 = a†

0

∞

∑
N=0

αN

N!

(
G†
)N
|0〉 ∝

∞

∑
N=0

αN

N!
|BCS, N〉 (4.95)

The sum is actually finite since
(
G†
)N

= 0 for N >
L−1

2 (L odd) which follows from a nice

application of the pigeon hole principle. Now it is evident that

Ji |BCS, α〉 ∝
∞

∑
N=0

αN

N!
Ji |BCS, N〉 = 0 for all i ∈ {1, . . . , L} . (4.96)

That is, the fixed phase state |BCS, α〉 is also dark state of the number conserving jump operators

and not just of ji. The above calculation shows why: |BCS, α〉 is the coherent state of all fixed

number dark states.

Expectation value of the particle number
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since |BCS, α〉 is not an eigenstate of the number operator

N̂ := ∑
k

a†
k ak = a†

0a0 + ∑
k>0

(
a†

k ak + a†
−ka−k

)
(4.97)

we may give an expression for its expectation value (or rather, the particle density).

70This is due to the fact that |BCS, α〉 is a coherent state.

| 249



Chapter4 The dissipative Majorana chain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This yields

n =
〈BCS, α| N̂ |BCS, α〉

L

= (LNα)
−1 〈0|∏

k>0

(u∗k + α∗v∗k aka−k) a0

[
a†

0a0 + ∑
q>0

(
a†

q aq + a†
−qa−q

)]
a†

0 ∏
k>0

(
uk + αvka†

−ka†
k

)
|0〉

=
1

L
+ L−1 ∑

q>0

−q,q 〈0|
(

u∗q + α∗v∗q aqa−q

) (
a†

q aq + a†
−qa−q

) (
uq + αvqa†

−qa†
q

)
|0〉−q,q

−q,q 〈0|
(
u∗q + α∗v∗q aqa−q

) (
uq + αvqa†

−qa†
q

)
|0〉−q,q

=
1

L
+ L−1 ∑

q>0

−q,q 〈0|
(

u∗q + α∗v∗q aqa−q

) (
2αvqa†

−qa†
q

)
|0〉−q,q

−q,q 〈0|
(
u∗q + α∗v∗q aqa−q

) (
uq + αvqa†

−qa†
q

)
|0〉−q,q

=
1

L
+ L−1 ∑

q>0

2|αvq|2
|uq|2 + |αvq|2

=
1

L ∑
q

|αvq|2
|uq|2 + |αvq|2

(4.98)

Here we used u0 = 0 in the last step. Recall that α = |α|eiθ , i.e. the modulus |α| determines the

filling n of the system. To encapsulate the result:

◮ Result 4.5: Particle number density

The particle number density of the system in a fixed phase state |BCS, α〉 is given by

n(|α|) = 1

L ∑
q

|αvq|2
|uq|2 + |αvq|2

. (4.99)

This concludes our recalculation and analysis of the mean field theory that is used in [1] to make

the transition from the number conserving and experimentally proposed jump operators Ji to

the parity violating operators ji. Up to some technical details, we verified the results outlined

in the supplementary information of [1]. We give some critical remarks on the assumptions that

were used for these derivations in the concluding section 4.5. In the next section we once again

consider the exact (number conserving) dark states and compare their entanglement structure

to the exact ground states of the Majorana chain.
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4.4 Topology as local indistinguishability
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here we consider a characteristic property of topologically ordered states, namely the opera-

tional notion of local indistinguishability of quantum states as put forward in [134] and devel-

oped further in [71, 72]. Let me stress that this property refers to topologically ordered states

and is a priori unrelated to the concept of topological invariants used for the characterisation of

topological phases (for the Majorana chain, see 1.3.4 in the preliminaries).

One of the principal characteristics of topologically ordered states is their quasilocal equality,

i.e. a state |Ψ1〉 is topologically ordered if there is another (necessarily orthogonal) state |Ψ2〉
such that there is no quasilocal observable which discriminates them and there is no quasilocal

operator which creates a finite overlap between these states. The motivation of this definition is

quite obvious: Realistic operations (controlled or not) can safely assumed to be quasilocal. Con-

sequently there is no environmental process which rotates one topologically ordered state onto

the other. To put it differently: Given a superposition of two topologically ordered states, then

there is no quasilocal decoherence process which destroys the encoded quantum information.

In the following we consider structure graph induced interaction systems I as defined in

Appendix E.2. Thus we talk about Hilbert spaces H =
⊗

iHi composed of subsystem Hilbert

spaces Hi and impose a spatial meta-structure on H by identification of subsystems with a

structure graph S which is connected and becomes a metric space with the usual geodesic

distance. BC(H) denotes the set of bounded operators on H such that the diameter of their

support (i.e. region of non-trivial action) is bounded by C ∈ N. Formally

BC(H) = {O ∈ B(H) | diamS (supp(O)) ≤ C}

where the diameter is defined with respect to the geodesic metric on the underlying structure

graph S. We may now define topological ordered states on H with respect to S as follows [58]:

◮ Definition 4.3: Topological Quantum Order (TQO) with (R, ε)-error

Consider a Hilbert space H =
⊗

iHi furnished with a spatial meta-structure due to a given

structure graph S. A set {|Ψi〉}1≤i≤M of states is termed topologically ordered with (R, ε)-error

iff for all R-local operators Oloc ∈ BR(H) and all 1 ≤ i, j ≤ M it holds

∣∣〈Ψi| Oloc

∣∣Ψj

〉∣∣ ≤ ε‖Oloc‖ for i 6= j and
∣∣〈Ψi| Oloc |Ψi〉 −

〈
Ψj

∣∣Oloc

∣∣Ψj

〉∣∣ ≤ ε‖Oloc‖

where ‖ • ‖ denotes the operator norm on B(H). We say that the set of states shows symmetry

protected topological quantum order (STQO) with (R, ε)-error if the above condition holds just

for operators Oloc ∈ BR(H) that respect a given symmetry.

That is to say, topologically ordered states are locally indistinguishable (at least up to some error

ε). There are two remarks in order:

1. As pointed out in Appendix E.1 there is a notorious difficulty to come up with canonical

definitions for intuitive physical properties such has “quasilocality” or here “topological or-

der” for single instances of physical systems. If one tries to do so, one usually ends up with

parameter dependent definitions where there is no canonical choice for the parameter(s). The

definition of (R, ε)-TQO exemplifies this situation. Obviously there is no canonical choice for
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R and ε for which we could safely call the states in question “topologically ordered”. Clearly

we require R to be of the order of the system size and ε ≪ 1 to be small. However, this is

not a definition but rather a vague abstraction of a even more vague physical concept. The

concept of templates sometimes provides a way to get rid of such parameters.

2. According to the previous definition, TQO is the property of a set of (at least two) states.

However, one can “project” the property of TQO on single states by requiring the existence

of another state which is locally indistinguishable in the above sense.

We apply this definition of STQO in the following to (1) the pair of Majorana chain ground

states and (2) to the dark states of the number conserving dissipative process {Ji}. As we are

concerned with fermionic systems, it is reasonable to demand parity symmetry for all admissible

physical operators.

Majorana chain ground states
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter we encountered the ground state of the Majorana chain with PBC in momentum

space. As we are interested in local indistinguishability, we need to compare the two degenerate

ground states of the Majorana chain with OBC. In Section 5.2 of Chapter 5 we derive the number

state representation of these states rigorously. It turns out that they correspond to equal-weight

superpositions of number states with fixed parity:

∣∣Ψ±
〉
= N−1/2

L ∑
n∈P

±
L

|n〉 with NL = 2L−1 (4.100)

We first show that the states {Ψ±} are not topologically ordered without symmetry protection.

To this end consider the matrix element71

〈
Ψ+
∣∣ a†

1

∣∣Ψ−
〉
= N−1

L ∑
n∈P

+
L ,m∈P

−
L

〈n| a†
1 |m〉 . (4.101)

and note that

∑
n∈P

±
L

|n〉 = ∑
n∈P

±
L−1

|0, n〉+ ∑
n∈P

∓
L−1

|1, n〉 . (4.102)

Therefore we find

〈
Ψ+
∣∣ a†

1

∣∣Ψ−
〉
= N−1

L ∑
n∈P

−
L−1,m∈P

−
L−1

〈n |m〉 = 2L−1−1

2L−1
=

1

2
, (4.103)

i.e. ε ≥ 1
2 even for R = 1 since ‖a1‖ = 1. Even though we did not give a precise definition of

(parameterless) TQO so far, it is clear that we do not want states with (R ≤ 1, ε ≥ 1/2)-error

termed “topologically ordered” since R doesn’t scale with the system size L and ε cannot be

made small.

Let us now turn towards the distinguishability of {Ψ±}. Clearly

∣∣〈Ψ+
∣∣ P
∣∣Ψ+

〉
−
〈
Ψ−
∣∣ P
∣∣Ψ−

〉∣∣ = 2 (4.104)

71It is no coincidence that we choose a†
1 to live on the edge of the chain. Only there the ground states can be distin-

guished reliably.
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where the parity operator has range L and thus the states can be distinguished by operators

acting on all L sites. Let us show that this is not true for any R < L. Let Oloc ∈ BR(H) where

R < L. We denote the set of systems (or vertices in S) on which Oloc acts non-trivially by O and

its complement by E. Then the Schmidt decomposition of Ψ± with respect to the bipartition OE

reads

∣∣Ψ+
〉

=
1√
2

(∣∣Ψ+
〉

O

∣∣Ψ+
〉

E
+
∣∣Ψ−

〉
O

∣∣Ψ−
〉

E

)
(4.105a)

∣∣Ψ−
〉

=
1√
2

(∣∣Ψ−
〉

O

∣∣Ψ+
〉

E
+
∣∣Ψ+

〉
O

∣∣Ψ−
〉

E

)
(4.105b)

and we obtain

∣∣〈Ψ+
∣∣Oloc

∣∣Ψ+
〉
−
〈
Ψ−
∣∣Oloc

∣∣Ψ−
〉∣∣ =

1

2

∣∣(〈Ψ+
O Ψ+

E

∣∣+
〈
Ψ−O Ψ−E

∣∣)Oloc

(∣∣Ψ+
O Ψ+

E

〉
+
∣∣Ψ−O Ψ−E

〉)

−
(〈

Ψ−O Ψ+
E

∣∣+
〈
Ψ+

O Ψ−E
∣∣)Oloc

(∣∣Ψ−O Ψ+
E

〉
+
∣∣Ψ+

O Ψ−E
〉)∣∣

=
1

2

∣∣〈Ψ+
O

∣∣Oloc

∣∣Ψ+
O

〉
+
〈
Ψ−O
∣∣Oloc

∣∣Ψ−O
〉

−
〈
Ψ−O
∣∣Oloc

∣∣Ψ−O
〉
−
〈
Ψ+

O

∣∣Oloc

∣∣Ψ+
O

〉∣∣

= 0 . (4.106)

This result holds for any operator with range R < L, irrespective of its symmetries. So the

unprotected TQO is destroyed due to the R = 1 operators a†
1 and a†

L as shown above and not

due to distinguishability.

Let us now consider a system where parity is strictly conserved (say, due to fermionic su-

perselection rules). Then the conditions of Def. 4.3 must be satisfied only for R-local operators

Oloc such that [Oloc, P] = 0 where P denotes the parity operator. Since {Ψ±} are parity eigen-

states, it follows trivially that 〈Ψ+| Oloc |Ψ−〉 = 0 for parity conserving operators (for arbitrary

1 ≤ R ≤ L). Combined with the second condition from above, this yields STQO for the Majo-

rana chain ground states with optimal error (L− 1, 0) which obviously is consistent with our

vague notion of (parameterless) STQO. This result is consistent with the findings in [135] for the

two ground states of the Majorana chain.

Number conserving dark states
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us now proceed with the number conserving dark states. Here the L + 1 dark states are

characterised by their particle number 0 ≤ N ≤ L and given by the equal-weight superposition

of number states with fixed particle number (as derived in 4.2.2):

|L, N〉 = N−1/2
N,L ∑

n∈BN

|n〉 with NN,L =

(
L

N

)

For any bipartition OE we can use the Schmidt decomposition

|L, N〉 =
min{O,N}

∑
M=0

e−
λL,N (M)

2 |O, M〉O |E, N −M〉E (4.107)
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with the entanglement spectrum λ given as e−
λL,N (M)

2 = ( L
N)
−1/2

(O
M)

1/2
( E

N−M)
1/2

. Here we write

O for both, the system as subset of subsystems and its size, i.e. the number of subsystems. Let

Oloc ∈ BR(H) be an arbitrary operator with support O and range O = R < L. Then we can

calculate |〈L, N1| Oloc |L, N1〉 − 〈L, N2| Oloc |L, N2〉| for 0 ≤ N1, N2 ≤ L and obtain

∣∣∣∣∣ ∑
M,M′

e−
λL,N1

(M)+λL,N1
(M′)

2 〈O, M|O 〈E, N1 −M|E Oloc

∣∣O, M′
〉

O

∣∣E, N1 −M′
〉

E

− ∑
M,M′

e−
λL,N2

(M)+λL,N2
(M′)

2 〈O, M|O 〈E, N2 −M|E Oloc

∣∣O, M′
〉

O

∣∣E, N2 −M′
〉

E

∣∣∣∣∣ .

Using 〈O, M|O 〈E, N −M|E Oloc |O, M′〉O |E, N −M′〉E = δM,M′ 〈O, M| Oloc |O, M〉 yields

|〈L, N1| Oloc |L, N1〉 − 〈L, N2| Oloc |L, N2〉| =
∣∣∣∣∣∑

M

[
e−λL,N1

(M) − e−λL,N2
(M)
]
〈O, M| Oloc |O, M〉

∣∣∣∣∣

An application of the triangle inequality and the Cauchy-Schwarz inequality

|〈O, M| Oloc |O, M〉| ≤ ‖ |O, M〉 ‖ · ‖Oloc |O, M〉 ‖ ≤ ‖Oloc‖

yields

|〈L, N1| Oloc |L, N1〉 − 〈L, N2| Oloc |L, N2〉| ≤∑
M

∣∣∣e−λL,N1
(M) − e−λL,N2

(M)
∣∣∣ · ‖Oloc‖ . (4.108)

This gives an upper bound for ε, namely

ε ≤ CL(N1, N2) ≡∑
M

∣∣∣e−λL,N1
(M) − e−λL,N2

(M)
∣∣∣ . (4.109)

Unfortunately, this cannot be used to prove STQO since CL(N1, N2) becomes only zero for |N1−
N2| → 0 and remains finite otherwise. There is a reason for that: It is rather simple to refute

STQO by providing a quasilocal operator that distinguishes states for different particle numbers

N. To this end, consider any local particle number operator nj = a†
j aj. We find

〈L, N| nj |L, N〉 =
(

L

N

)−1

∑
n,m∈BN

〈n| nj |m〉 =
(

L

N

)−1( L− 1

N − 1

)
=

N

L
= α (4.110)

with the particle density α. Therefore we find N = L 〈L, N| nj |L, N〉 which allows to distinguish

states for different N by a quasilocal measurement with R = 2. As the only sensible thermody-

namic limit can be defined via fixed particle densities, this distinguishability remains valid for

L → ∞ (it is exactly the particle density that can be locally measured after all). We conclude

that the fixed number dark states do not show STQO in our reading.
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� Figure 4.2: We show the entanglement
spectrum for the fixed number dark state
with L = 20 sites and bipartition O = 8,
E = L − O = 12 at half filling N = 10
(blue) and away from half filling N = 7
(red). There is a pairwise degeneracy at
half filling. However, away from half fill-
ing there is no degeneracy left (save for
accidental degeneracies). We conclude
that there is no general stable degeneracy
in the entanglement spectrum.

Comparison of entanglement spectra
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The so called entanglement spectrum {λ} that we computed above for the fixed number dark

states via the Schmidt decomposition

|L, N〉 =
min{O,N}

∑
M=0

e−
λL,N (M)

2 |O, M〉O |E, N −M〉E (4.111)

with

e−
λL,N (M)

2 =

(
L

N

)−1/2(O

M

)1/2( E

N −M

)1/2

(4.112)

is a well-known indicator for both topological phases [135,136] and topological order [137]. Sta-

ble degeneracies of the entanglement spectrum are usually related to states with topological

order. To compare the entanglement spectrum of the fixed number dark states with the entan-

glement spectrum of the Majorana chain ground states, we have to derive the latter by a Schmidt

decomposition. We already derived the decomposition above and it reads

∣∣Ψ+
〉
=

1√
2

(∣∣Ψ+
〉

O

∣∣Ψ+
〉

E
+
∣∣Ψ−

〉
O

∣∣Ψ−
〉

E

)
= ∑

σ=±
e−

λσ
2 |Ψσ〉O |Ψσ〉E (4.113)

for the ground state |Ψ+〉 with positive parity (the negative parity state |Ψ−〉 yields obviously

the same result for λ±). Then we find for the entanglement spectrum of the Majorana chain

ground states

e−
λσ
2 =

{
2−

1
2 σ = +

2−
1
2 σ = −

(4.114)

and λ = ∞ for all other Schmidt basis vectors on O and E, respectively72.

72For each decomposition there is a complete Schmidt ONB for the subsystems O and E. Since the sum comprises
only two orthonormal summands, the remaining coefficients are zero — which is equivalent to λ = ∞.
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We conclude that the entanglement spectrum of the two ground states is two-fold degenerate

and independent of both the system size L and the (non-trivial) bipartition OE. This charac-

terises the topological phase of the Majorana chain.

In contrast, the entanglement spectrum λL,N(M) for the fixed number dark states exhibits

no general stable degeneracies: In Fig. 4.2 we illustrate the entanglement spectrum of Eq. (4.111)

exemplarily for a chain of L = 20 sites and the bipartition O = 8, E = L−O = 12 for half filling

N = 10 (blue) and away from half filling N = 7 (red). The Schmidt basis index M denotes

the filling of |O, M〉O and thus can be viewed as a label for the Schmidt basis. The spectrum

λL,N(M) has a discrete parabola form — which is not surprising since the binomial coefficients

are closely related to Gaussian functions. Away from the special case of half filling, there are

generally no degeneracies as the blue points in Fig. 4.2 show (save for accidental or approximate

ones for large systems). Furthermore the spectrum depends crucially on the bipartition OE.

This shows that there are no distinct features of a topological phase present in the fixed

number dark states which is in line with our previous findings that these states can be locally

distinguished. This is in clear contrast to the two-fold degeneracy — that is even independent

of OE — for the Majorana chain ground states. All in all we arrive at the conclusion the the

fixed number dark states show no definite features of (1) topological phases and (2) topologically

ordered states.
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4.5 Some concluding remarks
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This is a rather technical chapter with lots of details but few results. Let us make some conclusive

remarks:

In the first part we derived the dark states of the number conserving process and provided

evidence for the uniqueness as a steady state in a fixed number sector. We furthermore

revealed that the jump operators constitute a representation of the Temperley-Lieb algebra

on the Fock space.

We showed that the number conserving dark states feature non-vanishing correlations

and consequently cannot be classified in the framework of gapped quantum phases — in

contrast to the Majorana chain ground states.

We recalculated the mean field theory of [1] and verified their results up to some technical

subtleties. However, it is highly questionable whether the applied mean field approxima-

tion yields any relevant relation between the exact dark states and the approximate ones.

There are two points I want to stress: First, the ansatz

ρk = N−1(uk + αvka†
−ka†

k) |0, 0〉±k 〈0, 0| (u∗k + α∗v∗k aka−k)

for the density matrix in momentum space is extremely restrictive and implements the

result that is aimed at a priori into the mean field theory. Furthermore, uk and vk are

predefined by the exact jump operator J and are not determined by a self-consistency

equation. And secondly, the number fluctuations of the mean field steady state are of ab-

solute order
√

N. Although the relative fluctuations vanish in the thermodynamic limit, the

crucial properties of Majorana physics are related to parity which corresponds to number

fluctuations of order ∼ 1.

In the last section we compared the exact (number conserving) dark states and the Ma-

jorana ground states in terms of their local indistinguishability and their entanglement

spectrum. Both are known as indicators for topological phases but may also be applied to

topologically ordered states. The comparison revealed that the number conserving dark

states exhibit no topology related characteristics: They can be locally distinguished and

the entanglement spectrum is not degenerate in general — in contrast to the Majorana

chain ground states.

Let us point out that these results are consistent with the well-known fact regarding Hamil-

tonian theories that particle conserving Hamiltonians do not feature Majorana modes [135].

Finally, I want to stress once more that this criticism applies only to the experimental proposal

in [1] and its connection to the theory that follows. The main part, namely the identification and

discussion of a topological invariant for the parity violating dissipative process is not affected

by our conclusions.
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Chapter 5 Dissipatively driven topological

quantum error correction

“The theory of computation has traditionally been studied al-

most entirely in the abstract, as a topic in pure mathematics.

This is to miss the point of it. Computers are physical objects,

and computations are physical processes. What computers can

or cannot compute is determined by the laws of physics alone,

and not by pure mathematics.”

David Deutsch

This is a short concluding chapter where we discuss some aspects of physically restricted error

correction schemes, both classical and quantum mechanical. It is basically motivated by the

previous chapter 4 where we scrutinised some aspects of a recent proposal [1] to implement

a dissipative version of Kitaev’s Majorana chain [3] by incoherent interactions with a tailored

environment. We came to the conclusion that the proposed number conserving jump operators do

not drive the system into a dark state space with topologically protected edge states that could

serve as a code space for the storage of a topologically protected qubit. The mean field versions

of these jump operators were shown to equal the fermionic quasiparticle annihilators [1,122] (see

also Subsection 4.3 of Chapter 4) and drive into the degenerate code space of the Majorana

chain. In this chapter we argue that the quasiparticle annihilators cannot be used as jump

operators of a dissipatively self-stabilised quantum memory and propose alternative operators

that drive towards the Majorana code space. Unfortunately (but not unexpectedly) numerical

simulations suggest that our natural jump operators do not provide a reliable quantum memory

with enhanced fidelity.

This chapter is structured as follows. In Section 5.1 we discuss the abstract concept of both

classical and quantum mechanical local error correction. This can be considered as the theoretical

foundation of dissipative error self-correction. In Section 5.2 we introduce our alternative jump

operators and derive their dark states rigorously. Thereby we find also the number state rep-

resentation of the Majorana chain ground states and derive relations to the number conserving

jump operators in Ref. [1]. In Subsection 5.2.3 we present results of a straightforward quantum

trajectory Monte Carlo simulation which indicate that there is no improvement of fidelity due

to our proposed jump operators. Finally, in Section 5.3, we discuss briefly some ideas that came

along with our treatment of the dissipative Majorana chain.
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In order to embed the dissipative Majorana chain — which will be introduced as we go along

— into a more general framework, we introduce the notion of local error correction and statistical

error correction in the following paragraphs. The basic idea is to impose physically motivated

locality conditions on algorithmic (quantum) error correction procedures. This is closely related

to the concept of error self-correction where the ground states of physical (that is, quasilocal)

systems are considered as code spaces for the storage of (quantum) information.

5.1.1 Classical error correction: An abstract point of view

Let us start with a quite general description of classical error correction algorithms. Imagine we

want to protect a register of N logical bits (denote it by l ∈ {0, 1}N) against a certain set of noise

E or “errors” by encoding them in a register c ∈ {0, 1}L of L > N physical bits. This encoding

is performed by a Turing machine M↓ ≡ M↓(E , L, N) which maps the logical bits to a certain

combination of physical bits, i.e.

M↓l = c(l) ≡ 〈l〉 . (5.1)

Each element e ∈ E may be considered as a function e : {0, 1}L → {0, 1}L. Assume there is

another Turing machine M↑ ≡ M↑(E , L, N) which recovers the logical bits from the physical

ones via

M↑c(l) = M↑M↓l = l . (5.2)

This is usually termed decoding and the action of M↓ is correspondingly referred to as encoding.

Now let c(l) be the state of a physical register with a piece l of encoded information and expose

it to the noise E . After some time the content of the register reads

c(l)
E−→ ec(l) (5.3)

with some (random) error function e ∈ E . Assume there is a third Turing machine M̂E with the

property

∀e∈E ∀l∈{0,1}N : M̂E eM↓l = l . (5.4)

That is, even if an arbitrary error e ∈ E was applied to the physical register, the logical bit l is

not lost and can be recovered by M̂E . We say that M̂E corrects for the errors in E and call the

tuple I = (M↓, M̂E , N, L, E) an information preserving structure that protects N logical bits against

the errors E by means of L physical bits.

Note that at this general point E features no non-trivial closure properties (e.g. against

concatenation of errors). Now let ME ≡ M↓M̂E be the Turing machine that recovers the physical

register of L bits for each error in E . That is, for each error e ∈ E and each valid code c we have

ME ec = M↓M̂E eM↓l = M↓l = c. Please note that ME reconstructs c from the spoiled register ec

in absence of any constraints. Particularly it is possible for ME to choose its actions on ec based

on the knowledge of ec as a whole.
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Pictorially:

M↓ e M↑
ME

Measurement Correction

l c ec c l

This is a simple repetition code that encodes N = 1 logical bit in L = 6 physical bits and

performs error correction by a majority vote. In this representation a Turing machine is rather

a physical realisation of an apparatus which is Turing complete (except for the infinite storage of

course). Therefore the act of correcting the physical register is rather a sequence of measuring

the register, processing the retrieved information, and writing the output of the error correction

algorithm to the register. At this stage there are two points to consider:

1. It is reasonable to demand that the physical system which performs the error correction is

reverted to its initial state after the error correction has finished. During this reset procedure,

the measurement outcome has to be deleted. According to Landauer’s principle [138] any

deleted bit is accompanied by an entropy ejection of kB ln 2. This is necessary to ensure that

the second law of thermodynamics remains valid (since e is unknown, the entropy of the

physical system raised during this process).

2. The Turing machine ME gains immediate knowledge of the whole register ec: There is one

measurement, one computation, and subsequently one reset process which takes care of the

entropy transferred to the Turing machine due to the measurement and correction process.

This is a quite powerful procedure (actually, there is no constraint at all but the general frame-

work) and it is clear that any such error correction procedure may be implemented by means

of classical computers since the latter are Turing complete. However, it would be appealing if

ME – which usually is just a computer – could be realised on a more fundamental level. That

is, it would be great if we could implement the chain of measuring, running ME , and correcting

the register by a simple physical process instead of using a full-fledged computer (which, in most

cases, is just a waste of resources). Such an information preserving structure is capable of error

self-correction.

However, there is no generic distinction between “normal” error correction procedures and

systems capable of error self-correction. This is due to the fact that a computer (which imple-

ments ME ) actually is a well defined (in case of a classical computer: deterministic) physical sys-

tem. Therefore a mathematician would be inclined to call “normal” error correction procedures

“trivially self-correcting procedures”. Nevertheless it is clear that the pivotal characteristics of

error self-correction is the simplicity of the physical realisation of ME . E.g. we could demand

that the correction of the physical register is performed by a quasilocal stochastic process. The

notions of quasilocality and stochasticity lead us to a more restrictive model of error correction,

which, on the contrary, is more suitable for fundamental physical implementations:

5.1.2 Classical local error correction

In order to derive a more restrictive model of classical error correction, let us state the physical

requirements which have to be met for a simple physical realisation of the correction process73:

1. The physical register hosting ec is a spatially distributed structure of local physical subsys-

tems, each of which features (at least) two inner degrees of freedom. For the sake of simplicity,

assume a finite linear chain of “spins” which may point up and downward.

73We are not going to deal with the encoding and decoding process (M↓ and M↑) since this is an unrelated story.
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c

M
(3)
E

Measurement

Correction

ec

Measurement

Correction

Measurement

Correction

c

(a) Non-local Error Correction (b) 3-local Error Correction

. . .M
(3)
E M

(3)
E

S1S S2 S4

� Figure 5.1: Illustration of classical error correction schemes. The physical bits are labelled by (un)filled
grey squares and form a register which holds the encoded logical bit(s). Here we show a simple repetition
code: The logical bit 1 is encoded by six physical bits in the same state. The paradigmatic algorithmic error
correction is illustrated in (a). The (corrupted) register ec is measured and the complete result is used
as input for a computing device (symbolised by a Turing machine) ME which computes the appropriate
operations to restore the encoded logical bit. For the shown repetition code this is just a majority vote. In
(b) we illustrate the concept of local error correction (here 3-local). The device measures only 3 adjacent
physical bits at once and subsequently starts the Turing machine to receive instructions how to modify the
3 measured bits in order to revert the local errors. Subsequently the machine is reset and thereby ejects an
amount Si of entropy. The shown (two) errors can still be correct by a 3-local majority vote.

2. The measuring process X should affect only a finite, spatially compact set KX of subsystems

(regardless of the system size L).

3. Any process Y operating on the physical register which features correlations between sub-

systems should affect only a finite, spatially compact set KY of subsystems (regardless of the

system size L).

4. For any process Y which is caused by a preceding measurement X we demand KY ⊆ KX .

This requirement encodes the assumption, that a subsystem which can be operated on can

also be measured.

These conditions lead to the notion of classical local error correction, the basic concept of which

is exemplified and compared with “normal” non-local error correction in Fig. 5.1: In (a) we

show the classical error correction scheme by means of a simple repetition code on six physical

bits (grey boxes). The state of bits is indicated by filled and blank boxes. The physical register

is shown twice, before (upper row) and after (lower row) the error correction. The logical bit is

encoded by six identical copies of its state. The corrupted register ec is illustrated in the upper

row. In the first step, the states of all physical bits are measured (green box). The result (error

syndrome) is used as input for some computing device (symbolised by a Turing machine ME )

that derives the appropriate countermeasures on the physical bits to revert the errors. In the

last step the output of ME is applied to the physical bits (red box). For the repetition code this

is a simple majority vote. Note that the for the computation of the subsequent error correcting

actions, the complete error syndrome is available

In contrast, (b) illustrates the more constrained scheme of local error correction (here the 3-

local repetition code as an example). The major constraint being the restriction of both measure-

ment and correction range on a bounded set of adjacent physical bits. Here the Turing machine

ME is initialised several times with the measurement results of three adjacent bits. Based on this

limited information, it computes appropriate countermeasures that are subsequently applied to

the same bits that were measured before. After each local correction procedure (measurement→
computation → correction) the Turing machine is reset, that is, its tape and final state is erased.
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Measurement

Correction

(a) Deterministic 3-local Error Correction (b) Stochastic 3-local Error Correction

T
(3)
E

P

M
(3)
E

Si

Measurement

Correction

{Xi}

� Figure 5.2: Here we illustrate our extended concept of classical local error correction. (a) shows the
scheme for deterministic 3-local error correction with a trivial repetition code on 8 physical bits. The

local combination of measurement device (green box), computing machine (M
(3)
E ) and correction device

(red box) — the operator — is controlled externally by a supervisor T
(3)
E (another Turing machine) which

controls (1) the position of the operator and (2) its mode (type and initialisation of the local error correction
procedure). The supervisor can be triggered deterministically by the external input P. The crucial point
is that the supervisor cannot obtain information on the measured error syndrome as there is no feedback

channel from M
(3)
E to T

(3)
E . Once triggered, a local measurement is performed, M

(3)
E runs its program on

the measurement result and subsequently resets its tape (and thereby ejects the entropy Si). In (b) the
concept of stochastic local error correction is illustrated. There the supervisor is replaced by a stochastic
process (symbolised by a set of random variables {Xi}) and determines the position of the operator and
its initialisation randomly via realisations of Xi.

As mentioned above, this requires the ejection of a certain amount of entropy Si after each step

i according to Landauer’s principle [138]. The shown repetition code is trivial and was chosen

for illustrative purposes. Clearly the constraints in (b) reduce the number of errors that can be

corrected considerably (however, the shown error can still be corrected).

Let us refine this notion further. In Fig. 5.2 we illustrate two concepts of local error correction

that differ by additional constraints on the coordination of the local error correction procedures:

In (a) we illustrate the scheme of deterministic local error correction. There are two computing (or

Turing) machines, the operator denoted by ME that computes the local error correction actions

(red box) based on the limited local error syndrome (green box), and the supervisor TE that

controls the position and initialisation of the operator. The supervisor can be triggered by an

external input P. As before, the local error correction is completed by a reset procedure on the

operator which results in an entropy ejection Si. The crucial point is that the supervisor cannot

gain knowledge on the measured error syndromes as there is no feedback channel from the

operator to the supervisor (otherwise this would be equivalent to the “normal” non-local error

correction).

In (b) the supervisor is replaced by a stochastic process denoted by the set of random vari-

ables {Xi}. Both the position and initialisation of the operator are controlled by realisations of

these random variables. Clearly this is even more restrictive than the deterministic scheme in (a)

where the local error corrections can still build on each other according to some global master

plan (even if they cannot communicate). Nevertheless this is the concept which seems to be

most convenient to formalise what a dissipative, quasilocal physical process can achieve — at

least in the Markovian regime.
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5.1.3 Local quantum error correction

Our actual motivation for thinking about quasilocal error correction is the notion of dissipative

quantum error correction. So far we were concerned with classical error correction. We do not

give a formal treatment of local quantum error correction as its development is beyond the scope of

this thesis. So let us just briefly discuss possible translations of the classical concepts developed

above to the quantum realm.

The central difference surely is the exchange of the bits by, say, two-level quantum systems

(i.e. qubits). There are two different possibilities to translate the actions of the operator: First,

the operator could be kept as “classical” as possible, meaning the measurement becomes a mea-

surement of some local observable (for instance, a stabiliser) with a subsequent projection into

the corresponding eigenspace. Then the Turing machine ME remains classical as its input is

a classical bit string. The correction operations that are controlled by its output should be re-

placed by an arbitrary local quantum operation, that is, a CPTP map with local support. As ME
remains classical, it is consistent to keep the supervisor TE as a classical Turing machine as well.

The second translation is more “quantum mechanical”: We could still keep the supervisor

as a classical deterministic TE Turing machine or a stochastic process {Xi}. But now the whole

action of the operator becomes quantum mechanical. That is, the chain “measurement → com-

putation → correction” is contracted to a single, composite operation that may be described in

the most general case as a quantum channel with local support. This concept then allows for

coherent processes in the course of the error correction.

The reader may have noticed that these concepts are closely related to quantum cellular

automata (QCA); especially the latter one. This insight motivated some of the remarks and

definitions presented in the concluding section 5.3.
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After these rather abstract preliminary remarks — which were intended to convey an intuition

of error self-correction isolated from specific physical realisations — we now return to a concrete

and familiar model: the (dissipative) Majorana chain.

To this end, we consider an open chain of L fermionic sites associated with the fermion

algebra FL spanned by physical creation and annihilation operators a†
i and ai, 1 ≤ i ≤ L. Each

physical site splits into two Majorana modes c2j−1 and c2j which may be recombined to form

new fermionic algebras. As long as the recombination remains quasilocal in a physical sense, the

resulting fermionic modes can be considered as quasiparticles. We will be concerned with the

following fermionic modes:

aj =
1

2

(
c2j − ic2j−1

)
⇔ c2j = aj + a†

j and c2j−1 = i(aj − a†
j ) (5.5a)

ãj =
1

2

(
c2j + ic2j+1

)
⇔ c2j = ãj + ã†

j and c2j+1 = i(ã†
j − ãj) (5.5b)

where the physical fermions aj are defined for 1 ≤ j ≤ L and the quasiparticles ãj are located

“between” two adjacent physical sites, i.e. 1 ≤ j ≤ L− 1. The unpaired Majorana edge modes

c1 and c2L form a macroscopically delocalised fermionic boundary mode b ≡ ãL = 1
2 (c2L + ic1).

Based on the relations above, it is straightforward to show

ãj =
1

2

(
aj + a†

j − aj+1 + a†
j+1

)
and aj =

1

2

(
ãj + ã†

j − ãj−1 + ã†
j−1

)
.

We aim at a dissipative realisation of the Majorana chain, meaning, we are looking for jump

operators that drive the open chain of fermionic sites into the degenerate ground state space of

Kitaev’s Majorana chain which can be used as a topological quantum memory. The hope is that

excitations (i.e. errors) can be eliminated by the jump operators before they traverse the system

and cause logical errors (see Subsec. 1.3.4 for a review of the Majorana chain as a quantum

memory). In the following we discuss two of the simplest sets of jump operators that drive the

system into the code space:

5.2.1 A näıve approach: Dissipative dynamics with parity violation

In [1] the effective jump operators obtained by a mean field approximation of the number con-

serving jump operators read

Lj = ãj =
1

2

(
c2j + ic2j+1

)
=

1

2

(
aj + a†

j − aj+1 + a†
j+1

)
(5.6)

which are exactly the quasiparticle annihilators. It is evident that the dissipative process {Lj}
features a two dimensional dark state space PS which coincides with the code space of the

quantum error correction code, see 1.3.4. What happens if we boldly propose these jump op-

erators from the beginning as a possible realisation of a dissipative quantum memory? In the

preliminaries 1.3.4 we pointed out that the quantum error correction code which is realised by

the ground state space of the Majorana chain — and which we wish to realise by quasilocal jump

operators — cannot correct odd bit-flip errors, that is, parity violating fermionic operations. We
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are immediately led to the conclusion that the above parity violating jump operators introduce

new errors which cannot even be corrected by the manual error correction procedure.

This becomes apparent if we recall that the logical Z-operator corresponds to the quasiparticle

parity

P̃ =
L−1

∏
j=1

(
−ic2jc2j+1

)
· (−ic2Lc1) =

L−1

∏
j=1

(−1)
ã†

j ãj · (−1)b†b

with the boundary mode b†. That is, P
∣∣0̃
〉
=
∣∣0̃
〉

and P
∣∣1̃
〉
= −

∣∣1̃
〉
. A logical phase error

then corresponds to a chain of elementary errors Ej that traverses the whole chain. We already

saw that and how such errors can be corrected. But the above jump operators correspond to

logical X-errors74 as
{

P, Lj

}
= 0; and the error correction scheme in 1.3.4 cannot cope with such

errors. In the Hamiltonian setting this reads as follows: The last paragraph of 1.3.4 showed

that away from the ideal point, there appear terms which couple the boundary mode to the

quasiparticles near the endpoints of the chain. If somewhere in the bulk a physical X-error, say

a single ã†
j , occurred, the non-trivial dynamics of the quasiparticles can transfer this excitation

into the boundary mode and thereby lift it to a logical bit-flip error.

We conclude that the above parity violating jump operators do more harm than good; at

least if the spectrum is not flat and the quasiparticles can diffuse across the system (which is to

be expected in any experimental realisation to some degree).

5.2.2 A second approach: Dissipative dynamics with parity conservation

According to the previous discussion, we need parity conserving jump operators if we wish to
reproduce the quantum error correction code in a dissipative setting. The most straightforward
approach certainly is the following:

Lj,c ≡
1

2
Ej+c

(
1− Sj

)
=

i

2
c2(j+c)c2(j+c)−1

(
1 + ic2jc2j+1

)
=




−ã†

j−1 ãj + ãj−1 ãj , (c = 0)

ã†
j+1 ãj + ãj+1 ãj , (c = 1)

. (5.7)

These jumps push the excitations (that is, physical errors) across the system and annihilate

pairs of adjacent excitations. Contrary to the parity violating jump operators, the parity conserv-

ing versions are interacting. However, due to their quasilocal nature, a physical realisation is not

beyond the realms of possibility. Since c takes the values 0 and 1, there are 2L− 2 independent

jump operators whose action on the quasiparticle number-states can be illustrated as follows

(sites j− 1, j and j + 1 are depicted):

Lj,0 | 〉 = − | 〉
Lj,0 | 〉 = − | 〉
Lj,0 | 〉 = − | 〉
Lj,0 | 〉 = − | 〉

Lj,1 | 〉 = | 〉
Lj,1 | 〉 = | 〉
Lj,1 | 〉 = | 〉
Lj,1 | 〉 = | 〉

If the corresponding site j is unoccupied, the jump operators annihilate the state:

Lj,0/1 | 〉 = Lj,0/1 | 〉 = Lj,0/1 | 〉 = Lj,0/1 | 〉 = 0

74In the spin representation that we obtained by a Jordan-Wigner transformation, such errors appear as non-local
string operators.
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That is, the jump operators simulate a diffusion and annihilation process on the quasiparticle

excitations. In the original (physical) fermion basis we find

Lj,c =
1

2




−
(

1− 2a†
j aj − ajaj+1 − a†

j a†
j+1

)
− a†

j aj+1 + a†
j+1aj , for c = 0(

1− 2a†
j+1aj+1 − ajaj+1 − a†

j a†
j+1

)
− a†

j aj+1 + a†
j+1aj , for c = 1

. (5.8)

Interestingly enough, we can recover the particle conserving jump operators from Chapter 4 by

adding the jump operators for c = 0 and c = 1, i.e.

Lj,0 + Lj,1 = a†
j aj − a†

j+1aj+1 + a†
j+1aj − a†

j aj+1 ∝ Jj (5.9)

and we conclude that any dark state of
{

Lj,c

}
, 1 ≤ j ≤ L− 1 and c ∈ {0, 1}, is automatically a

dark state of the number conserving dynamics
{

Jj

}
. Now define additionally

Fj ≡ Lj,0 − Lj,1 = a†
j aj + a†

j+1aj+1 − 1+ ajaj+1 + a†
j a†

j+1 . (5.10)

Since Jj = Lj,0 + Lj,1 and Fj = Lj,0 − Lj,1 define a nonsingular linear transformation of operators,

it follows that the two dissipative processes
{

Jj, Fj

}
and

{
Lj,0, Lj,1

}
stabilise the same dark states.

This can be formulated more generally:

◮ Lemma 5.1: Transformation of jump operators

Consider an arbitrary set of jump operators {Ai}1≤i≤L that defines a dissipative process

such that the only steady states are described by the dark state space D. Let M ∈ GL(L, C)

be an arbitrary nonsingular matrix. Then the new set of jump operators
{

Bj

}
1≤j≤L

defined

via

Bj ≡
L

∑
i=1

Mi
j Ai ≡ Mi

j Ai (5.11)

constitutes a dissipative process with the same dark states D.

Proof. Let M be the inverse of M. For any state |D〉 ∈ H it holds

∀j : Bj |D〉 = 0 ⇔ ∀j : Mi
j Ai |D〉 = 0 ⇔ ∀l : M

j
l M

i
j Ai |D〉 = 0 ⇔ ∀l : Al |D〉 = 0

so that the dark state space of the new dissipative process remains D. To show that these are the

only steady states assume that there is a subspace S ≤ H, S ⊥ D, such that ∀1≤j≤L : AjS ⊆ S .

Let |Ψ〉 be an arbitrary state in S , i.e. ∀1≤j≤L : Aj |Ψ〉 ∈ S. Then it follows immediately (due to

the subspace property of S) that ∀1≤i≤L : Bi |Ψ〉 = M
j
i Aj |Ψ〉 ∈ S . Since D is also the dark state

space of the new process, this shows that the condition of Proposition 4.1 remains true (or false)

under the transformation M. �

� Derivation of the dark states

We will now derive the dark states for the process
{

Jj, Fj

}
from scratch and conclude immediately,

that these dark states are stabilised by the equivalent process
{

Lj,0, Lj,1

}
. However, it is clear

that the dark states for the dissipative process
{

ãj

}
1≤j≤L−1

are also dark states for e.g.
{

Lj,1

}
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since Lj,1 = ã†
j+1 ãj + ãj+1 ãj. Conversely, assume that Lj,1 |D〉 = 0 for some state |D〉 ∈ H. Recall

that for any state |Ψ〉 and site l it holds
(
ã†

l + ãl

)
|Ψ〉 = 0 ⇒ |Ψ〉 = 0. Set l = j+ 1 and it follows

ãj |D〉 = 0.

Hence all three dissipative processes
{

Jj, Fj

}
,
{

Lj,0, Lj,1

}
, and

{
ãj

}
stabilise the same dark

states. So let us construct the dark states for
{

Jj, Fj

}
which coincide with the topologically

ordered Majorana chain ground states. We shall use the superselection sectors of even and odd

parity. Therefore define

P
+
L ≡

⌊L/2⌋⋃

i=0

B2i and P
−
L ≡

⌊L/2⌋⋃

i=0

B2i+1 . (5.12)

Thus P
±
L is the set of all binary vectors n ∈ {0, 1}L with even (+) and odd (−) occupancy and the

superselection sectors in HL read H±L = span
{
|n〉 | n ∈ P

±
L

}
. That is, relative phases between

states of these superselection sectors are physically unobservable and any (mathematical) super-

position of such vectors degenerates (physically) to a statistical mixture (see paragraph 1.3.4 in

the preliminaries for some remarks on superselection).

We first want to express the action of Jj and Fj in terms of binary transformations. To this

end let ǫi be the binary addition of 11 on sites j and j + 1, that is

ǫjn = ǫj

(
n1, . . . , nj, nj+1, . . . , nL

)
≡
(
n1, . . . , nj ⊕ 1, nj+1 ⊕ 1, . . . , nL

)
. (5.13)

Furthermore recall the definition of σj:

σj : {0, 1}L −→ {−1, 0, 1}, n 7→ σjn =





+1 ⇔ nj = 1∧ nj+1 = 0

0 ⇔ nj = nj+1

−1 ⇔ nj = 0∧ nj+1 = 1

(5.14)

where j is a variable modulo L and it holds σjǫjn = −σjn. Analogously we define

µj : {0, 1}L −→ {−1, 0, 1}, n 7→ µjn =





+1 ⇔ nj = 1 = nj+1

0 ⇔ nj 6= nj+1

−1 ⇔ nj = 0 = nj+1

(5.15)

where j is a variable modulo L. Obviously µjǫjn = −µjn.

Now recall the action of Jj on the number basis:

Jj | 〉 = 0

Jj | 〉 = − | 〉 − | 〉
Jj | 〉 = | 〉+ | 〉
Jj | 〉 = 0
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For the new operators Fj we find a similar structure:

Fj | 〉 = | 〉 − | 〉
Fj | 〉 = 0

Fj | 〉 = 0

Fj | 〉 = | 〉 − | 〉

Using the previously introduced symbols ǫj, σj and µj this can be written in the compact form

Jj |n〉 = σjn
[
|n〉+

∣∣ǫjn
〉]

(5.16)

Fj |n〉 = µjn
[
|n〉 −

∣∣ǫjn
〉]

. (5.17)

Now let |Ψ±〉 = ∑n∈P
±
L

Ψ±(n) |n〉 ∈ H±L be an arbitrary state of defined parity. We rewrite this

state in terms of sectors of constant particle number, namely

∣∣Ψ+
〉
= ∑

n∈P
+
L

Ψ+(n) |n〉 =
⌊L/2⌋
∑
i=0

∑
n∈B2i

Ψ+(n) |n〉 . (5.18)

Here we considered w.l.o.g. an even parity state |Ψ+〉. Demanding Jj |Ψ+〉 = 0 for all 1 ≤
j ≤ L − 1 is equivalent to the condition Jj ∑n∈B2i

Ψ+(n) |n〉 = 0 since vectors |n〉 and |m〉 are

linearly independent for n ∈ Bl and m ∈ Bk if l 6= k and the subspaces H(L,N) of fixed particle

number are invariant with respect to all Jj jump operators. However, this condition has already

been solved previously (see 4.2.2) and we find Ψ+(n) = Ψ+
2i = const for each sector |n| = 2i of

constant particle numbers which leads us to

∣∣Ψ+
〉
=
⌊L/2⌋
∑
i=0

Ψ+
2i ∑

n∈B2i

|n〉 =
⌊L/2⌋
∑
i=0

Ψ+
2i

(
L

2i

)1/2

|L, 2i〉 = ∑
n∈P

+
L

Ψ+
|n| |n〉 (5.19)

where |L, 2i〉 denotes the well known dark states of the
{

Jj

}
process. Now the additional condi-

tions Fj |Ψ+〉 = 0 must be satisfied for all 1 ≤ j ≤ L− 1 which means

Fj

∣∣Ψ+
〉

= ∑
n∈P

+
L

Ψ+
|n|Fj |n〉 = ∑

n∈P
+
L

Ψ+
|n|µjn

[
|n〉 −

∣∣ǫjn
〉]

=
1

2 ∑
n∈P

+
L

Ψ+
|n|µjn

[
|n〉 −

∣∣ǫjn
〉]

+
1

2 ∑
n∈P

+
L

Ψ+
|ǫjn|µjǫjn

[∣∣ǫjn
〉
− |n〉

]

=
1

2 ∑
n∈P

+
L

Ψ+
|n|µjn

[
|n〉 −

∣∣ǫjn
〉]

+
1

2 ∑
n∈P

+
L

Ψ+
|ǫjn|µjn

[
|n〉 −

∣∣ǫjn
〉]

=
1

2 ∑
n∈P

+
L

[
Ψ+
|n| + Ψ+

|ǫjn|
]

µjn
[
|n〉 −

∣∣ǫjn
〉] !

= 0

where we used the fact that ǫ2
j = 1, ǫjP

±
L ⊆ P

±
L and hence ǫjP

±
L = P

±
L . Note that for µjn = 0

no additional constraint is obtained. However, due to the linear independence we find

Ψ+
|n| + Ψ+

|ǫjn| = 0 ⇔ Ψ+
|n| = −Ψ+

|n|∓2
if µjn = ±1 (5.20)

since clearly |ǫjn| = |n| − 2µjn. That is, we get the alternating structure
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∣∣Ψ+
〉

= N−1/2
L

⌊L/2⌋
∑
i=0

(−1)i

(
L

2i

)1/2

|L, 2i〉 and (5.21a)

∣∣Ψ−
〉

= N−1/2
L

⌊L/2⌋
∑
i=0

(−1)i

(
L

2i + 1

)1/2

|L, 2i + 1〉 (5.21b)

which is the equal-weight and alternating-phase superposition of all even (odd) parity number

states. We conclude that the dark states of the fermionic process
{

ãj

}
1≤j≤L−1

are unique in each

superselection sector H±L .

The reader might have noticed that we actually did not use the fact that Fj |Ψ±〉 = 0 for all

1 ≤ j ≤ L − 1. The above argument applies even if we just demand that there exists one j∗

such that Fj∗ |Ψ±〉 = 0. This shows that already the process
{

F1, Jj

}
1≤j≤L−1

(one may replace

F1 by some other Fj) drives the system to the Majorana chain dark states |Ψ±〉 (depending

on the superselection sector). This is intuitively accessible as follows: The
{

Jj

}
process fixes

the relative phases and weights within each fixed particle number sector H(L,N). Then it is

sufficient so fix the relative phases and weights between these sectors at an arbitrary position by

means of a single jump operator Fj∗ to fix everything. Pictorially this is a “hole” in the system

where fermion pairs can be injected and ejected. It is straightforward to show by induction over

the quasiparticle sites that being a dark state of
{

F1, Jj

}
1≤j≤L−1

implies being a dark state of
{

ãj

}
1≤j≤L−1

.

Since the operators ãj obey a fermionic algebra for 1 ≤ j ≤ L, there is a unique quasiparticle

vacuum |L,−〉 ≡ |Vac〉 = ∏
L
j=1 ãj |0〉 for L odd and |L,−〉 ≡ |Vac〉 = ∏

L−1
j=1 ãj |0〉 for L even75

such that ãj |L,−〉 = 0 for all 1 ≤ j ≤ L. Due to the uniqueness of the dark state (as derived

above) it follows immediately (up to a global phase)

|L,+〉 = ã†
L |L,−〉 =

∣∣Ψ+
〉

and |L,−〉 =
∣∣Ψ−

〉
. (5.22)

Note that ã†
L = 1

2 (c2L − ic1) is a non-local fermionic mode located at the edges of the system.

Let us give a short summary: We know that all three processes
{

Jj, Fj

}
,
{

Lj,0, Lj,1

}
and

{
ãj

}

have the same dark states and we derived these dark states rigorously. Thereby we found the

above number state representation for the two degenerate Majorana chain ground states which

belong to different parity superselection sectors H±L .

75Note that the quasiparticle vacuum has in any case odd parity as derived previously. That, provided L is

even, ãL |L,−〉 = ãL ∏
L−1
j=1 ãj |0〉 = 0 can be seen as follows: ∏

L
j=1 ãj |0〉 has even parity since L is even. Obviously

ãi ∏
L
j=1 ãj |0〉 = 0 for all 1 ≤ i ≤ L. However, we proved already that |Vac〉 has odd parity. By combining these facts

with the uniqueness of the fermionic vacuum it follows immediately that ãL ∏
L−1
j=1 ãj |0〉 = 0.
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� Gauging the dark states

The alternating sign (−1)i in Eq. (5.21a) is unfortunate — at least from an aesthetic point of view.

Let us get rid of it. To this end note that the physical content of the theory remains unaltered

by a gauge transformation defined via

aj → a′j := e−iχ(j)aj ⇔ aj = eiχ(j)a′j (5.23)

where χ : Z → R is an arbitrary real-valued function. The local unitary transformation Tχ

describing such a gauge transformation is easily obtained via

|n〉 =
(

a†
1

)n1
. . .
(

a†
L

)nL |0〉 =
(

e−iχ(1)a′†1
)n1

. . .
(

e−iχ(L)a′†L
)nL |0〉

= e
−i ∑

L
j=1 χ(j)nj

(
a′†1
)n1

. . .
(

a′†L
)nL |0〉 = e

−i ∑
L
j=1 χ(j)n̂j |n〉′ (5.24)

and we find

Tχ = e
i ∑

L
j=1 χ(j)n̂j such that |Ψ〉′ = Tχ |Ψ〉 (5.25)

where n̂j = a†
j aj = a′†j a′j denotes the one-site particle number operator (in contrast to its quantum

numbers nj). It is then easy to show that

a′n = TχanT†
χ = eiχ(n)a†

nan ane−iχ(n)a†
nan =

[
1− iχ(n) +

(−iχ(n))2

2!
+ . . .

]
an = e−iχ(n)an

where we applied the Hadamard lemma. In context of our parity-conserving dissipative dynam-

ics we obtain the transformed jump operators

J′j = Tχ JjT
†
χ = a′†j a′j − a′†j+1a′j+1 + a′†j+1a′j − a′†j a′j+1 (5.26a)

F′j = TχFjT
†
χ = a′†j a′j + a′†j+1a′j+1 − 1+ a′ja

′
j+1 + a′†j a′†j+1 (5.26b)

and the transformed dark states

∣∣Ψ+
〉′

= N−1/2
L

⌊L/2⌋
∑
i=0

(−1)i

(
L

2i

)1/2

Tχ |L, 2i〉 and (5.27a)

∣∣Ψ−
〉′

= N−1/2
L

⌊L/2⌋
∑
i=0

(−1)i

(
L

2i + 1

)1/2

Tχ |L, 2i + 1〉 . (5.27b)

Let us choose χ(j) ≡ π
2 constant. Constrained to a fixed particle sector H(L,N), the gauge

transformation reads Tχ = e
i π

2 ∑
L
j=1 n̂j = ei π

2 N = iN . Since |L, 2i〉 ∈ H(L,2i) and |L, 2i + 1〉 ∈
H(L,2i+1) we find Tχ |L, 2i〉 = i2i |L, 2i〉 = (−1)i |L, 2i〉 and Tχ |L, 2i + 1〉 = i(−1)i |L, 2i + 1〉.
Therefore

∣∣Ψ+
〉′

= N−1/2
L

⌊L/2⌋
∑
i=0

(
L

2i

)1/2

|L, 2i〉 and (5.28a)

∣∣Ψ−
〉′

= N−1/2
L

⌊L/2⌋
∑
i=0

(
L

2i + 1

)1/2

|L, 2i + 1〉 (5.28b)

(up to a global phase) which is the equal-weight superposition of all number states with fixed

parity. We see: the alternating factor (−1)i can be gauged away. �
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5.2.3 QTMC simulation

The original motivation for the parity conserving jump operators Lj,c = 1
2 Ej+c

(
1− Sj

)
for left

(c = 0) and right jumps (c = 1) of elementary errors was quantum error correction. As we outlined

in 5.1.2, the basic idea is that of a dissipative self-correcting quantum memory: The dark state space

D of the dissipative process {Lj,c} corresponds to the two-fold degenerate ground state space

of the Majorana chain which, in turn, is a quantum code.

Suppose that we start in a logical state |Ψ〉 ∈ PS . If errors occur, the logical state is corrupted

and leaves the dark state space. Subsequently the jump operators push the errors randomly

across the system and annihilate pairs of them whenever two errors meet. When the noise is

switched off but the bath coupling remains finite, the system is cooled back into the dark state

space, that is, the code space. The question is, whether the final dark state equals the initial

state or if the dissipative process caused two excitations to traverse the system and annihilated

them in the boundary mode — which corresponds to a logical phase error.

In short, is this dissipative process a self-correcting quantum memory? What is the fidelity

as a function of the noise level and the system size? Let us first discuss heuristically what we

should expect. To this end (and for the QTMC simulation that we apply to compute the fidelity

numerically) it proves advantageous to recast the dissipative process on a spin chain by mean of

a Jordan-Wigner transformation. We already found in 1.3.4 that the fundamental errors Ej and

stabilisers Sj read Ej = σz
j and Sj = σx

j σx
j+1 on the spin- 1

2 chain. Therefore we find

Lj,c =
1

2
σz

j+c

(
1− σx

j σx
j+1

)
(5.29)

for the proposed jump operators. To simplify the QTMC implementation and to recast the

theory in the more familiar σz-eigenbasis, we perform an additional π
2 -rotation about the σy-

axis, namely U = ∏j exp
(
−i π

4 σ
y
j

)
which yields UσxU† = −σz and UσzU† = σx. In this basis,

the jump operators read

Lj,c =
1

2
σx

j+c

(
1− σz

j σz
j+1

)
. (5.30)

This is enlightening as it reveals immediately that the two-fold degeneracy of the Majorana

code space corresponds to the two-fold degeneracy of the quantum Ising model: The dark

states read
∣∣0̃
〉
= |↑ . . . ↑〉 and

∣∣1̃
〉
= |↓ . . . ↓〉 and our jump operators reach them by shifting

the domain walls (which correspond to quasiparticles ã†
i ) across the system. Elementary errors

Ej = σx
j flip the spin at site j and create a pair of domain walls on the adjacent dual sites (which

corresponds to a parity conserving pair creation process of quasiparticles). When an elementary

error occurs, there are two possibilities for the dissipative process to get rid of the domain walls.

First, the domain walls meet again in the bulk and “annihilate”. Thereby the total z-polarisation

is preserved which corresponds to a successful error correction. Second, the domain walls meet

the opposite ends of the chain and vanish there (one can imagine that the annihilate “outside”

the chain). As a consequence, the total z-polarisation is inverted which corresponds to a phase

error in the fermionic setting.

This is a nice result as it closes the circle with Chapter 2 where we contrived similar jump op-

erators (that could be applied here, too) to drive into the ground state manifold of the transverse

field Ising model for vanishing magnetic field.
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We are now ready to establish an unpleasant conjecture. A local error correction would be

successful (in most cases) if the jump operators annihilated the excitations according to the min-

imum weight decoding algorithm introduced in 1.3.4. However, there the actor who performs

the error correction knows the complete error syndrome and derives the appropriate error correc-

tion operator in accordance with this information. But the jump operators are quasilocal operators

that know only about the local error syndrome. And in one dimension this is a problem. It is

impossible to decide locally in which direction (that is, c = 0 or c = 1) the domain wall must

be shifted in order to annihilate it with its appropriate partner. This is not true for strings in

two and branes in higher dimensions as the local curvature allows the contraction of such objects

based solely on local decisions. That is, our proposed jump operators cannot “know” which is

the correct action and therefore we expect our dissipative system to fail as a self-correcting quan-

tum memory. This would even be true if we employed the jump operators that we proposed for

the transverse field Ising model76.

The attentive reader may have noticed that there is a close connection to phase transitions

in classical Ising models. The above argumentation can be adapted one-on-one to these systems

for finite temperatures (which corresponds to errors): Since there is no method to decide how

to contract domains in one-dimensional systems most efficiently, there is no phase transition in

the one-dimensional Ising model. As stated above, this is not true in higher dimension where

the Ising model exhibits thermal phase transitions after all.

Before we conclude this section with a negative result, let us have a look at two characteristic

realisations of quantum trajectories. To this end, we simulate the local spin-flip errors Ej by

jump operators LE
j =
√

κσx
j with the noise strength κ. We start with a random initial state |Ψ0〉

in the code space, that is

|Ψ0〉 = cos

(
φ

2

)
|↑〉⊗L + sin

(
φ

2

)
eiθ |↓〉⊗L (5.31)

where we choose θ = 2πu and φ = arccos(2v− 1) with uniformly distributed random variables

u, v ∈ U (0, 1)77. Then we activate both baths, {Lj,c} and {LE
j }, for a time period ∆t1 where

errors occur and the jump operators try to get rid of them at the same time. Usually this is not

successful at the end of ∆t1. Therefore we append a second period ∆t2 without noise but with

the error correction operators to annihilate all remaining excitations and to drive the system

back into the code space. During the simulation, we record the type of jumps (Lj,c and LE
j ) and

their location j. We furthermore measure the code space projector

P(t) ≡ 〈Ψ(t)| P̂ |Ψ(t)〉 with P̂ = |↑ . . . ↑〉 〈↑ . . . ↑|+ |↓ . . . ↓〉 〈↓ . . . ↓| (5.32)

as a function of time to indicate when the state leaves the code space. To test whether the final

state in the code space coincides with the initial state, we measure the time evolution of the

overlap (or fidelity), that is

F(t) ≡ |〈Ψ0|Ψ(t)〉| (5.33)

These quantities are shown in Fig. 5.3 for two characteristic quantum jump trajectories. The

lower part of each plot represents a space-time diagram of the chain78 with errors and error

76Recall that they perform an average over the adjacent correlations; in two dimensions they read dj =

σx
j

(
1− 1

2 σz
j σz

j+1 − 1
2 σz

j σz
j−1

)
. Yet they cannot know about the correct direction.

77This is necessary to obtain a uniform distribution of Bloch vectors on the Bloch sphere.
78The chain lies parallel to the vertical axis and evolves in time along the horizontal axis
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� Figure 5.3: Single realizations of quantum jump trajectories for the dissipative Majorana Chain. In
the upper part of each plot we show the time evolution of the expectation value P(t) = 〈Ψ(t)| P̂ |Ψ(t)〉
of the code space projector P̂ (red solid) and the overlap F(t) = |〈Ψ(0) |Ψ(t)〉| with the initial state (blue
dashed). In the lower part a time-space diagram of the chain shows the jump history of the trajectory.
The white/grey stripes denote world lines of the singe spins of the chain. Red dots encode LE

j jumps

(i.e. errors), blue dots encode Li,c jumps (i.e. error corrections). In (A) we show a history of a successful
error correction: The domain walls caused by the errors in the noise regime do not traverse the whole
chain as they never reach the upper end. In (B) an unsuccessful error correction is illustrated: The domain
walls of both errors merge in the middle while their counterparts reach opposite ends of the chain. The
polarization is flipped and a logical error is introduced. Note that in both cases the state ends up back in
the code space (P = 1 in the end) whereas the initial state is lost in (B) since O < 1 after elimination of all
domain walls.

correction operators labeled by red and blue dots, respectively. The grey region denotes the first

time period ∆t1 where errors occur, the subsequent white region corresponds to the cooling

process.

In (A) we show a history with a successful error correction: There occur four errors during

∆t1; two of them are immediately annihilated. The other two errors start a diffusion process

across the system which can be followed by its “path” of error correction operators. A single

excitation (its partner is attached the lower end of the chain) survives for a little while during

the cooling period ∆t2 but reaches the lower end at t ≈ 4. Please note that during the existence

of the excitations the state is orthogonal to the code space as P reveals. When the system is

once again in a dark state, the projector jumps to 1 — along with the fidelity! We conclude

that the qubit was restored successfully. Note that no excitation traversed the system during the

evolution.

In (B) we show a history with an unsuccessful error correction: The two errors create four

domain walls, two of which join between them. The remaining two domain walls are driven

towards the opposite chain boundaries, as can be seen from the error correction paths. When

the last excitation vanishes, the system returns to the code space. Unfortunately, the fidelity

does not reach unity and the original logical qubit is corrupted. The reason is that during

the evolution excitations traversed the whole system and thereby inflicted a phase error on the

logical qubit. These results illustrate our previous discussions explicitly.

To conclude this section and to substantiate our previous arguments, we computed statistical

averages 〈P〉 and 〈F〉 over N = 10000 trajectories with random initial states for varying noise
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� Figure 5.4: QTMC simulations of the dissipatively implemented Majorana chain. In (A) we show the
statistical averages 〈P〉 and 〈F〉 for the code space projector P and overlap (fidelity) F as functions of time.
The results were obtained as averages over N = 10000 trajectories with random initial states and with
∆t1 = 2 and ∆t2 = 10 as noise and cooling period, respectively. Depending on the noise rate κ both the
code space projection and the overlap decrease when the σx-dephasing is switched on. Subsequently the
system returns to the code space due to the cooling, i.e. 〈P(t)〉 → 1 for t → ∞. However, the fidelity
reaches values limt→∞〈F(t)〉 < 1 that decrease for increasing noise κ. In (B) we show the averaged fidelity
〈F〉 for trajectories that returned to the code space after the cooling interval ∆t2, i.e. P(∆t1 + ∆t2) = 1, as
function of the noise rate κ and for different system sizes. For comparison we computed the fidelity for
a single qubit without error correction that was exposed to the same σx-dephasing for the same period
of time ∆t1. Obviously the dissipative Majorana chain does not provide an enhanced coherence time
compared to the single, uncorrected qubit. Further details are given in the text.

rates κ and system sizes L = 2, 3, 4, 5, 6. We set ∆t1 = 2 and ∆t1 = 10 with time steps δt = 0.001.

The results are shown in Fig. 5.4.

In (A) we show the statistical averages of the expectation values 〈P〉 and 〈F〉 for different

noise rates κ and a fixed system size L = 6. The stronger the x-dephasing the faster the system

leaves the code space. For large rates κ & 1 there is a saturation behaviour observable. In

the cooling regime, most systems return to the code space within ∆t2 ≈ 10 as the red curves

indicate. In contrast, the asymptotic fidelity that is reached for t → ∞ depends crucially on the

noise rate κ and does not reach unity for κ > 0. This is illustrated quantitatively in (B) where we

computed statistical averages 〈F〉 for the fidelity as functions of the error rate κ and for different

system sizes. For the computation of 〈F〉 we took into account all trajectories that reached the

code space at the end of the cooling interval ∆t2, that is, all trajectories with P(∆t1 + ∆t2) = 1.

Depending on the rate κ, more than ∼ 8000 trajectories contributed to each average of 〈F〉. For

comparison, we simulated also a single spin (L = 1) with the same parameters (but obviously

without the error correction bath). The results verify our conjecture: There seems to be no effect

at all due to the storage of the qubit in the quantum code. The fidelities drop exponentially with

κ and are independent of the system size.

Thus we argue that this straightforward dissipative implementation of the Majorana chain

does not yield a convenient self-correcting quantum memory. It is, in fact, not even more resilient

to noise than a single qubit without any error correction. This result is unfortunate but not

unexpected for four reasons:
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1. Hamiltonian self-correcting quantum memories are notoriously hard to find, at least in D ≤ 3

dimensions. For instance, the toric code is completely unstable in 2D [71, 72] and becomes

only partially stable in 3D [73] (for finite temperatures). However it is stable at finite tem-

peratures in four spatial dimensions [49] which, of course, is a useless fact if one seeks a

realisation in our three-dimensional world.

2. It is known that the Hamiltonian theory of the Majorana chain does not provide a consider-

able improvement in coherence time [69] in noisy environments.

3. There was an earlier approach to contrive self-correcting quantum memories via dissipation

based on spin systems in Ref. [55]. However, their results experience more or less the same

restrictions as for Hamiltonian theories: They provide a four-dimensional self-correcting theory

and a two-dimensional theory which provides protection against purely depolarising noise,

that is, no full-fledged self-correcting quantum memory in less than four dimensions.

4. We realised that there seems to be a close relation to classical phase transitions if one considers

only one type of error (which is tolerable for the Majorana chain thanks to parity superselec-

tion). But there are, to the best of my knowledge, no Hamiltonian systems in one dimension

that feature a phase transition at finite temperature.

This concludes our treatment of the dissipative Majorana chain. In the remaining paragraphs of

this chapter we give some additional remarks and present some ideas that came along with our

treatment of dissipative systems.
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5.3 Some asides: QCA and localisation of observables
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We conclude this short chapter with two concepts that came to my mind during the work on

Section 5.1 and 5.2. They are rather unrelated to the concept of quantum error correction but

are more or less closely linked to quasilocal dissipative processes on physical lattice systems.

There are neither answers nor specific questions related to these concepts; they might just be

interesting to think about.

5.3.1 A physically motivated definition of quantum cellular automata

As a byproduct of Section 5.1, I first came into contact with classical cellular automata (CA)

[139–148] and subsequently with quantum cellular automata (QCA) [149–155]. There are various

different (equivalent and non-equivalent) concepts of QCAs [153, 154] and most of them are

reversible.

Here we give a quite general definition of a quantum cellular automata (QCA), extending

the definition of unitary (thus reversible) QCAs in [154] and of non-unitary QCAs in [150].

Our definition is operational and physically motivated and consequently based upon general

quasilocal quantum operations (i.e. CPTP maps). To motivate the definitions below, let us sketch

the physical requirements that should be met for any realisable many-body dynamics:

1. Operations may be unitary (reversible) and non-unitary (irreversible); where the latter occurs

due to environmental couplings. A general quantum operation O is described by a com-

pletely positive and trace preserving (CPTP) map acting as a superoperator on the convex set

of density matrices D (H) ⊆ B (H).

2. Physically realisable operations are quasi-local, i.e. their support is bounded by a constant in

the thermodynamic limit.

3. These operations should be translation invariant in space to allow for compact descriptions.

4. These operations should also be translation invariant in time. One may soften this require-

ment to describe processes whose physical rules change in time.

We aim at a formalisation of these requirements in terms of a quantum cellular automaton. Let me

stress that the fascinating property of cellular automata in general is the emergence of complex

behaviour from simple microscopic (and thus local) rules. But this very statement could also be

made about physical systems that describe the emergence of collective phenomena (such as phase

transitions) from simple constituents and local interactions. It is therefore natural to think of

physical (lattice) systems as quantum cellular automata.

To this end we need some operational definitions to describe the objects we are interested in:
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� Figure 5.5: We show an example for a physical lattice system P as defined in Def. 5.1. The leftmost
figure illustrates the structure lattice L with basis vectors e1 and e2. The blue vertices denote the structure
lattice sites. The next figure from the left shows the site lattice L (marked by blue and red dots) as it can
be constructed from L and the shown vectors f 0 = 0 and f 1, . . . , f 4 6= 0. The family Fx of the centred
blue site is marked by arrows. Note that the (blue) structure lattice site becomes a site of the site lattice
only if f 0 = 0 is used for the construction of the latter. For example, this site lattice could be used for the
Z2-Gauge-Higgs model in Chapter 3 in two dimensions. The remaining two plots on the right-hand side
illustrate a possible layer set I consisting of the two layers L1 and L2. Note that the families of both layers
are not necessarily disjoint.

◮ Definition 5.1: Physical Lattice System (PLS)

(i) Let L be a D-dimensional lattice in RD spanned by the basis B = {ei}1≤i≤D, i.e.

L =
{

x = ∑
D
i=1 xiei | xj ∈ Z, 1 ≤ j ≤ D

}
. We will call L the structure lattice henceforth.

(ii) Let F = { f i}≤1≤ f be an arbitrary set of vectors in RD. For any x ∈ L we call

Fx ≡ x +F ≡ {x + f | f ∈ F} the family of x.

(iii) The site lattice L is defined as union of all families, i.e.

L ≡ L+F =
⋃

x∈L
Fx . (5.34)

Note that there may be common sites to different families, Fx ∩ Fy 6= ∅.

(iv) Now attach a finite dimensional Hilbert space Hs
∼= Cd to each site s ∈ L and define

the complete Hilbert space as

HL ≡
⊗

s∈L
Hs . (5.35)

Then we call the triple P =
(
HL,L,F

)
the physical lattice system (PLS) P.

(v) P is a local physical lattice system if max {| f | | f ∈ F} is of the same order as

max {|e| | e ∈ B}. From now on all PLS will be considered local.

(vi) A layer set I is defined as a finite tuple of disjoint sublattices (L1, . . . ,LI) such that

L =
⋃

1≤i≤I

Li and ∀1≤i≤I ∀x,y∈Li
: Fx ∩ Fy = ∅ . (5.36)

Li ≡ Li +F is then called the ith layer. Obviously L =
⋃

1≤i≤I Li.

An example of a physical lattice system is depicted in Fig. 5.5.
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We are now in the position to define our quantum cellular automaton which describes the time-

discrete evolution of states in HL:

◮ Definition 5.2: Deterministic Quantum Cellular Automaton (D-QCA)

(i) Let P be a PLS with family template F . Given a quantum channel template R op-

erating on the density matrix space template D (HF ) ≡ D
(⊗

f∈F H f

)
via its Kraus

representation R[ρ] = ∑i KiρK†
i , define for each structure lattice site x ∈ L the generic

embedding Rx which operates as R on D
(⊗

f∈Fx
H f

)
where ρ ∈ D (HFx).

(ii) Let I be a layer set of P. Then we define the transition channel CR as

CR : D
(
HL
)
−→ D

(
HL
)

, ρ 7→ CR[ρ] = ∏
i=1,...,I

⊗

x∈Li

Rx [ρ] (5.37)

which describes the transition of the PLS ρt 7→ ρt+1 = CR[ρt] for each time step.

(iii) The triple (P, I ,R) is called deterministic I-layer quantum cellular automaton. We always

assume that I is minimal, i.e. there is no layer set I ′ with fewer layers than I.

Note that due to the definition of the layer set I , the support of two quantum channels Rx

and Ry for x, y ∈ Li, x 6= y, is disjoint. Therefore they can be implemented simultaneously. It

is natural to demand a minimal layer set I to reduce the time for the implementation of CR.

As stated before, this definition of a QCA is physically motivated to provide a formally rig-

orous framework of quasilocal physical systems (see Appendix E for some notes on the term

“quasilocal”). From an operational point of view, Def. 5.1 describes the stroboscopic evolution

of a physical lattice with finite dimensional local quantum systems. The local operations are not

restricted to unitary operations but to the most general physical quantum operations, namely

CPTP maps. In particular this includes local projective measurements and non-unitary dissipa-

tive evolutions. Please note that this is closely related to the concept of quantum simulation [156].

For instance, in [157] a stroboscopic quantum simulator for both unitary and dissipative dynam-

ics is described by means of Rydberg atoms. There synchronous time-discrete local operations

on sublayers (as illustrated in Fig. 5.5) are employed to simulate the time evolution of general

Lindblad master equations.
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5.3.2 An new concept: Localisable observables

While deriving the dark states in Section 5.2 (which are equal-weight superpositions of states in
fixed number or parity sectors) the following definition came about:

◮ Definition 5.3: Localizable Observable

Consider a Hilbert space template Ĥ =
⊗

i Ĥi with subsystems Ĥi and structure graph
template Ŝ with diameter L̂ = diam Ŝ. A (global) observable Ô with

∣∣supp
(
Ô
)∣∣ ∈ Ω(L̂) is

termed dissipatively localisable iff there is a (quasilocal) observable Ôloc with
∣∣supp

(
Ôloc

)∣∣ ∈
O(1) and a quasilocal dissipative process

{
L̂i

}
such that

〈O〉 = Tr [Oρ] = Tr

[
Oloc lim

t→∞
eLtρ

]
with L = L ({Li}) (5.38)

for any state ρ ∈ D(H) and for each instance N ∈ N of the template.

For explanations concerning the concept of templates, see Appendix E. Here are two straight-
forward examples for localisable observables:

� Example 1: Parity

Consider a one-dimensional chain of L fermionic sites. A typical global observable of this setting
is the fermion parity

P =
L

∏
i=1

(−1)a†
i ai (5.39)

where P is a global or non-local operator since obviously supp (P) = L. The parity is dissipa-
tively localisable via the parity-conserving jump operators

Li =
1√
2

(
a†

i+1ai + ai+1ai

)
for 1 ≤ i ≤ L− 1 .

To see this, note that the dark states are |D+〉 = | . . . 〉 and |D−〉 = | . . . 〉 according to the
parity sector the system initially started from. Here is an example for L = 10:

|Ψ0〉 = | 〉 t→∞−−→
∣∣D−

〉
= | 〉

|Ψ0〉 = | 〉 t→∞−−→
∣∣D+

〉
= | 〉

|Ψ0〉 = | 〉 t→∞−−→
∣∣D−

〉
= | 〉

|Ψ0〉 = | 〉 t→∞−−→
∣∣D+

〉
= | 〉

The formerly nonlocal property of parity can now be measured locally by means of nL = a†
LaL

or pL = (−1)a†
LaL . If we assume that any pure physical state is a parity eigenstate, it follows

immediately

Tr [Pρ] = Tr

[
pL lim

t→∞
eLtρ

]
(5.40)

since there are exactly two dark states, one for each parity sector. �
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� Example 2: Particle number

We stay with our one-dimensional chain of L fermionic sites. Another well known non-local

observable is the total particle number

N =
L

∑
i=1

ni =
L

∑
i=1

a†
i ai (5.41)

where obviously supp (N) = L. For general states there is no possibility to deduce 〈N〉 by any

local measurement. However, recall that the number-conserving jump operators

Ji =
1

2

(
a†

i + a†
i+1

)
(ai − ai+1) for 1 ≤ i ≤ L− 1

drive any eigenstate of the number operator N to an equal weighted superposition of all number

states with the same particle number, namely

|L, N〉 = N−1/2
N,L ∑

n∈BN

|n〉 .

It is now straightforward to show that the total particle number may be derived from the local

particle density

n =
N

L
= 〈ni〉 = 〈a†

i ai〉 for any 1 ≤ i ≤ L .

So we find that

Tr [Nρ] = Tr

[
Lni lim

t→∞
eLtρ

]
(5.42)

which yields a dissipative localisation of the particle number. �

These are two simple examples with the purpose to illustrate the main idea of localisable

observables. But it is conceivable that there might be more complex and more intriguing setups.

The basic idea is simple: There are properties of scalable systems that are nonlocal in a classical

perception as they require non-trivial actions or measurements on large parts of the systems,

such as e.g. the parity or the total particle number. And we ask for quasilocal dissipative

processes that “collect” such quantities and make them locally available. This concept can be

extended to global properties of the system such as the topology. In that regard we may ask

whether there are quasilocal dissipative processes that localise information about the global

topology of the system, say the genus of the system’s spatial manifold.
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Conclusion

In this thesis we covered various topics with the focus on dissipative counterparts of well-

known Hamiltonian theories that feature quantum phase transitions and topological phases. We

also considered aspects of quantum information theory in terms of a dissipative version of the

Majorana chain. Let us give a brief summary of the preceding chapters:

In Chapter 1 we introduced some of the theoretical basics that were required for the discus-

sions of this thesis. Besides rather short outlines of the mathematical framework and the field

of quantum phases, we provided detailed discussions and examples for the crucial topics, in-

cluding the quantum trajectory approach to Markovian dynamics (Subsec. 1.1.3), the Hamiltonian

Majorana chain (Subsec. 1.3.4) and lattice gauge theories with Higgs fields in Section 1.4.

In the most comprehensive Chapter 2 we investigated spontaneous symmetry breaking by dissi-

pation by means of a paradigmatic example, namely the dissipative transverse field Ising model.

We pursued a mean field approach in Section 2.3 and provided a thorough analysis of the static so-

lutions in Subsec. 2.3.2. We concluded that the mean field theory of the dissipative TIM features

a second order non-equilibrium phase transition. In Subsec. 2.3.3 we examined the dynamic

evolution described by the mean field theory and found a critical slowing down near the phase

transition. In Section 2.4 we proceeded with a comparison of the dissipative and Hamiltonian mean

field theories and found a relation between dissipative and thermal phase transitions of the par-

ent Hamiltonian in mean field approximation. In Section 2.5 we discussed the exact solutions

of a minimal instance for the dissipative TIM for didactical reasons and as reference solutions

for the subsequent Section 2.6 where we performed straightforward quantum trajectory Monte

Carlo simulations of small one and two-dimensional systems. Thereby we found a characteristic

metastability of magnetisation in systems with strong ferromagnetic driving.

In Chapter 3 we expanded the construction of dissipative theories that feature non-equi-

librium phase transitions by means of Hamiltonian prototypes. To this end we introduced a

dissipative Z2-Gauge-Higgs model. For comparison we derived first the mean field theory for the

unitary theory in Section 3.1. Then we introduced our dissipative Z2-Gauge-Higgs model in Sec-

tion 3.2, followed by a discussion of the steady states 3.2.2 for particular limits of the parameters.

We argued that these dark states coincide with the pure ground states of the Hamiltonian proto-

type. We concluded the chapter with a short mean field analysis in Section 3.3 and discussed their

static solutions in Subsec. 3.3.2. Our findings revealed considerable similarities to the Hamilto-

nian mean field theory and suggested non-trivial dissipatively driven phase transitions (there

are also differences, though).
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In the second part of this master thesis we were concerned with dissipative versions of the

Majorana chain and their error correction capabilities. In Chapter 4 we discussed and recalcu-

lated some results regarding the dissipative Majorana chain proposed in Ref. [1]. We started with

a rigorous treatment of the steady states of the number conserving jump operators in Section 4.2:

In Subsec. 4.2.2 we derived the dark states rigorously and concluded that these are equal-weight

superpositions of number states with fixed particle number. We also provided evidence for their

uniqueness as steady states in a fixed number sector in Subsec. 4.2.3; there we proved rigorously

the uniqueness for systems up to 15 sites. In Subsec. 4.3 we recalculated the mean field theory

for late times on which the statements in [1] rely. Up to some technical subtleties we verified

their results. In Section 4.4 we examined the local indistinguishability and the entanglement spec-

trum of both the fixed number dark states and the Majorana ground states and came to the

conclusion that the former do not show signatures of a topological phase. Finally we made some

concluding remarks in Section 4.5 where we argued that the proposed number conserving jump

operators are not suitable for experimental setups if one aims at unpaired Majorana fermions

on the system edges.

In the short last Chapter 5 we deepened aspects of the dissipative Majorana chain regarding

dissipatively driven topological quantum error correction. We started with a few general remarks on

algorithmic error correction and locality in Section 5.1. In the subsequent Section 5.2 we proposed

alternative jump operators that drive the chain into the code space and provided a rigorous

derivation of the Majorana chain ground states in terms of number states. We substantiated

our conjectures regarding the applicability as a dissipatively driven self-correcting quantum memory

by quantum trajectory Monte Carlo simulations in 5.2.3 and found evidence that the straight-

forward dissipative realisation of the Majorana chain does not yield a self-correcting quantum

memory. Finally we presented some loosely related concepts in the last Section 5.3 concerning

quantum cellular automata and localisation of observables.

In the Appendices we give some auxiliary calculations in D, remarks on the implementation of

the QTMC simulation in C, a detailed derivation of the mean field jump operators for the dissipative

TIM in B, and a formal treatment of non-equilibrium steady states in mean field approximation in A.

Appendix E is somewhat different. There we introduce and discuss some topics on locality in lat-

tice systems which are only loosely related to the main topics of this thesis.
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AppendixA Non-equilibrium steady states

in mean field approximation

For both models, the dissipative transverse field Ising model in Chapter 2 and the dissipative Z2-

Gauge-Higgs model in Chapter 3, we are interested in the steady state solutions of a Lindblad

equation. Thus it is natural to ask whether there is a compact formulation of the steady state

equation which clearly reads

∑
i

LiρL†
i =

1

2
{HP, ρ} where HP = ∑

i

L†
i Li . (A.1)

Here {Li} denotes the exact jump operators which determine the dissipative part of the dynam-

ics completely. We use mean field approximation in order to catch the structure of steady states

in the thermodynamic limit roughly (at least in the high-dimensional limit).

Mean field approximation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The system’s state is described by the N-spin Hilbert space HN =
⊗N

i=1 C2
i . We choose the

ansatz ρ =
⊗

l ρl where ρl is the density matrix of a single spin degree of freedom. As a generic

case, assume that there are 1 ≤ M ≤ N independent mean fields. For M = 1 we end up with a

completely homogeneous system; M = N describes a system of N distinguished spins. Usually

one will choose O(1) mean fields to assign a distinct mean field to all distinguished fields in the

exact theory79.

Given M mean fields, the density matrix reads ρmf =
⊗M

α=1 ρ̃α where ρ̃α describes the (homo-

geneous) α-th mean field. The effective jump operators are obtained by tracing out selectively

all degrees of freedom but one, meaning

∂tρ̃α = ∂t Tr 6=m [ρ] = ∑
i

Tr 6=m

[
LiρL†

i

]
− 1

2
Tr 6=m [{HP, ρ}] (A.2)

79For instance, consider the Z2-Gauge-Higgs model. Here one naturally introduces two mean fields for the gauge
and the Higgs field, respectively.
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AppendixA Non-equilibrium steady states in mean field approximation
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where 1 ≤ m ≤ N is a physical spin which represents the field of type α. The dynamics of the

{ρ̃α} is described by effective Lindblad equations (one for each mean field)

∂tρ̃α = ∑
i

∑
µi

[
lα
i,µi

ρ̃αlα
i,µi

† − 1

2

{
lα
i,µi

†lα
i,µi

, ρ̃α

}]
(A.3)

where one has to keep in mind that these equations are non-linear due to the mean fields in-

cluded in the effective jump operators:

Li
α−→
{

lα
i,µi

}
µi

=
{

lα
i,µi

({
mk

β

})}
µi

(A.4)

Here mk
β ≡ 〈σk

β〉 = Tr
[
σk

βρ̃β

]
denotes the k-th component of the β-th mean field. Furthermore

notice that for each exact jump operator Li there may be several effective jump operators lα
i,µi

with µi = 1, 2, 3, . . . for each mean field α.

For the sake of simplicity we employ a resummation and redefinition of the effective jump

operators to get rid of duplicates (which usually occur due to structural symmetries of the

lattice). So let us write

∂tρ̃α = ∑
µ

[
lα
µρ̃αlα

µ
† − 1

2

{
lα
µ

†lα
µ, ρ̃α

}]
(A.5)

for the effective Markovian dynamics. The number of effective jump operators
{

lα
µ

}
is bounded

and does not depend on the system size N (otherwise a mean field approximation would hardly

be legitimate). This is our starting point for the analysis of non-equilibrium steady states.

Parent Hamiltonian
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The most generic form of a given mean field jump operator certainly is

lα
µ =

3

∑
λ=0

lα
µ,λσλ

α ≡ lα
µ,λσλ

α (A.6)

where we introduced the complex-valued functions lα
µ,λ = lα

µ,λ

({
mk

β

})
. We use Einstein’s

convention for Latin indices but not for Greek indices. In the most generic case, jump operators

are not traceless, i.e. lα
µ,0 6= 0 (recall that σ0

α = 1α). However, in the models we consider below

these components vanish altogether and thus we assume lα
µ,0 = 0 henceforth. To make this

clear, we switch to Latin indices i, j, k, . . . which run over 1, 2, 3 (whereas Greek indices run over

0, 1, 2, 3 except for µ which indicates the different jump operators).

So we are given a set of mean field jump operators of the form lα
µ = lα

µ,iσ
i
α. Let us first express

the parent Hamiltonian in the lα
µ,λ-functions:

Hα
P ≡∑

µ

lα
µ

†lα
µ = ∑

µ

lα
µ,il

α
µ,j σi

ασ
j
α (A.7)
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Let us introduce the three-index function

Lα
i,j ≡ Rα

i,j + ıIα
i,j ≡∑

µ

lα
µ,il

α
µ,j where Rα

i,j = Re Lα
i,j and Iα

i,j = Im Lα
i,j (A.8)

which is a Hermitian matrix in for every fixed α; consequently Rα
i,j = Rα

j,i and Iα
i,j = −Iα

j,i.

Applying the well-known relation σiσj = ıǫijkσk + δij
1 yields

Hα
P = Lα

i,jσ
i
ασ

j
α = Lα

i,j

(
ıǫijkσk

α + δij
1α

)
= ıǫijkLα

i,jσ
k
α + Lα

i,i1α . (A.9)

The quantity hk
α ≡ ıǫijkLα

i,j is the k-th component of the Hamiltonian mean field α; Lα ≡ Lα
i,i is

just the trace of the system matrix Lα
i,j. So we end up with the mean field parent Hamiltonian

Hα
P = hk

ασk
α + Lα

1α where hk
α ≡ ıǫijkLα

i,j . (A.10)

Note that hk
α = −ıǫijkLα

i,j = ıǫjikLα
j,i = hk

α is a real field; the same holds for Lα ≡ Lα
i,i = Rα

i,i.

Thermal states
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The thermal equilibrium states of the (mean field) parent Hamiltonian are given by the Gibbs

ensemble

ρth(β) = Z−1 e−β ∑α Hα
P = Z−1 ∏

α

e−βHα
P where Z = Tr

[
e−β ∑α Hα

P

]
. (A.11)

Here the sum has to be understood as a Kronecker sum. The thermal state solutions are now

determined by the self-consistency relation

mk
β = Tr

[
σk

βρ(β)
]
= Z−1 Tr

[
σk

β ∏
α

e−βHα
P

]
. (A.12)

Since the mean field Hamiltonians Hα
P act on distinct subsystems for each α, the trace factorises

and we get

mk
β = Z−1

β Tr

[
σk

βe−βH
β
P

]
(A.13)

where we used Z = Tr
[
e−β ∑α Hα

P

]
= ∏α Tr

[
e−βHα

P

]
≡ ∏α Zα. If we insert the result of Eq. (A.10)

for H
β
P the constant part of the Hamiltonian drops out, therefore

mk
β = Z̃−1

β Tr

[
σk

βe
−βhk

βσk
β

]
with Z̃β = Tr

[
e
−βhk

βσk
β

]
. (A.14)

Let us introduce the norm of the mean field h2
α ≡ ∑

3
k=1 hk

α
2
. We remind the reader of the useful

relation

e
−βhk

βσk
β = 1β cosh(βhβ)− h−1

β hk
βσk

β sinh(βhβ)
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and thus Z̃β = Tr

[
e
−βhk

βσk
β

]
= 2 cosh(βhβ). It follows

ρth(β) =
M

∏
α=1

Z−1
α e−βhk

ασk
α =

1

2M

M

∏
α=1

(
1α − tanh (βhα) h−1

α hk
ασk

α

)
(A.15)

for the thermal density matrix. Now the self-consistency takes the simple form

mk
α = −h−1

α hk
α tanh (βhα) ⇔ hαmk

α + hk
α tanh (βhα) = 0 (A.16)

for all k = 1, 2, 3 and α = 1, 2, . . . , M. To conclude this paragraph, let us express the self-

consistency equation in terms of mean field jump operators. We already know that hk
α = ıǫijkLα

i,j,

so

hαmk
α + ıǫijkLα

i,j tanh (βhα) = 0 . (A.17)

The mean field yields

h2
α = ∑

k

hk
α

2
= −∑

k

ǫijkǫlmk Lα
i,jL

α
l,m = ∑

k

ǫijkǫlmk Iα
i,j I

α
l,m

= Iα
i,j I

α
l,m

(
δilδjm − δimδjl

)
= Iα

i,j I
α
i,j − Iα

i,j I
α
j,i

= 2Iα
i,j I

α
i,j .

Conclusively, the mean field is given by hα =
√

2Iα
i,j I

α
i,j. So the self-consistency equations reads

mk
α

√
2Iα

i,j I
α
i,j = ǫijk Iα

i,j tanh
(

β
√

2Iα
i,j I

α
i,j

)
with k = 1, 2, 3; α = 1, 2, . . . M (A.18)

where we realise that the thermal properties of the parent Hamiltonian are solely determined

by the imaginary part of the mean field matrix.

Steady states
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Due to the product structure of ρmf =
⊗M

α=1 ρ̃α we may parametrise each mean field density

matrix as ρ̃α = 1
2

(
1α + ak

ασk
α

)
. Clearly, self-consistency requires

mk
α = Tr

[
σk

α ρ̃α

]
= ak

α (A.19)

so we can just substitute ak
α by the expectation value mk

α: ρ̃α = 1
2

(
1α + mk

ασk
α

)
. Then steady

states ρ̃NESS
α are given by solutions {m̂k

α} (k = 1, 2, 3 and α = 1, 2, . . . , M) for the set of non-linear

equations

∑
µ

lα
µρ̃αlα

µ
† =

1

2

{

∑
µ

lα
µ

†lα
µ, ρ̃α

}
=

1

2
{Hα

P, ρ̃α} . (A.20)

Inserting the parametrisation and the result for Hα
P yields

∑
µ

lα
µlα

µ
† + mk

α ∑
µ

lα
µσk

α lα
µ

† = hk
α σk

α +
1

2
hk

αml
α

{
σk

α , σl
α

}
+ Lα

(
1α + mk

ασk
α

)
. (A.21)
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Recall that lα
µ = lα

µ,iσ
i
α and

{
σk

α , σl
α

}
= 2δkl

1α, so the equation above reads

∑
µ

lα
µ,il

α
µ,j σi

ασ
j
α + mk

α ∑
µ

lα
µ,il

α
µ,j σi

ασk
ασ

j
α = hk

α σk
α + hk

αml
αδkl

1α + Lα
1α + Lαmk

α σk
α . (A.22)

It is now easy to see that the condition 0
!
= ∂tρ̃α = L [ρ̃α] is equivalent to three independent

conditions, namely 0
!
= ∂tm

n
α = Tr [σn

α ∂tρ̃α] = Tr [σn
αL [ρ̃α]], which follows in a straightforward

calculation from the parametrisation ρ̃α = 1
2

(
1α + mk

ασk
α

)
. Therefore multiply Eq. (A.22) by σn

α

and take the trace:

∑
µ

lα
µ,il

α
µ,j Tr

[
σn

α σi
ασ

j
α

]
+ mk

α ∑
µ

lα
µ,il

α
µ,j Tr

[
σn

α σi
ασk

ασ
j
α

]
=

hk
α Tr

[
σn

α σk
α

]
+ hk

αml
αδkl Tr [σn

α ] + Lα Tr [σn
α ] + Lαmk

α Tr
[
σn

α σk
α

]
.

We immediately realise that Tr [σn
α ] = 0 and Tr

[
σn

α σk
α

]
= 2δnk and furthermore ∑µ lα

µ,il
α
µ,j = Lα

j,i

which simplifies the expression to

Lα
j,i Tr

[
σn

α σi
ασ

j
α

]
+ mk

αLα
j,i Tr

[
σn

α σi
ασk

ασ
j
α

]
= 2hn

α + 2Lαmn
α . (A.23)

In order to resolve the two remaining traces we use the well-known relations ǫijkǫilm = δjlδkm −
δjmδkl and σiσj = ıǫijkσk + δij

1 which yield

Tr
[
σn

α σi
ασk

ασ
j
α

]
= ıǫnip Tr

[
σ

p
α σk

ασ
j
α

]
+ 2δniδkj

= −ǫnipǫpkq Tr
[
σ

q
ασ

j
α

]
+ ıǫnipδpk Tr

[
σ

j
α

]
+ 2δniδkj

= −2δqj
(

δnkδiq − δnqδik
)
+ 2δniδkj

= 2
(

δnjδik − δnkδij + δniδkj
)

and analogously

Tr
[
σn

α σi
ασ

j
α

]
= ıǫnik Tr

[
σk

ασ
j
α

]
+ δni Tr

[
σ

j
α

]
= 2ıǫnikδkj = 2ıǫnij .

Applied to Eq. (A.23) leads us to

2ıǫnijLα
j,i + 2

(
δnjδik − δnkδij + δniδkj

)
mk

αLα
j,i = 2hn

α + 2Lαmn
α (A.24)

which finally yields

ıǫijnLα
i,j + mk

αLα
n,k −mn

α Lα
i,i + mk

αLα
n,k = ıǫijnLα

i,j + Lαmn
α . (A.25)

If we recall the properties of Lα
i,j this can be simplified to

Rαmn
α = ǫijn Iα

i,j + mi
αRα

n,i (A.26)

where we used the fact that Lα = Lα
i,i = Rα

i,i = Rα. We conclude that the matrices Lα =
(

Lα
i,j

)
ij

determine the dynamics and the steady states of the mean field theory completely.
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Some extensions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here we present more general versions of the steady state equations and extend them to the

dynamical mean field equations:

� General jump operators

Let now the jump operators be of the most generic form, i.e.

lα
µ = lα

µ,λσλ
α = lα

µ,01α + lα
µ,iσ

i
α ≡ lα

µ,01α + Aµ . (A.27)

Then the Lindblad equation for mean field α reads

∂tρ̃α = ∑
µ

[(
lα
µ,01α + Aµ

)
ρ̃α

(
lα
µ,01α + A†

µ

)
− 1

2

{(
lα
µ,01α + A†

µ

) (
lα
µ,01α + Aµ

)
, ρ̃α

}]
. (A.28)

A straightforward calculation yields

∂tρ̃α = −ı

[
ı

2 ∑
µ

(
lα
µ,0 Aµ − lα

µ,0 A†
µ

)
, ρ̃α

]
+ ∑

µ

(
Aµρ̃α A†

µ −
1

2

{
A†

µ Aµ, ρ̃α

})
. (A.29)

We see that the identity component in the jump operators gives rise to an effective unitary

dynamics governed by the Hamiltonian

Hα
eff =

ı

2 ∑
µ

(
lα
µ,0 Aµ − lα

µ,0 A†
µ

)
(A.30)

which is obviously Hermitian.

� Unitary dynamics

What happens if an additional unitary dynamics described by a mean field Hamiltonian Hmf =

∑α hmf,i
α σi

α is present? Then the full Lindblad master equation reads

∂tρ̃α = −i
[

hmf,i
α σi

α, ρ̃α

]
+ ∑

µ

[
lα
µρ̃αlα

µ
† − 1

2

{
lα
µ

†lα
µ, ρ̃α

}]
(A.31)

and we find the additional contribution

−i
[

hmf,i
α σi

α, ρ̃α

]
= − i

2
hmf,i

α m
j
α

[
σi

α, σ
j
α

]
= ǫijkhmf,i

α m
j
α σk

α .

Multiplication by σn
α and taking the trace yields

Tr
[
ǫijkhmf,i

α m
j
α σn

α σk
α

]
= 2δnkǫijkhmf,i

α m
j
α = 2

(
hmf

α ×mα

)
n
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which describes a rotation of mα about hmf
α given the latter does not depend on mi

α. We have to add

this new term to the left-hand side80 of Eq. (A.24) which yields

2ǫijnhmf,i
α m

j
α + ıǫnijLα

j,i +
(

δnjδik − δnkδij + δniδkj
)

mk
αLα

j,i = hn
α + Lαmn

α (A.32)

and consequently

2ǫijnhmf,i
α m

j
α + ıǫijnLα

i,j + mk
αLα

n,k −mn
α Lα

i,i + mk
αLα

n,k = ıǫijnLα
i,j + Lαmn

α . (A.33)

With the same simplifications as above we find

Rαmn
α = ǫijn Iα

i,j + mi
αRα

n,i + ǫijnhmf,i
α m

j
α = ǫijn

[
Iα
i,j + hmf,i

α m
j
α

]
+ mi

αRα
n,i (A.34)

which describes the stationary states with both, dissipative and unitary dynamics.

� The dynamical equations

In the paragraphs above we were only concerned with the stationary states of the Lindblad

equation. If we are interested in the dynamics of the mean field theory, we have to keep the

left-hand side of the Lindblad equation arbitrary (meaning: we cannot set it to zero as above).

Then Eq. (A.32) reads

2ǫijnhmf,i
α m

j
α + ıǫnijLα

j,i +
(

δnjδik − δnkδij + δniδkj
)

mk
αLα

j,i − hn
α − Lαmn

α = ∂tm
n
α (A.35)

and therefore

2ǫijnhmf,i
α m

j
α + ıǫijnLα

i,j + mk
αLα

n,k −mn
α Lα

i,i + mk
αLα

n,k − ıǫijnLα
i,j − Lαmn

α = ∂tm
n
α . (A.36)

Further simplifications yield finally

∂tm
n
α = 2ǫijn

[
Iα
i,j + hmf,i

α m
j
α

]
+ 2

(
Rα

n,i − Rαδni

)
mi

α (A.37)

which describes the dynamics of the complete mean field Lindblad equation. If we consider all

mn
α (α = 1, . . . , M and n = 1, 2, 3) as independent real coordinates in R3M, it is convenient to

define the vector field

[
F
(
{mi

β}
)]

(α,n)
:= 2ǫijn

[
Iα
i,j + hmf,i

α m
j
α

]
+ 2

(
Rα

n,i − Rαδni

)
mi

α (A.38)

which is the flux that determines the time evolution of the mean field theory via the dynamical

system

∂t M = F . (A.39)

Here we introduced the vector M ≡
(
mi

α

)
(α,i) which comprises all mean fields. �

80Note that we have to insert an additional factor of 1
2 that was cancelled in Eq. (A.21) but has to be kept for the

present calculations.
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AppendixB Dissipative TIM:

Mean field jump operators

In Chapter 2 we introduced the dissipative transverse field Ising model. To examine its phase

structure we employed a detailed mean field analysis in Section 2.3. To keep the line of thought

as clear as possible, we present in paragraph 2.3.1 only a compactified version of the calculations

that where necessary to derive the effective mean field jump operators. Here we expand this

derivation and provide detailed calculations for the sake of completeness.

A short summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To provide a self-contained discussion, let us first summarise the most important points: The

unitary dynamics of the transverse field Ising model is described by the Hamiltonian

HTIM = −J ∑
〈n,m〉

σz
nσz

m − h ∑
n

σx
n (B.1)

where J and h denote the nearest neighbour coupling strength and the (transverse) magnetic

field, respectively. Recall that we use the convention

∑
〈n,m〉

≡ 1

2

N

∑
n=1

∑
m∈Nn

. (B.2)

for sums over nearest-neighbour pairs 〈n, m〉. In the following, we consider two independent

dissipative processes described by the jump operators

cj =
1

2

(
σz

j − iσ
y
j

)
(B.3a)

dj = σx
j


1

q ∑
m∈Nj

σz
mσz

j − 1


 = − i

q ∑
m∈Nj

σz
mσ

y
j − σx

j . (B.3b)
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The dynamics (unitary and dissipative) is described by a master equation in Lindblad form

∂tρ = −i [HTIM, ρ] + κP ∑
j

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

+ κF ∑
j

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

(B.4a)

≡ −i [HTIM, ρ] + L[ρ] (B.4b)

where κP, κF ≥ 0 describe the strength of the coupling to the external baths and L[•] denotes

the Lindblad superoperator.

Each spin i is described by its two-dimensional Hilbert space Hi = C2
i , therefore the systems

Hilbert space is H =
⊗

jHj. In the following we write Hi =
⊗

j,j 6=iHj and Tri [X] ≡ TrHi
[X] for

tracing out the whole system except the ith spin.

Derivation of the mean field equation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In self-consistent field theory (or mean field theory, MFT) the nearest neighbour couplings are

replaced by the interaction with an effective mean field arising from the spin environment. To

this end, the product ansatz

ρ =
N

∏
l=1

ρl (B.5)

is inserted into the master equation, where ρl operates on Hl . We note that now Tri [ρ] = ρi.
Due to the product ansatz above, the master equation decouples into N independent differential
equations for {ρi}1≤i≤N . That is

Tri [∂tρ]

︸ ︷︷ ︸
Derivative

= − i Tri [[H, ρ]]

︸ ︷︷ ︸
Unitary term

+ κP ∑
j

Tri

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

︸ ︷︷ ︸
Paramagnetic term

+ κF ∑
j

Tri

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

︸ ︷︷ ︸
Ferromagnetic term

is expected to be of the form

∂tρi = −i
[

Hmf
i , ρi

]
+ Lmf

i [ρi] (B.6)

where Hmf
i and Lmf

i denote the local mean field versions of the Hamiltonian and the Lindbladian,

respectively. In the next paragraphs the exact form of Hmf
i and Lmf

i is derived.

� Derivative

It is trivial to see that

Tri [∂tρ] = ∂t Tri

[
N

∏
l=1

ρl

]
= ∂tρi (B.7)

holds for the left-hand side of the master equation.
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� Unitary term

The mean field solution for the transverse field Ising model is given by

−i Tri [[H, ρ]] = −i Tri




−J ∑

〈n,m〉
σz

nσz
m − h ∑

n

σx
n , ρ




 (B.8a)

= i J ∑
〈n,m〉

Tri [[σ
z
nσz

m, ρ]] + ih ∑
n

Tri [[σ
x
n , ρ]] (B.8b)

= i J ∑
〈n,m〉

n 6=i∧m 6=i

Tri [[σ
z
nσz

m, ρ]]

︸ ︷︷ ︸
=0

+ ih ∑
n,n 6=i

Tri [[σ
x
n , ρ]]

︸ ︷︷ ︸
=0

(B.8c)

+ i J ∑
〈n,m〉

n=i∨m=i

Tri [[σ
z
nσz

m, ρ]] + ih Tri [[σ
x
i , ρ]] (B.8d)

= i J ∑
〈n,m〉

n=i∨m=i

Tri [[σ
z
nσz

m, ρ]] + ih Tri [[σ
x
i , ρ]] (B.8e)

= i J ∑
〈n,m〉

n=i∨m=i

mz [σ
z
i , ρi] + ih [σx

i , ρ] (B.8f)

= i Jqmz [σ
z
i , ρi] + ih [σx

i , ρ] = −i [−Jqmzσz
i − hσx

i , ρi] (B.8g)

Here we used that Tri [[X, ρ]] = Tri [Xρ]− Tri [ρX] = ρi (〈X〉 − 〈X〉) = 0 if X acts nontrivially on

Hi only and assumed a homogeneous system; that is, mz ≡ 〈σz
n〉 = Tri [σ

z
nρn] is independent of

n( 6= i). Therefore the mean field Hamiltonian reads

Hmf
i = −Jqmzσz

i − hσx
i = −hmfσi (B.9)

where σi =
[
σx

i , σ
y
i , σz

i

]T
and hmf = −(h, 0, Jqmz)T denotes the mean field. This is a well-known

result for the transverse field Ising model.

� Paramagnetic term

Since

cj =
1

2

(
σz

j − iσ
y
j

)
(B.10)

acts non-trivially on Hi only, we find immediately

Tri

[
ciρc†

i

]
= ciρic

†
i (B.11a)

Tri

[
c†

i ciρ
]

= c†
i ciρi (B.11b)

Tri

[
ρc†

i ci

]
= ρic

†
i ci (B.11c)

and for j 6= i

Tri

[
cjρc†

j

]
= Tri

[
c†

j cjρ
]
= Tri

[
ρc†

j cj

]
= ρi

〈
c†

j cj

〉
. (B.12)
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Therefore we obtain for the paramagnetic term

κP ∑
j

Tri

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

= κP ∑
j

{
Tri

[
cjρc†

j

]
− 1

2
Tri

[{
c†

j cj, ρ
}]}

(B.13a)

= κP ∑
j,j 6=i

{
Tri

[
cjρc†

j

]
− 1

2
Tri

[{
c†

j cj, ρ
}]}

︸ ︷︷ ︸
=0

(B.13b)

+κP

{
Tri

[
ciρc†

i

]
− 1

2
Tri

[{
c†

i ci, ρ
}]}

(B.13c)

= κP

(
ciρic

†
i −

1

2

{
c†

i ci, ρi

})
. (B.13d)

Or for short

κP ∑
j

Tri

[
cjρc†

j −
1

2

{
c†

j cj, ρ
}]

= κPL (ci) [ρi] (B.14)

which was expected since the paramagnetic jump operators cj act locally and are independent

of their neighbours Nj.

� Ferromagnetic term

The ferromagnetic term is the most complicated one since the jump operators dj act on spin j

and its neighbours Nj. First we note that for j /∈ Ni ∪ {i}

Tri

[
djρd†

j

]
= Tri

[
d†

j djρ
]
= Tri

[
ρd†

j dj

]
= ρi

〈
d†

j dj

〉
. (B.15)

and thus

κF ∑
j,j/∈Ni∪{i}

Tri

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

= κF ∑
j,j/∈Ni∪{i}

{
Tri

[
djρd†

j

]
− 1

2
Tri

[{
d†

j dj, ρ
}]}

= 0

vanishes. Therefore the sum reduces to

κF ∑
j

Tri

[
djρd†

j −
1

2

{
d†

j dj, ρ
}]

= κF ∑
j,j∈Ni

{
Tri

[
djρd†

j

]
− 1

2
Tri

[{
d†

j dj, ρ
}]}

︸ ︷︷ ︸
Nearest neighbours (NN)

(B.16a)

+ κF

(
Tri

[
diρd†

i

]
− 1

2
Tri

[{
d†

i di, ρ
}])

︸ ︷︷ ︸
Spin i (Si)

(B.16b)

which comprises 2d + 1 summands for a d-dimensional lattice.
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The terms expand to

djρd†
j =


− i

q ∑
m∈Nj

σz
mσ

y
j − σx

j


 ρ


 i

q ∑
n∈Nj

σz
nσ

y
j − σx

j


 (B.17a)

=
1

q2 ∑
m,n∈Nj

σz
mσ

y
j ρσz

nσ
y
j +

i

q ∑
m∈Nj

σz
mσ

y
j ρσx

j −
i

q ∑
n∈Nj

σx
j ρσz

nσ
y
j + σx

j ρσx
j (B.17b)

and

d†
j dj =


 i

q ∑
m∈Nj

σz
mσ

y
j − σx

j




− i

q ∑
n∈Nj

σz
nσ

y
j − σx

j


 (B.18a)

=
1

q2 ∑
m,n∈Nj

σz
mσ

y
j σz

nσ
y
j −

i

q ∑
m∈Nj

σz
mσ

y
j σx

j +
i

q ∑
n∈Nj

σx
j σz

nσ
y
j + 1 . (B.18b)

In the following we calculate the partial traces for the nearest neighbours (NN) and the spin

itself (Si).

◮ Nearest neighbours (NN)

Let us first consider the case where j ∈ Ni ⇔ i ∈ Nj (⇒ i 6= j). For simplicity, introduce

ρj := ∏l,l 6=j ρl . Then we find

Tri

[
djρd†

j

]
=

1

q2 ∑
m,n∈Nj

Tri

[
σz

mρjσ
z
n

] 〈
σ

y
j σ

y
j

〉
+

i

q ∑
m∈Nj

Tri

[
σz

mρj

] 〈
σx

j σ
y
j

〉

− i

q ∑
n∈Nj

Tri

[
ρjσ

z
n

] 〈
σ

y
j σx

j

〉
+
〈

σx
j σx

j

〉
ρi

=
1

q2 ∑
m,n∈Nj

Tri

[
σz

mρjσ
z
n

]
− 1

q ∑
m∈Nj

Tri

[
σz

mρj

]
mz −

1

q ∑
n∈Nj

Tri

[
ρjσ

z
n

]
mz + ρi

=
1

q2 ∑
m,n∈Nj

Tri

[
σz

mρjσ
z
n

]
− mz

q ∑
m∈Nj

Tri

[{
σz

m, ρj

}]
+ ρi

=
1

q2




 ∑

m,n∈Nj;m,n 6=i

+ ∑
m,n∈Nj;m 6=i;n=i

+ ∑
m,n∈Nj;m=i;n 6=i


Tri

[
σz

mρjσ
z
n

]
+ Tri

[
σz

i ρjσ
z
i

]



−mz

q


 ∑

m∈Nj,m 6=i

Tri

[{
σz

m, ρj

}]
+ Tri

[{
σz

i , ρj

}]

+ ρi

=
1

q2
[(C(q, mz)ρi + (q− 1)mzρiσ

z
i + (q− 1)mzσz

i ρi) + σz
i ρiσ

z
i ]

−mz

q
[(q− 1)2mzρi + {σz

i , ρi}] + ρi

=
1

q2
[C(q, mz)ρi + (q− 1)mz {σz

i , ρi}+ σz
i ρiσ

z
i ]−

mz

q
[(q− 1)2mzρi + {σz

i , ρi}] + ρi .
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And for the other term

Tri

[
d†

j djρ
]

=
1

q2 ∑
m,n∈Nj

Tri

[
σz

mσz
nρj

] 〈
σ

y
j σ

y
j

〉
− i

q ∑
m∈Nj

Tri

[
σz

mρj

] 〈
σ

y
j σx

j

〉

+
i

q ∑
n∈Nj

Tri

[
σz

nρj

] 〈
σx

j σ
y
j

〉
+ ρi

=
1

q2 ∑
m,n∈Nj

Tri

[
σz

mσz
nρj

]
− 1

q ∑
m∈Nj

Tri

[
σz

mρj

]
mz −

1

q ∑
n∈Nj

Tri

[
σz

nρj

]
mz + ρi

=
1

q2 ∑
m,n∈Nj

Tri

[
σz

mσz
nρj

]
− 2mz

q ∑
m∈Nj

Tri

[
σz

mρj

]
+ ρi

=
1

q2




 ∑

m,n∈Nj;m,n 6=i

+ ∑
m,n∈Nj;m 6=i;n=i

+ ∑
m,n∈Nj;m=i;n 6=i


Tri

[
σz

mσz
nρj

]
+ σz

i σz
i ρi




−2mz

q
[(q− 1)mzρi + σz

i ρi] + ρi

=
1

q2
[(C(q, mz)ρi + (q− 1)mzσz

i ρi + (q− 1)mzσz
i ρi) + σz

i σz
i ρi]

−2mz

q
[(q− 1)mzρi + σz

i ρi] + ρi

=
1

q2
[C(q, mz)ρi + 2(q− 1)mzσz

i ρi + σz
i σz

i ρi]−
2mz

q
[(q− 1)mzρi + σz

i ρi] + ρi .

By symmetry it follows

Tri

[
ρd†

j dj

]
=

1

q2
[C(q, mz)ρi + 2(q− 1)mzρiσ

z
i + ρiσ

z
i σz

i ]−
2mz

q
[(q− 1)mzρi + ρiσ

z
i ] + ρi .

Combining these results yields

κF ∑
j,j∈Ni

{
Tri

[
djρd†

j

]
− 1

2
Tri

[{
d†

j dj, ρ
}]}

= κFq

{
1

q2
[C(q, mz)ρi + (q− 1)mz {σz

i , ρi}+ σz
i ρiσ

z
i ]−

mz

q
[(q− 1)2mzρi + {σz

i , ρi}] + ρi

−1

2

[
1

q2
[C(q, mz)ρi + 2(q− 1)mzσz

i ρi + σz
i σz

i ρi]−
2mz

q
[(q− 1)mzρi + σz

i ρi] + ρi

]

−1

2

[
1

q2
[C(q, mz)ρi + 2(q− 1)mzρiσ

z
i + ρiσ

z
i σz

i ]−
2mz

q
[(q− 1)mzρi + ρiσ

z
i ] + ρi

]}

= κFq

{
1

q2
σz

i ρiσ
z
i −

1

2q2
σz

i σz
i ρi −

1

2q2
ρiσ

z
i σz

i

}

=
κF

q

(
σz

i ρiσ
z
i −

1

2
{σz

i σz
i , ρi}

)
.

Thus we found as additional mean field jump operator the σz-dephasing

oj :=
1√
q

σz
j . (B.23)
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◮ Spin i (Si)

For the special case j = i, we find
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z σ
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j . (B.25b)

For the second term it follows

Tri

[
d†

i diρ
]

=
1

q2 ∑
m,n∈Ni

〈σz
mσz

n〉 σ
y
i σ

y
i ρi −

i

q ∑
m∈Ni

〈σz
m〉 σ

y
i σx

i ρi +
i

q ∑
n∈Ni

〈σz
n〉 σx

i σ
y
i ρi + ρi

=
1

q2

[
(q2 − q)m2

z + q)
]

σ
y
i σ

y
i ρi −

i

q
qmzσ

y
i σx

i ρi +
i

q
qmzσx

i σ
y
i ρi + ρi

=
1

q
(1−m2

z)
(

σ
y
i

)†
σ

y
i ρi +

(
imzσ

y
i − σx

i

) (
−imzσ

y
i − σx

i

)
ρi

= b
†
i biρi + d

†
i diρi

and subsequently

Tri

[{
d†

i di, ρ
}]

=
{

b
†
i bi, ρi

}
+
{

d
†
i di, ρi

}
. (B.27)

Finally we have
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with the new mean field jump operators bj and dj. ◭
The total contributions due the ferromagnetic jump operators dj in mean field approximation

therefore read

κF ∑
j
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= κFL
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di

)
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with the three superoperators
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(B.30a)
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L (oi) [ρi] = oiρio
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{
o†

i oi, ρi

}
(B.30c)

and the jump operators dj, bj and oj as defined above. �

By combining the results derived above, we finally arrive at the mean field version of the

master equation:

◮ Result B.1: Mean field Lindblad equation for dissipative TIM

The mean field version of the Lindblad master equation for the dissipative TIM reads

∂tρi = −i
[

Hmf
i , ρi

]
+ κPL (ci) [ρi] + κFL

(
di

)
[ρi] + κFL

(
bi

)
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with the four effective jump operators

dj = σx
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)
(B.31a)

bj =
1√
q

√
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z σ
y
j (B.31b)

oj =
1√
q

σz
j (B.31c)

cj =
1

2

(
σz

j − iσ
y
j

)
(B.31d)

and the mean field Hamiltonian

Hmf
i = −Jqmzσz

i − hσx
i = −hmfσi . (B.31e)

for the unitary evolution of the transverse field Ising model.

This is the result presented at the end of paragraph 2.3.1 upon which the whole mean field

analysis in 2.3.2 and 2.3.3 is based.
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AppendixC QTMC simulation:

Implementation

In Chapter 2 we introduced the dissipative transverse field Ising model and in Section 2.6 we

applied a quantum trajectory Monte Carlo simulation to simulate this model. In Chapter 5 we

proposed a dissipative process to implement the Majorana chain. In paragraph 5.2.3 we applied

the QTMC simulation to obtain fidelities for the dissipative Majorana chain. We discussed the

QTMC algorithm theoretically in paragraph 2.6.1. Here provide the actual source code (at least

the crucial parts) that we used to perform these simulations.

Our implementation is written in C++ and we utilise several open source libraries, namely

Boost for managing threads and parsing system configurations via regular expressions.

OpenBLAS as BLAS implementation (mostly BLAS Level 2 operations, namely matrix-

vector multiplications).

Armadillo as wrapper for BLAS functions.

OpenBLAS was compiled manually to take full advantage of its optimisation for the Intel Sandy-

Bridge architecture. In the following we describe the most important loops that constitute the

core of the simulation. The code runs parallelized on ncores cores, in our case ncores = 8.

Listing C.1: Run over many trajectories

1 arma::cx_vec cs = arma::zeros<arma::cx_vec>(ndimension);

2 arma::cx_vec buf = arma::zeros<arma::cx_vec>(ndimension);

3

4 for (int t=1; t<=nsamples/ncores; t++)

5 {

The simulation loop starts in C.1 with a definition of local variables which hold the quantum

state that we want to evolve in time. Then the code enters the outer loop which runs over all

nsamples trajectories (split between ncores cores).
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Listing C.2: Choose initial state

6 double rnd = unif(eng), cmp = 0;

7 for (int i=0; i<(int)start.size(); i++)

8 {

9 cmp += startProb[i];

10 if (rnd <= cmp)

11 {

12 cs = start[i];

13 spin::Normalize(&cs);

14 break;

15 }

16 }

Subsequently we choose the initial state for the current trajectory t. This is done in C.2 by

choosing a random variable rnd and comparing it with predefined probabilities in startProb.

These probabilities and the corresponding initial states in start are given by the initial density

matrix as input.

Listing C.3: Run over time steps

17 for (int s=1; s<=nsteps; s++)

18 {

In C.3 the program enters the inner loop which evolves the state in time for nsteps time

intervals dt.

Listing C.4: Check if jump occurs

19 double rnd2 = unif(eng), cmp2 = 0;

20 bool jmp = false;

21

22 for (vector<arma::cx_mat>::iterator it = jops.begin();

23 it != jops.end(); ++it)

24 {

25 buf = (*it)*cs;

26 double nrm = arma::norm(buf,2);

27 cmp2 += dt*pow(nrm,2);

For each time step s we check whether a quantum jump occurs or not. This is done in C.4 by

choosing another random variable rnd2 and comparing it with the cumulative norms of states

in buf where all jump operators in it have been applied to tentatively.

Listing C.5: Apply jump operator

28 if (rnd2 <= cmp2)

29 {

30 cs = buf/nrm;

31 jmp = true;

32 break;

33 }

34 }

If a jump occurs, the new state in buf is renormalised and stored in cs. Otherwise the state in

cs remains unmodified; this in done in C.5.
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Listing C.6: Apply discrete time evolution operator

35 if (!jmp)

36 {

37 cs = cs - dt*heff*cs;

38 spin::Normalize(&cs);

39 }

The code in C.6 is responsible for the discrete time evolution if in C.5 no jump occurred. To this

end the non-Hermitian effective Hamiltonian in heff is applied to cs, multiplied by the time

interval dt and subtracted from cs (first order expansion of the non-unitary time evolution).

Subsequently the state is renormalised which is necessary as heff is not Hermitian.

Listing C.7: Perform measurements

40 if (!((s-1)%(nsteps/npoints)))

41 {

42 int mp = (s-1)/(nsteps/npoints);

43

44 for (int o=0; o<nobs; o++)

45 {

46 av[o][mp] += spin::ExpValue(obs[o],cs);

47 sq[o][mp] += spin::ExpValue(sqobs[o],cs);

48 }

49 }

50 }

51 }

Depending on the time step s, a measurement is performed in C.7. The variable npoints

specifies how many measurements are performed in the course of one trajectory. For each

measurement the expectation values of all observables in obs (first moment) and their squares

sqobs (second moment) are computed and stored in av and sq, respectively. Subsequently the

time evolution loop starts all over again. When the latter is done, the outer trajectory loop starts

with another trajectory. The ensemble averages of the observables are computed afterwards

when all cores finished their trajectories and their results can be merged.
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AppendixD
Auxiliary calculations

� Trace distance of single-site density matrices

The trace distance of two density matrices is defined as the trace norm of their difference, i.e.

TD [ρa, ρb] :=
1

2
||ρa − ρb||1 =

1

2
Tr

[√
(ρa − ρb)†(ρa − ρb)

]
(D.1)

which simplifies to

TD [ρa, ρb] =
1

2
Tr

[√
(ρa − ρb)2

]
=

1

2 ∑
i

|λi| (D.2)

since ρ = ρ†. Here {λi} are the eigenvalues of the self-adjoint (but not necessarily positive)

operator ρa − ρb. Considering density matrices of a single site (i.e. one-qubit density matrices),

it is convenient to describe such states by Bloch vectors, namely

ρa =
1

2
(1+ aσ) where a ∈ R

3, |a| ≤ 1 (D.3)

and σ denotes the vector of Pauli matrices. Inserting this into the expression for the trace

distance yields

TD [ρa, ρb] =
1

4
Tr

[√
[(a− b)σ]2

]
(D.4)

and after a straightforward calculation we end up with−|a− b| and +|a− b| for the eigenvalues

of [(a− b)σ]. Thus we find

TD [ρa, ρb] =
1

2
|a− b| . (D.5)

Note that for a = b the trace distance vanishes, TD [ρa, ρb] = 0, whereas for a = −b and |a| = 1

it takes its maximum value TD [ρa, ρb] = 1. �
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� Von Neumann entropy of single-site density matrices

The Von Neumann entropy S for a given state ρ is defined as

S [ρ] := −Tr [ρ log ρ] = −∑
i

λi log λi (D.6)

where {λi} are the eigenvalues of ρ. For a one-qubit density matrix ρa = 1
2 (1+ aσ) these are

given by 1
2 (1 − a) and 1

2 (1 + a) as one easily verifies (here we introduced a = |a|). Then it

follows

S [ρa] = −
1− a

2
log

1− a

2
− 1 + a

2
log

1 + a

2
= −1

2
log

[
1− a2

4
·
(

1 + a

1− a

)a]
. (D.7)

As a check of consistency, consider the limiting cases a → 0 and a → 1. It follows easily

lima→0

[
1−a2

4 ·
(

1+a
1−a

)a]
= 1

4 . On the other hand it follows

lim
a→1

[
1− a2

4
·
(

1 + a

1− a

)a]
=

1

4
lim
a→1

[
(1− a)(1 + a) · (1 + a)a · (1− a)−a

]
= lim

a→1
(1− a)1−a = 1

which follows by L’Hospital’s rule. Thus we conclude

lim
a→0

S [ρa] = log 2 (D.8a)

lim
a→1

S [ρa] = 0 (D.8b)

which lives up to our expectations. �
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AppendixE Some Asides:

Locality in lattice systems

The notion of locality is ubiquitous in condensed matter physics. For instance, the definition

and classification of (topological) quantum phases is based on local unitary evolutions [22] that

require a spatial structure and some kind of metric on the subsystems of the Hilbert space.

Other results such as the famous Lieb-Robinson bounds [11, 134, 158–160] rely on concepts of

adjacency and spatial distances. The dynamics, stability and realisability of dissipative quantum

systems is closely related to spatial structures of the underlying lattice [11, 133, 161, 162]. It is

therefore natural to ask for a precise operational definition of terms like “quasilocal operator”

and “lattice dimension”.

Unfortunately, physicists tend to describe systems imprecisely, at least from a mathemati-

cally rigorous point of view. Even theoretical physicists avoid unambiguous definitions of the

objects their theories are concerned with. This is often encouraged by the circumstances: Due

to the simplicity of interesting models, it is often obvious what is implied if we say “quasilocal

operator” or “dimension of the lattice” — although a general definition is not given. Here we

give an account on some of these subtleties involved in the discussions of this thesis.

E.1 Templates and instances
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A typical question of theoretical physics reads: Has object X property A?. In this context it proves

advantageous to consider a property A as a total mapping PA from a well defined set of objects

X into the binary set {0, 1}. We then tag object X ∈ X with property A iff PA(X) = 1. We say

that X does not posses property A iff PA(X) = 0. Here some examples:

Let X = 〈RED APPLE〉 and R = 〈IS RED〉, B = 〈IS BLUE〉. Then obviously PR(X) = 1

and PB(X) = 0.

Let X = 〈APPLES〉 and F = 〈IS FRUIT〉, B = 〈IS BEAN〉, G = 〈IS GREEN〉. Then we

have PF(X) = 1 and PB(X) = 0 for all X ∈ X but PG(X) = 1 and PG(Y) = 0 for some

X, Y ∈ X .
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The last example motivates the following definition:

◮ Definition E.1: Trivial properties

Given a set of objects X and properties C, G and N. Then we say that

(i) C is a common property of X iff ∀X∈X : PC(X) = 1.

(ii) G is a genuine property of X iff ∃X,Y∈X : PG(X) = 1∧ PG(Y) = 0.

(iii) N is not a property of X iff ∀X∈X : PN(X) = 0.

What we are aiming at are linguistic inaccuracies which are common in scientific literature but

prove disastrous in the context of didactics as they not only prevent clear and precise compre-

hension of the matter but also proliferate uncontrollably through scientific communities thereby

establishing a dangerous standard of inexactness and veiling ignorance.

Typical statements in that regard are the following:

Given two many-body states |Ψ〉 and |Φ〉. Are |Ψ〉 and |Φ〉 equivalent with respect to

quasilocal unitary operations?

Given a Hamiltonian H. Is the spectrum σ(H) gapped?

As long as we are considering physical (i.e. finite) systems, both questions are to some extent

senseless or ill-defined. This can be seen quite easily: Given two states |Ψ〉 and |Φ〉 on a fixed

Hilbert space H. Can you imagine a procedure to answer the question of quasilocal unitary

equivalence? No, you cant! Given any fixed Hamiltonian H on a finite dimensional Hilbert

space H. Can you decide whether it is gapped or not? No, you cant! One may object that given

e.g. the Heisenberg Hamiltonian

H = −J
N

∑
i=1

SiSi+1 (E.1)

one can show (even analytically) that for J > 0 there is no spectral gap in the thermodynamic limit.

But that is the hitch: “Thermodynamic limit” means N → ∞. That is to say, being gapless is not

the property of a Hamiltonian H but of a series of Hamiltonians (HN). In this context it becomes

clear that by writing H = −J ∑
N
i=1 SiSi+1 one usually refers to the function HN : N → B(H)

rather than to its values, i.e. a specific Hamiltonian HN for N ∈ N. This distinction seems to be

trivial at least on the level of applications; it is certainly not as trivial if we consider the rigorous

framework of physical theories. To the best of my belief, obliterating such differences is one

reason for the difficulties encountered in learning and teaching physics.
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Let us try to give a more precise account on that subject:

◮ Definition E.2: Templates and Instances

The following functions ∗ : N → · are all required to be computablea:

(i) Let H(·) be a function on N such that H(N) is a finite dimensional Hilbert space for

any N ∈ N. We call H(·) a Hilbert space template.

(ii) Given a Hilbert space template H(·). A function A(·) : N → ⋃
N∈N B (H(N)) with

A(N) ∈ B (H(N)) is called an operator template onH(·). If additionally A(N)† = A(N)

for all N ∈ N it is called a self-adjoint operator template. If we intend to interpret a

self-adjoint operator template A(·) as Hamiltonians on H(·) it is called a Hamiltonian

template and usually denoted by H(·).

(iii) Given a Hilbert space template H(·). A function Ψ(·) : N → ⋃
N∈NH(N) with

Ψ(N) ≡ |Ψ(N)〉 ∈ H(N) is called a state template on H(·).

Given any template ∗(·). Then ∗(N) is denoted an instance thereof for all N ∈ N.

aA function f on N is called computable if there is a Turing Machine M which – given an encoding 〈N〉 of N ∈ N

– halts and outputs an encoding 〈 f (N)〉 for f (N). To put it simply: One can implement an algorithm in any Turing
complete programming language which computes f .

We illustrate these definitions by reinterpretations of the properties discussed above:

Given two state templates Ψ(·) and Φ(·) over a Hilbert space template H(·). They are

called equivalent under quasilocal unitary operations (QLU-equivalent) iff

∃C∈N∀N∈N∃U=
⊗

i∈I Ui∈U(H(N)) : ∀i∈I diam (supp(Ui)) ≤ C ∧ |Ψ(N)〉 = U |Φ(N)〉 . (E.2)

Here diam(·) denotes the diameter of a subset of the underlying spatial structure of the

considered system (usually a lattice) with respect to an appropriate metric on this structure.

In this case we write PQLU((|Ψ〉 (·), |Φ〉 (·))) = 1 or Ψ(·) ∼QLU Φ(·). Thus QLU is a genuine

property of state templates (more precisely: of pairs of state templates) but it is not a property

of (pairs of) states.

In contrast consider two states |Ψ〉 and |Φ〉 over a Hilbert space H. They are called

equivalent under local unitary operations (LU-equivalent) iff

∃U=
⊗

i∈I Ui∈U(H) : ∀i∈I | supp(Ui)| = 1∧ |Ψ〉 = U |Φ〉 . (E.3)

That is, |Ψ〉 and |Φ〉 are LU-equivalent in the usual sense; write PLU((|Ψ〉 , |Φ〉)) = 1 or

|Ψ〉 ∼LU |Φ〉. We conclude that LU-equivalence, as defined above, is a genuine property of

states and not a property of state templates81.

81 Note that it is straightforward to extend the notion of LU-equivalence to state templates. Such a new property
would then be a genuine property of the latter
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Along the same lines we identify “gapped Hamiltonians” as a genuine property of Hamil-

tonian templates: Let H(·) be a Hamiltonian template on the Hilbert space template H(·).
We call H(·) gapped, write PGAP(H(·)) = 1, iff

∃∆E∈R+∀N∈N∀E0∈min σ(H(N))∀E1 /∈min σ(H(N)) : |E0 − E1| ≥ ∆E . (E.4)

Note that an analogous definition for Hamiltonians over finite dimensional Hilbert spaces

H(N) does not make any sense.

E.2 Realisability and locality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physical systems can be described by mathematical means. E.g. consider some finite lattice

system, then the corresponding mathematical structure is its Hilbert space which is obtained

by tensoring the Hilbert spaces of the local subsystems. The question is which mathematical

structures may be called “physical” or “physically realisable”. The point we are heading at is the

notion of locality which is a priori not included in mathematical structures such as Hilbert spaces

and their operator algebras. Physicists speaking of the Hilbert space H of some lattice system

implicitly furnish this abstract object with some kind of “spatial meta-structure”, meaning that

there is a distinguished representation in terms of a tensor product H =
⊗

iHi where Hi

denotes the Hilbert space of a physically point like structure. However note that there is no such

distinguished meta-structure from a mathematical point of view, which can be seen from the

fact that by means of e.g. discrete Fourier transformations the new representation H =
⊗

kHk

in terms of wave vectors k can be obtained. That is to say, physical systems (at least in quantum

mechanics) are described by some kind of “spatial structure” from which a Hilbert space can

be derived. Only in this framework notions such as “quasilocal interactions” or “long range

entanglement” are well defined properties. In the following we propose a formal treatment of

this subject in order to clarify several notions used throughout this thesis. Actually, without the

following (seemingly trivial) definitions, technical terms such as “topological order” or “gapped

systems” are ill defined or at least remain vague concepts. The latter may be no obstacle for

specialists in the field but renders the didactics much more cumbersome.

E.2.1 Spatial structures

In this subsection we introduce concepts of “spatial structures” which are physically motivated.

Their formulation in terms of graph theory remains purely abstract, though.

Physical systems and interaction graphs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here we introduce our notion of interaction systems starting from a purely abstract description

in terms of Hilbert spaces and bounded linear operators. We then derive from such abstract

descriptions the concept of interaction and locality. Then the question arises, whether the pro-

posed interaction system is “local” in a sense that has to be defined with thought. This procedure

yields a rigorously defined notion of “physicality” as property of a given sequence of interaction

systems (termed interaction templates).
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We begin with the definition of a single interaction system:

◮ Definition E.3: Interaction system

Consider a finite set of Hilbert spaces {Hi}1≤i≤N and let B(Hi) be the set of bounded linear

operators on Hi. Now set H =
⊗N

i=1Hi and B(H) =
⊗N

i=1 B(Hi). Given any operator of

the form

H = ∑
j∈N

N⊗

i=1

Lij ∈ B(H) (E.5)

where Lij ∈ B(Hi) and Lij 6= 1 for finitely many i and j. Then I ≡
(

H, {Hi}1≤i≤N

)
is called

an (abstract) interaction system.

The physical interpretation is as follows: A finite physical system can be seen as a collection

of point-like subsystems i, each with internal degrees of freedom described by the subsystems

Hilbert space Hi. A physical theory or physical system is described by some operator H acting on

H which defines the dynamics of states in H. In most cases H will be a Hamiltonian, but we

may also consider Markovian dynamics described by a Lindblad superoperator L or another

form of operational description. One then interprets each summand in H as an interaction term
⊗N

i=1 Lij which involves multipartite interactions between the subsystems for which Lij describes

a non-trivial operation on Hi, i.e. Lij 6= 1.

In order to contrive a precise definition of “local interactions”, we need some basic defini-

tions from graph theory. The crucial notion is that of a hypergraph which is extensively stud-

ied in the fields of graph theory, computational geometry, combinatorics, network theory etc.:

◮ Definition E.4: Hypergraph and Primal graphs

(i) Let V be a finite set and E ⊆ P(V) \ {∅} an arbitrary set of non-empty subsets of V.

Then H = (V, E) is called hypergraph with nodes V and hyperedges E. In the field of

computational geometry H is sometimes referred to as range space.

(ii) Given a hypergraph H = (V, E). The simple graph G(H) = (VH , EH) defined by

VH ≡ V and EH ≡ {{p, q} | p, q ∈ V ∧ p 6= q ∧ ∃e∈E : p, q ∈ e} is called primal graph of

H and features a clique for each hyperedge of H.

(iii) Given a hypergraph H and its primal graph G(H). H is termed conformal iff every

maximal clique of G(H) is a hyperedge of H.

It is now rather obvious how to proceed: Each interaction term in H defines a hyperedge on the

set of subsystems. Therefore the following

◮ Definition E.5: Interaction hypergraph and interaction graph

Given an abstract interaction system I ≡
(

H, {Hi}1≤i≤N

)
with H = ∑j∈N

⊗N
i=1 Lij ∈

B(H). Let V = {s1, . . . , sN} be a set of N distinct elements where si labels subsystem i

described by Hi. For each j let ej ∈ P(V) \ {∅} be the set of all system-labels si such that

Lij 6= 1 and collect all ej in E. We will refer to II = (V, E) as the interaction hypergraph. Its

primal graph GI ≡ G (II ) is termed interaction graph of I .
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� Figure E.1: The interaction system I = TCM of the toric code is schematically illustrated in (a). Spins
and their local Hilbert spaces Hi are attached to edges of the lattice. The Hamiltonian defines interactions
via star operators As on sites s and plaquette operators Bp on faces p. Each summand in the Hamiltonian
describes interactions between four spins. This defines the interaction hypergraph II = ITCM in (b) where
the colours of hyperedges correspond to the operators in (a). Note that we omit the hyperedges on the
boundary for convenience. The primal graph of II , termed interaction graph GI = GTCM is depicted in (c)
with grey lines. Pairs of spins that are connected by an edge of GI are close with respect to the spatial
meta-structure induced by the toric code Hamiltonian HTCM. For a physical system this usually implies
that they have to be close in terms of the metric of space as well.

Let us give an example in terms of the famous toric code, see 1.3.3 in the preliminaries. To this

end consider a finite square lattice of extension L embedded into the torus with a spin S = 1
2

attached to each edge. That is there are L2 subsystems, each described by the qubit Hilbert

space Hi = C2
i . The toric code Hamiltonian reads

HTCM = −JA ∑
s

As − JB ∑
p

Bp (E.6)

where s runs over all vertices and p over all faces of the embedded lattice and the quasilocal

stabiliser operators are defined as As =
⊗

i∈s σx
i and Bp =

⊗
i∈p σz

i . Here i ∈ s denotes all edges

i originating from vertex s and i ∈ p denotes all edges bounding face p. The derived interaction

hypergraph ITCM and the vicinity graph GTCM are depicted in Fig. E.1.

Graph embeddings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A finite82 physical system consists of N point-like subsystems which are localised in a d-dimen-

sional euclidean space Rd. However, usually the exact positions of subsystems are irrelevant

(and experimentally unobservable) due to descriptions in terms of effective theories. Then the

crucial point is the scaling of distances with respect to the scaling of the system size. For instance:

If we define a quantum Ising system the relevant spatial information is not the exact position of

the spins in space but rather the lattice type and its dimension.

So far we derived a purely graph theoretic description from an abstract model of interactions

between certain subsystems in terms of its vicinity graph. The former is an abstract graph

without any a priori connection to the euclidean space where the actual physics takes place. As

to say, we may position each subsystem si arbitrarily in space. Depending on this spatial meta-

structure imposed onH, some interaction terms in H may be long-ranged whereas others couple

only nearby subsystems. The interesting question is, whether there are spatial configurations

82Infinite systems are inherently unphysical although their description often simplifies their treatment from a mathe-
matical point of view (e.g. in the case of thermodynamic limits).
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rendering all interaction terms in H quasilocal (which still has to be defined). To this end, we

have to consider embeddings of abstract graphs into the d-dimensional real euclidean space Rd:

◮ Definition E.6: Simple graphs and graph embeddings

(i) Given a finite set V = {v1, . . . , vN} of vertices and finite set E ⊆
{{v, w} | v, w ∈ V ∧ v 6= w} of edges. The pair G = (V, E) is called simple graph. If

for each pair of vertices s, f ∈ V there is a path of edges in E connecting s and f , G is

called connected. From now on all graphs will be simple and connected.

(ii) A graph embedding (E) ΓG of G in d-dimensions is – informally speaking – a drawing

of G in Rd without intersecting edges. By a slight abuse of notation we will interpret

ΓG : V → Rd as the mapping which maps an abstract vertex v ∈ V to its real-space

representation ΓG(v) ≡ v ∈ Rd. If crossing of edges is allowed, the embedding is

called crossing embedding (GE).

(iii) A graph embedding is called straight line embedding (SE) if for all e = {v, w} ∈ E and

for all t ∈ (0, 1) it holds tv + (1− t)w 6= Γ(V) , i.e. if the edges E can be drawn as

straight lines. If crossing of edges is allowed, the embedding is called crossing straight

line embedding (CSE).

(iv) A graph G which can be embedded into R2 is called planar.

There are several theorems known in graph theory providing statements about possible embed-

dings of simple graphs. Here we give some of the most important statements:

◮ Proposition E.1: Graph embeddings

Let G = (V, E) be an arbitrary connected simple graph.

(i) Kuratowski’s theorem: G is planar if and only if it does not contain a subgraph that is

a subdivision of K5 (the complete graph on five vertices) or K3,3 (the complete bipartite

graph on six vertices).

(ii) Fáry’s theorem: Every planar graph G has a straight line embedding in R2.

(iii) 3D-embedding theorem: Every graph G has a straight line embedding in R3.

We see: Any graph may be embedded with straight lines in three dimensional space but there

are graphs which cannot be embedded in the plane (not even with bent edges). However, if a

graph can be embedded in the plane, then we can do so with straight lines. Further information

on graph theory can be found in Ref. [163].
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� Figure E.2: Examples for graph embeddings in two dimensions. We show four different embeddings for
the same graph in the plane: (a) is a crossing embedding with bent edges; (b) is an embedding with bent
edges devoid of crossings; (c) is a crossing straight line embedding and (d) is a straight line embedding
devoid of crossings. The embeddings (b) and (d) qualify the shown graph as planar.

� Constrained embeddings

As we will see, we have to impose additional constraints on the embeddings of our vicinity

graphs (and hence physical subsystems) in order to capture the notion of a physically realisable

system appropriately. Let us first introduce some characteristic length scales and parameters

defined for a given graph embedding ΓG (E,CE,SE,CSE):

◮ Definition E.7: Distances

Let G = (V, E) be an arbitrary connected simple graph and ΓG be a embedding in d-

dimensional space Rd.

(i) We call L(ΓG) = max {|v− v′| | v, v′ ∈ V} the (linear) size of the embedding.

(ii) We call N(G) = |V| the order of the graph.

(iii) We call ǫ(ΓG) = max {|v− v′| | {v, v′} ∈ E} the intrinsic distance of the embedding.

(iv) We call δ(ΓG) = min {|v− v′| | v, v′ ∈ V} the intrinsic isolation of the embedding.

The meaning of these quantities should be quite intuitive. In Fig. E.2 the four types of em-

beddings are illustrated for a graph G with N = 11. In the case of a vicinity graph the lines

symbolise two particle interactions. Since elementary through-space interactions between two

subsystems usually depend on the euclidean distance between both parties, they can be rep-

resented by straight lines appropriately. Therefore we will constrain our considerations in the

following to straight line embeddings where one may think of the edges as paths of mediators.
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� Figure E.3: Examples for constrained graph embeddings in two dimensions. We show four different
straight line embeddings of the same graph. (a) is a Type-1 embedding (with crossings and ∆-balls may
intersect edges); (b) is a Type-2 embedding (with crossings and ∆-balls free of edges); (c) is a Type-3
embedding (without crossings and ∆-balls may intersect edges) and (d) is a Type-4 embedding (without
crossings and ∆-balls free of edges).

Let us now introduce a class of constrained embeddings which will become relevant below:

◮ Definition E.8: Civilized Embeddings, Quasi Unit-Disc Embeddings

Let G = (V, E) be an arbitrary connected simple graph and ΓG be a straight line embedding

(SE or CSE) in d-dimensional space Rd.

(i) ΓG is called ∆-civilised embedding (∆c) iff δ(ΓG) ≥ ∆ for some ∆ > 0.

(ii) ΓG is called quasi unit-disc embedding (qUDE) iff ǫ(ΓG) ≤ 1.

(iii) ΓG is called Type-1 embedding iff it is a ∆c qUDE for some ∆ > 0 and crossings are

allowed.

(iv) ΓG is called Type-2 embedding iff it is a ∆c qUDE for some ∆ > 0, crossings are allowed

and there is no edge within a ∆-balla of any vertex which is not its origin.

(v) ΓG is called Type-3 embedding iff it is a ∆c qUDE for some ∆ > 0 without crossings.

(vi) ΓG is called Type-4 embedding iff it is a ∆c qUDE for some ∆ > 0 without crossings and

there is no edge within a ∆-ball of any vertex which is not its origin.

A graph G is of Type-n in d-dimensions iff there is a Type-n embedding ΓG in Rd.

aA ∆-ball is defined with respect to the euclidean metric dE as B∆(r) =
{

x ∈ Rd | dE(x, r) < ∆
}

.

Type-1,2,3 and 4 embeddings of the same graph G as above are depicted in Fig. E.3. Clearly,

any Type-2,3,4 embedding is of Type-1 and any Type-4 embedding is of Type-2 and 3. However,

general Type-2 and 3 embeddings are not comparable. Some remarks:

All graphs are of Type-1,2,3,4 for some ∆ > 0 in d ≥ 3.

All planar graphs are of Type-1,2,3,4 for some ∆ > 0 in d = 2.

All graphs are of Type-1,2 for some ∆ > 0 in d = 2.

For ∆ >
1
2 no non-trivial graph (i.e. with at least one edge) is of Type-1,2,3,4 in any

dimension d.
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Due to this findings the function

Θ
(n)
d (G) ≡ sup

{
∆ ∈ R

+ | ∃ΓG in R
d which is Type-n for ∆

}
(E.7)

is well-defined if n = 1, 2, 3, 4 and d ≥ 3 (d = 2 and n = 3, 4 requires G to be planar). It is an

interesting question whether Θ can be computed efficiently. �

Locality in interacting systems - a first approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We turn now towards physical applications of these abstract notions. Here we introduce a first

definition for “locality” in interacting systems. However, as it turns out this allows long range

interactions and therefore renders some “local” systems unphysical. In the next subsection this

caveat will be cured.

The motivation reads as follows: A physical system of N point-like subsystems features in-

teractions between these subsystems (described by e.g. operators in a Hamiltonian). Assume

that by some description (Hamiltonian, Lindblad equation etc.) it can be deduced which sub-

systems must be able to interact in order to implement the system83. Each subsystem may be

identified with a vertex v ∈ V. If two subsystems v and v′ interact, this is encoded by an edge

{v, v′} ∈ E. To summarise: Given N subsystems, each identified with a vertex v ∈ V and

physically described by a Hilbert space Hv, the hole system (identified with V) is physically de-

scribed by H =
⊗

v∈V Hv and some equation84 H defined over H (e.g. a Hamiltonian). Then we

can derive a graph G = (V, E) from the interactions encoded in H with respect to the partition

H =
⊗

v∈V Hv. Note that at this point there is no restriction on H whatsoever.

We now revive the notion of templates as introduced before and denote them by a hat. A

general template •̂ is a computable function

•̂ : N −→ X

defined over the natural numbers which returns for each n ∈ N an object •̂(n) ∈ X – called an

instance. In the following we consider graph templates Ĝ which are infinite sequences of arbitrary

(simple and connected) graphs Ĝ(n) and corresponding templates of embeddings γ̂G. Why are

templates necessary? Well, imagine a graph G describing the interactions of some proposed

Hamiltonian. We can now ask, whether the proposal is “physical” in the sense that there is

an embedding ΓG in R3 such that all subsystems are within a certain range of their interacting

neighbours. This requirement is motivated by the fact that the controlled interaction between

two (or more) subsystems usually requires them to be spatially close to each other (where the

maximum distance depends on the methods available in the lab). But then it is clear that, given

any fixed and finite system, we can just shrink any embedding ΓG in R3 such that ǫ(ΓG) becomes

small enough. To put it differently: There is no well defined notion of “locality” for a single

instance of a physical system. But there is one for templates:

83Note that this does not imply any spatial structure yet! This is a property of the mathematical structure alone.
84We just write H for any dynamical description of the system in terms of operators acting on H. I.e. H is not

necessarily a Hamiltonian.
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◮ Definition E.9: Locality I - Weak locality

Given a straight line embedding template Γ̂G in Rd. We call Γ̂G weakly local in d dimensions

iff

lim
n→∞

ǫ
(
Γ̂G(n)

)

L
(
Γ̂G(n)

) = 0 (E.8)

or ǫ ∈ o(L) for short. A graph template Ĝ is called weakly local iff there exists a weakly local

straight line embedding Γ̂G.

A physical system template
(

Ĥ, Ĥ
)

– defined by some equation templates Ĥ and a

Hilbert space template Ĥ – is thus weakly local iff its induced interaction graph Ĝ is weakly

local.

Note that this definition is explicitly scale invariant, i.e. rescaling (“shrinking”) each instance

Γ̂G(n) separately by some factor λn (write λnΓ̂G(n)) has no effect at all on the property of

locality since L(λnΓ̂G(n)) = λnL(Γ̂G(n)) and ǫ(λnΓ̂G(n)) = λnǫ(Γ̂G(n)). This definition is kind

of canonical if we restrict ourselves to the characteristic length scales L(Γ̂G(n)) and ǫ(Γ̂G(n)).

The question is whether it is physical.

Consider as an example for Γ̂G a square lattice (i.e. d = 2) with lattice constant a and

length/width n · a. Then obviously

L(Γ̂G(n)) =
√
(a · n)2 + (a · n)2 =

√
2a · n

N(Γ̂G(n)) = (n + 1)2

ǫ(Γ̂G(n)) = a

δ(Γ̂G(n)) = a

and it follows easily lim
n→∞

ǫ(Γ̂G(n))
L(Γ̂G(n))

= lim
n→∞

a√
2a·n = 0. However it is clear that we may contrive

templates such that the intrinsic distance (or interaction range) ǫ grows when the system grows;

for instance ǫ(Γ̂G(n)) ∝
√

n and L(Γ̂G(n)) ∝ n. That is, the notion of weak locality qualifies

systems which become “more and more” local when the system grows. However from a phys-

ical point of view this usually is still experimentally intractable. To see this note that the usual

projection of a four dimensional hypercubic lattice of edge length a · n into a d < 4-dimensional

space requires edges of length (a · n) 4−d
d [51]. For d = 3 we find lim

n→∞

ǫ(Γ̂G(n))
L(Γ̂G(n))

= lim
n→∞

(a·n)
4−d

d

2a·n = 0

which renders the four dimensional hypercubic lattice weakly local in three dimensions.

It seems as if a more physical requirement would be that ǫ ∈ O(1) is bounded by some

constant C > 0 and lim
n→∞

L
(
Γ̂G(n)

)
= ∞, i.e. the system grows unbounded in linear size.

However this yields the same class of weakly local systems as defined above: First, if a graph

template Ĝ features a straight line embedding template Γ̂G with bounded intrinsic distance

and unbounded linear size, it is clear that lim
n→∞

ǫ(Γ̂G(n))
L(Γ̂G(n))

= 0. Conversely, given a template

Γ̂G with lim
n→∞

ǫ(Γ̂G(n))
L(Γ̂G(n))

= 0. Define the rescaled template Γ̂′G(n) = λnΓ̂G(n) where λn =

ǫ
(
Γ̂G(n)

)−1 ∈ (0, ∞). Then obviously ǫ
(
Γ̂′G(n)

)
= 1 ≤ 1 ≡ C and furthermore lim

n→∞
L
(
Γ̂′G(n)

)
=

lim
n→∞

L(Γ̂G(n))
ǫ(Γ̂G(n))

= ∞.
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Graph templates and the geometric gap
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In order to obtain a more appropriate abstraction of physical locality let use the previously

introduced theory of Type-n embeddings. A graph template is a sequence Ĝ of graphs Ĝ(N) for

N ∈ N which is recursively enumerable. If we are not interested in the sequential properties

of Ĝ we interpret the sequence as set
{

Ĝ(N)
}

N∈N
. We may now introduce the notion of a

geometrically gapped graph template:

◮ Definition E.10: Geometric gap

Let Ĝ be a graph template. We call

θ
(n)
d (Ĝ) ≡ inf

G∈Ĝ
Θ

(n)
d (G) ≥ 0 (E.9)

the type-n geometric gap of Ĝ in d dimensions. Provided θ
(n)
d (Ĝ) > 0, Ĝ is called gapped graph

template. We will write θd ≡ θ
(1)
d for short.

Pictorially, a gapped graph template is a set of graphs such that each graph can be embedded

into Rd by means of a type-n embedding with parameter ∆ ≥ θ. Note that since Θ
(n)
d (G) ≥ 0

for all graphs G, θ is well defined. Clearly 0 ≤ θ ≤ 1
2 . It is straightforward to see that for

gapped templates Ĝ it is necessary for the maximum degree ∆(G) = max {deg(v) | v ∈ V} to be

bounded over Ĝ, i.e. supG∈Ĝ ∆(G) ≤ C for some C > 0. This implies the necessary condition of

bounded clique sizes over Ĝ as well.

There is a quite useful condition to show that a given graph template is not gapped by means

of appropriately chosen subgraphs. Given a graph template Ĝ, a subsequence85 Ĝ′ ⊆ Ĝ is defined

as a sequence of connected subgraphs Ĝ′(N) ⊆ Ĝ(N) with rank Ĝ′(N) ≥ 2 for all N ∈ N. We

may now state the following

◮ Lemma E.1: Ungapped templates

Let Ĝ be a graph template and d ∈ N. If there is a non-trivial subsequence Ĝ′ ⊆ Ĝ such that

lim
N→∞

diamd (Ĝ′(N)
)

rank
(
Ĝ′(N)

) = 0 (E.10)

then θ
(n)
d = 0 for n = 1, 2, 3, 4.

Proof. Given the subsequence Ĝ′ ⊆ Ĝ with lim
N→∞

diamd(Ĝ′(N))
rank(Ĝ′(N))

= 0. Clearly Θ
(n)
d (Ĝ′(N)) ≥

Θ
(n)
d (Ĝ(N)) since Ĝ′(N) ⊆ Ĝ(N). Thus if we show lim

N→∞
Θ

(n)
d (Ĝ′(N)) = 0 it immediately

follows θ
(n)
d (Ĝ) = 0. To this end note that all type-n embeddings Γ̂G′ (N) can be enclosed by a

sphere with radius proportional to diam
(
Ĝ′(N)

)
and volume proportional to diamd (Ĝ′(N)

)
.

85Note that this sequence is not necessarily computable and thus not termed “template”.
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� Figure E.4: Examples for geometrically gapped graph embeddings. In (a) we show a rectangular lattice
embedded into a cylinder with periodic boundary conditions in one and open boundary conditions in the
other direction. A Type-4 embedding of this lattice is shown in (b). The toroidal square lattice in (c) is
embedded via a Type-1 embedding in (d). These are two twisted and connected copies of the cylindrical
embedding in (b).

Then the maximal volume Vmax(N) of the spheres separating vertices is bounded from above by

Vmax(N) ≤ diamd (Ĝ′(N)
)

rank
(
Ĝ′(N)

) (E.11)

since rank
(
Ĝ′(N)

)
is just the number of separating spheres. Therefore we find lim

N→∞
Vmin(N) =

0 and Ĝ is ungapped. �

We are now going to give some examples of gapped and ungapped graph templates.

� Example 1: (Hyper-)Cubic lattices

Consider the graph Ĉ(N) of a cubic lattice of side length N in each direction. The sequence of

all such cubic lattices for N = 1, 2, . . . constitutes a graph template Ĉ. For d = 3 it is easy to

see that Θ
(4)
3 (Ĉ(N)) = 1

2 for any N ∈ N if we chose the usual embedding of the cubic lattice

in R3 and thus θ
(4)
3 (Ĉ) = 1

2 . Consequently θ
(n)
3 (Ĉ) = 1

2 for n = 1, 2, 3, 4 and Ĉ is gapped for

all n in three dimensions. For d = 2 we note that diam
(
Ĉ(N)

)
= 3N and rank

(
Ĉ(N)

)
∼ N3

and therefore lim
N→∞

diam2(Ĉ′(N))
rank(Ĉ′(N))

= 0. Thus θ
(n)
2 (Ĉ) = 0 and the cubic lattice is ungapped in two

dimensions.

Now consider the graph Ĥ(N) of a (four-dimensional) hypercubic lattice of side length N

in each direction and the corresponding template Ĥ. With the same arguments above it follows

θ
(n)
4 (Ĥ) = 1

2 and Ĥ is gapped in four dimensions. However, for d = 3 we find diam
(

Ĥ(N)
)
=

4N and rank
(

Ĥ(N)
)
∼ N4 and therefore lim

N→∞

diam3(Ĥ′(N))
rank(Ĥ′(N))

= 0. Thus θ
(n)
3 (Ĥ) = 0 and the

hypercubic lattice is ungapped in three dimensions. Clearly, the same holds for d = 2. �

� Example 2: The cylindrical square lattice

Consider a square lattice of size N in each direction embedded into a cylinder (i.e. with periodic

boundary conditions in one direction). Let Ŝ denote the corresponding graph template. If we

chose the usual rectangular embedding it is clear that θ
(4)
3 (Ŝ) = 1

2 and thus θ
(n)
3 (Ŝ) = 1

2 for all

n. It is now interesting to ask whether Ĉ is gapped for d = 2. Lemma E.1 cannot be applied

beneficially since the quotient becomes independent of N. Indeed, we can show that θ
(n)
3 (Ŝ) > 0
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and Ŝ is gapped in two dimensions. To this end consider the embedding of the cylindrical lattice

in Fig. E.4 (a) as depicted in Fig. E.4 (b).

There the lattice is projected onto the plane along the symmetry axis of the cylinder. The

circumference of the outer polygon cycle is bounded from above by the maximum length of the

edges whereas the inner polygon cycles length is bounded by the separation condition. We have

to show that the separating distance ∆ can be chosen N-independent. Clearly, the minimum

inner radius is determined by 2πRi = 2∆ · N and the maximum outer radius by 2πRo = 1 · N.

The length of the spokes is then Ro − Ri =
(

1
2 − ∆

)
N
π . If the separating spheres are in contact

with each other on the spokes, we find (for large N) Ro − Ri = 2∆N. That is,

(
1

2
− ∆

)
N

π
= 2∆N ⇒ ∆∗ =

1

2 + 4π
. (E.12)

So there is a type-4 embedding for each Ŝ(N) in d = 2 with ∆ ≥ 1
2+4π and we conclude

Θ
(n)
2 (Ŝ(N)) ≥ ∆∗. Consequently θ

(n)
2 ≥ ∆∗ > 0 and the square lattice with periodic boundary

conditions in one direction is gapped in two dimensions. �

� Example 3: The toroidal square lattice

Consider a square lattice of size N in each direction embedded into a torus (i.e. with periodic

boundary conditions in both directions). Let T̂ denote the corresponding graph template. If

we chose the usual rectangular embedding it is clear that θ
(4)
3 (T̂) = 1

2 and thus θ
(n)
3 (T̂) = 1

2

for all n. Surprisingly we find that this graph template remains gapped in two dimensions. To

this end consider the embedding of the toroidal lattice in Fig. E.4 (c) as depicted in Fig. E.4 (d)

which is derived from two copies of the cylindrical embedding we introduced above. Note that

this is just a twisted and flattened version of the toroidal lattice in two dimensions. We obtain

a lower bound for the separating radius by shrinking the separating spheres of the cylindrical

embedding by one half. Then the copy of the cylindrical square lattice can be rotated slightly to

fit in the resulting “holes” on the inner polygon cycle. The straight line edges connecting both

copies at their perimeter are short enough since the outer edges have length 1. So there is a

type-1 embedding for each T̂(N) in d = 2 with ∆ ≥ 1
4+8π and we conclude Θ

(1)
2 (T̂(N)) ≥ ∆∗

2 .

Consequently θ
(1)
2 ≥ ∆∗

2 > 0 and the square lattice with periodic boundary conditions in both

directions is gapped in two dimensions. Note that due to the crossings between edges and

spheres we derived a type-1 embedding. However, it may be possible to modify the proposed

embedding to obtain more powerful results in terms of type-2, 3, 4 embeddings. �

Locality in interacting systems - a second approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Above we used the fact that, even when the intrinsic distance ǫ is unbounded, we may shrink

the system so that the maximum interaction range remains bounded. At this point it becomes

evident where the “unphysicality” enters: A physical system cannot be shrunken arbitrarily

without loosing its structure of distinct subsystems. More graphically, to control the interaction

between two subsystems, there are two independent restrictions we have to take care of:

1. Interacting subsystems have to be within the interaction range of each other.

2. All subsystems have to be separated at least by some finite “buffer range”.
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The last condition prevents us from shrinking the system arbitrarily and thus leads to a more

restrictive notion of locality.

It is clear that by combining the notion of gapped graph templates with the concept of in-

teraction graphs we end up with a quite reasonable abstraction of “quasilocal physical systems”

or what we would deem a “realisable theory”. At this point we do not fix a type of embedding

yet, though it seems to be reasonable that type-1 embeddings are at least a good basis for the

most general characterisation of quasilocal theories. Besides, they are easier to handle from a

geometric point of view.

Let us give the definition and discuss some implications afterwards:

◮ Definition E.11: Locality II - Strong locality

Given an abstract interaction system template Î ≡
(

Ĥ,
{
Ĥi

})
and its derived interaction

graph template ĜÎ . We call Î quasilocal, strongly local or geometrically gapped iff ĜÎ is geomet-

rically gapped.

Here an interaction system template Î is defined as usual: There is an algorithm such that for

every N ∈ N we can compute an instance Î(N) which is an interaction system as defined above.

It is important that quasilocality is the property of an interaction system template and not of

one of its instances. This is analogous to the definition of gapped Hamiltonians; we may ask

whether the interaction graph of a given interaction system is of type-n in d dimensions with

parameter ∆ > 0. For an actual implementation this can be quite important since Θ
(n)
d (GI ) tells

us something about the relation between the distance and the spatial precision of interactions

which have to be realised. However, there is no “canonical” choice of ∆ > 0 which renders it

unfeasible to define the notion of quasilocality for a single instance. To get rid of such parameter-

dependent definitions it proves handy to step back and consider templates instead of instances

where we hope to flesh out the crucial ideas behind “locality”.

� Structure graphs and locality

Often the interaction system itself is derived from some underlying spatial structure, i.e. a graph

(usually a lattice). We start with some graph template Ŝ – from now on called structure graph

(template) – and attach physical subsystems to its vertices. The interaction operator template Ĥ

is then defined for each instance Ĥ(N) = ∑j∈N

⊗N
i=1 Lij via its quasilocal interaction terms Lij.

◮ Definition E.12: Abstract locality

We say that an interaction system template Î residing on a structure graph template Ŝ is

abstract local iff there is a constant C > 0 such that for all i and j and for all instances Î(N)

and Ŝ(N)

supp
(

Lij

)
⊆ BC(si) (E.13)

where si denotes the vertices in V(Ŝ(N)) and BC(si) is the ball of vertices around si in Ŝ(N)

with geodesic radius C.

This is the formalisation of the usually applied notion of “quasilocality” in discrete physical

systems. Here the underlying structure graph Ŝ provides its own notion of locality defined by
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its edge-based adjacency relation. For simple lattices as structure graph, this is a reasonable

way to speak of quasilocal systems. However, if we allow arbitrary graph templates Ŝ it is not

granted that a system can be implemented quasilocally if Ŝ itself is not geometrically gapped.

We can show the following:

◮ Lemma E.2: Structure graphs and Interaction graphs

Given an abstract local, structure graph induced interaction system template Î with constant

C > 0 (as defined above). If the structure graph template Ŝ is geometrically gapped, then

the interaction graph template ĜI is type-1 geometrically gapped and the interaction system

is type-1 quasilocal.

Proof. Consider a sequence of embeddings Γ̂S of arbitrary type with parameters δ
(
Γ̂S (N)

)
≥

θ
(n)
d (Ŝ) > 0 (this is possible since Ŝ is geometrically gapped). That is, for all N ∈ N we have

ǫ
(
Γ̂S (N)

)
≤ 1 and δ

(
Γ̂S (N)

)
≥ θ

(n)
d (Ŝ) > 0. Now define the rescaled embeddings Γ̂GI := 1

2C Γ̂S .

Clearly for all N ∈ N we have δ
(
Γ̂GI (N)

)
≥ θ

(n)
d (Ŝ)

2C > 0 and thus the separation condition is

satisfied. Furthermore, all edges e ∈ E
(
ĜI (N)

)
connect vertices within a ball BC(v) around

some vertex v ∈ V
(
ĜI (N)

)
(due to the abstract locality condition). Since all edges in Ŝ(N)

have maximum length 1 and the maximum geodesic distance within a ball BC(v) is 2C, the

maximum distance of connected vertices in ĜI (N) is 2C times the rescaling of (2C)−1. We

conclude that ǫ
(
ĜI (N)

)
≤ 1 for all N ∈ N. �

Dimension of graph templates
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given a discrete physical system, there is usually a intuitive notion of its spatial dimension. E.g.

the Ising model on the square lattice is “obviously” two-dimensional, the “same” model on the

cubic lattice is three-dimensional and so on. If one tries to generalise the concept of spatial

dimension to arbitrary interaction systems, two problems arise:

1. There seems to be no canonical method to derive a spatial dimension for finite systems (Why

should one consider an Ising system on a 4× 4 square lattice two dimensional?).

2. If the system is defined on a aperiodic graph without any canonical embedding in euclidean

space, there seems to be no relation between the graph and the dimension of its embedding

space. (Any graph can be embedded with straight lines and without crossings in Rd).

Both problems should seem familiar to us as we faced such obstacles before. Clearly we can

get rid of them by using templates instead of instances. We cannot assign a spatial dimension

to finite interaction systems in an abstract and canonical way. However, for interaction system

templates this should be possible generically:
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◮ Definition E.13: Spatial dimension

The spatial dimension dim(Ĝ) of a graph template Ĝ is the minimal dimension d required

to render it geometrically gapped. The spatial dimension dim(Î) of an interaction system

template is the spatial dimension of its interaction graph template ĜI . We call Î realistic iff

its spatial dimension is less or equal to three.

According to this definition (recall the examples from above) the graph of a square lattice

is indeed two-dimensional as expected whereas the graph for a hypercubic lattice is four-

dimensional. Interestingly, the dimension of square lattices with periodic boundary conditions

(in one or two directions) is now well defined; we already proved that such graphs are two-

dimensional.

E.2.2 An application: Local quantum circuits and quantum complexity theory

If one thinks about quantum circuits as a paradigmatic model for quantum computation in

quantum information theory, it is natural to consider gates as interactions between the qubits

of the bus on which the gate acts non-trivially. This motivates the following definition of the

complexity class “Scalable BQP” which is a (seemingly) more restricted version of the well-

known BQP:

◮ Definition E.14: Scalable BQP

A language L is in SdBQP (Scalable BQP in d dimensions) iff there exists a polynomial-time

uniform family of quantum circuits {Qn}n∈N
with geometrically gapped interaction graphs

{Gn ≡ G(Qn)}n∈N
in d dimensions, such that

for each n ∈ N, Qn is a n-qubit quantum circuit with dedicated output qubit.

for all x ∈ L, Pr(Q|x|(x) = 1) ≥ 2
3 .

for all x /∈ L, Pr(Q|x|(x) = 0) ≥ 2
3 .

We call the problems/languages in S3BQP realistic.

Here Pr(Q|x|(x) = 0, 1) denotes the probability of measuring 0, 1 for the output qubit if Q|x|
runs on input x. Gn = G(Qn) is the interaction graph between the n qubits defined by the

gates of the quantum circuit Qn. The above definition may suggest, that, given S3BQP  BQP,

there are problems for which no scalable quantum algorithm exists which could be implemented

on a “static quantum computer”86. However, there are two arguments against this presumed

restriction: First, even if the physical subsystems encoding the qubits are fixed in space (e.g.

Nitrogen vacancy centres or atoms in optical lattices) there is always the possibility of teleporta-

tion between distant sites as long as there are quasilocal mechanisms to synthesise long-range

entanglement (and it is not hard to think of such processes). And second, we may simplify

each quantum circuit Qn → Q̃n such that Q̃n is composed of local unitaries/measurements and

nearest-neighbour CNOT-gates, rendering the sequence
{

Q̃n

}
quasilocal even in one dimension.

86I.e. a quantum computer which supports no flying qubits over arbitrary distances.
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That is:

◮ Lemma E.3: Scalable BQP equals BQP

SdBQP = BQP for all d ∈ N (E.14)

Proof. The proof is almost trivial. It is a well known fact that any quantum circuit Qn can be

decomposed in terms of arbitrary one-qubit unitaries87 and two-qubit CNOT-gates. Therefore

the only edges in the derived interaction graph G(Qn) stem from CNOT-gates. It is easy to show

that two-qubit SWAP-gates may be composed of three subsequent CNOT-gates. Now consider a

linear chain of n qubits. One may replace each non-nearest-neighbour CNOT-gate by a sequence

of SWAP-gates and a nearest neighbour CNOT-gate followed by the reversed sequence of SWAP-

gates. Clearly the overhead by expanding non-nearest-neighbour CNOT-gates is in O(n) and

thus the new quantum circuit Q̃n can be computed in polynomial time and contains only nearest-

neighbour CNOT-gates (if we replace the SWAP-gates by CNOT-gates). The new interaction graphs

G(Q̃n) are obviously chain-graphs and thus trivially gapped in all dimensions. �

As an alternative proof for d ≥ 2 one may employ the concept of measurement-based quantum

computation on cluster states [164]. Since it is known that two-dimensional cluster states are a

resource for universal quantum computation [165] and the creation of the latter requires just

conditioned phase gates on adjacent qubits on a square lattice, it is clear that there are always

scalable quasilocal quantum algorithms in 2D.

So we find that the physically motivated notion of local quantum circuits is actually no

restriction at all; which we should be glad about, since there is no loss of computational power

if we restrict ourselves to spatially fixed qubits and short range interactions (and thus exclude

flying qubits).

87Note that this in general requires an uncountable number of local unitaries which certainly is not realistic. Fortu-
nately it possible to approximate any one-qubit unitary, to arbitrary precision, by a discrete set of unitaries, see [37] for
further explanations. This is not important for our point, though.
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[25] Prosen, T. & Pižorn, I. Quantum Phase Transition in a Far-from-Equilibrium Steady State of an XY Spin Chain.

Physical Review Letters 101, 105701 (2008).

� http://link.aps.org/doi/10.1103/PhysRevLett.101.105701.

[26] Diehl, S., Tomadin, A., Micheli, A., Fazio, R. & Zoller, P. Dynamical Phase Transitions and Instabilities in Open

Atomic Many-Body Systems. Physical Review Letters 105, 015702 (2010).

� http://link.aps.org/doi/10.1103/PhysRevLett.105.015702.

[27] Eisert, J. & Prosen, T. Noise-driven quantum criticality. arXiv preprint arXiv:1012.5013 1–5 (2010).

� http://arxiv.org/abs/1012.5013. arXiv:1012.5013v1.

[28] Nagy, D., Szirmai, G. & Domokos, P. Critical exponent of a quantum-noise-driven phase transition: The open-

system Dicke model. Physical Review A 84, 043637 (2011).

� http://link.aps.org/doi/10.1103/PhysRevA.84.043637.

[29] Tomadin, A., Diehl, S. & Zoller, P. Nonequilibrium phase diagram of a driven and dissipative many-body system.

Physical Review A 83, 013611 (2011).

� http://link.aps.org/doi/10.1103/PhysRevA.83.013611.

[30] Ates, C., Olmos, B., Garrahan, J. P. & Lesanovsky, I. Dynamical phases and intermittency of the dissipative

quantum Ising model. Physical Review A 85, 043620 (2012).

� http://link.aps.org/doi/10.1103/PhysRevA.85.043620.

[31] Kessler, E. M. et al. Dissipative phase transition in a central spin system. Physical Review A 86, 012116 (2012).

� http://link.aps.org/doi/10.1103/PhysRevA.86.012116.

[32] Birman, J., Nazmitdinov, R. & Yukalov, V. Effects of symmetry breaking in finite quantum systems. Physics Reports

526, 1 – 91 (2013).

� http://www.sciencedirect.com/science/article/pii/S0370157312004127.

[33] Shirai, T., Mori, T. & Miyashita, S. Novel symmetry-broken phase in a cavity system. arXiv preprint 10 (2012).

� http://arxiv.org/abs/1204.5516. 1204.5516.

[34] Banchi, L., Giorda, P. & Zanardi, P. Quantum information-geometry of dissipative quantum phase transitions.

arXiv preprint 4 (2013).

� http://arxiv.org/abs/1305.4527. 1305.4527.
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