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Abstract

Quantum information theory is a promising interdisciplinary field of both experimental and
theoretical physics on the one hand and informatics on the other. However, the storage and protec-
tion of coherent quantum information proves much more challenging than in the classical analogue.
This led to various approaches in order to protect quantum information from decoherence due to
inevitable interactions with the environment.

Whereas classical quantum error correction codes take the approach of detecting and correcting
errors algorithmically the investigation of topological phases gave rise to the notion of error cor-
rection on a physical level. These theories use degenerate ground states of topologically ordered
systems to store quantum information reliably. For topologically ordered systems the success-
ful description of phase transitions by means of spontaneous symmetry breaking and local order
parameters fails. This leads to an inherent stability of such phases against local noise.

A well-established theory showing topological order is Kitaev’s Toric Code Model [1] which
was subject to intensive studies in recent years. This theory describes a square lattice of spins
embedded into the surface of a torus and features a topology dependent ground state degeneracy.
Since the Toric Code can be described in terms of stabilizers – a group theoretic formalism known
from quantum information theory – its ground states may be expressed as graph states, a subclass
of multi-qubit states described by mathematical graphs and introduced by Hein et al. [2].

In the first part of this thesis the construction of ground states for small Toric Code systems is
investigated. We show how ground states from larger systems may be derived from ground states
of their smaller constituents. In the second part it is shown how a known algorithm, developed
for stabilizer states in general, is applied to the special case of Toric Code Models. Furthermore
a transformation rule stated in purely graph theoretic terms is provided. In the last section the
existence of special, so called local graph states for certain Toric Code systems is investigated. We
compute the smallest settings for Toric Code Models on triangular and square lattices that cannot
be constructed from local graph states by means of local unitaries alone.



Zusammenfassung

Die Quanteninformationstheorie ist ein vielversprechendes, interdisziplinäres Forschungsfeld
zwischen experimenteller und theoretischer Physik auf der einen und Informatik auf der anderen
Seite. Im Rahmen grundlegender Forschungen hat sich herausgestellt, dass das verlässliche Speich-
ern kohärenter Quanteninformation weitaus höhere Anforderungen stellt als man es von der klas-
sischen Informationsverarbeitung her kannte. Dies führte zu einer Vielzahl verschiedener Ansätze
um quantenmechanische Zustände vor Dekohärenz zu bewahren, die wegen unvermeidlicher Wech-
selwirkungen mit der Umwelt die Lebensdauer quantenmechanischer Zustände begrenzt.

Während sich klassische quantenmechanische Fehlerkorrekturcodes eines algorithmischen
Ansatzes bedienen, bei dem Fehler zuerst detektiert und anschließend korrigiert werden,
führte die Entdeckung topologischer Phasen zur Idee Fehlerkorrektur auf physikalischer Ebene
durchzuführen. In diesen Modellen werden die entarteten Grundzustände topologisch geord-
neter Systeme zur zuverlässigen Speicherung von Quanteninformation benutzt. Bei topologischen
Ordnungen versagen die etablierten Erklärungsansätze mittels spontaner Symmetriebrechung und
lokaler Ordnungsparameter. Diese besonderen Eigenschaften solcher Phasen führen zu einer sys-
temimmanenten Robustheit gegen lokale Störungen.

Das bekannteste Modell, das topologische Ordnung aufweist, ist Kitaev’s Toric Code [1]. Es
war in den letzten Jahren Gegenstand intensiver Forschung. Dieses Modell beschreibt die quan-
tenmechanische Struktur eines quadratischen Gitters aus Spins auf der Oberfläche eines Torus und
zeichnet sich durch eine von der Topologie abhängige Grundzustandsentartung aus. Da man den
Toric Code im Rahmen des aus der Quanteninformationstheorie bekannten Stabilizer -Formalismus
beschreiben kann, ist es möglich seine Grundzustände als Graphenzustände zu schreiben. Diese
bilden eine Unterklasse von Multi-Qubit-Zuständen, die man mittels mathematischer Graphen
beschreiben kann, und wurden von Hein et al. [2] eingeführt.

Im ersten Teil dieser Arbeit wird die Konstruktion der Grundzustände kleiner Toric Code
Systeme untersucht. Es wird gezeigt, wie die Grundzustände größerer Systeme von den
Grundzuständen ihrer Subsysteme abgeleitet werden können. Im zweiten Teil wenden wir einen
für allgemeine Stabilizer-Zustände entwickelten Algorithmus auf den Spezialfall des Toric Codes
an. Weiterhin geben wir eine Regel für diese Transformation an, die ausschließlich graphentheo-
retisch formuliert werden kann. Im letzten Abschnitt werden spezielle Toric Code Systeme auf die
Existenz sogenannter lokaler Graphenzustände hin untersucht. In diesem Zusammenhang berech-
nen wir die kleinstmöglichen Spinsysteme für den Toric Code auf Dreiecks- und Quadratgittern,
die nicht unter Anwendung lokal-unitärer Operationen von lokalen Graphenzuständen abgeleitet
werden können.
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Chapter 1

Introduction

1.1 Preliminaries

To prevent misconceptions due to different notations used by different communities some symbols,
as they will be used in this thesis, are defined in the following. First, as we will deal with abstract
qubits independent of their physical implementation, only the Hilbert spaces defined below will
be considered.

Definition 1.1.1: (Qubit, Computational basis). Set H2 := C2 and HN :=
⊗N

i=1 H
(i)
2 . A

Vector |Ψ⟩ ∈ H2 is called the state of a qubit or simply qubit identifying the physical qubit as
a two state system with its abstract representation as a vector in H2. Let

|0⟩ :=
[

1
0

]

and |1⟩ :=
[

0
1

]

(1.1)

be the standard basis of H2 (also called computational basis). Then an arbitrary state of a qubit
is given by

|Ψ⟩ = α |0⟩+ β |1⟩ where α,β ∈ C and |α|2 + |β|2 = 1 (1.2)

(H2, (·, ·)) becomes a Hilbert space in a natural way

(|Ψ1⟩ , |Ψ2⟩) ≡ ⟨Ψ1 |Ψ2⟩ := α1α
∗
2 + β1β

∗
2 (1.3)

⟨Ψ| denotes the linear functional ⟨Ψ| ∈ H′
2 where H′

2 denotes the dual space of H2 and it holds
⟨Ψ| |Φ⟩ = ⟨Ψ |Φ⟩ for all |Φ⟩ ∈ H2. Since every linear functional ⟨Ψ| can be mapped to a unique
vector |Ψ⟩ by an isometric isomorphism provided by the Riesz representation theorem [3]
this gives rise to the famous Dirac or bra-ket notation.

In addition to |0⟩ and |1⟩ the following special qubit states, which form an alternative orthonor-
mal basis of H2, will be used frequently

|+⟩ := 1√
2

[

1
1

]

and |−⟩ := 1√
2

[

1
−1

]

(1.4)

This leads to the definition of the Pauli matrices:

Definition 1.1.2: (Pauli matrices, Pauli group). The Pauli matrices are defined as

σx :=

[

0 1
1 0

]

, σy :=

[

0 −i
i 0

]

, σz :=

[

1 0
0 −1

]

(1.5)
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Chapter 1 Preliminaries

and are identified with automorphisms acting on H2 by choosing the computational basis {|0⟩ , |1⟩}.
As linear operators acting on H2 they can be expressed by means of every dual basis. If we choose
the dual basis corresponding to their eigenvectors this reads for σx and σz

σx = |+⟩ ⟨+|− |−⟩ ⟨−| (1.6a)

σz = |0⟩ ⟨0|− |1⟩ ⟨1| (1.6b)

The Pauli group [4] (G1, ·) acting on H2 is defined as the set

G1 := span {σx,σy,σz} = {±1,±i1,±σx,±iσx,±σy,±iσy,±σz,±iσz} (1.7)

together with the matrix product (·). Obviously G1 < U(2) where U(2) denotes the unitary group
for a single qubit. The Pauli group acting on HN is defined as

GN := span
{

11 ⊗ · · ·⊗ 1k−1 ⊗ σi
k ⊗ 1k+1 ⊗ · · ·⊗ 1N | i ∈ {x, y, z}; 1 ≤ k ≤ N, k ∈ N

}

(1.8)

and GN < U
(

2N
)

thus describing certain unitary transformations on N qubits. At this point it
may be appropriate to recall the important relations

σiσj = iεijkσ
k + δij1 (1.9a)

[

σi,σj
]

= 2iεijkσ
k (1.9b)

{

σi,σj
}

= 2δij1 (1.9c)

where [·, ·] denotes the commutator and {·, ·} the anticommutator.

Besides |0⟩,|1⟩,|+⟩ and |−⟩ there are further (multi-) qubit states that are usually denoted by
a distinct symbol. The following states are an orthonormal basis of H2 and are known as Bell
states:

∣

∣Φ±
〉

:=
1√
2
[|0⟩1 ⊗ |0⟩2 ± |1⟩1 ⊗ |1⟩2] =

1√
2

{

|+⟩1 ⊗ |+⟩2 + |−⟩1 ⊗ |−⟩2 , (+)

|+⟩1 ⊗ |−⟩2 + |−⟩1 ⊗ |+⟩2 , (−)
(1.10a)

∣

∣Ψ±
〉

:=
1√
2
[|0⟩1 ⊗ |1⟩2 ± |1⟩1 ⊗ |0⟩2] =

1√
2

{

|+⟩1 ⊗ |+⟩2 − |−⟩1 ⊗ |−⟩2 , (+)

|−⟩1 ⊗ |+⟩2 − |+⟩1 ⊗ |−⟩2 , (−)
(1.10b)

Consequently {|Φ±⟩ , |Ψ±⟩} is called Bell basis. These four states are often used to demonstrate
the physical meaning of entanglement, the existence of non-classical correlations that cannot be
explained by any (local) hidden variable theory, that is. Note that it holds

σz
i

∣

∣Φ±
〉

=
∣

∣Φ∓
〉

(1.11a)

σz
i

∣

∣Ψ±
〉

= (−1)i−1
∣

∣Ψ∓
〉

(1.11b)

σx
i

∣

∣Φ+
〉

=
∣

∣Ψ+
〉

, σx
i

∣

∣Φ−
〉

= (−1)i
∣

∣Ψ−
〉

(1.11c)

σx
i

∣

∣Ψ+
〉

=
∣

∣Φ+
〉

, σx
i

∣

∣Ψ−
〉

= (−1)i
∣

∣Φ−
〉

(1.11d)

where i ∈ {1, 2}. These transformations will be important later on.
The prime example formultipartite entanglement is given by theGHZ states (Greenberger-

Horne-Zeilinger states)

|GHZN ⟩ :=
1√
N

[

|0⟩⊗N + |1⟩⊗N
]

(1.12)

Most of the theory used to describe stabilizer states (see sec. 1.2) is based on group theory
in general and especially the theory of G-sets. Therefore the next definition is presented in
purely group theoretic terms and is rather important for linking theory and application than
understanding what follows in physics.
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Chapter 1 Preliminaries

Definition 1.1.3: (G-Set, Stabilizer, Normalizer, Centralizer). In the following G de-
notes a group. For simplicity the group product is omitted.

(i) Let M be an arbitrary set. Then we call a binary mapping

· : G×M →M : (g,m) +→ g ·m (1.13)

a left group action of G on M if · satisfies

(a) (gh) ·m = g · (h ·m) for all g, h ∈ G and m ∈M .

(b) e ·m = m for all m ∈M if e denotes the identity in G.

Then M is called a left G-set or for short G-set.

(ii) Let M be a G-set and m ∈M . Then the stabilizer of m is

StabG(m) := {g ∈ G | g ·m = m} (1.14)

and StabG(m) is a subgroup of G.

(iii) Let U ⊆ G be an arbitrary subset. Then we call

NG(U) :=
{

g ∈ G | gUg−1 = U
}

(1.15)

the normalizer of U in G and NG(U) ≤ G.

(iv) Let U ⊆ G be an arbitrary subset. Then we call

CG(U) := {g ∈ G | ∀u∈U : gu = ug} (1.16)

the centralizer of U in G and CG(U) ≤ G. Especially Z(G) := CG(G) is called the center
of G and is by definition an abelian subgroup of G.

In our case the Pauli group G1 acts on the states of one qubit, i.e. H1, if we identify the matrices
of G1 with their automorphisms on H1 given by the computational basis {|0⟩ , |1⟩}. Therefore H1

is a G1-set in group theoretic terms. This applies analogously to the case of N qubits described
by HN and GN .

In the field of quantum error correction and multipartite entanglement it is of great importance
if a given unitary operation u ∈ U(2N ) leaves GN invariant under conjugation. This leads to the
following

Definition 1.1.4: (Clifford group, local Clifford group). The Clifford group CN is
defined as the normalizer of GN , i.e.

CN := NU(2N ) (GN ) =
{

u ∈ U
(

2N
)

|uGNu† = GN

}

(1.17)

Especially for a single qubit this reads

C1 =
{

u ∈ U (2) |uG1u
† = G1

}

(1.18)

Furthermore the local Clifford group [5] Cl
N is defined as

Cl
N := {c1 ⊗ · · ·⊗ cN | ci ∈ C1, 1 ≤ i ≤ N} = C⊗N

1 (1.19)

and consequently Cl
N ≤ CN .

The local Clifford group will be of great importance in chapters 3 and 4.
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Chapter 1 The stabilizer formalism

1.2 The stabilizer formalism

1.2.1 Definition and properties

We are going to introduce a formalism widely used in quantum information theory to describe
quantum states and transformations of the latter in a more efficient way than by means of linear
operators acting directly on state vectors. This formalism is called the stabilizer formalism which
is an application of G-set theory known from algebra. The following introduction focuses on
the relevant notions used later on and skips proofs and detailed analysis. These and further
explanations may be found in [4] where a whole chapter is dedicated to stabilizer codes.

Definition 1.2.1: (Stabilizer). Let HN be the state space of N qubits and GN the Pauli group

operating on their states. Suppose that G = {gi}di=1 ⊆ GN is a given set of independent, pairwise
commuting Pauli operators. Then we call

S := spanG (1.20)

the stabilizer of the protected subspace

PS :=
{

|Φ⟩ ∈ HN | S |Φ⟩ = |Φ⟩
}

(1.21)

and G the generators of S. d = rankS is called the rank of the stabilizer. Note that S is an
abelian subgroup of GN by definition.

The definition above starts with the generators G and subsequently constructs the protected
space PS. In this case it may happen, that the protected space is degenerate, i.e. dimPS > 1 or
even trivial. One can show [4] that −1 /∈ S is a necessary condition for PS being non-trivial. To
this end let us state the following proposition

Proposition 1.2.2: (Dimension of PS). Let G be the independent generators of a stabilizer S
such that −1 /∈ S acting on HN with |G| = d. Then it follows

dimPS = 2N−d (1.22)

The proof can be found in [4]. Proposition 1.2.2 will be used throughout this thesis and should
be kept in mind.

In case of dimPS = 1 the link to def. 1.1.3 is established by providing |Ψ⟩ ≠ 0 as protected
state. Hence PS := span {|Ψ⟩} and it follows S = StabGN

(|Ψ⟩) for the corresponding stabilizer,
which turns out to be an abelian subgroup of GN since elements of GN commute or anti-commute
and |Ψ⟩ ̸= 0. By Proposition 1.2.2 we deduce N = d and therefore we have G = {gi}Ni=1 for
appropriately chosen gi.

Up to now we just found a new way defining N-qubit states in terms of stabilizer operators.
This gives rise to two questions:

1. What conditions hold for an operator transforming stabilizer states into stabilizer states?

2. How may such a transformation be described in terms of stabilizers rather than in terms of
state vectors?

To this end suppose that |Ψ⟩ ∈ PS is stabilized by S and transformed by a unitary U ∈ U
(

2N
)

.
Let

USU † :=
{

UsU† | s ∈ S
}

(1.23)

be the transformed stabilizer. Obviously USU † ≤ U
(

2N
)

is an abelian subgroup of the unitary
group acting on N spins. Then it holds

UsU†U |Ψ⟩ = Us |Ψ⟩ = U |Ψ⟩ (1.24)

11



Chapter 1 The stabilizer formalism

and |Ψ′⟩ = U |Ψ⟩ is stabilized by S ′ = USU †. In general PS ′ = UPS is stabilized by S ′ = USU †

and S ′ = spanG′ where G′ =
{

UgiU †
}d

i=1
. This observation answers question two: One may

transform stabilizer states by conjugation of the generators with the unitaries in question. This is
an efficient way to keep track of the states without dealing with high dimensional vector spaces, e.g.
HN (see Theorem 1.2.3 below). For example, let σx be a generator and consider the Hadamard
transformation

H :=
1√
2

[

1 1
1 −1

]

(1.25)

Then one obtains easily HσxH† = σz and of course HσzH† = σx. This leads to the core of
question one. Obviously HσxH† = σz ∈ GN (identities acting on other spins are omitted) and
one can show that indeed HSH† ≤ GN . According to def. 1.2.1 a stabilizer S is a subgroup of
the Pauli group GN . For arbitrary U ∈ U

(

2N
)

this is not the case. The condition we are looking
for is U ∈ CN since then UGNU † = GN and USU † ≤ GN is a new stabilizer in the sense of def.
1.2.1.

Finally one may ask, if it is advantageous to use the stabilizer formalism for the description of
quantum mechanical state transformations. To this end we cite the Gottesman-Knill theorem as
stated in [4].

Theorem 1.2.3: (Gottesman-Knill theorem). A quantum computation which involves only
the following elements

• State preparation in the computational basis.

• Hadamard gates, phase gates, C-NOT gates and Pauli gates.

• Measurements of observables in the Pauli group.

• Classical control of these gate operations conditioned on the outcome of such measurements.

may be efficiently simulated on a classical computer.

Remark 1.2.4. Here efficiently means, that the computation time needed to simulate a system
of N qubits running a quantum code with M of these special operations grows polynomially with
N and M . Therefore the corresponding problem belongs to the complexity class P.

According to the explanations given above, stabilizer codes belong to the class of quantum
mechanical state transformations required by Theorem 1.2.3. Therefore any stabilizer circuit may
be simulated efficiently on a classical computer. This is a remarkable result since a common view
of quantum computing propagates the notion of quantum computers being “faster” than classical
computers. That this holds not true for arbitrary quantum codes is shown by Theorem 1.2.31.

1.2.2 Binary representation of stabilizer codes

Often – as we will see later – it is not important to keep track of the phase factors of each stabilizer
generator, since states described by stabilizers differing only in such local phases are equivalent
under local unitary transformations (for LU-equivalence see sec. 1.7). Therefore the following
representation of a given stabilizer is useful if we are only interested in LU-invariant properties of
stabilizer states:

Definition 1.2.5: (Binary representation, Generator matrix). Let F2 be the field over
two elements2, i.e. the set {0, 1} with addition modulo 2 and multiplication as known from R. Let

S be a stabilizer with N generators G = {gi}Ni=1 ⊆ GN . Since I := span {±1,±i1} is a normal
subgroup of GN its intersection with S is a normal subgroup with respect to S. Therefore we may
factor out and get the reduced stabilizer

S∗ := S /I (1.26)

1It turns out to be exceedingly difficult finding quantum algorithms that outpace their classical analogues [6,7].
2Such finite fields are called Galois fields GF(n), i.e. F2 = GF(2).
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Chapter 1 The stabilizer formalism

In this factor group computations are performed as in S ignoring the phase factors. For the
sake of simplicity embed S into S∗ by means of the natural surjection and write G for a set of
representatives generating S∗. From this point of view w.l.o.g. gi has the form

gi = σν1
1 ⊗ · · ·⊗ σνN

N where νi ∈ {x, y, z, 0} and σ0 := 1 (1.27)

Now define a group homomorphism δ : S∗ → F2N
2 by

δ (gi)j :=

{

1 j ≤ N : νj = z ∨ νj = y ; j > N : νj−N = x ∨ νj−N = y

0 otherwise
(1.28)

The first N entries of δ (gi) indicate, if σz or 1 operate on the corresponding qubit whereas the
last N entries contain information about the action of σx operators. One easily confirms that δ
maps S∗ homeomorphic into F2N

2 (viewed as an additive group) and is well defined. In fact, it
is a monomorphism of groups, i.e. injective. Therefore it becomes a group isomorphism if we
restrict the range to δS∗ = im(δ) (note that for injectivity we need the quotient S∗ as domain).
The generating set of δS∗ can be written as a generator matrix

M [G] := [δ (g1) , . . . , δ (gN )] =

[

Z
X

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δ (g1)1 · · · δ (gN )1
...

. . .
...

δ (g1)N · · · δ (gN )N

δ (g1)N+1 · · · δ (gN )N+1
...

. . .
...

δ (g1)2N · · · δ (gN )2N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.29)

with N ×N -submatrices Z and X.

The subspace δS∗ ≤ F2N
2 as a vector space over F2 shows some interesting properties [4, 5, 8].

In the first place we define a symplectic structure on F2N
2 . The matrix

P :=

[

0 EN

EN 0

]

(1.30)

(here EN denotes the identity matrix in FN
2 ) induces the symplectic inner product, i.e. a totally

isotropic and non-degenerate bilinear form

⟨a,b⟩ := aTPb where a,b ∈ F
2N
2 (1.31)

By straightforward calculation one finds, that two operators A,B ∈ GN commute iff they are
orthogonal with respect to this symplectic inner product. Formally this reads

[A,B] = 0⇔ ⟨δ(A), δ(B)⟩ = 0 (1.32)

M [G] is called generator matrix of the the stabilizer S∗ since for all A ∈ S∗ there exists a
binary vector x ∈ FN

2 such that δ(A) = M [G]x. Often S is written instead of S∗ and neglecting
the phases is implicitly assumed.

By definition of a stabilizer S it holds

M [G]T PM [G] = 0 (1.33)

since all generators commute. Hence one calls the subspace δS∗ self-orthogonal with respect to the
symplectic product. Furthermore it turns out, that a set of generating Pauli operators G ⊂ GN

(−1 /∈ G) is independent iff the generator matrix has maximal rank, i.e. rankM [G] = N [4]. This
statement is quite useful since one easily checks the latter condition by applying the machinery of
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Chapter 1 A toy model: The Toric Code

linear algebra instead of checking the (in-)dependence of Pauli operators directly. In this picture
a change of the basis of S∗ (i.e. transforming the independent set G of generators to a new
independent set G′ by concatenation of operators) is achieved by multiplication of the generator
matrix with an invertible N ×N -matrix from the right. This reads formally

M [G′] = M [G]T [G,G′] where T [G,G′] ∈ GL (N,F2) (1.34)

At last we give the following definition of a special type of generator matrices which will become
important later on (see sec. 1.6).

Definition 1.2.6: (Adjacency matrix, Graph state generator). Let Γ ∈ F
N×N
2 be a ma-

trix with the following properties

1. Γ = ΓT , i.e. the matrix is symmetric.

2. Γii = 0 for all i ∈ {1, . . . , N}.

Then we call Γ an adjacency matrix and the corresponding generator matrix of a stabilizer S [Γ]

M [Γ] :=

[

Γ
EN

]

(1.35)

is called graph state generator.

1.3 A toy model: The Toric Code

In 2002 Kitaev proposed a spin model called the Toric Code Model [1] (TCM) showing the inherent
capability of quantum error correction on a physical level. Due to the No-cloning theorem
the correction of errors to conserve coherent states in the presence of noise is a subtle matter and
requires more sophisticated methods than classical error correction algorithms. A second (and not
independent) property of the TCM is the presence of a so called topological phase at T = 0 that
cannot be described by Landau theory dealing with second-order phase transitions described by
local order parameters.

Up to now many other theories showing topological order have been discovered [9–11], but the
TCM is the most prominent and simplest one featuring interesting properties. Therefore it can
be considered a toy model of topological order showing that this new kind of order may be used
for fault tolerant quantum computing (in this context called topological quantum computing). Let
us now introduce the Toric Code Model and investigate its properties.

1.3.1 The setting

Let L be a square lattice with N cells in each direction. We denote the vertices, edges and faces
of the lattice by s, i and p respectively. V (L), E(L) and P (L) denote the sets of vertices, edges
and faces of L. Embed this lattice into the oriented 2-manifold with genus g = 1 (see sec. 1.4.1) –
also known as torus – as shown in fig. 1.1. Here the upper border is identified with the (dashed)
lower border and the left border with the (dashed) right border. Attach a single spin (or qubit)

to each of the 2N2 edges of the lattice described by state vectors in H =
⊗

i∈E(L) H
(i)
2 . Here H(i)

2

is the Hilbert space describing the spin on edge i.
Define the following operators for each vertex s ∈ V (L) and face p ∈ P (L)

As :=
⊗

i∈s

σx
i and Bp :=

⊗

i∈p

σz
i (1.36)

where σx,z
i are the Pauli spin operators acting on the Hilbert space H(i)

2 . The vertices (sites) s
are identified with their adjacent edges i ∈ s and thus supp (As) can be illustrated as the star
with center s. Analogously one identifies a face p with its bounding edges i. Therefore supp (Bp)

14



Chapter 1 A toy model: The Toric Code

⊗ ⊗ ⊗

⊗

⊗

⊗

⊗

⊗

⊕⊕⊕

⊕

⊕

⊕

⊕

⊕

⊗

⊗

⊗⊗

⊕

⊕

⊕⊕

Bp

Z1

X2

As

X1Z2

Figure 1.1 (Color online) : The setting used for the
Toric Code Model as proposed in ref. [1]. Spins are la-
beled with circles on the edges of a square lattice which
is embedded into the torus. Thus opposing boundaries
have to be identified (actually, the grey spins are iden-
tified with their black counterparts). The lattice L is
drawn with black lines whereas the dual lattice L∗ ap-
pears as a thin, grey net. The star operators As can be
seen as the plaquette operators B∗

s of the dual lattice and
the plaquette operators Bp as the dual star operators A∗

p,
respectively. The non-trivial loops C∗

1,2 (C1,2) and their

corresponding loop operators Xi (Zi) are represented by
blue (green) lines.

is illustrated as the plaquette filling the face p (see fig. 1.1). The As will be called star operators
whereas the Bp are called plaquette operators.

It is easy to see that

[As, As′ ] = 0, [Bp, Bp′ ] = 0, [As, Bp] = 0 (1.37)

for all s, s′ ∈ V (L) and p, p′ ∈ P (L). [As, Bp] = 0 follows since |supp (As) ∩ supp (Bp)| ∈ {0, 2}
and {σx,σz} = 0. Furthermore the star and plaquette operators are in the Pauli group G2N2 and
consequently

S ≡ S(N) := spanB (1.38)

is a stabilizer group where B := {As, Bp}s∈V (L),p∈P (L) is a generating set of S. It is important to
realize that B is not an operator basis, i.e. the star and plaquette operators are not independent.
In fact, since every edge i is adjacent to two vertices s and two faces p (torus!) it holds

∏

s∈V (L)

As = 1 and
∏

p∈P (L)

Bp = 1 (1.39)

Since |V (L)| = N2 = |P (L)| and |E(L)| = 2N2 it follows rankS(N) = 2N2 − 2 as the rank of
the TCM stabilizer (the −2 is due to the two constraints in eq. (1.39)). According to Proposition

1.2.2 we have dimPS = 22N
2−(2N2−2) = 22 = 4. Therefore the TCM yields a 4 dimensional

protected subspace (also called code space). In section 1.4.2 we will derive, that the dimension (or
degeneracy if we introduce a Hamiltonian) depends only on the genus3 g of the surface the lattice
is embedded into.

We are now going to calculate a basis of PS. To this end we need to establish the notion of
a dual lattice L∗ which is drawn in fig. 1.1 with thin, grey lines. Consider L as a graph then
L∗ is simply the dual graph in the usual sense of graph theory, therefore consisting of vertices
s∗ for every face p of L linked by edges i∗ if the corresponding faces p are adjacent. For further
explanations see section 1.4.2.

Remark 1.3.1. In the picture of the dual lattice L∗ one may call As plaquette operators and Bp

star operators since the duality leads to the identification s ↔ p∗ and p ↔ s∗. This is illustrated
in fig. 1.1.

In the following Cpq denotes a path from vertex p to q on the lattice L while Cj denotes a closed
path with index j. Paths on the dual lattice L∗ will be labeled by ∗. Define two types of string

3The number of “holes”.
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Chapter 1 A toy model: The Toric Code

operators

X
[

C∗
pq

]

:=
⊗

i∗∈C∗
pq

σx
i∗ (1.40a)

Z [Cpq] :=
⊗

i∈Cpq

σz
i (1.40b)

where the paths Cpq and C∗
pq are identified with their edges. Let C1,2 denote two non-homologous

and non-trivial paths, each of them winding around the torus as shown in fig. 1.1. For a short
introduction to algebraic topology see section 1.4.1. Analogously choose C∗

1,2 on the dual lattice.
Then we define the loop operators

Xj := X
[

C∗
j

]

(1.41a)

Zj := Z [Cj ] (1.41b)

where j ∈ {1, 2}. (in general j ∈ {1, 2, . . . , 2g} on an orientable surface with genus g). For an
example of loop operators defined by paths homologous to 0 see fig. 1.2. Such operators act
trivially on PS for they can be constructed from stabilizer operators As and Bp. This is not the
case if their paths wind once around the torus.

⊗ ⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊕

⊕ ⊕

⊕

⊕

⊕ ⊕

⊕
X [C∗]

Z [C]

Figure 1.2 (Color online) : Two paths homologous to 0.
The green (blue) one lives one the lattice L (dual Lattice
L∗) and defines a z-type (x-type) loop operator. Both
act as the identity on PS since they can be constructed
from stabilizer operators Bp and As, respectively.

Note that

[As, Xj ] = 0, [Bp, Xj ] = 0, [As, Zj ] = 0, [Bp, Zj ] = 0 (1.42)

since the paths are closed, hence |supp (As) ∩ supp (Zj)| ∈ {0, 2, 4} and |supp (Bp) ∩ supp (Xj)| ∈
{0, 2, 4}. Furthermore we find the (anti-) commutation relations

[Zi, Xj ] = 0, {Zj , Xj} = 0, [Xi, Xj ] = 0, [Zi, Zj ] = 0, (1.43)

where i ̸= j. {Zj , Xj} = 0 follows since Cj and C∗
j intersect at one spin (marked with a red circle

in fig. 1.1).
We are now ready to calculate the TCM ground states |v1, v2⟩ where vi ∈ {1,−1} are called

topological quantum numbers. The reason for this name will become clear later on.

Lemma 1.3.2. Let |SEC(v1, v2)⟩ ∈ H be any vector fulfilling the conditions Bp |SEC(v1, v2)⟩ =
|SEC(v1, v2)⟩ for all p ∈ P (L) and Zj |SEC(v1, v2)⟩ = vj |SEC(v1, v2)⟩ where vj ∈ {1,−1}. Sup-
pose A := span {As}s∈V (L), then

|v1, v2⟩ =
1√

2N2−1

∑

A∈A

A |SEC(v1, v2)⟩ (1.44)

16



Chapter 1 A toy model: The Toric Code

is a (basis) vector of PS and
Zj |v1, v2⟩ = vj |v1, v2⟩ (1.45)

as well as

Xj |v1, v2⟩ =
{

|−v1, v2⟩ , j = 1

|v1,−v2⟩ , j = 2
(1.46)

Therefore {|v1, v2⟩}vi∈{1,−1} is a ONB of PS.

Proof. That |v1, v2⟩ ∈ PS follows by straightforward calculation. Since [A,Bp] = 0 for all A ∈ A
and p ∈ P (L) it follows immediately Bp |v1, v2⟩ = |v1, v2⟩. Let As ∈ A be an arbitrary star
operator. Then

As |v1, v2⟩ =
1√

2N2−1

∑

A∈A

AsA |SEC(v1, v2)⟩ =
1√

2N2−1

∑

A′∈A

A′ |SEC(v1, v2)⟩ = |v1, v2⟩

Here was used that A is a group by definition with order |A| = 2N
2−1. Therefore S |v1, v2⟩ =

|v1, v2⟩. Furthermore

Zj |v1, v2⟩ =
1√

2N2−1

∑

A∈A

ZjA |SEC(v1, v2)⟩ =
1√

2N2−1

∑

A∈A

AZj |SEC(v1, v2)⟩ = vj |v1, v2⟩

Note that Zj is Hermitian and unitary. Therefore ⟨v1, v2 | v′1, v′2⟩ = δv1,v′
1
δv2,v′

2
and {|v1, v2⟩}vi∈{1,−1}

is a ONB of PS since dimPS = 4. Lastly consider Xj |v1, v2⟩ and use that {Zj , Xj} = 0. We find
(i ̸= j)

ZjXj |v1, v2⟩ = −XjZj |v1, v2⟩ = −vjXj |v1, v2⟩
ZiXj |v1, v2⟩ = XjZi |v1, v2⟩ = viXj |v1, v2⟩

This completes the proof. !

This lemma delivers some insight into the structure of PS. A question remaining is how we
can choose the reference states |SEC(v1, v2)⟩ ∈ H. First note that these states are not unique since
we may choose every state |SEC′(v1, v2)⟩ obtained from |SEC(v1, v2)⟩ by applying an arbitrary
A ∈ A. Secondly, since we know how to get |v1, v2⟩ with arbitrary quantum numbers from |1, 1⟩
by applying Xj , it is sufficient to know |SEC(1, 1)⟩. The simplest choice is |SEC(1, 1)⟩ = |0⟩⊗2N2

as one verifies easily. The reader might ask, where the label “SEC” comes from. The reason for
this labeling is that |SEC(v1, v2)⟩ ∈ SEC(v1, v2) where SEC(v1, v2) is a linear subspace of H and
is called the topological SECtor specified by (v1, v2). It is defined as follows

SEC(v1, v2) := PF(v1, v2) (1.47)

where F(v1, v2) := span {Bp, v1Z1, v2Z2}p∈P (L) is a stabilizer. Obviously we may choose for

|SEC(v1, v2)⟩ an arbitrary vector from the topological sector SEC(v1, v2).

1.3.2 Excitations

Up to now the TCM was purely described in terms of stabilizers and interpreted as an abstract
quantum code. Let us now implement this code by writing down the Hamiltonian

HTCM := −
∑

s∈V (L)

As −
∑

p∈P (L)

Bp (1.48)

Clearly every |Ψ⟩ ∈ PS is an eigenstate of HTCM with energy E0 = −2N2. Since all As and
Bp pairwise commute they are diagonalizable simultaneously with eigenvalues ±1. Therefore
PS is the 4-fold degenerate ground state space of HTCM . Excited states violate the stabilizer
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Chapter 1 A toy model: The Toric Code

conditions As |Ψ⟩ = |Ψ⟩ and Bp |Ψ⟩ = |Ψ⟩ for at least one vertex s or plaquette p. Consequently
the energy of the first excited states is E∗ = E0 + 4 and the spectrum is gapped. Remember
that

∏

s∈V (L) As = 1 =
∏

p∈P (L) Bp. If an excited state |Ψ⟩ violates a star operator condition
there must be another vertex where a second violation occurs. The same argument holds true for
violation of plaquette conditions. It is advantageous looking at vertices or plaquettes with violated
stabilizer condition as being occupied by a quasiparticle:

Definition 1.3.3: (Elementary excitations). Let s ∈ V (L) be a vertex with As |Ψ⟩ = − |Ψ⟩
and p ∈ P (L) be a plaquette with Bp |Ψ⟩ = − |Ψ⟩. Then we say that p is occupied by a x-type
particle m and s by a z-type particle e.

For reasons explained below these particles are called anyons. As derived above it follows that
excitations in the TCM always exhibit an even number of anyons.

This fact corresponds to the observation that
{

X
[

C∗
pq

]

, Bp,q

}

= 0 and
[

X
[

C∗
pq

]

, Bp′

]

= 0 as
well as {Z [Csf ] , As,f} = 0 and [Z [Csf ] , As′ ] = 0 where p′ ≠ p, q and s′ ̸= s, f . In other words:
If we apply a x-type string operator (not loop operator!) X

[

C∗
pq

]

to a Toric Code ground state
|Ψ⟩ ∈ PS there are x-type particles at its endpoints p and q. Analogously z-type string operators
lead to z-type particles attached to their ends.

t0

t1

t2

t0

t1

t2

Figure 1.3 (Color online) : Exchanging two particles (blue and red dots) twice in the plane (left picture) is
topologically equivalent to one particle winding once around the other (right picture), if continuous deformation of
the trajectories in the 2 + 1-dimensional spacetime is allowed.

Now imagine that a pair of x-type particles has been created locally (e.g. by thermal fluctua-
tions). This state can be generated by applying X

[

C∗
pq,1

]

to a TCM ground state characterized by
topological quantum numbers v1 and v2. “Pull” one of the particles around the torus by applying
another x-type string operator X

[

C∗
pq,2

]

to the excited state where C∗
pq,1 + C∗

pq,2 = C∗
i is a homol-

ogous non-trivial path. What happened? We applied X
[

C∗
pq,1

]

X
[

C∗
pq,2

]

= X
[

C∗
pq,1 + C∗

pq,2

]

=
X [C∗

i ] = Xi to |v1, v2⟩ and thus flipped vi! The new state after creating a pair of x-type anyons,
pulling one around the torus and annihilating it with the other is not an excited state but another
ground state with one flipped quantum number vi.

As it is widely known, there are two types of particles obeying different statistics. They are
called fermions if exchanging two (indistinguishable) particles yields a global phase factor eiπ = −1
and bosons if the same procedure acts as the identity on the state space, i.e. ei0 = 1. Obviously
exchanging two particles twice yields in both cases the original state without any phase factor. The
double exchange of two particles is topologically equivalent to one particle winding once around
the other, which stays fixed. This is illustrated in fig. 1.3.

We may now ask, if there are particles obeying neither Fermi statistics nor Bose statistics
thus providing complex phases eiϕ, ϕ ̸= 0,π if two particles are exchanged or non-trivial trans-
formations of the state vector if one particle moves around another. In fact, such particles can
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Chapter 1 A toy model: The Toric Code

be observed in fractional quantum hall states [12] and are called anyons due to the occurrence of
arbitrary phases.

Anyonic statistics occurs only in systems with two spacial dimensions, since the fundamental
group of the punctured space with D > 2 is trivial. In other words: In three and more dimensions
there is only one way of moving a particle around another up to homotopic deformations of the
trajectory and consequently this trajectory is equivalent to the trivial one. It follows that the only
possible particle statistics observable in high dimensional systems is the Fermionic and Bosonic.

In contrast, two-dimensional systems allow topologically non-trivial trajectories of a particle
moving around another since the fundamental group of the punctured plane is non-trivial (it is iso-
morphic to Z). As a consequence particle statistics in such systems is described by representations
of the braid group B2 [11]. If this representation is one-dimensional (thus abelian) the order of
braiding anyons does not matter and they are called abelian. Representations of higher dimensions
may cause non-commuting unitary transformations of the state by braiding two particles. Such
particles are called non-abelian anyons [1, 11, 13].

⊕

⊕

⊕

⊗

⊕

X

X

Z

Z

Z [C1]

X [C∗]

⊗ ⊗ ⊗

⊗

⊗

⊗

⊗ ⊗ ⊗

⊕

⊕

⊕

⊗

X

X

Z

Z

Z [C1]

Z [C2]

X [C∗]

Figure 1.4 (Color online) : Two pairs of particles created by Z [C1] and X [C∗] string operators (left picture). If
the upper z-type particle is moved around the upper right x-type particle this is represented by the loop operator
Z [C2]. Since C2 and C∗ intersect at a single spin (or odd number in general) – marked by a red circle – this results
in a minus sign (right picture).

Let us return to the Toric Code Model and its quasiparticles. Imagine that we created two pairs
of them – one of each type – as illustrated in fig. 1.4 on the left. This can be done by applying string
operators Z [C1] and X [C∗] denoted by green and blue paths. To retrieve the mutual statistics
between x- and y-type particles, move the upper z-type particle around the upper right x-type
particle as illustrated in fig. 1.4 on the right. Mathematically this is represented by the loop
operator Z [C2]. We find X [C∗]Z [C1] |Ψ⟩ for the initial state on the left and Z [C2]X [C∗]Z [C1] |Ψ⟩
for the final state on the right. Since {Z [C2] , X [C∗]} = 0 due to the red marked spin in the support
of both operators, it follows −X [C∗]Z [C1]Z [C2] |Ψ⟩ = −X [C∗]Z [C1] |Ψ⟩ for C2 is a closed path.
Therefore a minus sign results from moving the particle of one type around a particle of another
type and the elementary excitations of the TCM display mutual abelian anyonic statistics. Here
mutual is an important information since both particle types obey Bose statistics if they are
compared to particles of their own kind. This can be seen easily for there are only z- or x-type
string operators involved.

We already used another property of the two elementary excitations4 found in the TCM: The
fusion rules. Obviously two particles of the same type annihilate each other if they occupy the
same vertex or plaquette – they are their own antiparticles. These fusion rules are written as

e⊗ e = 1 and m⊗m = 1 (1.49)

4In fact, there is a third one: The composition of x- and z-type particles yields y-type particles which are
fermions.
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where e (m) labels a z-type (x-type) particle and 1 denotes the trivial particle or vacuum state.
Here e stands for electric charge and m for magnetic vortex. The reason for this naming scheme
is the link between Toric Code Models and lattice gauge theories [1, 14].

1.3.3 Error correction

The reason for introducing the TCM was the notion of fault tolerant quantum computation [1] on a
physical level. The basic idea proposed by Kitaev is the implementation of logical quantum gates
acting on the logical space PS by creating, braiding and fusing anyons in a particular manner.
This principle is known as topological quantum computing. Unfortunately it turns out that the
TCM as presented here is too simple since it shows only abelian statistics. For a universal set of
quantum gates to be implemented by braiding non-abelian anyons are required. Nevertheless one
may flip and read out logical qubits stored in the TCM ground states (|v1, v2⟩ is a logical 2-qubit
state) by applying or measuring the Xi and Zi loop operators. Although we cannot compute with
these qubits in a quantum mechanical fashion, we look at the TCM as a storage for qubits. This
storage turns out to implement two quantum error correction mechanisms on different layers.

To this end it is important to distinguish between physical and logical qubits. The physical
qubits are represented by state vectors of the Hilbert spaces H2 or – as a composite system – by
a state vector in HN for N qubits. They are physical because these qubits would be implemented
on a lattice in real space if one aims for a realization of the TCM (e.g. a realization with Rydberg
atoms as physical qubits [15]). An implementation of interactions as described by HTCM leads
(disregarding any disturbance) to a ground state |Ψ⟩ in the space PS formally protected by the
stabilizer S. This state space is also called code space since the ground states |v1, v2⟩ describe
the product of two 2-level systems, i.e. PS ∼= H2 ⊗ H2. Therefore the ground states |Ψ⟩ can
be identified with the state of a 2-qubit system – these are the logical qubits. Note that the
loop operators Xi and Zi introduced above satisfy the same commutation relations as the Pauli
matrices σx

i and σz
i . If we define Yi := iXiZi we find

[Ai, Bi] = 2iεAiBiCi
Ci and {Ai, Bi} = 2δAiBi

1 where Ai, Bi, Ci ∈ {Xi, Yi, Zi} (1.50)

which is the same algebra as for the Pauli matrices. Consequently the algebra generated by Xi

and Zi, L [PS] := ⟨X1, X2, Z1, Z2⟩C with the composition of operators as multiplication acts on
PS in the same way as the algebra of the Pauli matrices on a 2-qubit state space H2. This fact
supports the notion of PS as the state space of logical qubits.

Storing few logical qubits in systems with much more physical qubits is a procedure not specific
for the TCM but used extensively in the field of quantum error correction. This reduction of
information density can be used (both in classical and quantum systems) to gain some error
correction abilities, which leads to the first error correction layer present in Toric Code Models:

Algorithmic error correction Suppose an error occurs at spin i ∈ E(L) on a TCM with 2N2

spins (i.e. on a N ×N lattice), described mathematically by σx
i or σz

i on H2N2

. If |Ψ⟩ ∈ PS was
the original state encoding 2 logical qubits, this operation yields |Ψ⟩xi := σx

i |Ψ⟩ for a x-type error
at site i and |Ψ⟩zi := σz

i |Ψ⟩ for the corresponding z-type error. Obviously |Ψ⟩x,zi /∈ PS since there
exist stabilizer operators As and Bp such that As |Ψ⟩zi = − |Ψ⟩zi and/or Bp |Ψ⟩xi = − |Ψ⟩xi iff i ∈ s
and/or i ∈ p. Note that

• one can detect and locate such an error by measuring all stabilizer generators As an Bp.

• the stored (coherent) quantum information is not lost, neither due to the error itself nor due
to the following measurement of stabilizer operators.

First, errors described by unitary operators (here σx
i and σz

i ) are invertible. This holds also for
the stabilizer operators. Furthermore measuring the stabilizers does not change the corrupted
state since |Ψ⟩x,zi is an eigenvector to each stabilizer. Consequently we can measure all stabilizer
generators and apply σx

i or σz
i on the appropriate qubit according to the measurement outcome

(which is called error syndrome) restoring the original quantum state |Ψ⟩.
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This leads to the question of how many errors may be detected and what condition must be
fulfilled to correct such errors on a N ×N -spin lattice. To this end recall that the action of σx

i or
σz
i can be described in terms of string operators X

[

C∗
pq

]

and Z [Cpq] (where single Pauli operators
correspond to the simplest paths on L or L∗, i.e. strings occupying only one edge). As we saw
previously, the measurement of stabilizer generators yields information about the existence and
location of the endpoints of a string and not its actual path. In the general case by measuring
all stabilizer generators we obtain a somewhat “filtered” image of the errors occurred since the
error syndrome contains information about the endpoint of error-chains only. This is illustrated
in fig. 1.5.

⊕ ⊗⊕

⊗

⊗

⊕

⊕ ⊕

⊕

p q

⊗

s

⊗

r

X
[

C∗pq
]

X
[

J ∗pq
]

Z [Crs]

Z [Jrs]

p q

s

r

Figure 1.5 (Color online) : The left picture shows two error-chains and their string representation. Measuring
the stabilizer generators yields the error syndrome depicted in the picture on the right. The left figure shows
furthermore how string operators may be chosen to correct the errors according to the measured syndrome and
the minimal distance assumption. Here the x-type error was corrected whereas the “correction” of the z-type error
destroyed one logical qubit by flipping it.

If one tries to correct these errors only using the information contained in the error syndrome,
a problem occurs if the error-chain has length l > ⌊N−1

2 ⌋. At first glance this problem seems
to originate from the implementation of the error correction algorithm itself. But as one thinks
about this carefully, it becomes clear that there is a deeper connection to information theory and
the behaviour of information as (physical?) entity. Now, what is this problem alike?

The picture on the right of fig. 1.5 shows how errors can be corrected by applying string
operators X

[

J ∗
pq

]

and Z [Jrs] to the corrupted state in question. By applying string operators
with strings attached to the sites where the error syndrome indicates endpoints of strings with
the same type, one creates loops of z- and x-type, respectively. These act trivially on PS and
the original states are recovered. The essential part here is that the physical error graven into a
state due to some earlier transformation does not depend on the actual path of the string operator
describing it. Analogously the consequence of a physical error correction does not depend on the
actual path of the string operator used. Although different strings lead to different physical actions
(the error itself and the subsequent correction are physical events) the state transforms equally
if two strings are homologous. There is no way measuring the actual path afterwards since this
information is not contained in the state itself. To say, TCM ground states have the property of
“factoring out” physical actions with respect to some equivalence relation which is connected to
the first homology group of the considered surface (see sec. 1.4.1).

The problem arising is due to the freedom choosing the path connecting two sites p and q where
errors have been detected. Whereas two homologous paths (on the 1-torus one can just think of
homotopic paths, i.e. paths with fixed endpoints which can be deformed continuously into each
other) have the same effect, two non-homologous paths lead to non-trivial actions on the original
state, thus destroying the stored information rather than recovering it.
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Chapter 1 A toy model: The Toric Code

Formally this reads (see fig. 1.5)

X
[

J ∗
pq

]

X
[

C∗
pq

]

= X
[

J ∗
pq + C∗

pq

]

= 1 but Z [Jrs]Z [Crs] = Z [Jrs + Crs] = Z1 (1.51)

since
[

J ∗
pq + C∗

pq

]

= 0 and [Jrs + Crs] ̸= 0. Here [·] denotes the canonical surjection into the

first homology group of the lattice. Note that X
[

J ∗
pq + C∗

pq

]

acts as the identity only on PS.
For an error correction operator to succeed [Jrs + Crs] = 0 is a necessary and sufficient condi-

tion. The problem is that we cannot be sure in general if we chose the correction path appropriately.
It may happen that it forms a non-trivial loop and consequently flips the corresponding logical
qubit instead of recovering the old one. This problem is solved partially using a rule by which the
path connecting given endpoints r and s or p and q is chosen. To this end introduce a distance
measure5 on V (L) and P (L) by

d(r, s) := min
C : r,s∈C

|C| r, s ∈ V (L) (1.52a)

d(p, q) := min
C∗ : p,q∈C∗

|C∗| p, q ∈ P (L) (1.52b)

where |·| denotes the length of the path (i.e. the number of its edges) and the min runs over
all paths containing vertices r and s or faces p and q, respectively. Suppose the error syndrome
detects errors at vertices r and s (faces p and q). To correct this error the following paths are
chosen (up to homology)

Jrs : |Jrs| = d(r, s) (1.53a)

J ∗
pq :

∣

∣J ∗
pq

∣

∣ = d(p, q) (1.53b)

If there are homologously different paths with the same minimal length one of them is chosen
arbitrarily. Assuming that a corrupted state was affected by at most k = ⌊N−1

2 ⌋ errors the rule
stated above leads in any case to a successful recovery of the original state. If there are more
than k errors, this holds not true in any case and therefore we cannot be sure that the qubits
obtained after the application of a string operator are the same as before. This statement equals
the conclusion that more than k errors cannot be corrected, even if in some cases the new state
resembles the original one.

Physical error correction An interesting property of the TCM is that it is not only a code
featuring quantum error correction procedures as explained above but provides robustness against
noise on a physical level [1]. This is due to the Hamiltonian

HTCM = −
∑

s∈V (L)

As −
∑

p∈P (L)

Bp

which introduces an energy penalty for each pair of anyons (i.e. errors described by σx and σz).
Without thermal fluctuations (T = 0) Toric Code systems give rise to a gapped topological phase,
meaning that elementary excitations come along with a finite energy cost and the ground state
degeneracy, used to encode quantum information coherently, cannot be lifted by means of local6

perturbations. Thus errors (i.e. operations transforming one ground state into another) can only
disturb or destroy coherently stored information if they affect topologically non-trivial parts of
the system.

In the case of Toric Code Models an error that destroys the stored information at least affects
physical qubits along a homologously non-trivial path. In other words: One must create a pair
of anyons, pull one of them along a non-trivial path around the torus and annihilate it with

5This notion of “distance” is also known as geodesic distance.
6In this context “local perturbations” or “local operators” denote operators with support that scales not with

the system size. E.g. operations acting on two spins are local whereas non-trivial loop operators are nonlocal.
However, in the field of entanglement theory operations on two spins may be denoted nonlocal if they increase
entanglement measures whereas even non-trivial loop operators are local unitaries.

22



Chapter 1 Basics of graph theory and algebraic topology

its antiparticle. Hence no local perturbation affects the coherently stored information since any
confined pair of anyons maps the protected space onto an orthonormal state space. This mapping
is undone by annihilating both anyons if their trajectory is trivial with respect to homology.

Since a phase at T = 0 is not viable in real physical systems the question arises whether
some properties characterizing the topological phase survive at finite temperatures. To this end
several approaches were taken to detect and characterize topological phases [16–18] which led
(amongst others) to a quantity called topological entropy measuring topologically non-trivial long
range entanglement [16, 17, 19]. It was shown that the topological entropy of Toric Code Models
in two dimensions is fragile with respect to thermal fluctuations due to their disruptive effect on
the critical loop structure responsible for the topological order [20]. However, it was argued that
topological phases may survive at finite temperatures if the Toric Code Model is extended to three
dimensions [21]. In two dimensions it was shown7 that the expectation values of the loop operators
vanish identically for finite temperatures, i.e. ⟨Z1⟩ = ⟨Z2⟩ = ⟨X1⟩ = ⟨X2⟩ = 0 if T > 0, for both
finite systems and system in the thermodynamic limit [18,22]. This is caused by fluctuating strings
between thermal induced pairs of anyons leading to time dependent eigenvalues of non-trivial loop
operators that may also depend on their actual shape.

1.4 Basics of graph theory and algebraic topology

1.4.1 Algebraic topology

The following section will not give a formal introduction of algebraic topology since this goes
beyond the scope of this thesis. For proofs and basic definitions the reader is referred to textbooks
of (algebraic) topology, e.g. [23].

The main purpose of this section is to provide a link between notions of algebraic topology
and the structure featured by Toric Code Models. Hence we will focus on closed paths (cycles) on
compact 2-manifolds.

A first approach Since important properties of Toric Code Models (e.g. the ground state
degeneracy) are influenced by the number of holes in the surface the system lives on, a topological
entity is needed which measures such structural properties. One of the most simple mathematical
objects measuring the number of holes is the fundamental group π1(X,x0) defined for a punctured
topological space X. It is obtained as quotient of the group {C : [0, 1]→ X | C(0) = x0 = C(1)} of
closed paths C running through x0 (with concatenation of paths as multiplication) with respect
to homotopy. Thus two paths lie within the same equivalence class in π1(X,x0) iff there is a
continuous deformation transforming one path into the other. For instance the blue and yellow
loops drawn in fig. 1.6 on the 2-torus are homotopic whereas the green and red paths are not for
the hole separating them.

Let us check whether the notion of homotopic paths reflects the notion of topologically equivalent
paths known from the Toric Code Model correctly. To this end let L be a (sufficient fine) lattice
embedded into the surface depicted in fig. 1.6. We called two closed paths C1 and C2 on L
topologically equivalent if their corresponding loop operators act equally on the protected states,
i.e. Z [C1] = Z [C2] on PS (the same holds for loops on the dual lattice L∗ and x-type loop
operators).

The question is whether Z [C1] = Z [C2] is equivalent to C1 and C2 being homotopic. In fact,
for the yellow and green paths this is certainly true. They are homotopic and their corresponding
z-type loop operators return the same topological quantum number (or their x-type loop operators
flip the same logical qubit). This can be seen easily since Z [Cyellow] equals Z [Cblue] up to some
plaquette operators Bp (or star operators As) filling the surface of the “tube” between them.

7By mapping the Toric Code Model onto two decoupled Ising chains.
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Chapter 1 Basics of graph theory and algebraic topology

However, our approach fails due to the ex-
ample given by the green and red loops.
Despite the lack of homotopy it holds
Z [Cgreen] = Z [Cred] on PS. This follows
since the area enclosed by Cred and Cgreen
may be filled with plaquette or star opera-
tors despite the “hole” piercing the surface.
Obviously it is not important if C1 can be
deformed into C2 continuously but rather if
the combination of both forms a boundary
of an area embedded into the considered
surface. This relation leads to the notion
of homologous paths and the first homology
group.

Simplicial homology The following in-
troduction of the first homology group
H1K of a simplicial complex K is purely
mathematical and is commonly used for
introductory purposes. However, if one
thinks of a generalised Toric Code Model
(sec. 1.5) defined on a triangular lattice
L together with its z-type loop operators
and plaquette operators Bp the analogue is
quite demonstrative.

Figure 1.6 (Color online) : A compact 2-manifold with-
out boundary and genus 2. It is called 2-torus since it
is the connected sum8of two tori. The relations between
the closed paths drawn on the surface are described in
the text.

In topology a n-simplex is the generalization of a triangle (0-simplex: point, 1-simplex: line
segment, 2-simplex: triangle, 3-simplex: tetrahedron etc.). A simplicial complex K is a set of such
simplices that satisfies further conditions. E.g. the triangular lattice L can be seen as a simplicial
complex made of 2-simplices (a combination of triangles connected by common edges only). Since
we are not interested in the common case let K = L from now on. s = [v0, v1, v2] denotes the
2-simplex (i.e. a plaquette) spanned by its three vertices v0, v1, v2 ∈ V (L) whereas e = [v0, v1]
denotes the 1-simplex (i.e. an edge) spanned by its two adjacent vertices v0, v1. 0-simplices v = [v]
are the vertices of L. Now define a p-chain as the formal sum c =

∑

i λixi where λi ∈ F2 and xi

denote p-simplices of L. These sums may be seen as arbitrary collections of faces/edges/vertices
of L. Clearly the set Cp of all possible (finite) sums c becomes an abelian group if we define

c+ c′ :=
∑

i

(λi + λ′
i)xi (1.54)

(Cp,+) is called the group of p-chains. Now define a group homomorphism ∂p : Cp → Cp−1,
called the boundary map, by its action on p-simplices:

∂ps :=
p

∑

j=0

[v0, . . . , v̂j , . . . , vp] where [v0, . . . , v̂j , . . . , vp] = [v0, . . . , vj−1, vj+1, . . . , vp] (1.55)

For arbitrary p-chains we have ∂pc =
∑

i λi∂pxi. In our case the boundary of a 2-simplex (triangle)
is given by the formal sum of its three bounding edges as 1-simplices. Furthermore the boundary
of an 1-simplex (edge) is simply the formal sum of its adjacent vertices.

A p-chain c is called p-cycle iff ∂pc = 0. In fact, 1-cycles are just the (combinations of) closed
paths C on the lattice L. This is easy to verify since the relation ∂1c = 0 tells us that c is a
collection of edges such that each vertex is adjacent to an even number of these edges.

A p-chain c is called p-boundary iff there exists a p + 1-chain c′ such that c = ∂p+1c′. In our
case the 1-boundaries are exactly the boundaries of arbitrary collections of triangles. At this point

8Formally one writes T#T where T denotes a torus.
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Chapter 1 Basics of graph theory and algebraic topology

it becomes clear that the theory developed above is deeply connected to loop operators Z [C] of
Toric Code Models.

Let Zp and Bp denote the sets of p-cycles and p-boundaries. Obviously Zp = ker ∂p and
Bp = im ∂p+1 by definition. Since ∂ is a homomorphism of (abelian) groups it follows immediately
that Zp and Bp are (normal) subgroups of Cp. It can be shown by straightforward calculation
that every p-boundary is a p-cycle (since ∂p∂p+1c′ = 0). Hence we find Bp ▹ Zp (Bp is a normal
subgroup of Zp).

The pth homology group Hp ≡ HpK of the simplicial complex K (here a triangular lattice L)
is defined as the factor group of p-cycles with respect to p-boundaries

Hp := Zp

/

Bp (1.56)

Note that Hp is abelian, which is not true in general for the fundamental group π1. We call two p-
cycles c1 and c2 homologous (c1 ∼ c2) iff they belong to the same homology class [c1] = [c2] ∈ Hp.
Consider the special case p = 1 for our triangular lattice L on the 2-torus depicted in fig. 1.6.
Here L is called the triangulation of the surface. Two 1-cycles (i.e. loops) are homologous if they
differ only by the boundary of an arbitrary shaped (not necessarily connected) area embedded
into the surface. Thus the yellow and blue loops belong to the same homology class whereas the
orange loop is not homologous to any other drawn loop. Furthermore the green and red paths are
homologous and obviously [Cgreen] = [Cred] = 0 ∈ H1(T#T) since both are 1-boundaries. This is
equivalent to say that Z [Cgreen] = Z [Cred] = 1 on PS in the Toric Code Model. More generally:
Two z-type loop operators Z [C1], Z [C2] are equivalent on PS iff [C1] = [C2] with respect to the
first homology group of the lattice L since this is the case only if the loop operators are equal up
to some plaquette operators Bp. Thus the algebra of z-type (x-type) loop operators is determined
by the first homology group of the lattice L (dual lattice L∗)9.

Homology and ground state degeneracy In subsec. 1.4.2 we will show that the ground state
degeneracy of a generalised Toric Code Model embedded into a surface of genus g is dimPS = 4g

by means of graph theory. However, there is another possibility to derive the degeneracy in terms
of algebraic topology.

We saw that each logical qubit encoded in the state of a Toric Code system is represented by a
topological quantum number vi. For each quantum number vi there is a z-type loop operator Zi

such that Zi |v1, . . . , vn⟩ = vi |v1, . . . , vn⟩. Consequently n independent logical qubits correspond
to n independent10 loop operators Zi. As mentioned above there is a one-to-one correspondence
between loop operators and homology-classes inH1. It is a well known fact from algebraic topology
that H1(Σg) = F

2g
2 where Σg denotes a compact orientable surface of genus g 11 and it follows

rankH1(Σg) = 2g. Thus there are 2g independent homology classes for a surface of genus g if
the cycle group is defined as above. Consequently there are 2g logical qubits encoded in the Toric
Code. This yields 22g orthonormal ground states. Hence we derived dimPS = 4g.

1.4.2 Graph theory

Graph theory as a field of discrete mathematics deals with fundamental objects called graphs and
their properties. The theory of such objects turns out to be of great importance for a variety
of sciences such as theoretical informatics, complexity theory and theoretical physics. There are
several different notions of a graph – two of them are used for the description of special spin
systems in subsequent sections. Throughout this thesis in the majority of cases we adopt the
notation of [24].

9This statement holds true even for non-triangular lattices.
10Here “independent” is meant in terms of the abelian group generated by z-type loop operators.
11Usually homology groups are computed over Z. Then it holds H1(Σg) = Z

2g
2

.
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Definition 1.4.1: (Simple graph, Multi graph). Let V be an arbitrary set.

(i) Let E ⊆ [V ]2 be a subset consisting of 2-element sets of V . Elements of V are called vertices,
elements of E edges. The pair G=(V,E) is called an undirected simple graph or simply
graph. By V (G) we denote the set of vertices whereas E(G) denotes the set of edges. Write
|G| := |V (G)| for the order of the graph G (i.e. the number of vertices) and ∥G∥ := |E(G)|
for the number of edges. If |G| <∞ G is called a finite graph. If nothing is stated about |G|
the graph is assumed to be finite.

(ii) In contrast to (i) let E ⊆ [V ]2 be a multiset consisting of 2-element sets of V . Then the
tuple G=(V,E) is called an undirected multigraph or simply multigraph.

A multiset M is a generalization of a set S. The latter allows elements to occur at most once,
i.e. S = {a, b, c} = {a, a, b, c, c, c} whereas a multiset allows more than one element of each kind,
i.e. M = {a, a, b, c, c, c} ̸= {a, b, c} (note that this is not a formal definition of a multiset). The
number of occurrences of an element is called the multiplicity. Applied to the definition of graphs
given above this leads to different ways two vertices p and q can be connected. By connected we
mean that there exists (at least) one edge e ∈ E(G) such that p, q ∈ e. The definition of a simple
graph ensures that there is at most one edge connecting two vertices whereas the definition of
a multigraph allows multiple edges connecting two vertices. Fig. 1.7 illustrates these two graph
types.

Remark 1.4.2. Every simple graph is also a multigraph. We denote only true multigraphs as
such, i.e. graphs that are multigraphs but no simple graphs.

A B C

Figure 1.7 (Color online) : Examples of different graph types. The blue graph in A is simple in the sense of def.
1.4.1 whereas the red one in B is a true multigraph due to the multiple edges. The green one in C is not defined
in 1.4.1 and is sometimes referred to as pseudograph. We are not going to deal with graphs of the green type (i.e.
graphs with cycles of length 1). All these graphs are finite, undirected and connected.

Two graphs G1 and G2 may be related to each other. The most important (equivalence)
relation between graphs is called graph isomorphism.

Definition 1.4.3: (Graph isomorphism). Let G1 = (V1, E1) and G2 = (V2, E2) be two (simple)
graphs. Then we call them isomorphic (G1 ≃ G2) if there exists a bijection π : V1 → V2 such
that

{p, q} ∈ E1 ⇔ {π(p),π(q)} ∈ E2 (1.57)

Obviously ≃ is an equivalence relation. Consequently the class of all graphs decomposes into
equivalence classes of pairwise isomorphic graphs. Such classes may be drawn as unlabeled graphs,
graphs without numbers associated to the vertices, that is. Therefore graph isomorphisms give
rise to a more abstract view towards graphs by extracting their pure structure. The equivalence
classes under graph isomorphisms are called abstract graphs.
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Definition 1.4.4: (Subgraph, Tree, Leaf, Spanning tree). Let G = (V,E) and H(W,F ) be
(simple or multi) graphs.

(i) H is called a subgraph of G (H ⊆ G) iff W ⊆ V and F ⊆ E.

(ii) G is called a tree iff it is simple, connected and has no cycles.

(iii) A vertex v ∈ V is called leaf iff it has only one adjacent edge e = {v, v′} ∈ E. Sometimes
we will call e leaf and v (v′) its outer (inner) vertex.

(iv) H is called a spanning tree of G iff H is a tree, V = W and F ⊆ E.

According to def. 1.4.4 a spanning tree of a graph G is a subgraph of the latter. Spanning
trees of a given graph may be constructed by deleting a set E′ ⊆ E of edges such that

1. there is no cycle C in G where C contains only edges in E \ E′.

2. E′ is minimal, i.e. if one removes an arbitrary edge from E′ the first condition is violated.

It is easy to see that spanning trees are not unique (even under graph isomorphisms). See fig. 1.8
for an illustration of the procedure explained above.

Figure 1.8 (Color online) : The graph on the left is an arbitrary simple graph which is not a tree since there are
several cycles. By deletion of edges supporting a cycle (illustrated in the remaining two graphs by dashed edges) a
spanning tree of the graph is generated. Such spanning trees are not unique (even under graph isomorphisms) as
the two different spanning trees indicate.

There are several ways of transforming a graph locally or globally. To this end let us introduce
the notation G − a = (V,E) − a := (V \ {a}, E \ {e ∈ E | a ∈ e}) to describe the deletion of a
vertex a ∈ V and its adjacent edges. Analogously we define the deletion of an edge e ∈ E via
G − e = (V,E) − e := (V,E \ {e}). These shortcuts may be generalized straightforwardly to the
subtraction of sets of vertices and edges. Furthermore one can define an additive structure on the
set of all graphs with the same vertex set V . This structure is given by modulo 2 addition of edges,
i.e. two graphs G = (V,E) and H = (V, F ) can be merged by G+H := (V,E△F ) where△ denotes
the symmetric difference of sets. Furthermore one defines the union G1 ∪G2 := (V1 ∪V2, E1 ∪E2)
and the intersection G1∩G2 := (V1∩V2, E1∩E2) of two graphs G1 = (V1, E1) and G2 = (V2, E2).

Definition 1.4.5: (Neighbourhood, Complete graph, Induced subgraph, Complemen-
tation). Let G = (V,E) be a (simple) graph, a ∈ V and U ⊆ V .

(i) Na := {p ∈ V | {p, a} ∈ E} ⊆ V is called the neighbourhood of vertex a.

(ii) The complete graph of an arbitrary vertex set U is denoted by ⟨U⟩ :=
(

U, [U ]2
)

.

(iii) G[U ] := (U, {e = {p, q} ∈ E | p, q ∈ U}) ⊆ G is called the induced subgraph over U in G.

(iv) G :=
(

V, [V ]2 \ E
)

= G+ ⟨V ⟩ is called the complement of G.

(v) τa(G) := G+ ⟨Na⟩ is called the local complement of G at vertex a.
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K3,3 K5

Figure 1.9 (Color online) : The two non-planar graphs used in Kuratowski’s theorem. K3,3 and K5 denote the
complete bipartite graph on six vertices and the complete graph on five vertices, respectively.

Particularly the local complementation of graphs will be important later on (see sec. 1.6). Local
complementation induces a second equivalence relation on the class of graphs with the same vertex
set V . According to this relation two graphs G1 and G2 are equivalent (G1 ∼LC G2) iff there exists

a finite sequence of local complementations τai
, (ai)

N
i=1 ⊆ V such that

∏N
i=1 τai

G1 = G2. The
distinction of different classes with respect to local complementation was investigated in [25,26].

The following definition allows one to speak of graphs with the same vertex set as vectors :

Definition 1.4.6: (Edge space). Let V be a set of vertices. Then E(V ) = P
(

[V ]2
)

(here P
denotes the power set) becomes a vector space over the Galois field F2 if one defines for all E,F ∈
E(V )

E + F := E△F and 0 · E := ∅ as well as 1 · E := E

where △ denotes the symmetric difference. Hence E(V ) = spanF2
[V ]2 is the free vector space

generated by the edges of the complete graph ⟨V ⟩. It is called edge space over V .

Two graphs G = (V,E) and H = (V, F ) may be identified with their edge sets as vectors
E,F ∈ E(V ), for the sake of simplicity we write G,H ∈ E(V ). Consequently the addition of graphs
defined previously translates into the addition of edge-vectors: G+H = (V,E + F ) = (V,E△F ).
From this point of view a local complementation τa, a ∈ V is a mapping τa : E(V )→ E(V ) from
the edge space into itself.

Let us now turn towards graph embeddings. A graph embedding is a representation of a graph
as a subset of a compact, connected 2-manifold. We are not going to define a graph embedding
formally since this is a rather technical issue and is not necessary for the physics described later on.
Just think of a graph embedding as a drawing of a graph on a 2-manifold (e.g. a torus) without
edges intersecting each other. Graphs that are embeddable into the plane are called planar graphs.
An important theorem providing information about the planarity of a given graph is the following:

Theorem 1.4.7: (Kuratowski’s theorem). Let G = (V,E) be an arbitrary finite graph. Then
G is planar iff it does not contain a subgraph G′ ⊆ G that is a subdivision of K3,3 or K5.

For a proof see ref. [24]. The two graphs mentioned by Theorem 1.4.7 are depicted in fig. 1.9.
K3,3 denotes the complete bipartite graph on 6 vertices whereas K5 denotes the complete graph
on 5 vertices. A subdivision of a given graph G can be obtained by cutting an edge and gluing
both ends together by inserting a new vertex at the cut.

One may ask, if every possible (finite simple or multi) graph can be embedded on an appropriate
surface. In fact, it is possible as one can easily deduce: Start with the sphere S2 and draw the
graph on its surface. If the graph is non-planar this is not possible without intersecting edges12.
Now add a handle to the sphere (hence increasing the genus of the surface) for every intersection
of edges that is not removable on the sphere. These handles act as “bridges” for the intersecting
edges since one of them can now be drawn above the other without intersecting it.

This construction leads to the following

12A graph is embeddable on the sphere S2 if and only if it is planar. To see this, just project the sphere onto the
plane by means of a stereographic projection.
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Definition 1.4.8: (Genus of a graph). Let G = (V,E) be a (simple or multi) graph. Then the
(oriented) genus g ≡ g[G] of the graph is defined as the minimal genus of all (oriented) surfaces
Σ such that G is embeddable on Σ.

That the genus of a graph is well defined (i.e. always exists) follows from the considerations
above that there is always an orientable surface a given graph is embeddable into.

The following notions of dual graphs and faces are only defined for embedded graphs and are
important for Toric Code Models and surface codes in general (see sec. 1.5):

Definition 1.4.9: (Faces, Dual graph). Let G = (V,E) be a (simple or multi) graph embedded
on a surface Σ.

(i) The set of faces defined by this embedding is denoted by PΣ(G) or simply P (G) if there is
no danger of confusion. A face or plaquette p ∈ PΣ(G) is identified with the set of edges on
its boundary. Thus we write e ∈ p for these edges.

(ii) The dual graph G∗ = (V ∗, E∗) is defined as follows: Set V ∗ := PΣ(G). Two dual vertices
v∗1 , v

∗
2 ∈ V ∗ are connected iff there is a common edge in G to v∗1 and v∗2 as faces. Formally

this reads
∀ v∗1 , v∗2 ∈ V ∗ : {v∗1 , v∗2} ∈ E∗ ⇔ ∃ e ∈ E : (e ∈ v∗1 ∧ e ∈ v∗2) (1.58)

Thus the vertices/edges/faces of G∗ correspond to the faces/edges/vertices of G.

In the case of Kitaev’s Toric Code G is substituted by L and called a lattice due to its spacial
periodicity whereas G∗ is known as L∗ and called the dual lattice.

In conclusion we mention an important relation between vertices, edges and faces of a graph
on one side and its genus on the other side:

Theorem 1.4.10: (Euler’s formula). Let G = (V,E) be a (simple or multi) graph of genus g
embedded on a surface Σ of genus g [Σ] = g. Then it holds

v + f − e = χ = 2− 2g (1.59)

where v, e and f denote the number of vertices, edges and faces, respectively. χ is called the Euler
characteristic of G.

The TCM and Euler’s formula Let us combine three theories we introduced so far: The
Toric Code Model, the stabilizer formalism and graph theory. As we will show Euler’s formula
gives rise to a simple proof of the degeneracy (or dimension) of a Toric Code ground state space
on arbitrary compact, orientable 2-manifolds. In section 1.3 we saw that the ground state space
PS of a Toric Code stabilizer S with lattice L embedded on the torus is fourfold degenerate. Now
let L be a sufficient fine13 lattice embedded into a surface of genus g. We may take the lattice
L as a graph embedded into the surface. However, in terms of a TCM vertices correspond to As

operators and faces can be identified with Bp operators. Not least every edge represents a spin in
our physical model. Therefore Euler’s formula reads

|V (L)|+ |P (L)|−N = 2− 2g (1.60)

if we consider a system of N spins. According to Proposition 1.2.2 it holds for the degeneracy
dimPS = 2N−d where d denotes the rank of the stabilizer, i.e. the number of independent
generators. Since

∏

s As = 1 =
∏

p Bp it follows d = |P (L)|+ |V (L)|− 2 = N − 2g. Finally

dimPS = 2N−(N−2g) = 22g = 4g (1.61)

This shows that the degeneracy of a Toric Code system described by the Hamiltonian HTCM only
depends on the topology of the surface and each “hole” leads to a pair of qubits that can be stored
in the ground state configuration. Furthermore the result obtained in subsec. 1.4.1 by means of
algebraic topology was verified.

13By “sufficient fine” we mean that L is not embeddable into a surface of lower genus.
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Chapter 1 Generalised Toric Code Models: Surface codes

1.5 Generalised Toric Code Models: Surface codes

Usually the Toric Code is defined on a square lattice embedded into a 1-torus. This is not necessary
since the topological properties (see sec. 1.4.1) are neither restrained to square lattices nor to
surfaces of genus 1. Hence one defines generalised Toric Code Models or surface codes [1, 27, 28]
as follows:

Definition 1.5.1: (Surface codes). Let G be a (multi) graph of genus g embedded into a surface
Σ of genus g [Σ] = g. V (G) denotes the set of vertices and PΣ(G) the set of faces defined by the
embedding on Σ. Define (generalised) star and plaquette operators

As :=
⊗

i∈s

σx
i and Bp :=

⊗

i∈p

σz
i (1.62)

for each vertex s ∈ V (G) and face p ∈ PΣ(G). Then S[G] := span {As, Bp}s∈V (G),p∈PΣ(G) is the
stabilizer of the surface code corresponding to G and Σ. Its degeneracy is dimPS = 4g in the
case of closed boundary conditions14 (see proof in subsec. 1.4.2).

All properties derived for the classic Toric Code Model in sec. 1.3 hold for surface codes as
well. Hence the algebra of operators on the code space (the state space of logical qubits) is given
by z- and x-type loop operators Zi and Xi for 1 ≤ i ≤ 2g with support on the graph G or its
dual G∗, respectively. The loops defining Zi and Xi operators are called non-trivial cycles and
cocycles. In the following (if not stated otherwise) we will use Toric Code systems in this broader
sense and call them simply (generalised) Toric Code Models.

Open boundary conditions Up to now the dimension of the protected subspace PS was
determined solely by the genus of the graph the system is based on and its embedding. In these
cases each spin is element of the support of exactly two star and plaquette operators (since every
edge of an embedded multi graph has exactly two adjacent vertices and faces). Hence it holds
∏

s As = 1 =
∏

p Bp. If one drops this restriction Toric Code systems with open boundaries can
be constructed. In ref. [28] a system with z- and x-type boundaries is considered. In the following
two systems with z-type boundaries are presented for explanatory purposes.

⊕p q

Z1

X1

⊗⊗

⊗

⊗

⊗⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊕

⊗

⊕ ⊕⊕

⊕

⊕

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗⊗

v1v2

v3 v4

Z2

Z3

Figure 1.10 (Color online) : Left picture: A TCM with two disjoint z-type boundaries (grey spins). The protected
space is 2-fold degenerate and the topological quantum number is measured by a z-type loop operator (green string)
winding once around the “hole”. Right picture: A system with 5 disjoint z-boundaries, thus encoding 4 logical
qubits vi, each identified with one of the “holes”.

14If there is no open boundary as described in [28] the relation
∏

s As = 1 =
∏

p Bp holds.
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Chapter 1 Generalised Toric Code Models: Surface codes

1. Consider the Toric Code system depicted in fig. 1.10 on the left-hand side. This system features
a “hole” where no plaquette operator Bp is available. Furthermore there are no plaquette
operators surrounding the lattice. Hence the dual lattice L∗ (light grey lattice) exhibits “open
ends” at the grey marked spins. These spins form two disjoint z-boundaries (one around the
hole and one around the whole system). However, there are no open ends attached to L (black
lattice), thus there is no x-type boundary. Therefore we find

∏

s As = 1 but
∏

p Bp ̸= 1. In
order to compute the dimension of PS let N be the width (and height) of the system in numbers
of plaquettes. Consequently there are 2N2 + 2N spins and N2 + 2N + 1 (dependent!) star
operators. Furthermore there areN2−1 (independent!) plaquette operators. Using Proposition

1.2.2 we find dimPS = 22N
2+2N−(N2+2N+1+N2−1−1) = 21 = 2. Thus one logical qubit may be

encoded in this system.

How this is done is illustrated in the picture. Imagine the x-type string operator X1 is applied
to the (unique) ground state |Ψ⟩ of the same system with a plaquette operator filling the hole
(which is of course also a ground state of the present system). Obviously X1 |Ψ⟩ is stabilized by
S defined by the depicted system since there is no plaquette operator which could “detect” the
m-type particles p and q attached to the endpoints of such a x-type string. Furthermore one
verifies easily that the string defining X1 may be deformed by applying star operators yielding
strings denoted by dashed blue lines, for instance. Thus such a x-type string is “pinned” at
z-type boundaries and may be “pulled” along the latter. While |Ψ⟩ denotes the state that
belongs to vtop = +1, X1 |Ψ⟩ is the second basis state with negative parity vtop = −1. Both
states are distinguished measuring the z-type loop operator Z1 winding once around the hole.
One finds Z1 |Ψ⟩ = |Ψ⟩ and Z1X1 |Ψ⟩ = − |Ψ⟩.
Note that the algebra generated by z-type loop operators and x-type string operators of the
considered kind demands a more general notion of homology15 on lattices than described in
subsec. 1.4.1.

2. The system on the right-hand side of fig. 1.10 extents the notion of “piercing holes” in the sys-
tem. Here 4 plaquette operators were deleted; thus the system features 5 disjoint z-boundaries
and no x-boundary. Since there is no relation regarding plaquette operators that could be
eliminated each new hole removes one stabilizer generator from S. Hence the protected space
of systems with m plaquette holes (and no plaquette surrounding the whole system) is 2m-fold
degenerate.

It is reasonable to identify each of the m logical qubits encoded in such systems with one of
the holes as illustrated in the figure. Then a topological quantum number vi equals +1 (−1)
if there is an even (odd) number of x-type strings attached to the corresponding z-boundary.
Thus vi is the eigenvalue of a z-type loop operator winding once around the corresponding hole.
E.g. Z2 returns the quantum number v2 (here v2 = +1) whereas Z3 returns the product v3v4
since it encloses two holes (here v3v4 = (+1)(−1) = −1). Finally note that a combination of
string operators acts trivially on PS if it forms a set of closed x-type loops together with the
z-boundaries. Thus the combination of x-type string operators defined by the continuous and
dashed blue lines equals 1, which shows that the continuous strings may be replaced by the
single dashed one.

The examples given above feature z-boundaries only. Generally there may be z- and x-boundaries
present in the same system increasing the degeneracy further. If there are at least two disjoint
boundaries of each type the existence of non-trivial x- and z-type string operators acting on the
protected space follows; thus the number of orthonormal ground states increases.

15Relative homology, see ref. [28] for further explanations.
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1.6 Graph states

Graph states are a special class of stabilizer states introduced by Hein et al. [2] that can be
described by simple graphs in terms of graph theory. Using graph states a variety of multi-
qubit states in the field of quantum error correction, one-way quantum computing and quantum
communication can be described not only in the framework of stabilizer codes but by means of
graph theory. As it has been shown several physical properties regarding graph states may be
derived in terms of structural properties of the corresponding graphs. Furthermore graph states
turned out to be universal standard form of stabilizer states16 since there is an LC-equivalent
graph state for every stabilizer state (see sec. 1.7 below).

There are two equivalent definitions for graph states. The first one defines them as the unique
state stabilized by a stabilizer group S[G] derived from a given simple graph G. The second
approach states an algorithm to construct graph states from scratch using G as “construction
plan”. Both definitions will be outlined in the following. For a detailed introduction and further
applications see ref. [8].

1.6.1 Definition

Definition 1.6.1: (Graph states, Construction). Let G be an arbitrary simple graph with
edges E(G) and vertices V (G). Consider a system of N = |G| qubits (each identified with a vertex
v ∈ V (G)) and the special phase gate

Uab := Pz,+
a ⊗ 1b + Pz,−

a ⊗ σz
b (1.63)

where Pz,±
v := 1

2 [1v ± σz
v ] are the common projectors onto {|0⟩ , |1⟩} operating on qubit v. Then

the state vector
|G⟩ :=

∏

{a,b}∈E(G)

Uab |+⟩V (G) ∈ HN (1.64)

is the graph state described by G. Here the notation |+⟩V (G) :=
⊗

v∈V (G) |+⟩v is used.

It is easy to show that U2
ab = 1 and U †

ab = Uab, thus applying Uab adds an “edge” between
vertices a and b modulo 2. Definition 1.6.1 is useful to construct graph states from scratch
(see Example 1). However, to keep track of graph states transformed under Clifford operations
a description in terms of stabilizers is advantageous as stated by the Gottesman-Knill theorem
1.2.3. Hence the following (alternative) definition of graph states, which can be shown [8] to be
equivalent to def. 1.6.1:

Definition 1.6.2: (Graph states, Stabilizer). Under the same conditions as stated in Lemma
1.6.1 define the following (independent) operators

K(v)
G := σx

v

∏

w∈Nv

σz
w ∈ GN (1.65)

Let G =
{

K(v)
G

}

v∈V (G)
. Then we call S = spanG the graph state stabilizer derived from G. It

is rankS = |G| = N and by Proposition 1.2.2 it follows dimPS = 1. The unique state |G⟩, such
that PS = span {|G⟩}, is called the graph state described by G.

The following example illustrates both definitions:

16Therefore some authors call stabilizer states (also known as additive quantum codes) graph states.
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Example 1: (Graph states). Consider the 3-vertex star graph G depicted in fig. 1.11.

By def. 1.6.1 we obtain the corresponding graph state

|G⟩ = U23U12 |+⟩3 |+⟩2 |+⟩1 ≡ U23U12 |+++⟩ ∈ H3

=
1√
2
U23 [|++ 0⟩+ |+− 1⟩]

=
1√
4
[|+00⟩+ |−10⟩+ |+01⟩ − |−11⟩]

=
1√
2
[|+0+⟩+ |−1−⟩] = H1H3 |GHZ3⟩

12

3

Figure 1.11 (Color online) : A
simple star graph with 3 vertices.

Here Hv denotes a Hadamard gate operating on qubit v. It can be shown that any star graph
represents a GHZ state up to some Hadamard transformations. The stabilizer generators derived
from G are G = {σx

1σ
z
2 ,σ

x
2σ

z
1σ

z
3 ,σ

x
3σ

z
2}. Clearly g |G⟩ = |G⟩ for all g ∈ G, thus S |G⟩ = |G⟩.

The intense study of graph states during the last years is justified by their simple description.
Several properties and transformations may be expressed in purely graph theoretic terms. For
instance, it was shown [2] that for special states the Schmidt measure, an entanglement mea-
sure [29] used for multipartite entanglement, can be computed from geometric properties of the
underlying graphs. It was furthermore shown that local Pauli measurements17 can be expressed
as transformations of the corresponding graphs up to local unitaries.

One of the most interesting facts about graph states is the link between local Clifford opera-
tions and the corresponding transformations of their graphs. The so called LC-rule will be used
throughout this thesis and is explained in detail in subsec. 1.6.2 below.

1.6.2 Local Clifford operations

Let |G⟩ and |G′⟩ denote two graph states of N qubits. We call them equivalent under local Clifford
operations (LC-equivalent) iff there exists C ∈ Cl

N such that

|G⟩ = C |G′⟩ (1.66)

and write |G⟩ ∼LC |G′⟩. Note: Whereas the class of stabilizer states is closed under local Clifford
transformations18 this is not true for graph states in general. As stated in [2, 5, 8] the following
proposition, known as LC-rule, can be used for the description of local Clifford equivalent graph
states:

Proposition 1.6.3: (LC-rule). Let |G⟩ and |G′⟩ be two graph states with corresponding graphs
G = (E, V ) and G′ = (E′, V ). Then it holds

|G⟩ ∼LC |G′⟩ ⇔ ∃ τ ∈ T : G = τG′ ⇔ G ∼LC G′ (1.67)

where T := span {τa : E(V ) → E(V ) | a ∈ V } denotes the group of all local complementations τ
acting on the edge space E(V ). In short: Two graph states are LC-equivalent if and only if their
graphs are connected by a sequence of local complementations.

For a proof see ref. [5]. The LC-rule will be used frequently in the following chapters and
should be kept in mind.

The reader may notice that a fortunate coincidence leads to the same abbreviations for graph
states equivalent under Local Clifford operations (|G⟩ ∼LC |G′⟩) and their graphs equivalent
under Local Complementations (G ∼LC G′). Hence the meaning of “LC-equivalent” depends
on the context. However, since in most cases the graph G and its graph state |G⟩ are identified
these different meanings merge and “LC-equivalent” conveys both notions.

The following example illustrates the statement of Proposition 1.6.3:

17Projective measurements described by Px,±
v , Py,±

v and Pz,±
v .

18More generally stabilizer states are mapped onto stabilizer states under Clifford operations CN .
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Chapter 1 Local unitary equivalence

Example 2: (LC-rule). Consider the graph G depicted in fig. 1.12 on the left. The remaining
three graphs represent LC-equivalent graph states since they are related by local complementa-
tions. Here the sequence τ2τ6τ1 was applied in order to obtain the graph on the right-hand side.

1

6

25

3

4 1

6

25

3

4 1

6

25

3

4 1

6

25

3

4

Figure 1.12 (Color online) : Successive application of the LC-rule. Starting on the left-hand side applying τv at
the red marked vertex yields the next graph. This example will be used in subsec. 3.2.1.

1.7 Local unitary equivalence

The notion of equivalence under certain local operations is generalised by the following

Definition 1.7.1: (LU- and LC-equivalence). Let |Ψ⟩ and |Ψ′⟩ be two arbitrary stabilizer
states of N qubits. Then we call them

(i) equivalent under local unitary operations (LU-equivalent) iff there exists U ∈ U(2)⊗N such
that |Ψ⟩ = U |Ψ′⟩. Write |Ψ⟩ ∼LU |Ψ′⟩.

(ii) equivalent under local Clifford operations (LC-equivalent) iff there exists C ∈ Cl
N such that

|Ψ⟩ = C |Ψ′⟩. Write |Ψ⟩ ∼LC |Ψ′⟩.

Since LC-operations are local unitaries, Cl
N < U(2)⊗N , it follows immediately that LC-

equivalent states are LU-equivalent as well. For Cl
N ̸= U(2)⊗N the converse cannot be true in

general. However, due to the lack of counterexamples it was conjectured [30] that for stabilizer
states LU- and LC-equivalence coincide. This statement, denoted by LU ⇔ LC, was called the
LU-LC-conjecture. If it holds the impact on the description of stabilizer states and their properties
would be formidable. The reason is given by the following proposition:

Proposition 1.7.2: (Stabilizer and graph states). Let |Ψ⟩ be an arbitrary stabilizer state
of N qubits. Then there exists a graph state |G⟩ and a local Clifford operation C ∈ Cl

N such that
|Ψ⟩ = C |G⟩. Hence graph states are universal standard forms of stabilizer states.

A proof is given in [5] or more generally in [31]. Combining the LU-LC-conjecture and Propo-
sition 1.7.2 one finds: First, if LU ⇔ LC (especially LU ⇒ LC) holds for graph states it holds
for arbitrary stabilizer states as well. Secondly, to check whether two given stabilizer states are
LU-equivalent becomes efficiently computable since it is sufficient to probe whether the graphs of
their LC-equivalent graph states are related by a sequence of local complementations.

Although it was shown that LU ⇔ LC holds for a large class of stabilizer states [32, 33] the
LU-LC-conjecture was disproved by Ji et al. [34] in 2009. Hence in general one cannot classify
stabilizer states with respect to local unitaries by means of Proposition 1.6.3. Nevertheless it was
shown in ref. [2] that LU ⇔ LC holds for graph states with up to 7 qubits. Furthermore it is
believed [34] (but not proved) that the counterexample used in ref. [34] is the smallest (N = 27)
one possible.

Recently the class of stabilizer states for which the LU-LC-conjecture holds was enlarged [27],
including a large class of Toric Code Models. However, since most Toric Code systems considered
later on do not belong to this class, only LC-classes will be considered if N > 7. Since all systems
subject to this thesis have less than 27 spins it is strongly believed that all propositions stated for
LC-operations hold for LU-operations as well.
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Chapter 2

Ground states for generalised
Toric Code Models

2.1 Objective and overview

The primary purpose of this chapter is to investigate how the topology of a graph L affects the
structure of the Toric Code ground states stabilized by S[L]. Thus our main objective is the
analysis of small spin settings ruled by the Toric Code Hamiltonian

HTCM = −
∑

s∈V (L)

As −
∑

p∈P (L)

Bp (2.1)

where L is an arbitrary (multi) graph with faces P (L) defined by a given embedding on a compact
2-manifold or by definition (see sec. 1.5). The ground states of this Hamiltonian form a basis of
the subspace PS which is invariant under S[L].

Since our ultimate goal is the analysis of small spin systems under the regime of a Toric Code
stabilizer (see chapters 3 and 4), it might be useful to understand the transformation rules of
special ground state vectors. With “special” we mean the basis vectors of the protected subspace
that simultaneously diagonalize the closed z-type loop operators Zi. Therefore the topological
quantum numbers defined by their eigenvalues are good quantum numbers distinguishing the
orthonormal ground states.

The transformations we want to analyze concern certain manipulations of the stabilizer topol-
ogy. These elementary transformations are sufficient to construct arbitrary stabilizer structures
including the classic Toric Code defined on a square lattice embedded into the torus. In particular
the following elementary transformations are examined:

• Adding an edge at an arbitrary vertex of a given stabilizer:

| ⟩ → | ⟩

• Connecting two stabilizers via additional edges or a common vertex:

| ⟩ , | ⟩ → | ⟩ , | ⟩

• Creating a new loop with and without a plaquette:
∣

∣

〉

→
∣

∣

〉

, | ⟩ respectively
∣

∣

〉

→
∣

∣

〉

, | ⟩

• Adding a plaquette
| ⟩ → | ⟩

Obviously the ground state of a given stabilizer cannot determine the ground state after the
transformation uniquely, if this transformation creates new homologously non-trivial paths.
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2.2 Constructing TCM ground states

Adding an edge Consider the simplest case, extending a given stabilizer by attaching a new
edge with a new As stabilizer generator at its end to an arbitrary vertex, that is.

To motivate the lemma stated below consider the (unique) ground state | ⟩ without any
plaquette operators. One finds

| ⟩ = 1√
4
[|00⟩+ |01⟩+ |10⟩+ |11⟩]

Now calculate the ground state | ⟩ of the stabilizer S ′ obtained by adding an edge to the end
of the string. An easy calculation yields

| ⟩ =
1√
8
[|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩]

=
1√
4
[|00⟩+ |01⟩+ |10⟩+ |11⟩]⊗ 1√

2
[|0⟩+ |1⟩]

and consequently
| ⟩ = | ⟩ ⊗ | ⟩

where | ⟩ = |+⟩ as defined below. This observation holds true for arbitrary TCM ground states
extended by a single edge (or spin) as the following lemma states:

Lemma 2.2.1. Let | ⟩ be a ground state of an arbitrary TCM stabilizer S and let

| ⟩ := |+⟩ = 1√
2
[|0⟩+ |1⟩] (2.2)

be the TCM ground state of a single spin on a 2-vertex graph. Then the ground state | ⟩ of a
new stabilizer S ′ where a single edge is added at an arbitrary vertex q is given by

| ⟩ = | ⟩ ⊗ | ⟩ (2.3)

and the degeneracy of the new protected subspace is γS′ = γS where γS ≡ dimPS.

Proof. It is straightforward to show that γS′ = γS since this transformation adds both one new
spin and one new stabilizer generator (the As operator at the end of the string) therefore leaving
the degeneracy unchanged. Now let

| ⟩ = | ⟩ ⊗ | ⟩

Since no new Bp is added all generators B′
p act solely on the state | ⟩. Consequently B′

p | ⟩ =
| ⟩ ∀B′

p∈S′ . Obviously A′
s | ⟩ = | ⟩ for all A′

s = As ⊗ 1 ∈ S ′ acting trivially or A′
s =

1 ⊗ σx ∈ S ′ solely on the new spin since σx | ⟩ = | ⟩. The only critical star operator A′
q sits

at vertex q where the new edge was attached. This operator can be written as tensor product
A′

q = Aq ⊗ σx and consequently A′
q | ⟩ = | ⟩. z-type loop operators are diagonal over | ⟩

by assumption and therefore over | ⟩ since there is no closed string operator on the edges of L′

acting non-trivially on the attached spin. !

Connecting two stabilizers An interesting question might be how to connect two given sta-
bilizers (more precisely: their corresponding graphs) by a common vertex or a string of arbitrary
length and how the new ground states can be derived from the old ones.

To get a notion of this procedure let
∣

∣

〉

be the (unique) ground state of a triangle with a
plaquette filling its face and let

∣

∣

〉

−
denote one of the two ground states of the same triangle
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without this plaquette (therefore we may choose −1 for the product of spins surrounding the
triangle). One computes

∣

∣

〉

=
1√
4
[|000⟩+ |011⟩+ |101⟩+ |110⟩]

∣

∣

〉

−
=

1√
4
[|001⟩+ |010⟩+ |100⟩+ |111⟩]

Let these two triangles share a common edge and compute the ground state
∣

∣

〉

−
with spin

product −1 around the open loop. This computation yields

∣

∣

〉

−
=

1√
16

[|001000⟩+ |001011⟩+ |001101⟩+ |001110⟩+ |010000⟩+ |010011⟩+

|010101⟩+ |010110⟩+ |100000⟩+ |100011⟩+ |100101⟩+ |100110⟩+
|111000⟩+ |111011⟩+ |111101⟩+ |111110⟩]

Obviously it holds
∣

∣

〉

−
=

∣

∣

〉

−
⊗
∣

∣

〉

and if
∣

∣

〉

+
is considered instead of

∣

∣

〉

−
it follows

∣

∣

〉

+
=

∣

∣

〉

+
⊗

∣

∣

〉

by flipping one of
the spins around the open loop.

This simple example leads to the conjecture that the ground states of the one-vertex connection
of two Toric Code systems are given by the tensor product of the original ground states.

Lemma 2.2.2. Let | ⟩ and | ⟩ be two TCM ground states stabilized by S1 and S2. Then the
one-vertex connection at vertices q1 and q2 has an uniquely defined ground state | ⟩ given by

| ⟩ = | ⟩ ⊗ | ⟩ (2.4)

Alternatively one may connect the two systems by means of a N -edge string. In this case for the
new ground state it follows

| ⟩ = | ⟩ ⊗ | ⟩⊗N ⊗ | ⟩ (2.5)

where | ⟩⊗N =
⊗N

i=1 |+⟩i denotes the ground state of a N -spin string. The new degeneracy is
γS′ = γS1

· γS1
.

Proof. That γS′ = γS1
· γS1

can be seen easily by straightforward calculation

γS′ = 2e
′−(v′+f ′−c′)

= 2(e1+e2+N)−((v1+v2+N−1)+(f1+f2)−(c1+c2−1))

= 2e1−(v1+f1−c1) · 2e2−(v2+f2−c2)

= γS1
· γS1

where e, v and f denote the numbers of edges, vertices and faces. c is the number of constraints
for star and plaquette operators. Since the newly added edge does not interfere with possible
constraints for Bp operators it may only change constraints regarding As operators. Since both
stabilizers S1,2 featured such a constraint there is a loss of one constraint due to the As-link
between the two stabilizers.

Let now
| ⟩ = | ⟩ ⊗ | ⟩⊗N ⊗ | ⟩ and | ⟩ = | ⟩ ⊗ | ⟩

Since no new Bp is added all generators B′
p act solely on one of the two states | ⟩ or | ⟩

and consequently B′
p | ⟩ = | ⟩ ∀B′

p∈S′ . An analogue argument shows that A′
s | ⟩ =

| ⟩ ∀A′
s=As1

⊗1, A′
s=1⊗As2

∈S′ . That the As operators acting on changed or added vertices (Aq1

and Aq2) act trivially on | ⟩ can be understood by the same argument as presented in the
proof of Lemma 2.2.1. Let Z [C] be a z-type loop operator with closed path C on L′. If Z [C] acts
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Chapter 2 Constructing TCM ground states

trivially on one of the two components | ⟩ or | ⟩ it follows immediately Z [C] | ⟩ = ± | ⟩
due to assumption. If C crosses the new established link between the two components this occurs
an even number of times since this link is the only one. Therefore C decomposes into two closed
paths C1 and C2 each on one of the two spin systems. Hence

Z [C] | ⟩ = Z [C1] | ⟩ ⊗ | ⟩⊗N ⊗ Z [C2] | ⟩ = ± | ⟩

!

Remark 2.2.3. Obviously Lemma 2.2.1 can be derived from Lemma 2.2.2 as a special case.

Creating a loop After these rather technical investigations consider the more interesting case
where a new loop is created by reconnecting a stabilizer by means of a string to itself thus creating
a new loop in the corresponding graph. As before we start with a simple example to establish the
notion of the general statement following.

Let | ⟩ be the unique ground state of two spins on a string (as used above)

| ⟩ = 1√
4
[|00⟩+ |01⟩+ |10⟩+ |11⟩]

Add a spin to the system as an edge of a new stabilizer S ′ connecting the first with the last vertex
of the string, hence creating a loop (here: a triangle). We already know the two possible ground
states of the new stabilizer

∣

∣

〉

+
=

1√
4
[|000⟩+ |011⟩+ |101⟩+ |110⟩]

∣

∣

〉

−
=

1√
4
[|001⟩+ |010⟩+ |100⟩+ |111⟩]

These ground states may be rewritten

∣

∣

〉

+
=

1√
4
[(|00⟩+ |11⟩)⊗ |0⟩+ (|01⟩+ |10⟩)⊗ |1⟩] = 1√

2

[
∣

∣Φ+
〉

o
⊗ |0⟩n +

∣

∣Ψ+
〉

o
⊗ |1⟩n

]

∣

∣

〉

−
=

1√
4
[(|01⟩+ |10⟩)⊗ |0⟩+ (|00⟩+ |11⟩)⊗ |1⟩] = 1√

2

[
∣

∣Ψ+
〉

o
⊗ |0⟩n +

∣

∣Φ+
〉

o
⊗ |1⟩n

]

and we find that entanglement between the new spin (n) and the old system (o) occurs. Here
|Ψ±⟩ and |Φ±⟩ denote the Bell states. This observation gives rise to the following

Assumption 2.2.4. Multipartite entanglement in TCM ground states is an inherent consequence
of cycles in the corresponding graph.

Indeed, by Lemma 2.2.1 it follows that every stabilizer without any cycle is an unentangled
product state of spins since its corresponding graph is a tree in terms of graph theory and therefore
may be constructed exclusively by concatenating edges without forming loops. In case of our
current example this reads

| ⟩ = | ⟩ ⊗ | ⟩ = |+⟩⊗2

In contrast
∣

∣

〉

±
shows real multipartite entanglement as one computes easily in the Bell basis

{|Φ±⟩ , |Ψ±⟩}

ρi = TrE(L)\i

[

∣

∣

〉 〈
∣

∣

±

]

=
1

2
[|0⟩ ⟨0|i + |1⟩ ⟨1|i] =

1

2

(

1 0
0 1

)

i

for an arbitrary spin i. Hence Tr
[

ρ2i
]

= 1
2 < 1. Here TrA [·] denotes the partial trace with respect

to A.
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Let us return to the new ground states and how they can be constructed from previous ones.
Note that they can be rewritten as follows

∣

∣

〉

±
=

1

2
(1± σz

1 ⊗ σz
2) | ⟩1,2 ⊗ |0⟩3 +

1

2
(1∓ σz

1 ⊗ σz
2) | ⟩1,2 ⊗ |1⟩3

= P± [Cpq] | ⟩1,2 ⊗ |0⟩3 + P∓ [Cpq] | ⟩1,2 ⊗ |1⟩3

where P± [Cpq] = 1
2

[

1±
⊗

i∈Cpq
σz
i

]

denotes the projector onto the ±-eigenstates of a z-type

string operator starting at the left vertex p of our 2-spin string and ending at the right one q. In
fact, this rule holds true for arbitrary TCM stabilizers as stated by the following

Lemma 2.2.5. Let
∣

∣

〉

be a TCM stabilizer ground state with vertices p and q (denoted by circles).
Let furthermore

P± [Cpq] :=
1

2
(1± Z [Cpq]) (2.6)

be the projectors onto the eigenstates of string operators

Z [Cpq] =
⊗

i∈Cpq

σz
i (2.7)

with path Cpq on L with endpoints p and q. Consider the stabilizer S ′ that corresponds to the graph
obtained by connecting p and q by means of a single edge (thus adding one new spin). Then there
are two orthogonal ground states

∣

∣

〉

±
of the new stabilizer S ′ given by19

∣

∣

〉

±
= P± [Cpq]

∣

∣

〉

⊗ |0⟩+ P∓ [Cpq]
∣

∣

〉

⊗ |1⟩ (2.8)

and the degeneracy doubles γS′ = 2γS .

Proof. That γS′ = 2γS follows since one spin but no additional stabilizer generator is added, there-
fore γS′ = 2e+1−(v+f−c) = 2γS . Now consider the new stabilizer S ′. Obviously

[

P± [Cpq] , B′
p

]

= 0
for all p ∈ P (L′). Since the new spin is not affected by any plaquette operator B′

p it follows immedi-

ately B′
p

∣

∣

〉

±
=

∣

∣

〉

±
. The same argument holds for all A′

s where s /∈ {p, q} since [A′
s, Z [Cpq]] = 0.

If s ∈ {p, q} it holds {A′
s, Z [Cpq]} = 0 and it follows

A′
s

∣

∣

〉

±
= A′

sP± [Cpq]
∣

∣

〉

⊗ |0⟩+A′
sP∓ [Cpq]

∣

∣

〉

⊗ |1⟩

= P∓ [Cpq]A′
s

∣

∣

〉

⊗ |0⟩+ P± [Cpq]A′
s

∣

∣

〉

⊗ |1⟩
= P∓ [Cpq]

∣

∣

〉

⊗ |1⟩+ P± [Cpq]
∣

∣

〉

⊗ |0⟩
=

∣

∣

〉

±

Here we used A′
sP± [Cpq] = P∓ [Cpq]A′

s for s ∈ {p, q}.
Consider the closed path C and its corresponding z-type string operator Z [C]. Obviously

Z [C]
∣

∣

〉

±
= cC

∣

∣

〉

±
if Z [C] acts trivially on the new spin and cC ∈ {1,−1} denotes the eigenvalue

with respect to
∣

∣

〉

. Let C∗ be a closed path on L′ with support on the newly added edge. The
paths under consideration can be decomposed as follows

C∗ + Cpq = C∗
pq + C′ ⇒ C∗ = C∗

pq + C′ + Cpq

Here addition is taken modulo 2 and up to homology as explained in subsec. 1.4.1 (see fig. 2.1).
C∗
pq denotes a closed path running through vertices p and q but acting trivially on the new spin

(green path in fig. 2.1) and C′ denotes the 1-edge path from p to q on the new spin.

19Up to a normalizing constant.
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Hence it follows

Z [C∗]
∣

∣

〉

±
= Z

[

C∗
pq

]

Z [C′]Z [Cpq]
∣

∣

〉

±

= Z
[

C∗
pq

]

Z [Cpq]P± [Cpq]
∣

∣

〉

⊗ σz |0⟩+ Z
[

C∗
pq

]

Z [Cpq]P∓ [Cpq]
∣

∣

〉

⊗ σz |1⟩
= ±P± [Cpq]Z

[

C∗
pq

]
∣

∣

〉

⊗ |0⟩± P∓ [Cpq]Z
[

C∗
pq

]
∣

∣

〉

⊗ |1⟩
= ±cC∗

pq

{

P± [Cpq]
∣

∣

〉

⊗ |0⟩+ P∓ [Cpq]
∣

∣

〉

⊗ |1⟩
}

= ±cC∗
pq

∣

∣

〉

±

Where cC∗
pq
∈ {1,−1} denotes the eigenvalue of Z

[

C∗
pq

]

with respect to
∣

∣

〉

. This completes the
proof. !

⊗

C∗

Cpq
C∗
p,q

C′

p

q

Figure 2.1 (Color online) : Adding paths as used in the proof of Lemma 2.2.5.

The calculation rules given by eq. (2.8) (or (2.11a), see below) are stated in a form that one
grasps the transformation by intuition. For actual computations they may be simplified:

Remark 2.2.6. Rewriting equation (2.8) or (2.11a) yields

∣

∣

〉

±
=

1√
2

[
∣

∣

〉

⊗ |+⟩± Z [Cpq]
∣

∣

〉

⊗ |−⟩
]

(2.9)

In fact, Lemma 2.2.5 is generalised to and subsequently derived from the following statement
in combination with Lemma 2.2.1:

Lemma 2.2.7. Let
∣

∣

〉

, p, q and Cpq be defined as in Lemma 2.2.5. Consider the stabilizer S ′ that
corresponds to the graph obtained by connecting p and q directly. Then there are two orthogonal
ground states | ⟩± of the new stabilizer S ′ given by20

| ⟩± =
√
2 · P± [Cpq]

∣

∣

〉

(2.10)

and the degeneracy doubles γS′ = 2γS .

20Up to a normalizing constant.

40



Chapter 2 Constructing TCM ground states

Proof. That γS′ = 2γS follows from the removal of one independent star operator by merging the
two operators Ap and Aq. One obtains A′

s = Ap ⊗Aq for the new star operator. It follows

A′
s | ⟩± =

√
2 ·A′

sP± [Cpq]
∣

∣

〉

=
√
2 ·ApAqP± [Cpq]

∣

∣

〉

=
√
2 ·ApP∓ [Cpq]Aq

∣

∣

〉

=
√
2 · P± [Cpq]ApAq

∣

∣

〉

=
√
2 · P± [Cpq]

∣

∣

〉

= | ⟩±

Let C be a path homologous to Cpq which is a closed path in the new system surrounding the
created hole. Then it follows by definition of P± [Cpq] that Z [C] | ⟩± = ± | ⟩±. !

As mentioned above one can now derive eq. (2.8) using Lemma 2.2.1,
∣

∣

〉

⊗ | ⟩ =
∣

∣

〉

, that
is. One obtains

∣

∣

〉

±

2.2.7
=

√
2 · P± [Cpq + C′]

∣

∣

〉

2.2.1
=

√
2 · P± [Cpq + C′]

∣

∣

〉

⊗ | ⟩

=
1√
2
[1± Z [Cpq]Z [C′]]

∣

∣

〉

⊗ | ⟩

=
1√
2

[
∣

∣

〉

⊗ |+⟩± Z [Cpq]
∣

∣

〉

⊗ |−⟩
]

2.2.6
= P± [Cpq]

∣

∣

〉

⊗ |0⟩+ P∓ [Cpq]
∣

∣

〉

⊗ |1⟩

Here Z [C′] | ⟩ = σz |+⟩ = |−⟩ was used.

Adding a plaquette Up to now we changed the stabilizer by adding various As operators
without changing the subgroup generated by {Bp}p∈P (L). We saw in Lemma 2.2.5 that loops are
the source of degeneracy and multipartite entanglement. What happens, if a new loop is created
and a plaquette bounded by the new edge and Cpq is added simultaneously? Consider our example
from above: The triangle. We found

∣

∣

〉

+
=

1√
4
[|000⟩+ |011⟩+ |101⟩+ |110⟩]

∣

∣

〉

−
=

1√
4
[|001⟩+ |010⟩+ |100⟩+ |111⟩]

for the two possible ground states without constraints imposed by a plaquette. On the other hand
the only allowed ground state of a filled triangle is

∣

∣

〉

=
1√
4
[|000⟩+ |011⟩+ |101⟩+ |110⟩]

Note that an additional plaquette does not change the ground states that where allowed without
it but “chooses” the ones with topological quantum number +1 around the loop (the eigenvalue
of Z [C] where C winds once around the hole).

Hence
∣

∣

〉

=
∣

∣

〉

+

This leads to the following
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Chapter 2 Ground states for small Toric Code systems

Lemma 2.2.8. Let all conditions be the same as in Lemma 2.2.5 or 2.2.7 with the only difference
that a new plaquette is added simultaneously (bounded by the new edge and Cpq or Cpq alone,
respectively). Then there is only one new ground state

∣

∣

〉

,| ⟩, given by

∣

∣

〉

= P+ [Cpq]
∣

∣

〉

⊗ |0⟩+ P− [Cpq]
∣

∣

〉

⊗ |1⟩ (2.11a)

| ⟩ =
√
2 · P+ [Cpq]

∣

∣

〉

(2.11b)

and the degeneracy is left unchanged γS′ = γS .

Proof. That
∣

∣

〉

is the new ground state satisfying all conditions follows immediately from
Lemma 2.2.5. Especially

B′
p

∣

∣

〉

= Z [Cpq + C′]
∣

∣

〉

+
= Z [Cpq]Z [C′]

∣

∣

〉

+
= +cC∗

pq

∣

∣

〉

+
=

∣

∣

〉

Where B′
p denotes the added plaquette operator and cC∗

pq
= c0 = +1 since C∗

pq = 0 in the first

homology group21. That γS′ = γS follows since one spin and one stabilizer generator (B′
p) are

added and there is no change in conditions reducing the number of generators. The proof for | ⟩
reads similarly and is left as an exercise to the reader. !

Remark 2.2.9. It follows immediately from 2.2.1, 2.2.5 and 2.2.8 that

∣

∣

〉

⊗ | ⟩ =
∣

∣

〉

=
∣

∣

〉

=
1√
2

[

∣

∣

〉

+
+

∣

∣

〉

−

]

and
∣

∣

〉

=
∣

∣

〉

+
(2.12)

Finally we need a transformation rule for a given ground state basis {|GSi⟩}γS

i=1 if a plaquette
Bnew with arbitrary boundary C is added as a generator to S. Obviously Bnew = Z [C] by
definition. This gives rise to the following statement:

Lemma 2.2.10. Let GS = {|GSi⟩}γS

i=1 be the ONB of the protected subspace PS ≤ HN defined
by the stabilizer S with degeneracy γS . Define a new stabilizer S ′ = span {S ∪ {Bnew}} where
Bnew = Z [C] /∈ S is a new plaquette operator. Then

GS ′ = P+ [C]GS \ {0} (2.13)

where P+ [C]GS := {P+ [C] |GS⟩ | |GS⟩ ∈ GS} and the new degeneracy is γS′ = γS

2 .

Proof. Note that by assumption P± [C∗] is diagonal over GS for all closed paths C∗ on L (with
possible eigenvalues 0 and 1). Obviously GS ′ is an ONS. Furthermore S |GS′⟩ = |GS′⟩ for all
|GS′⟩ ∈ GS ′. That Bnew |GS′⟩ = |GS′⟩ follows by construction and Z [C∗] |GS′⟩ = ± |GS′⟩ for
all closed paths C∗ by definition of GS. Hence spanGS ′ ≤ PS ′. If |GS′⟩ ∈ PS ′ it follows
|GS′⟩ =

∑γS

i=1 αi |GSi⟩ for some αi ∈ C since PS ′ ≤ PS. It holds |GS′⟩ = P+ [C] |GS′⟩ =
∑γS

i=1 αiP+ [C] |GSi⟩ =
∑γS′

i=1 α
′
i |GS′i⟩ ∈ spanGS ′. This shows that spanGS ′ ≥ PS ′ and therefore

spanGS ′ = PS ′. That γS′ = γS

2 follows since no new relation between plaquette operators is
established due to the Bnew operator. !

Applications of the developed calculus are given in section 2.3 below.

2.3 Ground states for small Toric Code systems

Several examples of small Toric Code systems and their corresponding ground states are given in
Table 2.1 (see column Setting and GS). Much more systems are listed in Tables A.2, A.3 and
A.4 printed in appendix A. Further explanations regarding the other columns are given there.

21See proof of Lemma 2.2.5. Here it is C∗ = C′ + Cpq and consequently C∗
pq = 0.
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No. N Setting γ AE NL GS N−1 |GSi⟩, 1 ≤ i ≤ γ LU/S Comment
1 1 20 no no |+⟩ single qubit

2 2 20 no no |+⟩ |+⟩ biseparable

3 2 21 no no |Φ+⟩,|Ψ+⟩ Bell states

4 2 20 (yes) no |Φ+⟩ Bell state

5 3 22 no no |Ψ+⟩ |+⟩± |Ψ−⟩ |−⟩,
|Φ+⟩ |+⟩± |Φ−⟩ |−⟩

6 3 21 (yes) no |Φ+⟩ |+⟩± |Φ−⟩ |−⟩
7 3 20 (yes) no |Φ+⟩ |+⟩+ |Φ−⟩ |−⟩ GHZ state

8 3 21 no no |+⟩⊗3 ± |−⟩⊗3

9 3 20 yes no |+⟩⊗3 + |−⟩⊗3

Table 2.1 (Color online) : TCM spin systems with 1 ≤ N ≤ 3 spins. γ is the degeneracy, AE states if Anyonic
Excitations are possible and NL if Non Local measurements are necessary to determine topological quantum
numbers vtop. The column GS lists the Ground States up to a normalizing constant N . LU/S denotes the
equivalence class with respect to Local Unitaries and qubit Swap operations in a graph state representation.

Example 3: (GHZ states). Consider a single TCM plaquette with N spins (for N = 3 see
system 9 in Table 2.1). The corresponding ground state is a GHZ state in the σx basis. To see
this, one applies Lemma 2.2.2 and Remark 2.2.6 in the following way:

Since adding a single string leads to product states

| ⟩ = | ⟩ ⊗ | ⟩

a N − 1-qubit string has the (unique) TCM stabilizer state | ⟩⊗N−1 = |+⟩⊗N−1. Closing the
string with the Nth edge yields the ground state

∣

∣

〉

=
1√
2

[
∣

∣

〉

⊗ |+⟩+ Z [Cpq]
∣

∣

〉

⊗ |−⟩
]

=
1√
2

[

|+⟩⊗N−1 ⊗ |+⟩+ Z [Cpq] |+⟩⊗N−1 ⊗ |−⟩
]

=
1√
2

[

|+⟩⊗N + |−⟩⊗N
]

where Cpq runs over all N − 1 qubits. Applying Hadamard gates to each qubit yields |GHZN ⟩ in
the computational σz basis.

Example 4: (Multiple ground states). Here we show how the (two) ground states of system
33 (depicted in Table A.3, appendix A) may be derived from known ground states of smaller
systems. First note that system 33 is obtained from system 18 (Table A.2) connecting the outer
vertices by a new edge. Again, system 18 may be derived from two copies of system 4 (Table A.1 or
2.1). It is easy to see that system 4 stabilizes a (unique) Bell state |Φ+⟩. Hence from Lemma 2.2.2
it follows for the ground state of system 18: |Φ+⟩ |Φ+⟩. Note that σz

1 |Φ+⟩ = σz
2 |Φ+⟩ = |Φ−⟩.

Therefore the (two) ground states, given by Remark 2.2.6, read as follows

∣

∣

〉

±
=

1√
2

[
∣

∣Φ+
〉
∣

∣Φ+
〉

⊗ |+⟩± Z [Cpq]
∣

∣Φ+
〉
∣

∣Φ+
〉

⊗ |−⟩
]

=
1√
2

[
∣

∣Φ+
〉
∣

∣Φ+
〉

|+⟩±
∣

∣Φ−
〉
∣

∣Φ−
〉

|−⟩
]

Here the topological quantum number is v± = ±1 and is defined by a z-type loop operator winding
once around the “hole”. The path Cpq runs from the left vertex of system 18 to the right one.
Obviously there are four different possibilities to choose Cpq. However, since σz

1 |Φ+⟩ = σz
2 |Φ+⟩ =

|Φ−⟩ it does not matter which one is chosen.
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Chapter 3

LU/SWAP classification of TCM
ground states

3.1 Objective and overview

To reach our goal – classifying Toric Code ground states with respect to local unitary operations
and the permutation of qubits, that is – we are going to apply results published in refs. [1,2,5] in
a straightforward way.

The approach is as follows:

1. According to the theory of TCMs different ground states are transformed into each other by
application of string operators. These operators (see sec. 1.3) are local in the sense of LU-
equivalence. Therefore we do not have to deal with different ground states and consequently
may reduce the considered systems to the non-degenerate ones (i.e. the topological quantum
numbers of all loops are stabilized to +1 by adding appropriate plaquettes).

2. The binary algorithm developed by Van den Nest et al. [5] is used to transform the TCM
stabilizer into a graph state stabilizer. This stabilizer describes a LC-equivalent graph state of
the Toric Code system under consideration.

3. By graph state transformations using local Clifford operations one converts the graph state
obtained in the binary framework to one of the LU/SWAP-class representatives computed in
ref. [2]. This allows the classification of TCM ground states with up to 7 spins by means of
simple algebra.

Fig. 3.1 illustrates the relations described above. This algorithm is described together with some
examples in the subsequent section.

{|v1, . . . , vn⟩A}vi∈{1,−1} |1, . . . , 1⟩A |G⟩A |G∗⟩A

{|v1, . . . , vn⟩B}vi∈{1,−1} |1, . . . , 1⟩B |G⟩B |G∗⟩B

LC

String operators

LC

Hadamard gates

LC/SWAP

LC-rule

LC

String operators

LC

Hadamard gates

LC/SWAP

LC-rule

LC/SWAP? LC/SWAP!

Kitaev [1] Van den Nest et al. [5] Hein et al. [2]

Figure 3.1 (Color online) : Symbolic illustration of the equivalences used in the algorithm to classify TCM ground
states. Here LC denotes local Clifford operations (hence local unitaries) and SWAP denotes arbitrary permutations
of qubits.

The second part of this chapter is dedicated to a purely graph theoretic transformation to
compute LC-equivalent graph states from a given TCM stabilizer defined by a graph. First, we
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Chapter 3 Mapping TCM ground states to graph states

are going to motivate the graph theoretic approach by referring to the examples used in the first
part. Secondly, the conjecture is proved and finally this rule is applied to some small Toric Code
systems.

3.2 Mapping TCM ground states to graph states

3.2.1 Algorithmic approach

Let S be a stabilizer with (independent) set of generators G and M ≡M [G] its binary representa-
tion. We are going to apply local unitary operations (more precisely: local Clifford operations) on
the stabilizer state by transforming the Pauli operators in the generator accordingly. Subsequently
a basis change is performed to show that the new stabilizer state is indeed a graph state.

The detailed algorithm as derived in [5] reads as follows:

1. The first step involves a basis change T′ ≡ T [G,G′] ∈ GL (N,F2) such that the generator
matrix is transformed in the following way:

M =

[

Z
X

]

→ M′ = MT′ =

[

Rz Sz

Rx 0

]

(3.1)

where Rx is a N ×K-Matrix with full rank, i.e. rankRx = K = rankX ≤ N . Note that if one
sorts the TCM stabilizer generators appropriately (independent As operators on the left and
Bp operators on the right) then a TCM stabilizer has already this structure and this first step
is unnecessary.

2. Since Rx has rank K one can obtain the following form by permuting the rows of the matrix

Rx =

[

R1
x

R2
x

]

(3.2)

such that R1
x is an invertible K × K-submatrix of Rx. Since the order of the rows in the

generator matrix corresponds to the labeling of the qubits this transformation represents just
a relabeling of the qubits in question.

In case of a TCM stabilizer one can label the spins appropriately using the graph theoretic
approach described in the next section such that Rx has this structure from the beginning and
this transformation can be omitted, too.

3. Divide Sz and Rz according to the structure found for Rx, i.e.

Sz =

[

S1
z

S2
z

]

and Rz =

[

R1
z

R2
z

]

(3.3)

such that S1
z is a K × (N − K) matrix and S2

z has the dimension (N − K) × (N − K) (the
same holds for R1

z and R2
z). One can show [5] that the self-orthogonality of the stabilizer with

respect to the symplectic product22 implies that S2
z is invertible.

This step actually involves no transformation at all.

4. The following step is the only one where the considered stabilizer state is transformed by
local Clifford operations. In particular, Hadamard gates Hi acting on the qubits with indices
K + 1, . . . , N require the following transformation of 1-qubit Pauli operators in the stabilizer:

σx → σz

σz → σx

22Formally this reads MTPM = 0.
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Chapter 3 Mapping TCM ground states to graph states

The exchange of x- and z-type Pauli operators acting on the qubits represented by the last
N −K rows in the upper and lower block of the generator matrix M′ can be achieved in the
binary picture by swapping the last N − K rows of the upper block with the corresponding
rows of the lower one. This yields the form

M′′ = HMT′ =

⎡

⎢

⎢

⎣

R1
z S1

z

R2
x 0

R1
x 0

R2
z S2

z

⎤

⎥

⎥

⎦

⇒ X′′ :=

[

R1
x 0

R2
z S2

z

]

∈ GL (N,F2) (3.4)

where H ∈ Cl
N denotes the N−K Hadamard transformations as a local Clifford operator. Since

both R1
x and S2

z are invertible the lower N ×N -block X′′ of the new generator matrix has full
rank.

Note that in the special case of TCM stabilizers it follows Rz = 0 since As operators are
constructed from σx Pauli operators exclusively.

5. Let T′′ ≡ (X′′)−1 ∈ GL (N,F2) be the inverse matrix of X′′. Multiplication from the right –
representing a basis change in the stabilizer framework – yields

M′′′ = HMT′T′′ =

[

Γ
EN

]

(3.5)

Since this is a binary representation of a stabilizer the self-orthogonality relation (M′′′)T P (M′′′)
= 0 holds. It is easy to show that this implies the symmetry of Γ, i.e. ΓT = Γ.

To set Γi,i = 0 for all i ∈ {1, . . . , N} one applies further LC-operations on the concerned
spins [5]. In the case of TCM stabilizers it turns out that this is not necessary, however.

In the end the generator matrix M′′′ has the graph state form defined in 1.2.6. Γ is the
adjacency matrix of the LC-equivalent graph state.

This algorithm seems to be a little cumbersome in application but, as we will see in the following
examples, in the case of TCM stabilizers it is quite easy to follow since some of the steps described
above are not necessary if one chooses the labeling appropriately.

Example 5: (Algorithmic approach). Consider the Toric Code system depicted twice in fig.
3.2, each with different qubit labels. We are going to use the algorithm described above to
transform both systems into their LC-equivalent graph state which is depicted on the right-hand
side of each Toric Code system.

The reader should recall the difference between the geometric description of both stabilizers:
The vertices of a TCM graph (white and green dots) represent As stabilizer operators and the
edges spins whereas the vertices of a graph defining a graph state (black dots) represent spins and
the edges define stabilizer operators connecting these spins.
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Figure 3.2 (Color online) : A TCM stabilizer with different spin labelings. The LC-equivalent graph states
computed in the binary framework are depicted on the right-hand side of each TCM stabilizer. The red numbers
mark spins a Hadamard transformation is applied to. The green vertices represent an independent set of star
operators.

Let us compute both graph states step by step. Note that the rows of the generator matrices are
mapped to the spins in increasing order according to their labels. The Hadamard transformations
are applied to the spins marked red in fig. 3.2. The choice of the red marked spins is not arbitrary
as we will see in the next section.
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Chapter 3 Mapping TCM ground states to graph states

(i) Consider the TCM stabilizer in fig. 3.2 on the left. According to the spin numbering we can
read off the generator matrix with star operators on the left (first 3 columns) and plaquette
operators on the right (last 3 columns). Note that we may choose three of the four As

operators defined by the graph arbitrarily since only three independent star operators exist.
The same argument holds for the four plaquettes (the fourth plaquette fills the outside of
the graph). If we choose the three blue plaquettes and the three green star operators, the
generator matrix reads as follows

M1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 1 0
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where Rx =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
1 1 0
0 1 1
0 1 1
0 0 1
1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and R1
x =

⎡

⎣

1 0 0
1 1 0
0 1 1

⎤

⎦ ∈ GL (3,F2)

Therefore the first three steps in the algorithm can be skipped. Thus write M′
1 = M1 and

apply Hadamard transformations to the spins 4, 5 and 6. This yields

M′′
1 = HM′

1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 1 1 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and X′′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ GL (6,F2)

Since this is a generator matrix with invertible lower block one can proceed with step five
and apply the inverse T′′ = (X′′)−1 to obtain the graph state form of the stabilizer:

M′′′
1 = M′′

1T
′′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 1 1 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Thus we get the adjacency matrix and the corresponding graph as a representation of the
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graph state stabilizer:

Γ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

←→

6

1

53

4

2

Therefore we found a LC-equivalent graph state representation of the considered Toric Code
system. More precisely, we obtained a LC-equivalent representation of all TCM ground
states that may be present in a TCM system defined by the graph (i.e. the As operators)
only, disregarding the (blue) plaquettes. This holds since plaquette operators only restrict
the set of allowed ground states and these ground states can be transformed into each other
by application of string operators, local Clifford operations, that is.

(ii) Consider the TCM stabilizer in fig. 3.2 on the right. The spins were relabeled since spins with
Hadamard transformations applied to have to be encoded in the last rows of the generator
matrix. Hence we took account for step two by relabeling the spins.

Once again, we choose the blue plaquette and the green star operators to establish the binary
representation of the TCM stabilizer. This yields

M′
2 = M2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⇒ M′′
2 = HM′

2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

In the last step the basis transformation T′′ is applied (M′′′
2 = M′′

2T
′′) which results in the

following stabilizer representation:

M′′′
2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⇒ Γ2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

←→

1

6

25

3

4

Obviously both graphs obtained as a LC-equivalent representation of one and the same TCM
stabilizer state are not equivalent under graph isomorphisms (the first is a tree, the second is not).
In fact, there are two differences interwoven: First, there was a relabeling of spins. Therefore we
cannot expect to obtain the same graph. But relabeling cannot lead to non-isomorphic graphs
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since graph isomorphisms describe such permutations of vertices. The reason that we obtained a
new topology of the representing graph is due to the different choice of spins that were transformed
by Hadamard gates. These two sets of spins cut the TCM graph in different ways, thus leading
to different (nevertheless LC-equivalent) graph state representatives.

That these two representatives belong to the same LU/SWAP-class is shown by the LC-rule
(see Proposition 1.6.3). We obtain the series of LC-equivalent graph states (or LC-equivalent
graphs) depicted in fig. 3.3.
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Figure 3.3 (Color online) : Transformation of one graph state into another under local Clifford operations. Here
the LC-rule (see subsec. 1.6.2 and Example 2) was used to show that both graph state representatives belong to
the same LU/SWAP-class.

The result of three successive local complementations is a graph that is isomorphic to the graph
obtained as result of the first part. This is illustrated in fig. 3.4 where the graph is redrawn and
subsequently a permutation on the vertex set is applied.
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Figure 3.4 (Color online) : The vertex permutation (relabeling) resembles several qubit SWAP operations.

Therefore we showed that both graph state representatives are equivalent under local unitary
operations (more precisely: local Clifford operations) and permutations of spins (SWAP oper-
ations). The SWAP operations were necessary since we already started with a spin-permuted
system. It is important to note that these qubit permutations have consequences for the physical
implementation of such systems if they are not interpreted as a pure relabeling of qubits but as a
physical exchange of particles. Imagine we prepared a system of six qubits (e.g. as Rydberg states
or trapped ions). We may label the atoms/ions representing a qubit with 1, 2, . . . , 6. If these
qubits are prepared in the TCM ground state defined by the left Toric Code system in fig. 3.2
(according to the given edge labels), then we showed above that this state cannot be transformed
into the ground state of the right Toric Code system in fig. 3.2 by means of local unitaries alone23.
This is due to the fact that additional qubit SWAP operations are necessary to transform one of
these states into the other. But a qubit SWAP gate is not realisable by local unitaries in general.

Remark 3.2.1. The reader may notice that the graphs obtained are bipartite (or 2-colorable).
This is the case in general since the upper and lower blocks of the generator matrix are diagonal
or anti-diagonal block matrices after the Hadamard transformation. This yields an anti-diagonal
adjacency block matrix which represents a bipartite graph. In fact, this is a consequence of the
special structure of the stabilizer generators.

3.2.2 Graph theoretic approach

Transforming TCM ground states (or their stabilizers) into LC-equivalent graph states is feasible
with the algorithm explained above. But in most cases one needs a CAS to invert and multiply
the (quite large) matrices if one does not want to compute them by hand.

23In actual fact one has to show that both graphs belong to different LC-classes. Using the techniques developed
in secs. 4.2 and B.1 this proves true. LC ⇔ LU holds since N = 6 ≤ 7.

49



Chapter 3 Mapping TCM ground states to graph states

Therefore it begs the questions: Is there a geometrical way of transforming a given TCM
stabilizer into LC-equivalent graph states? And if so, how does it look like?

In fact, it turns out that there is such an algorithm that may be stated in purely graph theoretic
terms. This leads us to the central statement of this chapter:

Theorem 3.2.2: (Graph transformation rule). Let L be the graph/lattice of a generalised
Toric Code Model as defined in 1.5.1. Then there is a graph state |X ⟩ ∈ HN to which all basis
vectors |v⟩ of the protected space PS are equivalent under local Clifford operations. A graph X
defining such a graph state can be constructed from L in the following way:

1. Find an arbitrary spanning tree L′ of L by deleting a set E ⊆ E(L) which has the properties

i. that there is no cycle C on L such that C ∩ E = ∅
ii. and E is irreducible in the sense that removing an arbitrary edge from E violates the first

property.

Then set L′ := L− E.

2. Now let V (X ) := E(L) be the vertex set of a new graph X . This graph is defined by his edge
set E(X ) as follows: Let r, s ∈ V (X ). Then {r, s} is an edge of X if and only if {r, s} ∩ E ̸= ∅
(w.l.o.g. let r be in E) and if there is a path Cpq from p to q on L′ (p, q ∈ V (L′) = V (L)) such
that r = {p, q} and s ∈ Cpq.

Before proving this statement let us consider the example used for the algorithm in the binary
framework and show how Theorem 3.2.2 allows us to derive the corresponding graphs without any
calculation. To this end we state the following

Remark 3.2.3. The choice of a spanning tree L′ is arbitrary. Changing this choice may or may
not lead to non-isomorphic graphs as graph state representations. Thus the graph resulting from
the algorithm described in Theorem 3.2.2 is not unique. Nevertheless – as the proof confirms – the
graphs obtained are equivalent under local complementations (see sec. 3.4).

Example 6: (Graph theoretic approach). Consider once again the Toric Code system de-
picted twice in fig. 3.2. In fig. 3.5 this original system is shown on top. Choose two different
spanning trees by deleting three edges in two different ways. The two spanning trees we are going
to use are shown in the second row of fig. 3.5. The reader may notice that we deleted exactly the
edges which are labeled red in fig. 3.2, i.e. the spins transformed by Hadamard operations. The
connection between both algorithms responsible for this phenomenon24 will become clear in the
proof of Theorem 3.2.2.

Since we found spanning trees of the TCM stabilizer in question one can construct the LC-
equivalent graph states by applying Theorem 3.2.2. The approach is as follows:

Consider a deleted edge (drawn dashed). The spin located at this edge (yellow) will be a vertex
of the new graph. Next, find the path in the spanning tree (there is one and only one, see proof
below) starting at one vertex of the TCM lattice adjacent to the deleted edge and ending at its
other adjacent vertex. In the last step, connect the spin on the deleted edge with all spins (green)
on the path we just found.

This procedure is performed for all spins on deleted edges (in our example there are three of
them). We get the red drawn graphs depicted in the third row of fig. 3.5. These graphs represent
the LC-equivalent graph states we were looking for and are easily seen to be isomorphic to the
graphs depicted in fig. 3.2 and derived in the binary framework. As we showed earlier (see figs.
3.3 and 3.4) both graphs are equivalent under local complementations (and qubit permutations)
and therefore describe LC/SWAP-equivalent graph states.

The reader may have noticed that by this construction a yellow vertex cannot be connected to
another vertex of this kind. Analogously green vertices may only be connected to yellow vertices.

24In fact, the reason for choosing the red marked spins for Hadamard operations in the previous section was that
they “cut” the TCM graph and thus create a spanning tree.

50



Chapter 3 Mapping TCM ground states to graph states

Consequently the graph obtained is bipartite or 2-colorable, meaning that there are two sets of
vertices only connected to vertices of the other set. Consequently such graphs can only feature
cycles with an even number of edges.

Figure 3.5 (Color online) :
Transformation of a TCM sta-
bilizer into LC-equivalent graph
states using the graph theo-
retic approach stated in Theorem
3.2.2. Here we choose two differ-
ent spanning trees (second row)
by deleting three edges (dashed
lines) such that no cycle of the
original lattice survives. Con-
necting the spins on the deleted
edges with all spins on the span-
ning tree path with endpoints ad-
jacent to the deleted edge yields
the red graphs (third row). These
graphs (fourth row) are easily
seen to be isomorphic to the
graphs obtained by computations
in the binary framework.

The last part of this section is dedicated to the proof of Theorem 3.2.2.

Proof. That for a non-degenerate Toric Code stabilizer (i.e. every loop of the lattice is covered by a
plaquette) there exist LC-equivalent graph states follows from the general equivalence of stabilizer
codes and graph states (see Proposition 1.7.2). That the basis states of the protected space as
defined in the introduction are LC-equivalent follows from the fact that they may be transformed
into each other by string operators, which are products of Pauli operators. From the viewpoint
of LU-classification this leads to simplifications. Without loss of generality the considered TCM
stabilizer has the following properties:

• The graph defined by the star operators is a multigraph.

• For each cycle in this multigraph there is a z-type string operator in the stabilizer.

In the following it is derived how the binary transformation can be expressed in the geometric
picture.

Consider a lattice L describing a TCM stabilizer S with independent generators As, Bp ∈ G.
Identify this lattice (ignoring the plaquettes) with the multigraph defined by the star operators
As. Let L′ be an arbitrary spanning tree and E the set of edges such that L′ = L− E . In fig. 3.6
this is depicted in A and B where the dashed lines represent E . Apply Hadamard transformations
H to the spins in E described by the (unique) stabilizer state |v⟩ of S. In the stabilizer picture
this transformation is represented by the substitution

σx → σz

σz → σx
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Consider one of these transformed qubits and the edge e = {p, q} ∈ E(L) it belongs to (p, q ∈
V (L)). The adjacent vertices p and q belong to both L and L′. Then there exists one and only
one path Cpq on L′ connecting p and q. This is shown in fig. 3.6 C for the yellow spin. That
there exists one follows since L′ is connected by definition (and L is connected by assumption).
Given two different paths C1

pq and C2
pq yields a non trivial closed path C1

pq + C2
pq on L′. But this

is not possible since L′ is a tree. Therefore Cpq is unique. Let σz
e ⊗ Z [Cpq] be a combination of

plaquette operators in S (this is possible since Z [C] ∈ S for a closed path C as mentioned above).
This stabilizer operator is transformed under the Hadamard transformation as follows:

σz
e ⊗ Z [Cpq] = σz

e ⊗
⊗

i∈Cpq

σz
i −→ K(e)

X = Heσ
z
e ⊗ Z [Cpq]H†

e = σx
e ⊗

⊗

i∈Cpq

σz
i (3.6)

Obviously this is a graph state generator of the graph X as defined in Theorem 3.2.2 since in this
graph the vertex e is connected to all edges in L that belong to Cpq (see fig. 3.6 D). This argument
holds for every (deleted) edge in E . Therefore we find that the transformed stabilizer S ′ := HSH†

comprises at least the graph state stabilizer generators of X for the vertices that can be identified
with edges in E .

Note that at this stage all physical transformations are already done. What follows is a purely
mathematical transformation of the stabilizer to show that its stabilized state is a graph state25.
Therefore it remains to show that the graph state generators for the vertices identified with edges
of the spanning tree (marked green in fig. 3.6 D) are in S ′.

A B

C D

Figure 3.6 (Color online) : The three essential steps to transform a graphical representation of a TCM stabilizer
into a LC-equivalent graph state. A: The given TCM stabilizer. B: Choose a spanning tree (black) by deleting
(dashed) edges. C: For each spin on a deleted edge find the path on the tree connecting the adjacent vertices. D:
Connect each spin on a deleted edge with all spins on his corresponding path.

To this end consider an arbitrary spin on the spanning tree. In fig. 3.7 this spin is marked
green. The corresponding edge of the spanning tree cuts the latter into two parts since there is
no loop in a tree. This construction induces a bipartition of the vertex set V (L′) = Vr∪̇Vb (in the
figure the red vertices belong to Vr and the blue to Vb). Due to this partition two different types
of deleted edges in E are defined: The one type connects vertices of the same partition (continuous

25In the binary framework this is done by the basis transformation in step five.
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white lines) and the other type (dashed lines) interconnects both sets of vertices Vb and Vr. It
is now easy to see that a spin on a deleted edge (yellow) is connected to the (green) spin iff it
belongs to a deleted edge interconnecting both subsets for a path Cpq inevitably hits the (green)
spin under consideration.

Therefore we characterised all spins on deleted edges that created an edge to the spin on the
spanning tree due to the previous edge-construction step. With this construction in mind we
return to the transformed stabilizer S ′.

In fact, the following combination of operators
in S ′ yields the graph state generator for a spin
e′ ∈ E (L′) on the spanning tree

K
(e′)
X =

∏

s∈Vr

A′
s where A′

s = HAsH
†

Here H ∈ Cl
N is the combination of (local)

Hadamard transformations applied to the TCM
ground state. Note that Vr may be replaced
by Vb in the equation above. That this formula
holds true can be seen in the following way: By
applying a subset of transformed A′

s operators a
spin can be affected in three different ways.

E

Figure 3.7 (Color online) : Bipartition of the span-
ning tree vertex set (red and blue vertices) used to
construct the graph state stabilizer generator for the
green spin.

First, if it belongs to an edge with adjacent vertices of the same partition nothing happens
since either there are two operators acting simultaneously (thus acting trivially on the considered
spin) or no operation is performed at all. Note that this holds true even for the transformed “star
operators” A′

s since σzσz = 1. The second case occurs if the adjacent vertices belong to different
subsets and the spin under consideration is not e′ (yellow in fig. 3.7). Then a non-trivial operation
is performed on this spin. This case can only apply to spins on deleted edges, hence the operation
is described by σz. The last case equals the previous one with the only difference that the spin
under consideration is e′. As in the previous case a non trivial operation is performed, but now it
is described by σx.

Summing up, we found that K
(e′)
X acts as σx on e′, as σz on all vertices f on deleted edges

such that {e′, f} ∈ E(X ) and trivially otherwise. Hence it is the graph state stabilizer generator
we were looking for. Therefore we showed that S [X ] ≤ S ′ where S [X ] denotes the graph state
stabilizer defined by X . To show S [X ] = S ′ we note that rankS [X ] = N = rankS = rankS ′.

This concludes the proof.
!

Remark 3.2.4. To provide a link to graph theory we mention that the support of the string
operator σz

e ⊗ Z [Cpq] (i.e. the closed path Cpq + e) is known as the fundamental cycle Ce of
e with respect to L′ and the set of deleted edges connecting Vb and Vr together with e′ is called
fundamental cut De′ of L′.

3.3 Examples

Several examples of LC-equivalent graph states for small Toric Code systems can be found in
Tables A.1, A.2, A.3 and A.4 (see appendix A). These graphs were derived by means of both
methods, the binary framework algorithm described in subsection 3.2.1 and the graph theoretic
rule derived in subsection 3.2.2.

The following two examples are dedicated to connections between the graph theoretic rule and
the calculus derived in section 2.2.
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Example 7: (Product states). According to Lemma 2.2.2 the ground states of two Toric Code
systems that are connected by only one common vertex are product states, i.e.

| ⟩ = | ⟩ ⊗ | ⟩

To this end consider the setting depicted in
fig. 3.8.
If one chooses a spanning tree and con-
structs a LC-equivalent graph state it turns
out to be disconnected. Two disconnected
graphs denote the tensor product of graph
states [8]. Thus we confirmed Lemma 2.2.2
in a purely geometric way since local unitaries
cannot transform product states into entan-
gled states and vice versa.
That the graph states constructed from one-
vertex connected Toric Code systems (as de-
picted in fig. 3.8) are disconnected in general
is easy to show:

Figure 3.8 (Color online) : A Toric Code system with
separable ground state. Every spanning tree leads to
two disconnected graphs denoting the product of graph
states.

The only possibility to connect a spin of one component to components connected by a single
vertex would be a fundamental cycle starting at an adjacent vertex of the considered spin, crossing
the vertex connecting both components, finally returning to the other adjacent vertex of the spin.
Since this cycle must pass the vertex connecting the components twice it forms a closed path on
one component. This is not possible on a tree, hence it follows that vertices on two one-vertex
connected components cannot be connected in the corresponding graph states.

Example 8: (GHZ states). Here we show the connection between star graphs and single TCM
plaquettes:

Using Lemma 2.2.2 and Remark 2.2.6 we showed (Exam-
ple 3) that the ground state of any loop with N spins is LC-
equivalent to |GHZN ⟩ since it has the form

∣

∣

〉

=
1√
2

[

|+⟩⊗N + |−⟩⊗N
]

Consider the hexagonal (N = 6) plaquette depicted in fig. 3.9.
Constructing spanning trees is easy since deleting an arbitrary
edge yields one. Consequently any graph state constructed
this way must be a star graph as shown in the figure (this
argument holds for N in general).
In [8] it was shown that star graphs and complete graphs26 are
LC-equivalent to GHZ states. Hence one can deduce that
single plaquettes of any size must be LC-equivalent to GHZ
states using the geometric rule and some knowledge about
graph states.

Figure 3.9 (Color online) : A
hexagonal TCM plaquette. Delet-
ing an arbitrary edge yields a
spanning tree to construct a LC-
equivalent graph state.

26Applying a local complementation to the center of the star yields the complete graph. Subsequent application
of a local complementation to any vertex makes this vertex center of a star graph.
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3.4 A side note: Spanning trees and local complementation

Theorem 3.2.2 states a geometric transformation rule in graph theoretic terms to find local Clifford
equivalent graph states for a given Toric Code system. Since the graph obtained depends on the
spanning tree chosen it follows that all graphs deduced from different spanning trees of the same
Toric Code system must be LC-equivalent. In combination with the LC-rule developed in [2] this
leads to the following (purely graph theoretic)

Lemma 3.4.1. Given a (multi) graph L and two arbitrary spanning trees L′
1 and L′

2. Let X1 and
X2 be the derived graphs as described in Theorem 3.2.2. Then X1 and X2 are equivalent under
local complementations.

This is a non-trivial statement from graph theory, derived indirectly using propositions devel-
oped for the description of graph states, i.e. for physical applications. As a proof of consistency it
would be useful if this statement could be derived directly, without using the loop way over graph
states. Hence the following proof:

Proof. We are going to prove Lemma 3.4.1 in two steps. First we show that two arbitrary spanning
trees may be transformed into each other using a sequence of elementary transformations. In the
second step it is shown that these elementary transformations lead to transformations of the
derived graphs that can be achieved by a sequence of local complementations.

Figure 3.10 (Color online) : The sequence of local complementations as used in the proof of Lemma 3.4.1. The
three steps A, B and C are described in the text.

1. Let L′
1 and L′

2 be arbitrary spanning trees of L. We are going to transform L′
1 into L′

2 by a
sequence of edge permutations σe,e′ . If L′

1 = L′
2 there is nothing to do. Thus let L′

1 ̸= L′
2. Then

the difference of the edge sets is non-empty and one can choose e ∈ E (L′
2) \ E (L′

1). Consider
the graph L′

1 + e. This graph contains a cycle, more precisely: the fundamental cycle Ce with
respect to L′

1. Since L′
2 is a tree it holds Ce \E (L′

2) ̸= ∅. Choose e′ ∈ Ce \E (L′
2) ⊆ E (L′

1). The
new graph σe,e′L′

1 := L′
1 − e′ + e is a tree since it does not contain Ce. Furthermore it follows

|E (L′
2) \ E (σe,e′L′

1)| < |E (L′
2) \ E (L′

1)| since the new graph has one edge (e) more in common
with L′

2 than the old one. Successive application of this procedure aborts if |E (L′
2) \ E (σL′

1)| =
0. Since both L′

2 and σL′
1 are spanning trees it follows L′

2 = σL′
1 where σ denotes a finite

combination of single edge permutations.

2. Let L′
1 and L′

2 be spanning trees such that L′
2 = σe,e′L′

1. X1, X2 denote the derived graphs. If
we identify the edges of L with the vertices of X1 and X2 it holds

X2 = τeτe′τeX1

where τe, τe′ denote local complementations at vertices e and e′. This sequence is illustrated
in fig. 3.10 where the vertices a local complementation is applied to are marked yellow. The
spanning tree is denoted by bold lines (black and red in A) whereas elements of the fundamental
cut De′ are drawn as thin lines (grey and blue in A). e and e′ are denoted by blue and red
lines, respectively. First note that by construction e has to be element of the fundamental cut
De′ with respect to L′

1. Then the sequence τeτe′τe acts as follows:
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A τe is applied. Since e is connected to all vertices on the fundamental cycle Ce this operation
yields a complete graph between these vertices27. This is denoted by a grey area in fig. 3.10
B.

B τe′ is applied. Now several changes happen at once: First, the complete graph created in
the previous step is broken up such that e′ is now connected to all spins on the spanning
tree that belong to the future fundamental cycle Ce′ . Secondly, all vertices v ∈ De′ with
fundamental cycles Cv \ Ce ̸= ∅ create a complete graph (denoted as dark grey area in
fig. 3.10 C). Thirdly, all edges between these vertices and spins on the fundamental cycle Ce
are switched. Therefore all vertices on the fundamental cut in the left grey area in C get
connected to vertices on the tree in the white area whereas all vertices in the right grey area
get disconnected from these vertices.

C τe is applied. The complete graph between all vertices on the fundamental cut marked dark
grey in C is broken up such that e is connected to all spins on the new fundamental cut De.
Hence we obtained X2.

Since the elementary spanning tree transformation σe,e′ can be translated into a sequence of local
complementations acting on the derived graph and two spanning trees can be transformed into
each other by elementary transformations σe,e′ , the derived graphs of arbitrary spanning trees are
LC-equivalent. This concludes the proof. !

27Note that vertices on the spanning tree are not connected to each other directly.
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Toric Code systems and nonlocal
graph states

4.1 Objective and overview

We saw that ground states of Toric Code Models are – as stabilizer states – equivalent to graph
states under local Clifford operations. To this end let us consider the experimental point of view.
It turns out that a sophisticated cooling mechanism as developed in [15] for cooling into TCM
ground states is not required for graph states. If one allows local unitary operations on single
qubits this yields an efficient procedure to obtain Toric Code ground states by cooling into graph
states and subsequent LU-operations.

This is a somewhat abstract procedure since the spacial
position of the spins is not considered. However, essential
properties of Toric Code Models (e.g. the dependence of
the surface topology and error correction procedures as
well as the location and dynamics of elementary excita-
tions) are closely connected to the spacial structure of the
considered system. Therefore drawing a TCM as depicted
in fig. 4.1 shows more than just abstract interactions if it
comes to physical implementation; it shows how the spins
should be arranged in order to deal with systems deter-
mined by local interactions.
Let us examine this point more precisely: As mentioned
in the introduction the basis states of the protected space
can be construed as the ground states of the Hamiltonian

HTCM = −
∑

s∈V (L)

As −
∑

p∈P (L)

Bp (4.1)

where As are (generalised) star operators and Bp de-
note (generalised) plaquette operators defined by the faces
of the graph L embedded on an orientable compact 2-
manifold.

Figure 4.1 (Color online) : A Toric Code
system with 16 spins (yellow) together
with a LC-equivalent graph state based
on the (blue) spanning tree. The dashed
lines mark nonlocal graph state interac-
tions with respect to the underlying TCM.

Hence physical implementations of such systems must deal with qubit interactions that are
restricted to the support of single star and plaquette operators. If a Toric Code system is imple-
mented by such interactions this defines an adjacency relation between the spins of the system.
In this sense two spins e1 and e2 are physically adjacent iff there is either a star operator As such
that e1, e2 ∈ supp (As) or a plaquette operator Bp such that e1, e2 ∈ supp (Bp).
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In the majority of cases this adjacency relation implies spacial proximity if a physical im-
plementation is considered but that is not the crucial point. The crux of the matter is if the
possibility of interaction between two spins is given or not. The same argument holds for graph
states where qubits are adjacent (as physically interacting two-level systems) if they are adjacent
in the corresponding graph. This leads to the heart of the matter:

Let the possibility of interaction between the spins (i.e. the adjacency relation) be determined
by the Toric Code system we tend to implement. Then the “simple” procedure explained above
(constructing the ground state by LU-operations from an efficiently cooled graph state) is feasible
only if there is an LU-equivalent graph state that can be implemented under the restriction of the
adjacency relation. We will call such graph states local with respect to the Toric Code system
under consideration. Thus Toric Code systems that are not LU-equivalent to at least one local
graph state cannot be obtained by means of graph states in physical implementations28.

To illustrate the introduced notion of physically adjacent spins consider the TCM depicted
in fig. 4.1. One constructs a LC-equivalent graph state using the (blue) spanning tree and ends
up with the red graph (continuous and dashed lines). Here the continuous edges represent local
graph state interactions with respect to the underlying Toric Code system whereas the dashed
edges are nonlocal since the adjacent vertices (spins) are neither connected by a common star
nor a common plaquette operator. Hence this graph state is nonlocal. Since this is not the only
LC-equivalent graph state the question arises whether there is at least one local representative in
the corresponding LC-class (which would suffice). Therefore the main task of this chapter is the
search for minimal Toric Code systems without local LC-equivalent graph states29.

Finally, define the notion of local graphs formally as follows:

Definition 4.1.1: (Adjacency relation, Locality matrix). Let G be a (simple) graph and
V (G) its vertex set.

(i) An adjacency relation ∼Λ on V (G) is an arbitrary irreflexive and symmetric relation,
i.e. there is no v ∈ V (G) such that v ∼Λ v and for each pair v, w ∈ V (G) it holds v ∼Λ w ⇒
w ∼Λ v.

(ii) An adjacency relation is represented by an adjacency matrix Λ defined by

Λv,w :=

{

1 , if v ∼Λ w

0 , otherwise
(4.2)

We call Λ the locality matrix defining an adjacency relation on V (G). It is Λv,v = 0 for
all v ∈ V (G) and ΛT = Λ due to the irreflexive and symmetric property of ∼Λ.

(iii) G is called local with respect to ∼Λ iff

Γ[G] ∗Λ = 0 (4.3)

where ∗ denotes the element-wise product of two matrices over F2 and Λ is the complemen-
tation of Λ in F2, i.e. the matrix obtained by the substitution 1 ↔ 0. In other words: G is
local with respect to ∼Λ iff G is a subgraph of the graph defined by the adjacency matrix Λ.

At first glance the element-wise product of matrices appears somewhat strange but since this
test will be performed automatically by a MATHEMATICA-script it turns out to be a simple and fast
technique to probe whether a given graph is local (in fact, this is a test for the subgraph property
in general). To this end we may outline the algorithmic approach to test whether local graph
states exist:

1. Use the given Toric Code system to extract the notion of physically adjacent spins and encode
this information as locality matrix.

28If the coherent spacial exchange of particles is not feasible.
29In the following LC-equivalence instead of LU-equivalence is considered. See sec. 1.7 for further explanations.
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2. Using an arbitrary spanning tree find a LC-equivalent graph state. Encode its structure as an
adjacency matrix.

3. Generate the whole LC-class defined by this graph and check whether there are representatives
that satisfy eq. (4.3).

4. If so, abort the algorithm since the Toric Code system in question proved local.

Consequently we have to investigate how to generate the whole equivalence class under local
complementations of a simple graph.

4.2 Computing LC-orbits of graph states

In order to compute the whole equivalence class of a given graph state using MATHEMATICA, we
have to compute the orbit of the group T generated by all local complementations τa acting on
the edge space E(V ) defined over a vertex set V (see def. 1.4.6). Thus our goal is

[G]LC = T G where T = span {τa : E(V ) → E(V ) | a ∈ V } (4.4)

and G ∈ E(V ) denotes an arbitrary representative of the LC-class in question. As a check of
consistency we are going to compute the size of some equivalence classes and if there are 2-
colorable representatives. These results are compared to the data published by Hein et al. (Table
II. in ref. [2]).

As described in [8] and originally derived in [25, 26] two graphs G and G′ with adjacency
matrices Γ ≡ Γ [G] and Γ′ ≡ Γ [G′] are equivalent under local complementations iff there exist
diagonal matrices A,B,C,D ∈ F

N×N
2 such that the non-linear condition

AD+BC = EN (4.5)

and the system of linear equations

(ΓB+D)Γ′ + (ΓA+C) = 0 (4.6)

hold over the Galois field F2.
It is easy to see that eq. (4.5) can be solved by the 6 combinations per dimension

(Aii, Dii, Bii, Cii) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1, 1, 0, 0)

(1, 1, 0, 1)

(1, 1, 1, 0)

(0, 0, 1, 1)

(0, 1, 1, 1)

(1, 0, 1, 1)

(4.7)

Consequently there are 6N possible solutions for eq. (4.5). Since our final goal is the computation
of the whole LC-class defined by a given graph G as representative, the following approach might
be feasible for small N (N " 12):

1. Choose one of the 6N solutions for eq. (4.5)

2. and solve the linear system (4.6) with respect to Γ′ for a fixed adjacency matrix Γ describing
the representative G.

Regarding step 1 we have to think about the structure of the solution space of eq. (4.6). The
answer is given by the following

Lemma 4.2.1. Equation (4.6) is soluble under the condition (4.5) if and only if ΓB + D is
invertible over F2. Therefore the solution set is empty or the solution is unique.
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Proof. We are going to show that the rank of the expanded N × 2N -matrix [ΓB+D |ΓA+C ]
is always N , i.e.

rank [ΓB+D |ΓA+C ] = N

Then it follows immediately that the equation

(ΓB+D)Γ′ = (ΓA+C)

is soluble only if rank [ΓB+D] = rank [ΓB+D |ΓA+C ] = N . To prove our claim regarding
the rank have a look at the expanded matrix in detail30

⎡

⎢

⎢

⎢

⎣

B1Γ11 +D1 · · · BNΓ1N A1Γ11 + C1 · · · ANΓ1N

...
. . .

...
...

. . .
...

B1ΓN1 · · · BNΓNN +DN A1ΓN1 · · · ANΓNN + CN

⎤

⎥

⎥

⎥

⎦

(4.8)

where Ai ≡ Aii etc. for the sake of simplicity. To show that the rank of this matrix equals N
in any case one can show that the standard basis of FN

2 can be constructed by appropriate sums
of column vectors in (4.8). To construct the ith standard basis vector we must differentiate the
following cases:

1. Let Ai = Di = 1. If Bi = 0 the ith column of the left N ×N block is already the basis vector
we are looking for. If Bi = 1 we have Ci = 0. In this case add the ith column of the right
block to the ith column of the left one. Since operations are performed modulo 2 this yields
the required basis vector.

2. Let Bi = Ci = 1. If Ai = 0 the ith column of the right N ×N block is already the basis vector
we are looking for. If Ai = 1 we have Di = 0. In this case add the ith column of the left block
to the ith column of the right one. This yields the basis vector in question.

Using this algorithm one can construct the standard basis of FN
2 by linear combinations of column

vectors. This concludes the proof. !

With Lemma 4.2.1 at hand our algorithmic approach reads as follows:

1. Choose one of the 6N solutions for eq. (4.5).

2. Check whether det [ΓB+D] = 1 or rank [ΓB+D] = N , alternatively.

3. (a) If the matrix is non-singular, compute the solution

Γ′ = (ΓB+D)−1 (ΓA+C) (4.9)

(b) If the matrix is singular skip all solutions of eq. (4.5) with the same matrices B and D
(since the invertibility depends only on these matrices).

Step 3 (b) might speed-up the computation considerably, if non-singular matrices are rare (this
is often the case). This is due to the fact that for each pair of matrices B and D there are 2N

pairs of matrices A and C that satisfy condition (4.5). Let p be the approximate rate of singular
matrices, then the speed-up is estimated as

δ ≈ (1− p) · 6N + p · 6N2−N

6N
= (1− p) +

p

2N
N≫1≈ 1− p (4.10)

Nevertheless, the algorithm remains inefficient31. To my knowledge up to know there is no efficient
(i.e. polynomial) algorithm to compute the whole LC-class of a given graph.

30Note that Γii = 0 since Γ is the adjacency matrix of a simple graph. However, this property is not needed.
31Here “inefficient” means that the computation time scales exponentially with the number of edges involved.

An “efficient” algorithm belongs to the class O(Np).
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4.3 Analysis of small Toric Code systems

Our goal, identifying minimal spin systems with nonlocal LC-equivalent graph states for regular
lattices, is reached by applying the theory derived in the previous section to Toric Code systems
that are complex enough. By “complex enough” we mean the following:

Consider a lattice with n-fold rotational symmetry in two dimensions and a single plaquette
type32 (i.e. n = 3, 4, 6). It is easy to see that at least n+ 1 plaquettes are necessary to prevent at
least one plaquette from having a peripheral boundary (i.e. an edge separating the interior from
the non-tiled surrounding area). Thus at least 3 triangles are necessary to prevent the fourth,
inner triangle from having a peripheral edge (see fig. 4.2 A). Analogously 4 squares are needed to
surround the fifth one as shown in fig. 4.6 A. How does this observation apply to our problem of
finding minimal spin systems for regular tessellations that cannot be described by local graphs?

To this end consider n connected tiles with n-fold symmetry that form a structure without a
“hole”. Consequently each tile has at least one peripheral edge. Delete one peripheral edge per
tile. The edges remaining form a spanning tree of the system since there is no loop left. If a loop
exists there would be at least one plaquette surrounded by it. Such a plaquette cannot exist since
there must be at least one “cut” connecting the interior of each plaquette to the surrounding area.

In this case each fundamental cycle (i.e. the loops created by reinserting the deleted edges)
coincides with the boundary of a certain plaquette. Using the graph theoretic rule derived in sub-
sec. 3.2.2 one obtains a LC-equivalent graph state connecting only spins with a common plaquette.
Therefore such systems are always local.

This is the reason why the systems depicted in figs. 4.2 A and 4.6 A are the smallest configu-
rations for triangle and square tilings that may be nonlocal. Since the LC-class of a given graph
always contains graphs with odd cycles which cannot be obtained by the rule mentioned above,
the absence of local graphs obtained by this rule does not imply the absence of local graphs in the
whole LC-class33.

Results Using the MATHEMATICA-scripts described in appendix B based on the theory explained
in sec. 4.2 the Toric Code systems depicted in figs. 4.2 A (system 1), 4.3 A (system 2), 4.4 A
(system 3), 4.5 A (system 4) and 4.6 A (system 5) were analysed with respect to local graph
states. The computations for system 1, system 2 and system 3 were performed with the script
described in sec. B.1 since N ≤ 9 is small enough. Hence we gained further information about
the corresponding LC-classes (see Table 4.1). Since N = 12 for system 4 we used the script
described in sec. B.2 to probe for local graph states only (without gathering further information).
The computation for system 5 (N = 16) takes about 100 days on a modern personal computer.
Since this is not feasible without using a supercomputer we cannot decide whether system 5 is
nonlocal. To face this problem a theoretical approach is taken in sec. 4.4.

No. Solutions Graphs Unique graphs Local graphs 2-col. graphs
1 3391488 6624 828 (66) 0 (0) 54
2 4218880 8240 8240 (763) 216 (31) 75
3 606208 2368 148 (6) 0 (0) 32
4 - - - 0 (0) -
5 - - - ? -

Table 4.1 (Color online) : Results of the computations using the MATHEMATICA-scripts described in appendix B.
Bracketed values denote numbers of graphs up to graph isomorphisms.

Whereas system 1 and system 5 are interesting due to their properties described above,
system 3 and system 4 are analysed for preparatory purposes (see subsec. 4.4.3). system 2

32Such tilings are called platonic or regular tessellations. There are only three of them: Triangular, square and
hexagonal tiling.

33However, for the lack of counterexamples I conjecture that this implication holds. Since I was not able to prove
it we cannot use it in the following.
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was chosen to show that not every system featuring a plaquette surrounded by other plaquettes
needs to be nonlocal. The results of the computations are listed in Table 4.1. Solutions lists the
numbers of (not necessarily unique) solutions found for eq. (4.6) by testing all possible solutions
for eq. (4.5). Graphs tells us how many of these solutions are adjacency matrices (thus describ-
ing simple graphs) and Unique graphs lists these numbers without duplicates. How many of
these graphs are local is shown in the next column. Finally, 2-col. graphs lists the numbers of
2-colorable graphs in the LC-class. The bracketed values denote the corresponding numbers of
graphs up to graph isomorphisms.

The following facts are noteworthy:

• system 1 is nonlocal. Hence it is the smallest nonlocal spin system for triangular tilings.

• system 2 is local although there is a plaquette surrounded by other plaquettes and the graph
obtained by the used spanning tree is nonlocal. However, if one chooses an appropriate
spanning tree one finds immediately a local graph state representative34.

• system 3 is nonlocal. This will be used later on (see subsec. 4.4.3) to show that system 5

is nonlocal as well.

• system 4 is nonlocal. This will be approved in subsection 4.4.3 using the nonlocality of
system 1.

• There are always 2-colorable representatives. This follows from the graph theoretic rule
derived in section 3.2.2.

Hence we found the minimal nonlocal spin system for triangular tilings but the problem for
square tilings remains unsolved. To overcome this obstacle the approach described in the next
section will trace the nonlocality of system 5 to the nonlocality of system 3.
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Figure 4.2 (Color online) : The LC-equivalent graph state representative of system 1 (see A) is shown in B.
The corresponding adjacency matrix is depicted in figure C and the locality matrix in E (black/white squares
denote fields occupied by 1/0). The edge-maximal local graph is drawn in figure D. Obviously the graph state
representative is nonlocal with respect to the adjacency relation induced by the underlying Toric Code system since
B is not a subgraph of D. Computations show that this system is nonlocal.

34This is left as an exercise to the reader.
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Figure 4.3 (Color online) : The LC-equivalent graph state representative of system 2 (see A) is shown in B. The
corresponding adjacency matrix is depicted in figure C and the locality matrix in E. The edge-maximal local graph
is drawn in figure D. Obviously the graph state representative is nonlocal with respect to the adjacency relation
induced by the underlying Toric Code system since B is not a subgraph of D. Nevertheless, this is a local Toric
Code system as the computations show.
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Figure 4.4 (Color online) : The LC-equivalent graph state representative of system 3 (see A) is shown in B. The
corresponding adjacency matrix is depicted in figure C and the locality matrix in E. The edge-maximal local graph
is drawn in figure D. Obviously the graph state representative is nonlocal with respect to the adjacency relation
induced by the underlying Toric Code system since B is not a subgraph of D. Computations show that this system
is nonlocal.
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Figure 4.5 (Color online) : The LC-equivalent graph state representative of system 4 (see A) is shown in B. The
corresponding adjacency matrix is depicted in figure C and the locality matrix in E. The edge-maximal local graph
is drawn in figure D. Obviously the graph state representative is nonlocal with respect to the adjacency relation
induced by the underlying Toric Code system since B is not a subgraph of D. Computations show that this system
is nonlocal.
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Figure 4.6 (Color online) : The LC-equivalent graph state representative of system 5 (see A) is shown in B. The
corresponding adjacency matrix is depicted in figure C and the locality matrix in E. The edge-maximal local graph
is drawn in figure D. Obviously the graph state representative is nonlocal with respect to the adjacency relation
induced by the underlying Toric Code system since B is not a subgraph of D. Whether this system is nonlocal
cannot be decided by straightforward computation. In fact, it is nonlocal as shown in subsec. 4.4.3.
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4.4 Reduction of complex Toric Code systems

As we saw in the previous section brute force computation of LC-classes is feasible only for small
systems (N " 12) but becomes more and more time consuming for increasing numbers of spins.
In order to decide whether system 5 is nonlocal or not we have to find another, more “intelligent”
procedure than brute force computation of the corresponding LC-class. As will become clear later
on even the nonlocality of system 4 can be derived this way.

As we will need some graph theoretic propositions regarding a special type of LC-classes, let
us consider the mathematical point of view first.

4.4.1 On the structure of ε-symmetric LC-classes

Consider a simple graph which has at least one leaf (see subsec. 1.4.2 for basic definitions regarding
graph theory). Let a and b be the outer and inner vertex, respectively. Then the statement of the
following lemma is easy to verify.

Lemma 4.4.1. Let [G]LC be the LC-class of a simple graph G such that there exist representatives
with at least one leaf. If a and b denote the outer and inner vertex of a leaf, then the whole LC-class
is invariant under the exchange of a and b. We denote this symmetry by

εab : E(V ) → E(V ) (4.11)

and call [G]LC ε-symmetric with respect to a and b. Formally this reads εab[G]LC = [G]LC.

Proof. Let w.l.o.g. Gab be a representative with a leaf and a be the outer vertex. Then it is easy
to verify that the two local complementations

Gba = τaτbGab

yield a graph Gba such that b is the outer vertex and all edges that connected b in Gab with
vertices V \ {a, b} now belong to a (see fig. 4.7). In other words: The graph Gba is obtained
from Gab by exchanging the vertices a and b. Hence the symmetry εabGab = Gba is realized by
two local complementations. Now consider an arbitrary element Hab ∈ [G]LC. Hab is reachable
from Gab by subsequent application of local complementations. If τ(a, b) denotes this chain of
LC-operations then let τ(b, a) be the chain obtained by the substitution τa ↔ τb. One easily
verifies that Hba = τ(b, a)Gba = τ(b, a)εabGab = τ(b, a)τaτbGab is isomorphic to Hab with the
only difference that a and b are permuted. We write Hba = εabHab and since ε2ab = 1 it follows
εab[G]LC = [G]LC. !

Figure 4.7 (Color online) : The exchange of two vertices is shown step by step as used in the proof in Lemma 4.4.1.
The system on the left is transformed into the middle one by a local complementation at the red vertex. Subsequently
the right graph is obtained by a local complementation at the blue vertex. Note that edges between the black vertices
are restored during this sequence.

The symmetry originally shown for the special leaf-graphs Gab and Gba “spreads” through the
whole equivalence class and leads to some useful properties regarding LC-classes represented by
such graphs. Before analysing this structure let us discuss the following statement in detail:
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Lemma 4.4.2. Let Gab ∈ E(V ) be a simple graph with at least one leaf. a denotes the outer and
b the inner vertex. Consider the subgroup

Ta := span {τi : E(V ) → E(V ) | i ∈ V \ {a}} (4.12)

of all local complementations on vertices V \ {a}. Then it holds

∀ τ ∈ Ta : τGab − a = τ (Gab − a) (4.13)

In words: Deleting the leaf (a and its adjacent edge) from Gab and transforming this graph by a
sequence of local complementations τ acting on vertices V \ {a} yields the same graph as if these
operations were performed on Gab (without deleting the leaf) and deleting a with all its adjacent
edges (which may be more than just one) afterwards.

Proof. It is easy to see that all changes regarding edges between vertices in V \ {a} occur in the
same way if or if not a connection to a is present. Therefore the only differences between τGab

and τ (Gab − a) affect edges from vertices in V \ {a} to a itself. Since these edges are deleted
(τGab − a) there is no difference left and it holds τGab − a = τ (Gab − a). !

Lemma 4.4.2 allows statements about the LC-class [Gab−a]LC. More precisely: All these graphs
in [Gab]LC yield graphs in [Gab−a]LC by deleting a and its adjacent edges that are reachable from
Gab by concatenations of local complementations in Ta. If one can show that all graphs in [Gab]LC
may be linked to each other by operations in such subgroups, this yields a powerful procedure to
compute LC-classes of special subgraphs.

This idea leads to the following proposition for simple graphs with leafs.

Proposition 4.4.3: (ε-symmetric LC-classes). Let Gab be a simple graph with at least one
leaf where a and b denote the outer and inner vertex, respectively. Set [G]LC ≡ [Gba]LC = [Gab]LC.
Then it holds

∀H ∈ [G]LC ∃ (H ′
a ∈ [Gab − a]LC ∨ H ′

b ∈ [Gba − b]LC) : (H − a = H ′
a ∨ H − b = H ′

b) (4.14)

In words: If a LC-class is ε-symmetric with respect to a and b then deletion of a or b (in some
cases it does not matter which one is deleted) yields a graph in [Gab − a]LC or [Gba − b]LC. In a
nutshell: Every graph in [G]LC has at least one subgraph in [Gab − a]LC or [Gba − b]LC.

The reader may notice that Proposition 4.4.3 could be useful for the reduction of large Toric
Code systems to smaller ones while keeping track of the corresponding equivalence classes of graph
states. In fact, this will be explained in detail in the subsequent section. Prior to that we have to
prove Proposition 4.4.3.

Proof. Let Gab be a representative with outer and inner vertex a and b. Then one can partition
the LC-class [Gab]LC in the following way:

• All graphs with a leaf belong to A iff a is the outer and b the inner vertex.
Therefore Gab ∈ A.

• All graphs with a leaf belong to B iff b is the outer and a the inner vertex.
Therefore Gba ∈ B.

• All graphs H such that the following holds belong to C

{a, b} ∈ E(H) and ∀ v ∈ V (H) \ {a, b} : {a, v} ∈ E(H) ⇔ {b, v} ∈ E(H)

Due to the second statement these graphs are totally symmetric with respect to a and b,
εabH = H that is.
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Chapter 4 Reduction of complex Toric Code systems

Figure 4.8 (Color online) : Diagrammatic overview showing the structure of ε-symmetric LC-classes as used in the
proof of Proposition 4.4.3. Arrows denote different classes of transformations according to their color: γ-operations
(magenta), ξ-operations (green), a-operations (blue) and b-operations (red).

• All graphs H such that the following holds belong to D

{a, b} /∈ E(H) and ∀ v ∈ V (H) \ {a, b} : {a, v} ∈ E(H) ⇔ {b, v} ∈ E(H)

These graphs are totally symmetric and the only difference to type C graphs is the missing
edge between a and b.

These four types of graphs are depicted in fig. 4.8. Note that the number of edges between a
or b and the vertices V (G) \ {a, b} (denoted by light grey discs) is not constant within one class in
general. That the described classification of graphs is a partition, i.e. [Gab]LC = A∪̇B∪̇C∪̇D has
to be shown. To this end we introduce a classification of local complementations τv ∈ T which
may depend on the graph it is operating on. We call τa and τb an a- and b-operation. Local
complementations τv where v ∈ V (G) \ {a, b} and {a, v}, {b, v} /∈ E(G) are called γ-operations
and LC-operations τv where v ∈ V (G) \ {a, b} and {a, v} ∈ E(G) ∨ {b, v} ∈ E(G) are called
ξ-operations. Obviously every local complementation τv , v ∈ V (G) belongs (depending on the
graph it is applied to) exactly to one of these four classes. Let us examine how these four classes
of local complementations and the four classes of graphs introduced above collude:

• First note that γ-operations cannot alter the class a graph belongs to since all edges used
for the classification of graphs are unaffected under γ-operations. In fig. 4.8 this is denoted
by magenta arrows pointing from each set into itself.

• Clearly, a-operations act trivially on A. Applied to an element of C it deletes all edges
between b and V (G) \ {a, b} and yields a graph that belongs to B. Since τ2a = 1 this is true
for the opposite direction as well. Finally, graphs that belong to D cannot leave this set
since no edge between a and b is created. These connections are denoted by blue arrows in
fig. 4.8.

• Due to the symmetry with respect to a and b all statements for τa hold for τb (i.e. b-
operations) as well. These relations are denoted by red arrows. Note that τa equals τb if
they are applied to elements in D.
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• ξ-operations act on vertices denoted by dark grey circles in fig. 4.8 (vertices that are con-
nected to a or b or both of them). Obviously such operations cannot manipulate leafs.
Therefore ξ-operations cannot leave the sets A and B (but they may alter the number of
edges connecting a or b to vertices in V (G) \ {a, b}). Acting on elements in C a ξ-operation
deletes the edge between a and b, hence converting type C graphs into type D graphs and
vice versa. These relations are denoted by green arrows.

Consider the following situation: Starting from Gab ∈ A one tries to generate as much elements
in [Gab]LC as possible by using local complementations in Ta. Therefore one is allowed to use b- γ-
and ξ-operations to generate graphs. In terms of fig. 4.8 the “path” cannot use the blue arrows.
Note that the only a-operation that cannot be omitted connects C and B (in A it acts trivially
and in D it may be replaced by a b-operation). We call graphs in this orbit TaGab a-accessible.
In conclusion it holds TaGab ⊆ [G]LC \ B. Analogue arguments yield TbGba ⊆ [G]LC \ A for
b-accessible graphs starting from Gba ∈ B.

We are now going to show that the more stricter relations TbGba = [G]LC \ A and TaGab =
[G]LC \ B hold. To this end consider an arbitrary “path” jumping from class to class w.l.o.g.
starting at Gab and ending at H ∈ [G]LC \B, formally described by

H =
∏

i

τiGab where τi ∈ T

and depicted in fig. 4.9 A. In general there are some a-operations in this chain. Since neither Gab

nor H are in B there is an even number of them (in fig. 4.9 A there are two, denoted by blue
jumps). We are restricted to non-a-operations in Ta, though. We may adhere to this restriction
by “swapping” the a-jumps and the corresponding γ- and ξ-operations in B to b-jumps and the
same γ- and ξ-operations in A. This is shown in fig. 4.9 B.

A B

Figure 4.9 (Color online) : An arbitrary path from Gab (red dot) to H (green dot) is depicted in A. In B the
“forbidden” (blue) path using a-operations is swapped to A (red jumps) using b-operations instead. Now the whole
path from Gab to H is a-accessible.

It is easy to see that jumping to A by b-operations instead and subsequently applying the
same γ- and ξ-operations yields a graph in A that resembles the graph obtained in B before
jumping back to C with the only difference that a and b are permuted. However, since the second
application of τb yields a totally symmetric graph in C this graph has to be the same one as
formerly obtained by the second τa operation.

Consequently we found a procedure that allows us to reach any H ∈ [G]LC \ B by local
complementations in Ta from Gab and due to symmetry each H ′ ∈ [G]LC \ A may be reached
by exclusive application of Tb operations from Gba

35. Thus we showed TbGba = [G]LC \ A and
TaGab = [G]LC \B.

To conclude the proof recall Lemma 4.4.2. Consider H ∈ [G]LC. Assume without loss of
generality that H /∈ B (the following argument holds for H /∈ A analogously). Then we showed
that H ∈ TaGab where Gab is a leaf-graph with outer vertex a. Choose τ ∈ Ta such that H = τGab.

35It is noteworthy that elements in A may be reached only from Gab and elements in B only from Gba whereas
this procedure shows that elements in C or D may be reached from both Gab and Gba using Ta or Tb, respectively.
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According to Lemma 4.4.2 it follows that H−a = τGab−a = τ (Gab − a). Set H ′
a := τ (Gab − a) ∈

[Gab − a]LC and we have H − a = H ′
a ∈ [Gab − a]LC. Which was to be proven.

!

Remark 4.4.4. Proposition 4.4.3 shows that any graph H ∈ [Gab]LC (where Gab is a leaf-graph
with outer vertex a) has either a subgraph in [Gab − a]LC or in [Gba − b]LC.

To illustrate the structure of an ε-symmetric LC-class and the subgraph property mentioned
above an example with 5 vertices is given in appendix C.

4.4.2 Application to the locality problem

In order to apply the knowledge we gained in the previous section to our physical problem (the
locality of graph states) we have to study the effect of edge transformations on the adjacency
relation ∼Λ. To this end a further definition is required:

Definition 4.4.5: (Strictness). Let L1 and L2 be (multi) graphs embedded into a surface, thus
defining Toric Code Models with plaquettes P (L1) and P (L2). Furthermore let E (L2) ⊆ E (L1).
Thus L2 is obtained from L1 by removing some edges (spins) and transforming the resulting graph
arbitrarily. Let Λ1 and Λ2 denote the induced adjacency relations. Then Λ1 is called stricter
than Λ2 (Λ1 # Λ2) iff

∀ e1, e2 ∈ E (L2) : e1 !Λ2
e2 ⇒ e1 !Λ1

e2 (4.15)

For an illustration of this notion the following example may be helpful:

Example 9: (Strictness). Consider the Toric Code system depicted in fig. 4.10 A. The pla-
quette and star operators define an adjacency relation. E.g. the spins 10 and 12 are physically
adjacent due to a common plaquette whereas 10 and 3 are adjacent due to a common star oper-
ator. Furthermore the spins 10 and 4 are not adjacent since there are neither common plaquette
nor star operators.

A B

Figure 4.10 (Color online) : The Toric Code system in A is transformed into the system depicted in B by contracting
the edges 1, 8 and 11, thus deleting three spins. One verifies easily that all spins that are not physically adjacent
in the reduced system (B) are not physically adjacent in the original system (A).

Contracting the edges 1, 8 and 11 yields the system depicted in fig. 4.10 B which has only 9
spins left. It is now easy to verify that all spins that are not physically adjacent in the reduced
system are not physically adjacent in the larger system. Therefore the adjacency relation of the
system in A is stricter than the relation induced by the reduced system in B.

After these physical (Definition 4.4.5) and mathematical (Proposition 4.4.3) preliminaries we
are now able to state and prove the central theorem of this section:
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Theorem 4.4.6: (TCM reduction). Let L, La and Lb be (multi) graphs embedded into a sur-
face, thus defining three Toric Code systems. Furthermore let Λ, Λa and Λb denote the induced
adjacency relations. In addition

(i) System L is stricter than the other systems, i.e. Λ # Λa and Λ # Λb.

(ii) There is a leaf-graph Gab, describing a LC-equivalent graph state of system L, such that
Gab − a and Gba − b describe LC-equivalent graph states of La and Lb, respectively.

(iii) The Toric Code systems La and Lb are nonlocal.

Then the Toric Code System defined by L is nonlocal.

Proof. In order to show that the Toric Code system defined by L is nonlocal one has to find
at least one nonlocal edge for each element in [Gab]LC with respect to the adjacency relation Λ.
Let H ∈ [Gab]LC be an arbitrary graph representing a LC-equivalent graph state. According to
Proposition 4.4.3 each element in [Gab]LC has at least one subgraph in [Gab − a]LC or [Gba − b]LC.
W.l.o.g. let H ′

a ∈ [Gab − a]LC be such a subgraph, i.e. H ′
a ⊆ H. Since H ′

a describes a LC-
equivalent graph state of system La (see (ii)) there is at least one edge e = {v1, v2} ∈ E (H ′

a) ⊆
E(H) such that the vertices36 are physically not adjacent, i.e. v1 !Λa

v2 (see (iii)). Since system
L is stricter than La (see (i)) it follows immediately v1 !Λ v2. Thus we found an edge e in E(H)
that represents a nonlocal interaction in the larger system L. Since H was chosen arbitrarily this
shows the nonlocality of L. !

Applications of Theorem 4.4.6 are given in the next subsection.

4.4.3 Examples

In the following we are going to show that the nonlocality of system 5 can be traced to the non-
locality of system 3 which has been shown in sec. 4.3 by brute force computations. Furthermore
the nonlocality of system 4 is reviewed using Theorem 4.4.6 and the nonlocality of system 1.
Hence the brute force analysis of system 4 was not necessary.

Example 10: (System 4). In fig. 4.11 A the Toric Code system 4 is shown – this is system L.
The leaf-graph Gab is drawn with red lines and denotes a LC-equivalent graph state since it is
constructed using the (blue) spanning tree. One obtains the leaf-graph Gba by replacing the red
edges in the upper left square with the green ones.

Figure 4.11 (Color online) : system 4 is depicted in figure A. The leaf-graph Gab is drawn with red lines whereas
the leaf-graph Gba is obtained by replacing the red lines in the upper left square with the green ones. Deleting
a (b) and contracting the corresponding edge of the Toric Code system yields the system depicted in B (C). Here
both systems La (fig. B) and Lb (fig. C) are equivalent up to a permutation of a and b.

Deleting a and b yields the graphs Gab − a and Gba − b, respectively. These are drawn in
fig. 4.11 B and C. Obviously they are equivalent up to a permutation of a and b. Furthermore

36Spins are vertices with respect to graph states and edges with respect to Toric Code systems.
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they represent graph states that are LC-equivalent to the Toric Code systems drawn beneath the
graphs Gab − a and Gba − b. Therefore the systems La and Lb coincide. It is easy to check that
the adjacency relation of the Toric Code system in A is stricter than the relations of the systems
in B and C since we derived them by an edge contraction (see Example 9).

Assume that the Toric Code system depicted in B and C is nonlocal. According to Propo-
sition 4.4.6 we find that the original system in A is nonlocal as well. It is now straightforward
to show that this procedure works also for the remaining two squares. In the end one obtains a
sequence of Toric Code systems (the original one, one triangle instead of a square, two triangles
instead of two squares and system 1) related by a chain of implications. Since the first system in
this chain (system 1) proved nonlocal, this implies at once the nonlocality of all other members
in the chain. Especially we showed the nonlocality of system 4 approving the result obtained
previously by brute force computations.

Example 11: (System 5). As mentioned previously it is not feasible to show the nonlocality of
system 5 by computation of the whole LC-class for a corresponding graph state. On a modern
personal computer this computation takes roughly 100 days since the system in question has 16
spins and the algorithm described in sec. 4.2 scales exponentially with the number of spins.

Therefore – in contrast to the previous example – the reduction to smaller spin systems (in
this case we reduce system 5 to system 3) is the only possibility to prove the nonlocality of the
considered system.

Figure 4.12 (Color online) : The original system 5 is depicted in A. By reducing the upper square twice (as
described in the previous example) one obtains successively the systems depicted in B and C. This procedure is
repeatedly applied to the remaining squares (D,E) and leads to the Toric Code system depicted in F. Since this is
system 3 the nonlocality of the whole series of systems is proved.

system 5 is depicted in fig. 4.12 A. The elementary steps to reduce the squares attached to
the central square resemble the procedure described in the previous example. After reducing the
upper square to a triangle by deleting one spin37 the same procedure may be used to get rid of

37In all these cases the systems La and Lb coincide since spin a and b both belong to a “path” that was divided
by several star operators. Therefore contracting the corresponding edge yields in both cases the same system which
is furthermore LC-equivalent to the graph state described by Gab − a or Gba − b, respectively. Thus applying
Theorem 4.4.6 is comparatively simple in the considered cases.

71



Chapter 4 Reduction of complex Toric Code systems

another spin. This yields the system depicted in C38. Subsequently one applies this procedure
to the remaining three squares (D,E). Finally one obtains the system shown in F. Since this is
system 3 (which was shown to be nonlocal by computations in sec. 4.3) we showed that all other
systems constructed in the chain are nonlocal as well. Especially the last element of the chain –
system 5 – is proved to be nonlocal.

38To prevent misconceptions: Deleting the last spin would not make any sense since the prerequisites of Theorem
4.4.6 were violated (the resulting system is local). For we cannot deduce anything from a reduced local system, one
realizes that the described approach is similar to estimating expressions in mathematics where one often “overshoots
the mark”.
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Conclusion

In the first part of this thesis it was shown how Toric Code ground states may be derived from
the ground states of their subsystems. We saw that the one-vertex connection of two subsystems
leads to product states without entanglement between the two systems whereas connecting them
twice results in entangled states due to the newly created loop.

In the second part it was shown how local Clifford equivalent graph states can be obtained
from given Toric Code stabilizers in the binary framework. To this end we employed an algorithm
known from the theory of stabilizer states. Subsequently it was shown that this transformation
may be achieved without any calculation using spanning trees of the considered Toric Code system.
A connection to graph theory was established since the derived rule can be expressed in terms of
fundamental cycles and fundamental cuts.

In the last section an algorithmic approach was taken to determine whether for a given Toric
Code system LC-equivalent graph states exist that feature only spin-spin interactions that are
also present in the underlying Toric Code. We computed the smallest setting built from triangular
plaquettes that cannot be prepared from local graph states by means of local Clifford operations.
In addition it was shown how the nonlocality of certain larger Toric Code systems may be derived
from the nonlocality of smaller ones. Using this approach we found the minimal spin setting on
a generic square lattice that yields Toric Code ground states without LC-equivalent local graph
states. Furthermore it is strongly believed that the conclusions stated above hold for the larger
class of local unitary operations as well.
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Appendix A

List of small Toric Code systems

The following four tables (A.1, A.2, A.3 and A.4) list several small Toric Code systems with up to
6 spins and some of their properties. These systems are symbolized by their stabilizer where con-
tinuous black lines denote spins, small circles mark star operators and blue areas indicate where
plaquette operators exist. The degeneracy γ is computed using the relation given by Proposi-
tion 1.2.2. To observe anyonic statistics it is necessary to excite both m and e particles and move
one of them around the other. Whether such operations are (rudimentary) possible is noted in
column AE. If moving an e particle around a m excitation is possible but this path consists of
less than three spins this is indicated by (·).

If the degeneracy is non-trivial (i.e. γ > 1) one obtains the topological quantum numbers vtop
measuring the z-type loop operators. Whether the support of such operators includes spins that
cannot interact via elementary star and plaquette operators, is indicated by the column NL. Such
operators are called nonlocal39. The ground states were computed using the calculus developed in
section 2.2. The symbols used for the sake of brevity are defined in sections 2.2 and 1.1. In column
LU/S LC-equivalent graph states are depicted. Since N ≤ 7 the equivalence classes with respect
to local unitaries (LU) and local Clifford operations (LC) coincide. Note that all states that belong
to different configurations of plaquette operators are LC-equivalent and therefore described by the
same graph state. By omitting spin labels qubit SWAP operations are implied.

No. N Setting γ AE NL GS N−1 |GSi⟩, 1 ≤ i ≤ γ LU/S Comment
1 1 20 no no |+⟩ single qubit

2 2 20 no no |+⟩ |+⟩ biseparable

3 2 21 no no |Φ+⟩,|Ψ+⟩ Bell states

4 2 20 (yes) no |Φ+⟩ Bell state

5 3 22 no no |Ψ+⟩ |+⟩± |Ψ−⟩ |−⟩,
|Φ+⟩ |+⟩± |Φ−⟩ |−⟩

6 3 21 (yes) no |Φ+⟩ |+⟩± |Φ−⟩ |−⟩
7 3 20 (yes) no |Φ+⟩ |+⟩+ |Φ−⟩ |−⟩ GHZ state

8 3 21 no no |+⟩⊗3 ± |−⟩⊗3

9 3 20 yes no |+⟩⊗3 + |−⟩⊗3

Table A.1 (Color online) : TCM spin systems with 1 ≤ N ≤ 3 spins. γ is the degeneracy, AE states if Anyonic
Excitations are possible and NL if Non Local measurements are necessary to determine topological quantum
numbers vtop. The column GS lists the Ground States up to a normalizing constant N . LU/S denotes the
equivalence class with respect to Local Unitaries and qubit Swap operations in a graph state representation.

39Note that this definition of local and nonlocal operators does not coincide with the common notion of locality
used in the theory of entanglement.
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No. N Setting γ AE NL GS N−1 |GSi⟩, 1 ≤ i ≤ γ LU/S Comment

10 4 23 no no |Ψ+⟩ |Φ+⟩± |Ψ−⟩ |Φ−⟩,
|Ψ+⟩ |Ψ+⟩± |Ψ−⟩ |Ψ−⟩,
|Φ+⟩ |Φ+⟩± |Φ−⟩ |Φ−⟩,
|Φ+⟩ |Ψ+⟩± |Φ−⟩ |Ψ−⟩

GHZ state

11 4 22 (yes) no |Φ+⟩ |Φ+⟩± |Φ−⟩ |Φ−⟩,
|Φ+⟩ |Ψ+⟩± |Φ−⟩ |Ψ−⟩

12 4 21 (yes) no |Φ+⟩ |Φ+⟩± |Φ−⟩ |Φ−⟩

13 4 21 (yes) no |Φ+⟩ |Φ+⟩+ |Φ−⟩ |Φ−⟩,
|Φ+⟩ |Ψ+⟩+ |Φ−⟩ |Ψ−⟩

14 4 20 (yes) no |GHZ4⟩

15 4 22 (yes) no |Ψ+⟩ |Ψ+⟩± |Ψ−⟩ |Ψ−⟩,
|Φ+⟩ |Φ+⟩± |Φ−⟩ |Φ−⟩

non-planar

16 4 22 no no |Φ+⟩ |Φ+⟩,|Φ+⟩ |Ψ+⟩,
|Ψ+⟩ |Φ+⟩,|Ψ+⟩ |Ψ+⟩

biseparable

17 4 21 (yes) no |Φ+⟩ |Ψ+⟩,|Φ+⟩ |Φ+⟩
18 4 20 (yes) no |Φ+⟩ |Φ+⟩

19 4 21 yes no |Φ+⟩ |Φ+⟩,|Ψ+⟩ |Ψ+⟩

20 4 22 no no |Φ+⟩ |+⟩⊗2 ± |Φ−⟩ |−⟩⊗2,
|Ψ+⟩ |+⟩⊗2 ± |Ψ−⟩ |−⟩⊗2

21 4 21 yes no |Φ+⟩ |+⟩⊗2 + |Φ−⟩ |−⟩⊗2,
|Ψ+⟩ |+⟩⊗2 + |Ψ−⟩ |−⟩⊗2

22 4 21 (yes) no |Φ+⟩ |+⟩⊗2 ± |Φ−⟩ |−⟩⊗2

23 4 21 yes no |Φ+⟩ |+⟩⊗2 + |Φ−⟩ |−⟩⊗2,
|Ψ+⟩ |+⟩⊗2 − |Ψ−⟩ |−⟩⊗2

24 4 20 yes no |Φ+⟩ |+⟩⊗2 + |Φ−⟩ |−⟩⊗2

25 4 21 no yes |+⟩⊗4 ± |−⟩⊗4 GHZ state

26 4 20 yes no |+⟩⊗4 + |−⟩⊗4

Table A.2 (Color online) : TCM spin systems with N = 4 spins. γ is the degeneracy, AE states if Anyonic
Excitations are possible and NL if Non Local measurements are necessary to determine topological quantum
numbers vtop. The column GS lists the Ground States up to a normalizing constant N . LU/S denotes the
equivalence class with respect to Local Unitaries and qubit Swap operations in a graph state representation.
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No. N Setting γ AE NL GS N−1 |GSi⟩, 1 ≤ i ≤ γ LU/S Comment

27 5 22 no no
∣

∣

〉

±
| ⟩+

[

|+⟩⊗2 |−⟩⊗2 ± |−⟩⊗2 |+⟩⊗2
]

|−⟩,
∣

∣

〉

±
| ⟩ −

[

|+⟩⊗2 |−⟩⊗2 ± |−⟩⊗2 |+⟩⊗2
]

|−⟩

28 5 21 yes no
∣

∣

〉

±
| ⟩±

[

|+⟩⊗2 |−⟩⊗2 ± |−⟩⊗2 |+⟩⊗2
]

|−⟩

29 5 20 yes no
∣

∣

〉

| ⟩+
[

|+⟩⊗2 |−⟩⊗2 + |−⟩⊗2 |+⟩⊗2
]

|−⟩

30 5 21 yes no
∣

∣

〉

| ⟩±
[

|+⟩⊗2 |−⟩⊗2 + |−⟩⊗2 |+⟩⊗2
]

|−⟩

31 5 23 no no |A+⟩ |B+⟩ |+⟩± |A−⟩ |B−⟩ |−⟩
where A,B ∈ {Ψ,Φ}

32 5 22 (yes) no |Φ+⟩ |B+⟩ |+⟩± |Φ−⟩ |B−⟩ |−⟩
where B ∈ {Ψ,Φ}

33 5 21 (yes) no |Φ+⟩ |Φ+⟩ |+⟩± |Φ−⟩ |Φ−⟩ |−⟩

34 5 22 yes no |A+⟩ |B+⟩ |+⟩+ |A−⟩ |B−⟩ |−⟩
where A,B ∈ {Ψ,Φ}

35 5 21 yes no |Φ+⟩ |B+⟩ |+⟩+ |Φ−⟩ |B−⟩ |−⟩
where B ∈ {Ψ,Φ}

36 5 20 yes no |Φ+⟩ |Φ+⟩ |+⟩+ |Φ−⟩ |Φ−⟩ |−⟩

37 5 22 no no
∣

∣

〉

+
|Ψ+⟩,

∣

∣

〉

−
|Ψ+⟩,

∣

∣

〉

+
|Φ+⟩,

∣

∣

〉

−
|Φ+⟩

biseparable

38 5 21 (yes) no
∣

∣

〉

+
|Φ+⟩,

∣

∣

〉

−
|Φ+⟩

39 5 21 yes no
∣

∣

〉

+
|Φ+⟩,

∣

∣

〉

+
|Ψ+⟩

40 5 20 yes no
∣

∣

〉

|Φ+⟩

41 5 21 yes no
∣

∣

〉

+
|Φ+⟩,

∣

∣

〉

−
|Ψ+⟩

42 5 22 no yes
∣

∣

〉

±
| ⟩+

[

|−⟩ |+⟩⊗3 ± |+⟩ |−⟩⊗3
]

|−⟩,
∣

∣

〉

±
| ⟩ −

[

|−⟩ |+⟩⊗3 ± |+⟩ |−⟩⊗3
]

|−⟩

43 5 21 yes no
∣

∣

〉

| ⟩±
[

|−⟩ |+⟩⊗3 + |+⟩ |−⟩⊗3
]

|−⟩

44 5 21 (yes) yes
∣

∣

〉

±
| ⟩+

[

|−⟩ |+⟩⊗3 ± |+⟩ |−⟩⊗3
]

|−⟩

45 5 20 yes no
∣

∣

〉

| ⟩+
[

|−⟩ |+⟩⊗3 + |+⟩ |−⟩⊗3
]

|−⟩

46 5 21 no yes |+⟩⊗5 ± |−⟩⊗5 GHZ state

47 5 20 yes no |+⟩⊗5 + |−⟩⊗5

Table A.3 (Color online) : TCM spin systems with N = 5 spins. γ is the degeneracy, AE states if Anyonic
Excitations are possible and NL if Non Local measurements are necessary to determine topological quantum
numbers vtop. The column GS lists the Ground States up to a normalizing constant N . LU/S denotes the
equivalence class with respect to Local Unitaries and qubit Swap operations in a graph state representation.
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No. N Setting γ AE NL GS N−1 |GSi⟩, 1 ≤ i ≤ γ LU/S Comment

48 6 22 no no
∣

∣

〉

+

∣

∣

〉

+
,
∣

∣

〉

+

∣

∣

〉

−
,

∣

∣

〉

−

∣

∣

〉

+
,
∣

∣

〉

−

∣

∣

〉

−

biseparable

49 6 21 yes no
∣

∣

〉

+

∣

∣

〉

,
∣

∣

〉

−

∣

∣

〉

50 6 20 yes no
∣

∣

〉
∣

∣

〉

51 6 22 no yes
∣

∣

〉

±
| ⟩ | ⟩+

[

|−⟩ |+⟩⊗3 ± |+⟩ |−⟩⊗3
]

|−⟩⊗2,
∣

∣

〉

±
| ⟩ | ⟩ −

[

|−⟩ |+⟩⊗3 ± |+⟩ |−⟩⊗3
]

|−⟩⊗2

52 6 21 yes no
∣

∣

〉

| ⟩ | ⟩±
[

|−⟩ |+⟩⊗3 + |+⟩ |−⟩⊗3
]

|−⟩⊗2

53 6 21 yes yes
∣

∣

〉

±
| ⟩ | ⟩+

[

|−⟩ |+⟩⊗3 ± |+⟩ |−⟩⊗3
]

|−⟩⊗2

54 6 20 yes no
∣

∣

〉

| ⟩ | ⟩+
[

|−⟩ |+⟩⊗3 + |+⟩ |−⟩⊗3
]

|−⟩⊗2

55 6 23 no yes |A+⟩ |+⟩⊗2 |B+⟩± |A−⟩ |−⟩⊗2 |B−⟩;
A,B ∈ {Φ,Ψ}

56 6 22 (yes) yes |Φ+⟩ |+⟩⊗2 |B+⟩± |Φ−⟩ |−⟩⊗2 |B−⟩; B ∈ {Φ,Ψ}

57 6 22 yes no |A+⟩ |+⟩⊗2 |B+⟩+ |A−⟩ |−⟩⊗2 |B−⟩;
A,B ∈ {Φ,Ψ}

58 6 21 yes no |Φ+⟩ |+⟩⊗2 |B+⟩+ |Φ−⟩ |−⟩⊗2 |B−⟩; B ∈ {Φ,Ψ}

59 6 21 (yes) yes |Φ+⟩ |+⟩⊗2 |Φ+⟩± |Φ−⟩ |−⟩⊗2 |Φ−⟩

60 6 20 yes no |Φ+⟩ |+⟩⊗2 |Φ+⟩+ |Φ−⟩ |−⟩⊗2 |Φ−⟩

61 6 22 no yes
∣

∣

〉

±
| ⟩+

[

|+⟩⊗2 |−⟩⊗2 ± |−⟩⊗2 |+⟩⊗2
]

|−⟩⊗2,
∣

∣

〉

±
| ⟩−

[

|+⟩⊗2 |−⟩⊗2 ± |−⟩⊗2 |+⟩⊗2
]

|−⟩⊗2

62 6 21 yes yes
∣

∣

〉

±
| ⟩+

[

|+⟩⊗2 |−⟩⊗2 ± |−⟩⊗2 |+⟩⊗2
]

|−⟩⊗2

63 6 20 yes no
∣

∣

〉

| ⟩+
[

|+⟩⊗2 |−⟩⊗2 + |−⟩⊗2 |+⟩⊗2
]

|−⟩⊗2

64 6 22 no yes |A+⟩ | ⟩⊗4 ± |A−⟩ |−⟩⊗4; A ∈ {Φ,Ψ}

65 6 21 (yes) yes |Φ+⟩ | ⟩⊗4 ± |Φ−⟩ |−⟩⊗4

66 6 21 yes no |A+⟩ | ⟩⊗4 + |A−⟩ |−⟩⊗4; A ∈ {Φ,Ψ}

67 6 20 yes no |Φ+⟩ | ⟩⊗4 + |Φ−⟩ |−⟩⊗4

68 6 21 no yes |+⟩⊗6 ± |−⟩⊗6 GHZ state

69 6 20 yes no |+⟩⊗6 + |−⟩⊗6

Table A.4 (Color online) : TCM spin systems with N = 6 spins. γ is the degeneracy, AE states if Anyonic
Excitations are possible and NL if Non Local measurements are necessary to determine topological quantum
numbers vtop. The column GS lists the Ground States up to a normalizing constant N . LU/S denotes the
equivalence class with respect to Local Unitaries and qubit Swap operations in a graph state representation.
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Appendix B

Computation of LC-orbits

The following two sections outline the MATHEMATICA-scripts used for the computation of LC-classes.
The mathematical framework used here is described in sec. 4.2. There are two sections: The first
covers the computation of LC-classes and the subsequent analysis concerning graph isomorphisms
in order to compute some of the results published in ref. [2] (Table II.). The second outlines the
script used in section 4.3 to probe larger systems (N $ 10) for local graph states.

B.1 Size of LC-classes and 2-colorability

In order to compute the whole LC-class of a graph defined by an adjacency matrix G, simultane-
ously probing for local graphs defined by the locality matrix LOC, the following preliminaries are
necessary:

First, the dimension Nu of the system is determined and the null matrix ZERO is defined.
Furthermore the complementation of the locality matrix is computed and labeled as CLOC:

1 (∗ Si ze o f the system ∗)
2 Nu=Dimensions [G ] [ [ 1 ] ] ;
3
4 (∗ Nul l matrix ∗)
5 ZERO=ConstantArray [ 0 ,{Nu,Nu } ] ;
6
7 (∗ Complement l o c a l i t y matrix LOC ∗)
8 CLOC=Mod[ ConstantArray [ 1 ,{Nu,Nu}]+LOC, 2 ] ;

In addition two functions are defined that will be used later on to compute the matrices MA, MB,
MC and MD efficiently:

1 (∗ Switch modulo 3 ∗)
2 f3 [ s tep , e l ] :=Switch [ s t ep [ [ e l ] ] ,
3 0 ,{0 ,1} ,
4 1 ,{1 ,0} ,
5 2 ,{1 ,1}
6 ] ;
7
8 (∗ Switch modulo 2 depending on modulo 3 swi t ch ∗)
9 f2 [ s tep , e l , type ] :=Switch [ type ,

10 0 ,Switch [ s t ep [ [ e l ] ] , 0 ,{ 0 , 1 } , 1 , { 1 , 1 } ] ,
11 1 ,Switch [ s t ep [ [ e l ] ] , 0 ,{ 1 , 0 } , 1 , { 1 , 1 } ] ,
12 2 ,Switch [ s t ep [ [ e l ] ] , 0 ,{1 , 0} , 1 , {0 , 1} ]
13 ] ;

The following three blocks of code comprise the main loop that computes every LC-equivalent
graph of G. First, some variables and empty lists are defined. Furthermore the matrices MA, MB,
MC and MD are initialised as null matrices. The For-loop runs over the 3N possible combinations
of MD and MB matrices. The latter are generated using function f3:
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1 (∗ Define v a r i a b l e s ∗)
2 NS=0;NSS=0;NG=0;DG=0;BP=0;
3 MA=ZERO;MB=ZERO;MC=ZERO;MD=ZERO;
4 Graphs={};
5 LOCX={};
6
7 (∗ Check a l l p o s s i b l e s o l u t i o n s ∗)
8 For [ s3=0, s3<3ˆ(Nu) , s3++,
9

10 (∗ Construct B and D matr ices ∗)
11 S3=IntegerDigits [ s3 , 3 ,Nu ] ;
12 For [ l =1, l<=Nu, l++,
13 MD[ [ l , l ] ]= f3 [ S3 , l ] [ [ 1 ] ] ;
14 MB[ [ l , l ] ]= f3 [ S3 , l ] [ [ 2 ] ] ;
15 ] ;
16 BUF=G.MB+MD;

For each combination of MD and MB there are 2N combinations of MA and MC matrices. These are
computed by the second For-loop only if BUF turns out to be invertible. At last, if all four matrices
MA, MB, MC and MD are defined, the solution X (a potential adjacency matrix of a LC-equivalent
graph) is computed:

1 (∗ Proceed only i f i n v e r t i b l e ∗)
2 I f [Det [BUF,Modulus−>2]==1,
3 For [ s2=0, s2<2ˆ(Nu) , s2++,
4
5 NS++;
6
7 (∗ Construct A and C matr ices ∗)
8 S2=IntegerDigits [ s2 , 2 ,Nu ] ;
9 For [ l =1, l<=Nu, l++,

10 MA[ [ l , l ] ]= f2 [ S2 , l , S3 [ [ l ] ] ] [ [ 1 ] ] ;
11 MC[ [ l , l ] ]= f2 [ S2 , l , S3 [ [ l ] ] ] [ [ 2 ] ] ;
12 ] ;
13
14 (∗ So lve l i n e a r system ∗)
15 X=LinearSolve [BUF,−G.MA−MC,Modulus−>2];

The last block of code analyses the solution X. First, it is checked whether X is an adjacency
matrix (this is not always the case). Subsequently it is checked whether the graph has already
been computed (often there are duplicates). If not, the 2-colorability and subsequently the locality
is probed (by element-wise multiplication of X and CLOC, see def. 4.1.1):

1 (∗ Check whether i t r ep r e s en t s a graph ∗)
2 I f [X∗IdentityMatrix [Nu]==ZERO && Transpose [X]==X,
3
4 NG++;
5
6 (∗ New? Then append to l i s t , check i f 2−c o l o r a b l e ∗)
7 I f [ !MemberQ[ Graphs ,X] ,
8
9 DG++;

10 AppendTo [ Graphs ,X ] ;
11 I f [ BipartiteGraphQ [ AdjacencyGraph [X] ] ,BP++;] ;
12
13 (∗ Check i f graph i s l o c a l wi th r e spec t to LOC ∗)
14 I f [X∗CLOC==ZERO,NSS++;AppendTo [LOCX,X ] ; ] ;
15 ] ;
16 ] ;
17 ] ;
18 ] ;
19 ] ;
20
21 (∗ Print computed data . . . ∗)

To compute the non-isomorphic (local) graphs stored in Graphs and LOCX, the following function
returns True iff the adjacency matrices gph1 and gph1 describe isomorphic graphs:
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1 g [ gph1 , gph2 ] := IsomorphicGraphQ [ AdjacencyGraph [ gph1 ] , AdjacencyGraph [ gph2 ] ] ;

The following loop stores only non-isomorphic graphs of Graphs in IsoGraph and non-isomorphic
local graphs of LOCX in IsoLOCX:

1 (∗ Define v a r i a b l e s ∗)
2 nonisoGraph=0;nonisoLOCX=0;
3 IsoGraph={};IsoLOCX={};
4
5 (∗ Find non−isomorphic graphs ∗)
6 For [ i =1, i<= Length [ Graphs ] , i++,
7
8 i s i n=False ;
9

10 For [ j =1, j<=Length [ IsoGraph ] , j++,
11 I f [ g [ Graphs [ [ i ] ] , IsoGraph [ [ j ] ] ] , i s i n=True ; Break [ ] ; ]
12 ] ;
13
14 I f [ ! i s i n , nonisoGraph++;AppendTo [ IsoGraph , Graphs [ [ i ] ] ] ] ;
15 ] ;
16
17 (∗ Print computed data . . . ∗)
18
19 (∗ Find non−isomorphic LOCAL graphs ∗)
20 For [ i =1, i<= Length [LOCX] , i++,
21
22 i s i n=False ;
23
24 For [ j =1, j<=Length [ IsoLOCX ] , j++,
25 I f [ g [LOCX[ [ i ] ] , IsoLOCX [ [ j ] ] ] , i s i n=True ; Break [ ] ; ]
26 ] ;
27
28 I f [ ! i s i n , nonisoLOCX++;AppendTo [ IsoLOCX ,LOCX[ [ i ] ] ] ] ;
29 ] ;
30
31 (∗ Print computed data . . . ∗)

As a result the total numbers of non-isomorphic (local) graphs nonisoGraph and nonisoLOCX are
printed. It is now easy to verify the numbers published in [2] (Table II.) denoted by |LUclass| and
the property of 2-colorability 2− col40.

B.2 Existence of local graph states

If one only wants to probe whether there are graphs in the LC-class of G that are local with respect
to the adjacency relation defined by the locality matrix LOC, the algorithm explained above should
be optimized since the storage of graphs is not necessary. This optimized code was used to prove
the nonlocality of system 4 described in section 4.3. For there are no variables that are changed
by the main loop frequently, the parallelization of the code is advantageous41.

In fact, the following code computes the elements of the considered LC-class in the same way
as described in the previous section. If a solution X if found the only check performed is whether
it is a local graph with respect to LOC:

1 (∗ I n i t i a l i s e k e rne l s ∗)
2 LaunchKernels [ ] ;
3
4 (∗ Check a l l p o s s i b l e s o l u t i o n s ∗)
5 Para l l e lDo [
6
7 MA=ZERO;MB=ZERO;MC=ZERO;MD=ZERO;

40In the course of these computations two potential mistakes in Table II. in ref. [2] have been found: The classes
No. 16 and 17 do not possess 2-colorable representatives.

41The advantage of multithreaded programs is often narrowed by shared variables that lead to mutual blocking
requests.
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8
9 (∗ Construct B and D matr ices ∗)

10 S3=IntegerDigits [ s3 , 3 ,Nu ] ;
11 For [ l =1, l<=Nu, l++,
12 MD[ [ l , l ] ]= f3 [ S3 , l ] [ [ 1 ] ] ;
13 MB[ [ l , l ] ]= f3 [ S3 , l ] [ [ 2 ] ] ;
14 ] ;
15 BUF=G.MB+MD;
16
17 (∗ Proceed only i f i n v e r t i b l e ∗)
18 I f [Det [BUF,Modulus−>2]==1,
19 For [ s2=0, s2<2ˆ(Nu) , s2++,
20
21 (∗ Construct A and C matr ices ∗)
22 S2=IntegerDigits [ s2 , 2 ,Nu ] ;
23 For [ l =1, l<=Nu, l++,
24 MA[ [ l , l ] ]= f2 [ S2 , l , S3 [ [ l ] ] ] [ [ 1 ] ] ;
25 MC[ [ l , l ] ]= f2 [ S2 , l , S3 [ [ l ] ] ] [ [ 2 ] ] ;
26 ] ;
27
28 (∗ So lve l i n e a r system ∗)
29 X=LinearSolve [BUF,−G.MA−MC,Modulus−>2];
30
31 (∗ Check i f graph i s l o c a l wi th r e spec t to LOC ∗)
32 I f [X∗CLOC==ZERO&&Transpose [X]==X,
33 Print [ ”Found l o c a l graph at s3=” , s3 , ” and s2=” , s2 ] ;
34 (∗ Print l o c a l graph . . . ∗)
35 ] ;
36 ] ;
37 ] ;
38
39 ,{ s3 , 0 , 3 ˆ (Nu) −1} ] ;

If the check X*CLOC==ZERO is affirmative the corresponding (local) graph is printed. In this case
one may abort the computation since the Toric Code system in question is now known to be local.
With this code it is possible to show in about 4 hours42 that system 4 (12 spins) is nonlocal.

42Using a modern personal computer.
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Appendix C

Example: An ε-symmetric
LC-class
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Figure C.1 (Color online) : The considered graph G52 (A) with inner and outer vertex 2 and 5. The two leaf-
reduced graphs G52 − 5 and G25 − 2 (B,C) are isomorphic via 2 ↔ 5.

To illustrate the structure of ε-symmetric LC-classes used in the proof of Proposition 4.4.3 and
depicted in fig. 4.8 consider the leaf-graph G52 shown in fig. C.1 A.

Deleting the outer vertex 5 yields the reduced graph G52 − 5 depicted in fig. C.1 B. Applying
ε52 = τ5τ2 to G52 permutes 5 and 2 and one obtains G25. Subsequent deletion of the new outer
vertex 2 yields G25 − 2 drawn in fig. C.1 C.

In order to test the statement of Proposition 4.4.3 the whole LC-classes of all three graphs
were computed using the MATHEMATICA-script described in appendix B. The equivalence classes of
G52 − 5 and G25 − 2 are depicted in fig. C.2, the class of G52 is shown in fig. C.3. In most cases
the reader may easily confirm that different graphs of the same LC-class can be transformed into
each other by successive application of local complementations.

Let us now probe the statements of subsection 4.4.1:

• The LC-class of G52 comprises 30 different graphs (disregarding graph isomorphisms). These
30 graphs are partitioned in four different classes (see fig. C.3). The upper left class A (blue
vertices) is characterised by graphs with at least one leaf and outer vertex 5. This is set A
in fig. 4.8. Analogously one finds set B in fig. C.3 B (red vertices) that can be obtained
from set A by substituting 2 ↔ 5. Set C, characterised by an edge between 2 and 5 with
symmetric edges to other vertices, is depicted in C (green vertices). One easily verifies that
the application of τ2 and τ5 yields graphs in A and B, respectively. At last, set D is shown
in D (yellow vertices) and may be left by ξ-operations only. In any case, ξ-operations yield
graphs in C. Thus the structure depicted in fig. 4.8 is present in this special case.

• The statement of Proposition 4.4.3 is the following: For each graph in fig. C.3 deleting 5 or 2
yields a graph in fig. C.2. More precisely, deleting 5 from graphs in A yields graphs depicted
in fig. C.2 A whereas deleting 2 from graphs in B yields graphs in fig. C.2 B. Furthermore
deleting 2 or 5 from graphs in C or D yields graphs in the corresponding class in fig. C.2.
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The reader may easily check that these statements hold for all graphs in the LC-class under
consideration.

Clearly, every graph in fig. C.3 has at least one subgraph in fig. C.2. If one knows that at
least one edge of each reduced graph is nonlocal with respect to an adjacency relation regarding
the vertices 1, 2, 3, 4 or 1, 3, 4, 5 and one finds a 5-spin Toric Code system LC-equivalent to graph
states represented by the LC-class of G52 such that non-adjacent spins of the reduced systems are
non-adjacent in this system as well, it follows the existence of at least one nonlocal edge for each
graph state representative in fig. C.3. This is the main idea of Theorem 4.4.6 in a nutshell.

A

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

B

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

1

5

3

4

Figure C.2 (Color online) : The LC-class obtained from G52−5 is shown in A (blue vertices) whereas the LC-class
of G25 − 2 is depicted in B (red vertices). They are isomorphic via 2 ↔ 5 due to the isomorphism connecting
G52 − 5 and G25 − 2.
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Figure C.3 (Color online) : The whole LC-class [G52]LC
= [G25]LC

computed with the MATHEMATICA-script de-
scribed in appendix B. This class comprises 30 different graphs (disregarding graph isomorphisms) that were
partitioned according to the structure depicted in fig. 4.8. There are four partitions: A (blue vertices), B (red
vertices), C (green vertices) and D (yellow vertices). See fig. 4.8 for further explanations.
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